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Abstract

Abstracting features of parallel systems is a technique that has
been traditionally used in theoretical and analytical models for
program development and performance evaluation. In this paper,
we explore the use of abstractions in execution-driven simulators
in order to speed up simulation. In particular, we evaluate ab-
stractions for the interconnection network and locality properties
of parallel systems in the context of simulating cache-coherent
shared memory (CC-NUMA) multiprocessors. We use the re-
cently proposed LogP model to abstract the network. We abstract
locality by modeling a cache at each processing node in the system
which is maintained coherent, without modeling the overheads as-
sociated with coherencemaintenance. Such an abstraction tries to
capture the true communication characteristics of the application
without modeling any hardware induced artifacts. Using a suite
of applications and three network topologies simulated on a novel
simulation platform, we show that the latency overhead modeled
by LogP is fairly accurate. On the other hand, the contention
overhead can become pessimistic when the applications display
sufficient communication locality. Our abstraction for data lo-
cality closely models the behavior of the target system over the
chosen range of applications. The simulation model which incor-
porated these abstractions was around 250-300% faster than the
simulation of the target machine.

1 Motivation

Performance analysis of parallel systems1 is complex due to the
numerous degrees of freedom that they exhibit. Developing algo-
rithms for parallel architectures is also hard if one has to grapple
with all parallel system artifacts. Abstracting features of parallel
systems is a technique often employed to address both of these
issues. For instance, abstracting parallel machines by theoretical
models like the PRAM [14] has facilitated algorithm development
and analysis. Such models try to hide hardware details from the
programmer, providing a simplified view of the machine. Simi-
larly, analytical models used in performance evaluation abstract
complex system interactions with simple mathematical formulae,
parameterized by a limited number of degrees of freedom that are
tractable.

There is a growing awareness for evaluating parallel systems
using applications due to the dynamic nature of the interaction
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between applications and architectures. Execution-driven simula-
tion is becoming an increasingly popular vehicle for performance
prediction because of its ability to accurately capture such com-
plex interactions in parallel systems [25, 22]. However, simulating
every artifact of a parallel system places tremendous requirements
on resource usage, both in terms of space and time. A sufficiently
abstract simulation model which does not compromise on accu-
racy can help in easing this problem. Hence, it is interesting
to investigate the use of abstractions for speeding up execution-
driven simulations which is the focus of this study. In particular,
we address the issues of abstracting the interconnection network
and locality properties of parallel systems.

Interprocess communication (both explicit via messages or im-
plicit via shared memory), and locality are two main characteris-
tics of a parallel application. The interconnection network is the
hardware artifact that facilitates communication and an interesting
question to be addressed is if it can be abstracted without sacri-
ficing the accuracy of the performance analysis. Since latency
and contention are the two key attributes of an interconnection
network that impacts the application performance, any model for
the network should capture these two attributes. There are two
aspects to locality as seen from an application: communication
locality and data locality. The properties of the interconnection
network determine the extent to which communication locality is
exploited. In this sense, the abstraction for the interconnection
network subsumes the effect of communication locality. Exploit-
ing data locality is facilitated either by private caches in shared
memory multiprocessors, or local memories in distributed mem-
ory machines. Focusing only on shared memory multiprocessors,
an important question that arises is to what extent caches can be
abstracted and still be useful in program design and performance
prediction. It is common for most shared memory multiproces-
sors to have coherent caches, and the cache plays an important
role in reducing network traffic. Hence, it is clear that any ab-
straction of such a machine has to model a cache at each node.
On the other hand, it is not apparent if a simple abstraction can
accurately capture the important behavior of caches in reducing
network traffic.

We explore these two issues in the context of simulating Cache
Coherent Non-Uniform Memory Access (CC-NUMA) shared
memory machines. For abstracting the interconnection network,
we use the recently proposed LogP [11] model that incorporates
the two defining characteristics of a network, namely, latency and
contention. For abstracting the locality properties of a parallel
system, we model a private cache at each processing node in the
system to capture data locality. Note that the communication
locality is subsumed in the abstraction for the interconnection



network. Thus in the rest of the paper (unless explicitly stated
otherwise) we use the term ‘locality’ to simply mean data locality.
Shared memory machines with private caches usually employ a
protocol to maintain coherence. With a diverse range of cache
coherence protocols, it would become very specific if our ab-
straction were to model any particular protocol. Further, memory
references (locality) are largely dictated by application character-
istics and are relatively independentof cache coherence protocols.
Hence, instead of modeling any particular protocol, we choose to
maintain the caches coherent in our abstraction but do not model
the overheads associated with maintaining the coherence. Such an
abstraction would represent an ideal coherent cache that captures
the true inherent locality in an application.

The study uses an execution-driven simulation framework
which identifies, isolates, and quantifies the different overheads
that arise in a parallel system. Using this framework, we simulate
the execution of five parallel applications on three different ma-
chine characterizations: a target machine, a LogP machine and
a cLogP machine. The target machine simulates the pertinent
details of the hardware. The LogP machine does not model pri-
vate caches at processing nodes, and abstracts the interconnection
network using the LogP model. The cLogP machine abstracts
the locality properties using the above mentioned scheme, and
abstracts the interconnection network using the LogP model. To
answer the first question regarding network abstraction, we com-
pare the simulation of the target machine to the simulation of the
cLogP machine. If the network overheads of the two simulations
agree then we have shown that LogP is a good abstraction for the
network. To answer the second question regarding locality ab-
straction, we compare the network traffic generated by the target
and cLogP machines. If they agree, then it shows that our ab-
straction of the cache is sufficient to model locality. Incidentally,
the difference in results between the target and LogP simulations
would quantify the impact of locality on performance. If the dif-
ference is substantial (as we would expect it to be), then it shows
that locality cannot be abstracted out entirely.

Our results show that the latency overhead modeled by LogP
is fairly accurate. On the other hand, the contention overhead
modeled by LogP can become pessimistic for some applications
due to failure of the model to capture communication locality.
The pessimism gets amplified as we move to networks with lower
connectivity. With regard to the data locality question, results
show that our ideal cache, which does not model any coherence
protocol overheads, is a good abstraction for capturing locality
over the chosen range of applications. Abstracting the network
and cache behavior also helped lower the cost of simulation by a
factor of 250-300%. Given that execution-driven simulations of
real applications can take an inordinate amount of time (some of
the simulations in this study take between 8-10 hours), this factor
can represent a substantial saving in simulation time.

Section 2 addresses related work and section 3 gives details on
the framework that has been used to conduct this study. We use a
set of applications (Section 4) and a set of architectures (Section
5) as the basis to address these questions. Performance results
are presented in Section 6 and a discussion of the implication of
the results is given in Section 7. Section 8 presents concluding
remarks.

2 Related Work

Abstracting machine characteristics via a few simple parameters
have been traditionally addressedby theoretical models of compu-
tation. The PRAM model assumesconflict-free accessesto shared

memory (assigning unit cost for memory accesses) and zero cost
for synchronization. The PRAM model has been augmented with
additional parameters to account for memory access latency [4],
memory access conflicts [5], and cost of synchronization [15, 9].
The Bulk Synchronous Parallel (BSP) model [28] and the LogP
model [11] are departures from the PRAM models, and attempt to
realistically bridge the gap between theory and practice. Similarly,
considerable effort has been expended in the area of performance
evaluation in developing simple analytical abstractions to model
the complex behavior of parallel systems. For instance, Agarwal
[2] and Dally [12] develop mathematical models for abstracting
the network and studying network properties. Patel [19] analyzes
the impact of caches on multiprocessor performance. But many
of these models make simplifying assumptions about the hard-
ware and/or the applications, restricting their ability to model the
behavior of real parallel systems.

Execution-driven simulation is becoming increasingly popular
for capturing the dynamic behavior of parallel systems [25, 8,
10, 13, 20]. Some of these simulators have abstracted out the
instruction-set of the processors, since a detailed simulation of
the instruction-set is not likely to contribute significantly to the
performance analysis of parallel systems. Researchers have tried
to use other abstractions for the workload as well as the simulated
hardware in order to speed up the simulation. In [29] a Petri net
model is used for the application and the hardware. Mehra et al.
[17] use application knowledge in abstracting out phases of the
execution.

The issue of locality has been well investigated in the architec-
ture community. Several studies [3, 16] have explored hardware
facilities that would help exploit locality in applications, and have
clearly illustrated the use of caches in reducing network traffic.
There have also been application-driven studies which try to syn-
thesize cache requirements from the application viewpoint. For
instance, Gupta et al. [21] show that a small-sized cacheof around
64KB can accommodate the important working set of many appli-
cations. Similarly, Wood et al. [30] show that the performance of
a suite of applications is not very sensitive to different cache coher-
ence protocols. But from the performance evaluation viewpoint,
there has been little work done in developing suitable abstractions
for modeling the locality properties of a parallel system which can
be used in an execution-driven simulator.

3 The Framework

In this section, we present the framework that is used to answer
the questions raised earlier. We give details of the three simulated
machine characterizations and the simulator that has been used in
this study.

The “target” machine is a CC-NUMA shared memory multi-
processor. Each node in the system has a piece of the globally
shared memory and a private cache that is maintained sequentially
consistent using an invalidation-based (Berkeley protocol) fully-
mapped directory-based cache coherence scheme. The pertinent
hardware features of the interconnection network and coherence
maintenance are simulated, and section 5 gives further details of
this machine.

3.1 The LogP Machine

The LogP model proposed by Culler et al. [11] assumes a col-
lection of processing nodes executing asynchronously, commu-
nicating with each other by small fixed-size messages incurring



constant latencies on a network with a finite bandwidth. The
model defines the following set of parameters that are indepen-
dent of network topology:

� L: the latency, is the maximum time spent in the network by
a message from a source to any destination.

� o: the overhead, is the time spent by a processor in the
transmission/reception of a message.

� g: the communication gap, is the minimum time interval be-
tween consecutive message transmissions/receptions from/to
a given processor.

� P: is the number of processors in the system.

The
�

-parameter captures the actual network transmission time
for a message in the absence of any contention, while the � -
parameter corresponds to the available per-processor bandwidth.
By ensuring that a processor does not exceed the per-processor
bandwidth of the network (by maintaining a gap of at least �
between consecutive transmissions/receptions), a message is not
likely to encounter contention.

We use the
�

and � parameters of the model to abstract the net-
work in the simulator. Since we are considering a shared memory
platform (where the ‘message overhead’ is incurred in the hard-
ware) the contribution of the o-parameter is insignificant com-
pared to

�
and � , and we do not discuss it in the rest of this paper.

Our LogP machine is thus a collection of processors, each with
a piece of the globally shared memory, connected by a network
which is abstracted by the

�
and � parameters. Due to the absence

of caches, any non-local memory reference would need to traverse
the network as in a NUMA machine like the Butterfly GP-1000.
In our simulation of this machine, each message in the network
incurs a latency

�
that accounts for the actual transmission time

of the message. In addition, a message may incur a waiting time
at the sending/receiving node as dictated by the � parameter. For
instance, when a node tries to send a message, it is ensured that
at least � time units have elapsed since the last network access at
that node. If not the message is delayed appropriately. A similar
delay may be experienced by the message at the receiving node.
These delays are expected to model the contention that such a
message would encounter on an actual network.

3.2 The cLogP Machine

The LogP machine augmented with an abstraction for a cache
at each processing node is referred to as a cLogP machine. A
network access is thus incurred only when the memory request
cannot be satisfied by the cache or local memory. The caches
are maintained coherent conforming to a sequentially consistent
memory model. With a diverse number of cache coherence pro-
tocols that exist, it would become very specific if cLogP were to
model any particular protocol. Further, the purpose of the cLogP
model is to verify if a simple minded abstraction for the cache
can closely model the behavior of the corresponding “target” ma-
chine without having to model the details of any specific cache
coherence protocol, since it is not the intent of this study to com-
pare different cache coherence protocols. In the cLogP model
the caches are maintained consistent using an invalidation based
protocol (Berkeley protocol), but the overhead for maintaining the
coherence is not modeled. For instance, consider the case where
a block is present in a valid state in the caches of two processors.
When a processor writes into the block, an invalidation message

would be generated on the “target” machine, but there would not
be any network access for this operation on the cLogP machine.
The block would still change to ‘invalid’ state on both machines
after this operation. A read by the other processor after this op-
eration, would incur a network access on both machines. cLogP
thus tries to capture the true communication characteristics of the
application, ignoring overheads that may have been induced by
hardware artifacts, representing the minimum number of network
messages that any coherence protocol may hope to achieve. If the
network accesses incurred in the cLogP model are significantly
lower than the accesses on the “target” machine, then we would
need to make our cLogP abstraction more realistic. But our results
(to be presented in section 6) show that the two agree very closely
over the chosen range of applications, confirming our choice for
the cLogP abstraction in this study. Furthermore, if the target ma-
chine implements a fancier invalidation-based cache coherence
protocol (which would reduce the network accesses even further),
that would only enhancethe agreement between the results for the
cLogP and target machines.

3.3 SPASM

In this study, we use an execution-driven simulator called SPASM
(Simulator for Parallel Architectural Scalability Measurements)
that enables us to accurately model the behavior of applications
on a number of simulated hardware platforms. SPASM has been
written using CSIM [18], a process oriented sequential simulation
package, and currently runs on SPARCstations. The input to the
simulator are parallel applications written in C. These programs
are pre-processed (to label shared memory accesses), the compiled
assembly code is augmented with cycle counting instructions, and
the assembled binary is linked with the simulator code. As with
other recent simulators [8, 13, 10, 20], bulk of the instructions is
executed at the speed of the native processor (the SPARC in this
case) and only instructions (such as LOADs and STOREs on a
shared memory platform or SENDs and RECEIVEs on a message-
passing platform) that may potentially involve a network access
are simulated. The reader is referred to [27, 25] for a detailed
description of SPASM where we illustrated its use in studying
the scalability of a number of parallel applications on different
shared memory [25] and message-passing [27] platforms. The
input parameters that may be specified to SPASM are the number
of processors, the CPU clock speed, the network topology, the
link bandwidth and switching delays.

SPASM provides a wide range of statistical information about
the execution of the program. It gives the total time (simulated
time) which is the maximum of the running times of the individual
parallel processors. This is the time that would be taken by an exe-
cution of the parallel program on the target parallel machine. The
profiling capabilities of SPASM (outlined in [25]) provide a novel
isolation and quantification of different overheads in a parallel
system that contribute to the performance of the parallel system.
These overheads may be broadly separated into a purely algo-
rithmic component, and an interaction component arising from
the interaction of the algorithm with the architecture. The algo-
rithmic overhead arises from factors such as the serial part and
work-imbalance in the algorithm, and is captured by the ideal
time metric provided by SPASM. Ideal time is the time taken by
the parallel program to execute on an ideal machine such as the
PRAM [31]. This metric includes the algorithmic overheads but
does not include any overheads arising from architectural limita-
tions. Of the interaction component, the latency and contention
introduced by network limitations are the important overheads



that are of relevance to this study. The time that a message would
have taken for transmission in a contention free environment is
charged to the latency overhead, while the rest of the time spent
by a message in the network waiting for links to become free is
charged to the contention overhead.

The separation of overheads provided by SPASM plays a cru-
cial role in this study. For instance, even in cases where the
overall execution times may agree, the latency and contention
overheads provided by SPASM may be used to validate the corre-
sponding estimates provided by the

�
and � parameters in LogP.

Similarly, the latency overhead (which is an indication of the
number of network messages) in the target and cLogP machine
may be used to validate our locality abstraction in the cLogP
model. In related studies, we have illustrated the importance of
separating parallel system overheads in scalability studies of par-
allel systems [25], identifying parallel system (both algorithmic
and architectural) bottlenecks [25], and synthesizing architectural
requirements from an application viewpoint [26].

4 Application Characteristics

Three of the applications (EP, IS and CG) used in this study are
from the NAS parallel benchmark suite [7]; CHOLESKY is from
the SPLASH benchmark suite [23]; and FFT is the well-known
Fast Fourier Transform algorithm. EP and FFT are well-structured
applications with regular communication patterns determinable at
compile-time, with the difference that EP has a higher computa-
tion to communication ratio. IS also has a regular communication
pattern, but in addition it uses locks for mutual exclusion dur-
ing the execution. CG and CHOLESKY are different from the
other applications in that their communication patterns are not
regular (both use sparse matrices) and cannot be determined at
compile time. While a certain number of rows of the matrix in
CG is assigned to a processor at compile time (static scheduling),
CHOLESKY uses a dynamically maintained queue of runnable
tasks. Further details of the applications are given in [24].

5 Architectural Characteristics

Since uniprocessor architecture is getting standardized with the
advent of RISC technology, we fix most of the processor charac-
teristics by using a 33 MHz SPARC chip as the baseline for each
processor in a parallel system. Such an assumption enables us
to make a fair comparison of the relative merits of the interesting
parallel architectural characteristics across different platforms.

The study is conducted for the following interconnection
topologies: the fully connected network, the binary hypercube
and the 2-D mesh. All three networks use serial (1-bit wide) uni-
directional links with a link bandwidth of 20 MBytes/sec. The
fully connected network models two links (one in each direc-
tion) between every pair of processors in the system. The cube
platform connects the processors in a binary hypercube topology.
Each edge of the cube has a link in each direction. The 2-D mesh
resembles the Intel Touchstone Delta system. Links in the North,
South, East and West directions, enable a processor in the middle
of the mesh to communicate with its four immediate neighbors.
Processors at corners and along an edge have only two and three
neighbors respectively. Equal number of rows and columns is
assumed when the number of processors is an even power of 2.
Otherwise, the number of columns is twice the number of rows
(we restrict the number of processors to a power of 2 in this study).

Messages are circuit-switched and use a wormhole routing strat-
egy. Message-sizes can vary upto 32 bytes. The switching delay
is assumed to be negligible compared to the transmission time and
we ignore it in this study.

Each node in the simulated CC-NUMA hierarchy is assumed
to have a sufficiently large piece of the globally shared memory
such that for the applications considered, the data-set assigned to
each processor fits entirely in its portion of shared memory. The
private cache modeled in the “target” and the “cLogP” machines
is a 2-way set-associative cache (64KBytes with 32 byte blocks)
that is maintained sequentially consistent using an invalidation-
based (Berkeley protocol) fully-mapped directory-based cache
coherence scheme. The

�
parameter for a message on the LogP

and cLogP models is chosen to be 1.6 microseconds assuming 32-
byte messages and a link bandwidth of 20 MBytes/sec. Similar
to the method used in [11], the � parameter is calculated using
the cross-section bandwidth available per processor for each of
the above network configurations. The resulting � parameters for
the full, cube and mesh networks are respectively, 3 � 2 ��� , 1 � 6 and
0 � 8 � ��� microseconds (where

�
is the number of processors and���

is the number of columns in the mesh).

6 Performance Results

The simulation results for the five parallel applications on the
target machine, and the LogP and cLogP models of the machine
are discussed in this section. The results presented include the
execution times, latency overheads, and contention overheads for
the execution of the applications on the three network topologies.
We confine our discussion to the specific results that are relevant
to the questions raised earlier. EP, FFT, and IS are applications
with statically determinable memory reference patterns (see the
appendix). Thus, in implementing these applications we ensured
that the amount of communication (due to non-local references)
is minimized. On the other hand, CG and CHOLESKY preclude
any such optimization owing to their dynamic memory reference
patterns.

6.1 Abstracting the Network

For answering the question related to network abstractions, we
compare the results obtained using the cLogP and the target ma-
chines. From Figures 1, 2, 3, 4, and 5, we observe that the latency
overhead curves for the cLogP machine display a trend (shape
of the curve) very similar to the target machine thus validating
the use of the

�
-parameter of the LogP model for abstracting the

network latency. For the chosen parallel systems, there is negligi-
ble difference in latency overhead across network platforms since
the size of the messages and transmission time dominate over
the number of hops traversed. Since LogP model abstracts the
network latency independent of the topology the other two net-
work platforms (cube and mesh) also display a similar agreement
between the results for the cLogP and target machines. There-
fore, we show the results for only the fully connected network.
Despite this similar trend, there is a difference in the absolute
values for the latency overheads. cLogP models

�
as the time

taken for a cache-block (32 bytes) transfer. But some messages
may actually be shorter making

�
pessimistic with respect to the

target machine. On the other hand, cLogP does not model co-
herence traffic thereby incurring fewer network messages than
the target machine, which can have the effect of making

�
more

optimistic. The impact of these two counter-acting effects on the



overall performance depends on the application characteristics.
The pessimism is responsible for cLogP displaying a higher la-
tency overhead than the target machine for FFT (Figure 1) and
CG (Figure 2) since there is very little coherence related activity
in these two applications; while the optimism favors cLogP in IS
(Figure 4) and CHOLESKY (Figure 5) where coherence related
activity is more prevalent. However, it should be noted that these
differences in absolute values are quite small implying that the

�

parameter pretty closely models the latency attribute.
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Figure 1: FFT on Full: Latency

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

T
im

e 
(i

n 
m

ill
is

ec
s)

Processors

Target
cLogP
LogP
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Figure 3: EP on Full: Latency
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Figure 4: IS on Full: Latency
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Figure 5: CHOLESKY on Full: Latency

Figures 6, 7, 8, and 9, show that the contention overhead curves
for the cLogP machine display a trend (shape of the curves) simi-
lar to the target machine. But there is a difference in the absolute
values. The � -parameter in cLogP is estimated using the bisec-
tion bandwidth of the network as suggested in [11]. Such an
estimate assumes that every message in the system traverses the
bisection and can become very pessimistic when the application
displays sufficient communication locality [1, 2]. This pessimism
increases as the connectivity of the network decreases (as can be
seen in Figures 6 and 7) since the impact of communication local-
ity increases. This pessimism is amplified further for applications
such as EP that display a significant amount of communication
locality. This effect can be seen in Figures 10 and 11 which show
a significant disparity between the contention on the cLogP and
target machines. In fact, this amplified effect changes the very
trend of the cLogP contention curves compared to the target ma-
chine. These results indicate that the contention estimated by the
� parameter can turn out to be pessimistic, especially when the ap-
plication displays sufficient communication locality. Hence, we
need to find a better parameter for estimating the contention over-
head, or we would at least need to find a better way of estimating
� that incorporates application characteristics.



0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

T
im

e 
(i

n 
m

ill
is

ec
s)

Processors

Target
cLogP

Figure 6: IS on Full: Contention

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

T
im

e 
(i

n 
m

ill
is

ec
s)

Processors

Target
cLogP

Figure 7: IS on Mesh: Contention

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

T
im

e 
(i

n 
m

ill
is

ec
s)

Processors

Target
cLogP

Figure 8: FFT on Cube: Contention
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6.2 Abstracting Locality

Recall that our abstraction for locality attempts to capture the in-
herent data locality in an application. The number of messages
generated on the network due to non-local references in an ap-
plication is the same regardless of the network topology. Even
though the number of messages stays the same, the contention
is expected to increase when the connectivity in the network de-
creases. Therefore, the impact of locality is expected to be more
for a cube network compared to a full; and for a mesh compared
to a cube.

The impact of ignoring locality in a performance model is illus-
trated by comparing the execution time curves for the LogP and
cLogP machines. Of the three static applications (EP, FFT, IS),
EP has the highest computation to communication ratio, followed
by FFT, and IS. Since the amount of communication in EP is min-
imal, there is agreement in the results for the LogP, the cLogP, and
the target machines (Figure 12), regardless of network topology.
On the fully connected and cube networks there is little difference
in the results for FFT as well, whereas for the mesh interconnect
the results are different between LogP and cLogP (Figure 13).
The difference is due to the fact that FFT has more communi-
cation compared to EP, and the effect of non-local references is
amplified for networks with lower connectivity. For IS (see Fig-
ure 14), which has even more communication than FFT, there is
a more pronounced difference between LogP and cLogP on all
three networks. For applications like CG and CHOLESKY which
exhibit dynamic communication behavior, the difference between
LogP and cLogP curves is more significant (see Figures 15 and
16) since the LogP implementation cannot be optimized statically



to exploit locality. Further, as we move to networks with lower
connectivity, the LogP execution curves for CG and CHOLESKY
(Figures 17 and 18) do not even follow the shape of the cLogP
execution curves. This significant deviation of LogP from cLogP
execution is due to the amplified effect of the large amount of
communication stemming from the increased contention in lower
connectivity networks (see Figures 19 and 20).

Isolating the latency and contention overheads from the total
execution time (see section 3) helps us identify and quantify local-
ity effects. Figures 1, 2, and 3, illustrate some of these effects for
FFT, CG, and EP respectively. During the communication phase
in FFT, a processor reads consecutivedata items from an array dis-
playing spatial locality. In either the cLogP or the target machine,
a cache-miss on the first data item brings in the whole cache block
(which is 4 data items). On the other hand, in the LogP machine
all four data items result in network accesses. Thus FFT on the
LogP machine incurs a latency (Figure 1) which is approximately
four times that of the other two. Similarly, ignoring spatial and
temporal locality in CG (Figure 2) results in a significant dispar-
ity for the latency overhead in the LogP machine compared to the
other two. In EP, a processor waits on a condition variable to be
signaled by another (see the appendix). For EP on a cLogP ma-
chine, only the first and last accesses to the condition variable use
the network, while on the LogP machine a network access would
be incurred for each reference to the condition variable as is re-
flected in Figure 3. Similarly, a test-test&set primitive [6], would
behave like an ordinary test&set operation in the LogP machine
thus resulting in an increase of network accesses. As can be seen
in Figure 12, these effects do not impact the total execution time
of EP since computation dominates for this particular application.

The above results confirm the well known fact that locality can-
not be ignored in a performance prediction model or in program
development. On the other hand, the results answer the more
interesting question of whether the simple abstraction we have
chosen for modeling locality in cLogP is adequate, or if we have
to look for a more accurate model. cLogP does a fairly good
job of modeling the cache behavior of the target machine. The
above results clearly show that the execution curves of cLogP and
the target machine are in close agreement across all application-
architecture combinations. Further, the latency overhead curves
(which are indicative of the number of messages exchanged be-
tween processors) of cLogP and the target machine are also in
close agreement. This suggests that our simple abstraction for
locality in cLogP, an ideal coherent cache with no overhead as-
sociated with coherence maintenance, is sufficient to model the
locality properties over the chosen range of applications.
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Figure 12: EP on Full: Execution Time
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Figure 13: FFT on Mesh: Execution Time
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Figure 14: IS on Full: Execution Time
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Figure 15: CG on Full: Execution Time
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Figure 16: CHOLESKY on Full: Execution Time
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Figure 17: CG on Mesh: Execution Time
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Figure 18: CHOLESKY on Mesh: Execution Time
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Figure 19: CG on Mesh: Contention
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Figure 20: CHOLESKY on Mesh: Contention

7 Discussion

We considered the issues pertaining to abstracting network char-
acteristics and locality in this study in the context of five parallel
scientific applications with different characteristics. The inter-
process communication and locality behavior of three of these
applications can be determined statically, but they have different
computation to communication ratios. For the other two ap-
plications, the locality and the interprocess communication are
dependent on the input data and are not determinable statically.
The applications thus span a diverse range of characteristics. The
network topologies (full, cube, mesh) also have diverse connec-
tivities. The observations from our study are summarized below:

On Network Abstractions

The separation of overheads provided by SPASM has helped us
evaluate the use of

�
and � parameters of the LogP model for

abstracting the network. In all the considered cases the latency
overhead from the model and the target network closely agree.
The pessimism in the model of assuming

�
to be the latency for

the maximum size message on the network does not seem to have
a significant impact on the accuracy of the latency overhead. In-
cidentally, we made a conscious decision in the cLogP simulation
to abstract the specifics of the coherence protocol by ignoring
the overheads associated with the coherence actions. The results
show that the ensuing optimism does not impact the accuracy of
the latency overhead either.

On the other hand, there is a disparity between the model and the
target network for the contention overhead in many cases. The two
sources of disparity are (a) the way � is computed, and (b) the way
� is to be used as defined by the model. Since � is computed using
only the bisection bandwidth of the network (as is suggested in
[11]), it fails to capture any communication locality resulting from
mapping the application on to a specific network topology. The
ensuing pessimism in the observed contention overhead would
increase with decreasing connectivity in the network as we have
seen in the previous section. There is also a potential for the model
to be optimistic with respect to the contention overhead when two
distinct source-destination pairs share a common link. The second
source of disparity leads purely to a pessimistic estimate of the
contention overhead. The node architecture may have several
ports that gives the potential for simultaneous network activity
from a given node. However, the model definition precludes even
simultaneous “sends" and “receives" from a given node.

As can be seen from our results, the pessimistic effects in com-
puting and using � dominates the observed contention overheads.
While it may be difficult to change the way � is computed within
the confines of the LogP model, at least the way it is used should
be modified to lessen the pessimism. For example, we conducted
a simple experiment for FFT on the cube allowing for the � gap
only between identical communication events (such as sends for
instance). The resulting contention overhead was much closer to
the real network.

The disparity in the contention prediction suggests that we need
to incorporate application characteristics in computing � . For
static applications like EP, IS and FFT, we may be able to use the
computation and communication pattern in determining � . But
for applications like CG and CHOLESKY, dynamism precludes
such an analysis. On the other hand, since we are using these
models in an execution driven simulation, we may be able get
a better handle on calculating � . For instance, we may be able
to maintain a history of the execution and use it to calculate � .



It would be interesting to investigate such issues in arriving at a
better estimate.

On Locality Abstraction

As we expected, locality is an important factor in determining the
performance of parallel programs and cannot be totally abstracted
away for performance prediction or performance-conscious pro-
gram development. But locality in parallel computation is much
more difficult to model due to the additional degrees of freedom
compared to sequential computation. Even for static applications,
data alignment (several variables falling in the same cache block as
observed in FFT) and temporal interleaving of memory accesses
across processors, are two factors that make abstracting locality
complex. In dynamic applications, this problem is exacerbated
owing to factors such as dynamic scheduling and synchronization
(implicit synchronization using condition variables and explicit
synchronizers such as locks and barriers). It is thus difficult to
abstract locality properties of parallel systems by a static theo-
retical or analytical model. Hence, in this study we explored the
issue of using an abstraction for locality in a dynamic execution-
driven simulation environment. In particular, we wanted to verify
if a simple abstraction of a cache at each processing node that is
maintained coherent without modeling the overheads for coher-
ence maintenance would suffice to capture the locality properties
of the system. Such an abstraction would try to capture the true
communication characteristics of the application without model-
ing any hardware induced artifacts. Our results show that such an
abstraction does indeed capture the locality of the system, closely
modeling the communication in the target machine.

The network messages incurred in our abstraction for locality
is representative of the minimum overhead that any invalidation-
based cache coherence protocol may hope to achieve on a sequen-
tially consistent memory model. We compared the performance
of such an abstraction with a machine that incorporates a simple
invalidation-based protocol. Even for this simple protocol, the
results of the two agree closely over the chosen range of appli-
cations. The performance of a fancier cache coherence protocol
that reduces network traffic on the target machine is expected to
agree even closer with the chosenabstraction. This result suggests
that cache coherence overhead is insignificant at least for the set
of applications considered, and hence the associated coherence-
related network activity can be abstracted out of the simulation.
The applications that have been considered in this study employ
the data parallel paradigm which is representative of a large class
of scientific applications. In this paradigm, each processor works
with a different portion of the data space, leading to lower coher-
ence related traffic compared to applications where there is a more
active sharing of the data space. It may be noted that Wood et al.
[30] also present simulation results showing that the performance
of a suite of applications is not very sensitive to different cache
coherence protocols. Our results also suggest that for understand-
ing the performance of parallel applications, it may be sufficient
to use our abstraction for locality. However, further study with
a wider suite of applications is required to validate these claims.
Such a study can also help identify application characteristics that
lend themselves to our chosen abstraction.

Importance of Separating Parallel System Overheads

The isolation and quantification of parallel system overheads pro-
vided by SPASM helped us address both of the above issues.
For instance, even when total execution time curves were similar

the latency and contention overhead curves helped us determine
whether the model parameters were accurate in capturing the in-
tended machine abstractions. One can experimentally determine
the accuracy of the performance predicted by the LogP model as
is done in [11] using the CM-5. However, this approach does
not validate the individual parameters abstracted using the model.
On the other hand, we were able to show that the g-parameter
is pessimistic for calculating the contention overhead for several
applications, and that the L-parameter can be optimistic or pes-
simistic depending on the application characteristics.

Speed of Simulation

Our main reason in studying the accuracy of abstractions is so
that they may be used to speed up execution-driven simulations.
Intuitively, one would think that the LogP machine described in
this paper would execute the fastest since it is the most abstract of
the three. But, our simulations of the LogP machine took a longer
time to complete than those of the target machine. This is because
such a model is very pessimistic due to ignoring data locality and
the way it accounts for network contention. Hence, the simulation
encountered considerably more events (non-local accesses which
are cache ‘hits’ in the target and cLogP machines result in network
accesses in the LogP machine) making it execute slower. On the
other hand, the simulation of cLogP, which is less pessimistic, is
indeed around 250-300% faster than the simulation of the target
machine. This factor can represent a substantial saving given
that execution-driven simulation of real applications can take an
inordinate amount of time. For instance, the simulation of some
of the data points for CHOLESKY take between 8-10 hours for
the target machine. If we can reduce the pessimism in cLogP
in modeling contention, we may be able to reduce the time for
simulation even further.

8 Concluding Remarks

Abstractions of machine artifacts are useful in a number of set-
tings. Execution-driven simulation is one such setting. This sim-
ulation technique is a popular vehicle for performance prediction
because of its ability to capture the dynamic behavior of parallel
systems. However, simulating every aspect of a parallel system in
the context of real applications places a tremendous requirement
on resource usage, both in terms of space and time. In this paper,
we explored the use of abstractions in alleviating this problem. In
particular, we explored the use of abstractions in modeling the in-
terconnection network and locality properties of parallel systems
in an execution-driven simulator. We used the recently proposed
LogP model to abstract the interconnection network. We ab-
stracted the locality in the system by modeling a coherent private
cache without accounting for the overheads associated with co-
herence maintenance. We used five parallel scientific applications
and hardware platforms with three different network topologies
to evaluate the chosen abstractions. The results of our study show
that the network latency overhead modeled by LogP is fairly ac-
curate. On the other hand, the network contention estimate can
become very pessimistic, especially in applications which exhibit
communication locality. With regard to the data locality issue, the
chosen simple abstraction for the cache does a good job in closely
modeling the locality of the target machine over the chosen range
of applications. The simulation speed of the model which incor-
porated these two abstractions was around 250-300% faster than
the simulation of the target hardware, which can represent a sub-



stantial saving given that simulation of real parallel systems can
take an inordinate amount of time.
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