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1 Introduction

Computing has permeated a wide variety of disciplines ranging
from medical information processing to economic forecasting to
distributed decision making. These new demands on computing
coupled with the globalization of information that needs to be pro-
cessed in a decentralized manner calls for widening the scope of
high performancecomputing. High performance computing should
encompass novel computing paradigms to meet these new compu-
tational challenges in addition to meeting the increased processing
requirements of applications from the scientific domain. It is clear
that sequential computing is inadequate to meet these challenges,
and it becomes imperative that we focus our efforts on parallel
computing. The term parallel computing is used here broadly to in-
clude tightly-coupled multiprocessing to geographically distributed
processing of information. Research issues in high-performance
computing span distributed organization, accessing, and process-
ing of information, to system architecture issues that lead to the
development of high-performance systems.

In developing high-performance computing systems, one has to
look at a broad spectrum of issues that include theoretical models for
algorithm design, tools for parallel program development, design
and evaluation of architectural enhancements for parallel program-
ming, and detailed performance issues of large parallel systems.
From the standpoint of addressing high performance computing
challenges, a parallel architecture is useful only if it helps in solv-
ing problems that are infeasible to solve on sequential machines.
Therefore, a fundamental issue which has to be addressed by the re-
search community to make HPCC initiative viable is the scalability
of parallel systems. By a parallel system we mean an application-
architecture combination.

In this position paper, we begin by focusing on the issues relating
to the scalability of parallel systems, and the mechanisms and poli-
cies for realizing scalable parallel machines. We develop a novel
approach to characterizing the scalability notion; develop a frame-
work for implementing this approach; and enumerate the system
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architecture issues in realizing scalable parallel systems. We then
present a more global research agenda for the high-performance
computing systems architecture.

2 Scalability

2.1 What is Scalability?

From an application’s perspective, one would like to see that the
efficiency of the parallel system does not degrade as the problem
size is increased. Similarly, from an architecture’s perspective, the
system should deliver increased performance with increased com-
putational resources. The term scalability is used to capture this
relationship between an application and an architecture. Any set of
metrics used to quantify scalability should at least be useful to: se-
lect the best architecture platform for an application domain, predict
the performance of an application on a larger configuration of an
existing architecture, and glean insight on the interaction between
an application and an architecture to understand the scalability of
other application-architecture pairs.

Performance metrics such as speedup [4], scaled speedup [12],
sizeup [30], experimentally determined serial fraction [13], and
isoefficiency function [15] have been proposed for quantifying the
scalability of parallel systems. While these metrics are extremely
useful for tracking performance trends, they do not provide ade-
quate information needed to understand the reason why an applica-
tion does not scale well on an architecture. At the very least, one
would like to know if the problem is with the application or the
architecture. In order to do this, we should be able to identify ap-
plication and architectural bottlenecks in a parallel system that lead
to poor scalability. It is important to devise metrics for scalability
that separate and quantify such bottlenecks.

2.2 Our Approach

Architectural studies generally address low-level issues such as
latency, contention and synchronization. The scalability of syn-
chronization primitives supported by the hardware [5, 21] and the
limits on interconnection network performance [2, 23] are exam-
ples of such studies. While such issues are extremely important, it
is necessary to put the impact of these factors into perspective by
considering them in the context of overall application performance.
Recognizing this importance, there have been recent studies that use
real applications to address specific architectural issues [6, 8, 26].

Adhering to the RISC ideology in the evolution of sequential ar-
chitectures, we would like to use real world applications in the per-
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Figure 1: Top-down Approach to Scalability Study

formance evaluation of parallel machines. Applications normally
tend to contain large volumes of code that are not easily portable
and a level of detail that is not very familiar to someone outside
that application domain. Hence, researchers have traditionally used
parallel algorithms that capture the interesting computation phases
of applications for benchmarking machines. Such abstractions of
real applications that capture the main phases of the computation are
called kernels. One can go even lower than kernels by abstracting
the main loops in the computation (like the Lawrence Livermore
loops) and evaluating their performance. As one goes lower, the
outcome of the evaluation becomes less realistic. Even though an
application may be abstracted by the kernels inside it, the sum of
the times spent in the underlying kernels may not necessarily yield
the time taken by the application. There is usually a cost involved
in moving from one kernel to another such as the data movements
and rearrangements in an application that are not part of the kernels
that it is comprised of. For instance, an efficient implementation
of a kernel may need to have the input data organized in a certain
fashion which may not necessarily be the format of the output from
the preceding kernel in the application. Despite its limitations, we
believe that the scalability of an application with respect to an archi-
tecture can be captured by studying its kernels, since they represent
the computationally intensive phases of an application.

Parallel system overheads (see Figure 1) may be broadly classi-
fied into a purely algorithmic component (algorithmic overhead),
and a component arising from the interaction of the algorithm and
the architecture (interaction overhead). The algorithmic overhead
is quantified by computing the time taken for execution of a given
parallel program on an ideal machine such as the PRAM [31] and
measuring its deviation from a linear speedup curve. A real exe-
cution could deviate significantly from the ideal execution due to
overheads such as latency, contention, synchronization, scheduling
and cache effects. These overheads are lumped together as the
interaction overhead. In an architecture with no contention over-
head, the communication pattern of the application would dictate
the latency overhead incurred by it. Thus the performance of an
application (on an architecture devoid of network contention) may
lie between the ideal curve and the real execution curve (see Fig-
ure 1). Therefore, to fully understand the scalability of a parallel
system it is important to isolate the influence of each component
of the interaction overhead on the overall performance. For this
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Table 1: Comparing the Implementation Approaches

purpose, we have introduced the notion of overhead functions [29]
that allows separation and quantification of these bottlenecks.

The key elements of our top-down approach for studying the
scalability of parallel systems are:

experiment with real world applications

identify parallel kernels that occur in these applications

study the interaction of these kernels with architectural features
to separate and quantify the overheads in the parallel system

use these overheads for predicting the scalability of parallel
systems.

2.3 An Implementation Framework

Scalability study of parallel systems is complex due to the several
degrees of freedom that they exhibit. Experimentation, simulation,
and analytical models are three techniques that have been commonly
used in such studies. But it is well-known that each has its own lim-
itations (see Table 1). With experimentation, while it is possible to
get accurate results with fairly low computational resources, only a
small set of statistics can be gathered since usually the architectural
parameters are fixed. Further, the statistics gathering instrumen-
tation may be intrusive in skewing the intrinsic characteristics of
the application. Analytical models can be used to gather a rich set
of statistics with low computational resources, but may not offer
very high accuracy since the models have to be necessarily simple
to make them tractable. Finally, simulation has the advantage of
providing quite accurate results over a large set of statistics. But
it does require considerable computational resources in terms of
space and time to simulate large systems. Clearly, a combination of



all three which uses the best attribute of each is a good framework
for implementing the top-down approach, and is the one we take
(see Figure 2). Experimentation is used in conjunction with sim-
ulation to understand the performance of real applications on real
architectures, and to identify the interesting kernels that occur in
these applications for subsequent use in the simulation studies. We
use the datapoints obtained from simulation to derive new models
as well as refine existing models for predicting the scalability of
larger systems. Refined models of system abstractions thus derived
can then be used to speed up the simulation.

We have developed a simulation platform (SPASM) [29], that
provides an elegant set of mechanisms for quantifying the different
overheads we have identified. Constant problem size (where the
problem size remains unchanged as the number of processors is
increased), memory constrained (where the problem size is scaled
up linearly with the number of processors), and time constrained
(where the problem size is scaled up to keep the execution time con-
stant with increasing number of processors) are three well-accepted
scaling models used in the study of parallel systems. The overhead
functions embodied in the simulation platform can be used to study
the growth of system overheads for any of these scaling strategies.

The algorithmic bottlenecks identified using the framework can
be used as feedback for algorithm redesign. Similarly, the archi-
tectural bottlenecks may suggest new architectural primitives to
enhance performance. The framework can also be used to validate,
develop, and refine models for specificalgorithmic and architectural
artifacts.

2.4 Research Issues
� It is important to develop metrics that adequately capture the

performance bottlenecks in the scalability measurements of
parallel systems.

� Scalable parallel systems, owing to the several degrees of free-
dom, are complex to design and evaluate. Therefore, there is
a need to develop powerful tools for this purpose. These
tools would include architecture simulators, analytical mod-
els,visualizers, and performance debuggers. Novel techniques
need to be developed to study the interaction between appli-
cations and architectures.

� Sequential machines have well accepted set of benchmarks for
performance evaluation. It is imperative to develop a similar
set of benchmarks for parallel systems evaluation.

3 System Architecture

3.1 Architecture Trends

Parallel machines have evolved along two broad architectural clas-
sification: shared memory, and message-passing based on the in-
herent communication and synchronization model underlying the
basic architecture. Shared memory machines are characterized by a
set of processors connected to a globally shared memory; all inter-
processor communication and synchronization are effected via this
shared memory. Message-passing machines are characterized by a
set of processors each with its own private memory; there is a global
interconnection network that allows processors to communicate and
synchronize with one another via messages. In shared memory ma-
chines communication is implicit (e.g. updating shared locations);
thus a set of mechanisms for synchronization is usually needed.
On the other hand, in message-passing machines communication
is explicit (via messages). Synchronization and communication
are intertwined in that information exchange among the proces-
sors serves both. Conventional wisdom suggests that programming

shared memory machines is easier due to the global name space
provided by the architecture. Message-passing architectures have
the potential for providing high performance since the communica-
tion can be direct and explicit. Given the relative merits of the two
architectural styles, it is clear that future parallel machines should
have features that combine the benefits of the two.

3.2 Shared Memory Issues

As an exposition of low level issues in realizing scalable shared
memory machines we will first focus on some specifics. Use of pri-
vate caches as a latency tolerating technique has been successfully
used in realizing scalable shared memory machines. In realizing
such machines there are two main design issues: memory consis-
tency model, and coherence management. Early designs used se-
quential consistency, which presents a uniformly consistent view of
shared memory for all processorsat all times, for the memory model
[27, 10]. Recently, use of some form of relaxed memory consis-
tency model has been proposed as a means to improve performance
of cache-based shared memory multiprocessors [19, 1, 9, 18]. The
basic premise is that most shared memory applications follow some
synchronization model and expect consistent views of data only at
well-defined synchronization points. Therefore, architectures based
on such relaxed memory models, overlap communication with com-
putation by allowing global operations (such as invalidations) to go
on in the background and only requiring such operations complete
before a synchronization operation.

In addition to the specific memory consistency model is the issue
of coherence management in a cache-based shared memory mul-
tiprocessor. This involves when and how coherence actions are
actually performed in the architecture. The “when” question has to
do with whether the hardware or the software triggers the coherence
actions; the “how” question relates to whether the software or the
hardware keeps the necessary information for taking the coherence
actions. Systems such as Alewife [3], KSR-1 [25], and DASH [19]
leave the “when" question entirely to the hardware. That is, the co-
herence action is triggered as soon as the hardware recognizes that
there is a potential for inconsistency in the view of a data that is ac-
tively shared. Since the compiler/runtime has a better knowledge of
the programmer’s intent it makes sense to let the compiler/runtime
determine when coherence actions should be initiated. However,
for efficiency most of the state information needed to carry out the
coherence action should be in the hardware. This is the familiar
policy/mechanism argument, with the hardware providing the right
set of mechanisms (the “how" question) and the policy (the “when"
question) being implemented in the software. We have specified an
architecture called Beehive [17, 18, 28], wherein we partition the
responsibilities between the hardware and software for consistency
management. The hardware provides a simple set of mechanisms
which are to be used by the compiler/runtime to effect the consis-
tency management.

3.3 Research Issues
� Since shared memory and message-passing each have their

own advantages, it is clear that the logical next step is to com-
bine the two in future parallel machines. While there have
been some initial investigation in this direction [3, 16, 11],
considerably more effort is needed to evolve the right set of
mechanisms that are usable from the applications perspective.
Further, appropriate programming interfaces need to be de-
veloped that exploit the fast communication capability of the
underlying hardware while providing shared memory view of
the system.

� Analyzing the program semantics can give us useful infor-



mation regarding the sharing pattern and synchronization in
a parallel program. Such information can be used to shift
some of the hardware functionality into the software. This
can be beneficial both from the point of view of reducing
hardware complexity as well as improving performance. The
research questions to be addressed include deciding the di-
viding line between hardware and software in terms of pol-
icy/mechanism separation; and development of appropriate
tools for detailed performance evaluation of this separation. A
related issue is devising appropriate hardware mechanisms for
runtime/compile-time management of memory consistency;
and the design of compile-time/runtime algorithms for data
allocation, synchronization, and concurrency management.

� The current trend in building multiprocessors is to use off-the-
shelf processors that are not usually designed with multipro-
cessing in mind. As we get better understanding of the system
architecture issues in high-performance computing, it is im-
portant to re-engineer uniprocessor architectures. The same is
true of networking hardware as well.

4 Agenda

Until now we focussed on two specific issues that we have been
looking at in our research for developing high-performance com-
puting systems. We now take a more global perspective and present
a research agenda pertaining to system architecture issues.

� Scalability studies and architectural mechanisms for scal-
able systems are central to realizing high performance com-
puting systems of the future. It is important to continue de-
velopment of performance-conscious theoretical and analyt-
ical models for parallel program development [7]. Another
important aspect of the system architecture that needs to be
emphasized in the design of parallel systems is input/output
Given that several large applications have considerableamount
of input-output requirements, it is clear that this aspect should
be integral to both the design of parallel algorithms as well as
high performance system architectures. There have been sev-
eral recent attempts both from the architecture point of view
(such as the parallel disk array technology [14]), and from an
algorithmic point of view [22] to address this issue.

� To make parallel computing more accessible and affordable,
it is important to investigate off-the-shelf processing and net-
working technologies for the realization of low-cost parallel
machines. In this context, the research issues center around
operating systems mechanisms (such as distributed shared
memory [20, 24]) for efficient interprocessor communication,
and language-level support for coarse-grained parallel pro-
gramming.

� The heavy computational demands posed by HPCC applica-
tions such as weather modeling has served as an ideal impetus
for focusing on the fundamental issues in the development
of high-performance systems. There are also several other
application domains, such as optimization and game theory
that has implications on economic forecasting, that can bene-
fit from high performance computing systems. Further, there
are computer science applications such as simulation of large
parallel systems and networks, and the development of novel
user interfaces that need to be investigated in the context of
high performance computing.

� It is clear that the computational space occupied by applica-
tions from different domains display different and often mul-
tiple levels of granularity (i.e. computation to communication

ratio). Parallel machines (both commercial and university pro-
totypes) tend to be mostly fixed points in the granularity spec-
trum ranging from fine-grain (e.g. Maspar MP-2), to medium
grain (e.g. KSR-2, CM-5), to coarse-grain (e.g. DEC AXP).
Given the diversity in application characteristics in terms of
granularity spread, a very interesting research question is to see
how to map applications across a multi-granular architecture
platform. The issues to be investigated include decomposi-
tion of a large high performance computing application into
parts that fit that well on to specific points in the granularity
spectrum; tools that aid in such analyses; the communication
infrastructure for supporting such a multigranular platform;
and portable programming environment across the granularity
spectrum.

� From the context of distributed information processing, there
is a need for investigating integrated resource management
issues. These issues include location transparency, security,
authentication, and privacy for information access; end-to-end
guarantees for low-latency high-throughput reliable commu-
nication; and making available the resources that are needed
to get the job done without the user having to specify them.

5 Putting it all together

What are reasonable expectations as deliverables from such a re-
search agenda? The ultimate parallel machine? Clearly not! Al-
though parallel computing has been around for a long time, it is
not clear whether there is a single programming model or machine
characteristic that is appropriate for all applications. However we
believe that the following is a reasonable list of expectations:

� Specification and realization of fairly low-cost parallel archi-
tectures that give adequate performance across a wide variety
of applications.

� A clear understanding of trends in architecture (both uni- and
multi-processor), operating systems, and parallel program-
ming in the context of high performance computing.

� Development of parallel programming and performance de-
bugging tools.

� A set of metrics (other than just space and time) for evaluating
the performance of parallel systems.

� A set of benchmarks for evaluating parallel machines.

� Performance-consciousalgorithm design techniques for appli-
cations spanning a wide variety of domains.

� A better understanding of the algorithmic characteristics and
their relationship to architectural features.

� A better understanding of the scalability of parallel systems.
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