
MobiGo: A Middleware for Seamless Mobility

Xiang Song, Umakishore Ramachandran
College of Computing

Georgia Institute of Technology, Atlanta, GA, USA
{songx,rama} @ cc.gatech.edu

Abstract

Nominally, one can expect any user of modern technol-
ogy to carry a handheld device such an iPAQ or cellphone
and utilize resources in the environment to remain con-
nected and enjoy continuous services while travelling. We
present a middleware infrastructure, called MobiGo, that
provides seamless mobility of services among these envi-
ronments. We identify three different kinds of environments
(spaces)– self-owned, familiar, and totally-new and three
axes for supporting mobility, namely, hard state, soft state,
and I/O state in these spaces. MobiGo provides the ar-
chitectural elements for efficiently managing these different
states in the different spaces. Focusing on a specific de-
manding video service, we describe an implementation and
performance results that show that MobiGo enhances user
experience for seamless mobility.

1. Introduction

With the rapid advance in technology, it is becoming in-
creasingly feasible for people to take advantage of the de-
vices and services in the surrounding environment to re-
main “connected” and continuously enjoy the activity they
are engaged in, be it sports, entertainment, or work. Such
a ubiquitous computing environment typically consists of
two components: an environment and a mobile platform, as
shown in Figure 1. Users carry the mobile platform, such as
a PDA or a cellphone, and enter/leave environments on the
go. The environment can always provide more resources
that are impossible to carry (such as a big screen), or not
available on the devices (such as language translation).

The focus of our work is to provide seamless mobil-
ity in such a ubiquitous service system. For example, a
user should be able to switch the sports highlights played
on his/her cellphone to a high quality display that became
available in the environment without discontinuity. There
are three properties that a user would expect for such mi-

Figure 1. A Ubiquitous Service System

gration of his/her activity. First and foremost, the experi-
ence should be seamless (i.e., no discontinuity in the user
experience). Second, the user should have control over the
mobility (if so desired). Third, the user should be able to
trust the environment.

Seamless mobility is at the core ofservice level virtu-
alization of a user activity that preserves the above three
properties. Service level virtualization hides the details of
the service instantiation (launching a new application and
redirecting I/O, etc.) from the user. The goal of service vir-
tualization is to dynamically provide users withfunctionali-
ties(such as video playing) that become available in the en-
vironment utilizing the concrete platform specific services
(such asMediaPlayeron Windows, andmplayeron Linux).
Migration from one service in an environment to a similar
service, with the same functionality but perhaps speaking
a different protocol, in another environment is critical in
achieving seamless mobility.

In this paper, we present a middleware architecture, Mo-
biGo, for seamless mobility that offers the following fea-
tures:

(1) Dynamic service discovery in the environment
(2) Dynamic determination of the best strategy for

managing application states for migration
(3) A proof of concept implementation for support-

ing seamless mobility of video service
(4) Performance evaluation that shows the viability

of MobiGo for video service migration.



In the rest of the paper, we first present salient issues for
seamless mobility in section 2 and position our work in sec-
tion 3. After presenting the MobiGo architecture in section
4, we introduce a ubiquitous video service as a specific ex-
ample to focus our work in section 5. Section 6 describes
the implementation details of the system, followed by per-
formance results in section 7. We present concluding re-
marks and possible future work in section 8.

2. State Migration

Seamless mobility in a ubiquitous service system gen-
erally means state migration between environments. We
identify four dimensions for state migration: what to move,
where to move, when to move and how to move.

2.1. What to move

Seamless mobility boils down to migrating the dynamic
state of a service from one environment to another. We rec-
ognize three categories of state associated with a service:
hard state, soft state, andI/O state.

Hard state refers to data or preferences stored in persis-
tent storage (such as files). It can be part of the mobile plat-
form people carry (such as files in an Intel Personal Server
[20]) or it can also be served from a repository on the Inter-
net (such as a web server). Soft state refers to the volatile
state of the service currently being accessed by the user. An
example of soft state is the pause point of a movie when a
user stops a movie at one location and wants to resume it
at another location. I/O state refers to the current state of
the input and output of the service being migrated. An I/O
redirection is a form of I/O state migration.

2.2. Where to move

The motivation for seamless mobility arises from the
fundamental premise that the ambient environment may
have more resources to enhance the user experience than
the mobile platform. We classify the ambient environment
into three groups: self-owned space, totally-new space and
familiar space.

In a self-owned space, a user has full control over the
environment. The hardware and software configuration and
settings can be customized at will. An example service in

Discovery State Management State Migration Trust
Hard Soft & I/O Explicit Implicit

Self-owned ❍ ❍ ● ❍ ● ❍
Familiar ◗ ● ● ● ◗ ◗

Totally-new ● ● ● ● ● ●

Legend:❍: less important◗: mid important●: more important

Table 1. Requirements for Seamless Mobility

such a space is a video service that can be moved from the
TV screen in the living room to the one in the bedroom.

In a totally-new space, a user has no control over the
environment or any specific service. In such a scenario, dy-
namic discovery of new services becomes important. For
example, a rest area along a highway may offer a “VCR”
service on a large display. The user will be able to discover
this service and avail it for watching his favorite movie from
the point where he left off prior to the trip.

The familiar space is in between the above two cate-
gories. An example would be a preferred traveller’s lounge
in an airport or a hotel where the user has stayed previously.
The user may be familiar with services in this environment
but does not have total control as she does in her own home.
On the other hand, the environment may allow customiza-
tion of the services by user’s previous preferences.

2.3. When to move

The third dimension to seamless mobility has to do with
when to migrate the service. The choice is either explicit
under user control or implicit on recognizing some user
cues. Typically, in a self-owned space, a user may desire
implicit migration whereas a user may want explicit control
in a totally-new space.

2.4. How to move

Since all the three states (hard, soft and I/O) have to be
present in the local environment to perform the service, it
comes to the question of how those states can be transferred.
One straightforward way may be using the mobile device to
store all necessary states. On the other hand, a user may
only carry minimum information, such as a unique user ID,
and expect the local environment to retrieve the states from
his/her previous environment.

2.5. Requirement for Seamless Mobility

Based on the above discussion on the dimensions of
seamless mobility, we summarize some general require-
ments for a ubiquitous service system below. These require-
ments may or may not be critical in some spaces as shown
Table 1.

● Rapid discovery of services in the environment
● Efficient management of service states
● Giving user the choice of explicit or implicit control
● An intuitive model of trust for privacy and integrity

3. Related Work

Seamless mobility implies that the source and destina-
tion platforms should have something in common. Vir-
tualization technology can easily provide interoperability



among heterogeneous platforms. Different levels of virtual-
ization are shown in Table 2. To the best of our knowledge,
no other system focuses on service level virtualization tar-
geted in this paper.

Levels of virtualization Example systems and related work

Service Level MobiGo
Middleware Level CORBA

Device Level VNC, Sun Ray, uMiddle
Operating System/VM Level Xen, IBM SoulPad,

Microsoft Desktop on Keychain
Hardware Level Register renaming in processors

Table 2. Virtualization levels

While not representing a truly seamless mobility so-
lution, Microsoft Remote desktop [25], Virtual Network
Computing (VNC) [4] and Sun Ray [15] represent thin-
client approaches to allow a user’s display to be dynami-
cally moved to suit the user’s convenience and preference
through the connection to the “home” machine. . “Your
Desktop on Your Keychain” [6] and IBM’s SoulPad [13] re-
move the necessity of connecting to a “home” machine by
migrating the entire VM state as well as file system to the
storage devices. These approaches can be lumped into the
category of OS level virtualization combining the migration
of both hard and soft states for achieving mobility.

Networked File System (NFS) [2] provides users with
access to files remotely by mounting the remote file system
on the desktop of the user. Ubidata [5] is a project that gives
an illusion to a user as if she has a big file system on her
mobile platform and can potentially access any data she has
wherever the files are located. CoFi [23] is another system
that enables authoring multimedia content and collaborative
work on mobile devices. Xmove [11] enables users to map
the virtual X server to different physical X servers so that
the I/O state can be migrated. Once again these solutions are
appropriate for their goals and are at best complementary to
our goal of seamless mobility.

HP’s Cooltown project [14] gives a “web presence” to
every artifact in art galleries to make it self-describing . The
Gaia project [19] intelligently customizes services to meet
different user’s requirements by providing a “smart space”
running in a fixed environment with a fixed set of devices.
These projects focus on a single type of environment and
doesn’t target for different spaces identified in previous sec-
tion.

Cyber foraging [21][22] and object offloading [9] are
techniques for exploiting the resources available in the en-
vironment to increase the productivity of a mobile user. The
work by Goyal and Carter allows mobile devices to install
their own applications in the environment by providing a
virtual operating system to each mobile client [8]. These
approaches are both operating system level virtualization
and are good examples of how a mobile device can take ad-
vantage of the computational facilities in the environment
to hide their resource limitations. uMiddle [12] is a mid-

dleware system that supports interoperability across multi-
ple protocol families at device level. The problems there
projects address is orthogonal to what we are targeting and
can complement our solution in achieving continuity of ser-
vices in multiple environments.

As should be evident from the above discussion, the re-
lated work surveyed in this section have different goals from
ours. Consequently, they do not address all the require-
ments we identified in the earlier section. Nevertheless, they
represent technologies that are very relevant to the overall
theme of supporting mobility in a ubiquitous computing set-
ting. Table 3 summarizes these projects with respect to the
different spaces and different kinds of states that need to be
managed for service migration.

Hard Soft I/O
Own E USB Drive Key-chain xmove

SoulPad SoulPad
I NFS, Ubidata Cyber Foraging Gaia

Gaia Gaia
Familiar E USB Drive SoulPad VNC, Sun Ray

SoulPad Remote Desktop
I Ubidata Cyber Foraging –

Totally-new E USB Drive SoulPad VNC
SoulPad Remote Desktop

I Ubidata – –
Legend: E - Explicit control; I - Implicit control

Table 3. Summary of related works

The granularity of migration is another interesting aspect
to look at. A complete migration of virtual machine like [6]
is a coarse-grained approach where users need to carry all
states and resume the entire VM on the target environment.
At the other extreme, a mobile disk drive carries only hard
states and users rely on the software services in the target
environment to open the files and manually resume the soft
state (e.g., drag the time bar to the appropriate position).
The former approach forces users to carry too much if they
just want to move some services but not the whole desktop.
The latter migrates only hard state and needs users’ inputs
for mobility. We believe both of them are not good enough
in a ubiquitous service system wherein a user may want to
dynamicallydecide on the need for a specific service. Our
MobiGo system is designed to solve these seamless mobil-
ity problems at the right granularity: it migrates all states
necessary to provide continuity of a particular service but
no more (i.e., not entire VM). Furthermore, it also caters
for the dynamic needs of a user on the go.

4. MobiGo

4.1. Architecture

MobiGo is our middleware system providing mecha-
nisms for migrating service states to achieve seamless mo-
bility. We should emphasize that we are not building a
“smart space” that expects people to come and use the ser-
vices. Instead, we are dealing with how people canmovea



service from one place to the other seamlessly. As figure 2
shows, the key components in MobiGo are Service Control,
Application Wrapper, Authentication and Service Reposi-
tory.

Figure 2. Architecture for MobiGo

Service Control is the core of the entire system. Its
main functions are (1) collecting necessary information to
launch a service (2) pausing/resuming services according
to user’s need and (3) collecting necessary information for
later restoration of the service when user moves. Service
Control contains Soft State Management and Hard State
Management to help with state storage and retrieval. Soft
State Provider in Soft State Management is the storage of
soft states and Soft State Operator manipulate those states
between services and Soft State Provider to pause and re-
sume services. The main job of Hard State Management
is to decide where to retrieve the states if it is available in
multiple places since we only consider large read-only hard
states currently(mainly for video service). Location Selec-
tor in Hard State Management selects the best source from
a pool of available sources with various bandwidth and la-
tency to achieve best possible performance.

Application Wrapper is a small, per-application module
that makes legacy applications “controllable” by MobiGo.
It can either use available API of a particular application or
simulate the behavior of keyboard and mouse to send com-
mands to applications just as if a real person is manipulating
the application.

The authentication module has built-in authentication
mechanisms that helps the environment to verify a user’s
identity and helps users to identify their surrounding envi-
ronment.

Service repository stores a list of available services in the
current environment for mobile users to dynamically dis-
cover and use. It listens to a designated multi-cast address
and is the first place for the mobile platform to contact when
a new user enters the environment.

4.2. How it works

4.2.1 Discovery and description of the services

We have our own discovery protocol between the mobile
platform and environment, allowing the mobile platform to
obtain service list from current environment. Each service
description contains service name, service type and I/O de-
vices associated with the service. Services with the same
type are interoperable. User first chooses the desired I/O
device and then selects a service on that device. She can
also optionally select from a list of previous saved state to
resume a paused service. In case the paused service is not
available in the local environment, she can select from a list
of alternative services that are interoperable with the paused
service.

We use a new discovery protocol instead of existing pro-
tocol families like Bluetooth or UPnP because we targetser-
vice level interoperability, i.e., user should be able to move
between two different but interoperable services. By us-
ing a new discovery protocol, user can potentially use any
virtualized service (e.g., movie playing) regardless of the
concrete services and protocols. MobiGo moves the bur-
den of dealing with interoperability, which may be compu-
tationally intensive for the mobile platform, to the powerful
environments.

4.2.2 Choices of the user

To run a service, all three states (hard, soft and I/O) have to
be present in the local environment. Whereas I/O is always
local, users can choose to either explicitly or implicitly mi-
grate the hard and soft states. Correspondingly, we consider
two strategies to support user control:carrying and fetch-
ing. For carrying strategy, the mobile platform carries all
necessary states to run a service. For fetching strategy, the
mobile platform provides minimum information that iden-
tifies the user (e.g., a unique UID) and the environment
fetches the necessary states for the user (most likely from
the user’s previous environment).

Fetching is desirable for implicit migration. The envi-
ronment in this case should be connected andstateful, i.e.,
it has to know the user and be able to locate her previous
states. However, it may be difficult, if not impossible, to
use fetching strategy in some cases, especially in an isolated
environment with no connection to outside. In such a sce-
nario, carrying strategy is the best choice. Carrying requires
the mobile platform to bestatefulbut the environment can
bestateless. Carrying strategy requires the user to explicitly
inform the environment when she leaves. It also takes some
time to download the states to the mobile platform before
she can actually depart.

Fetching strategy may be a little slower than carrying
when user’s previous environment is far away from the cur-



Figure 3. I/O Migration

rent one. But it releases the burden of maintaining the states
from the mobile platform to the environment so that the re-
sources on devices (such as storage and computing power)
can be saved for other use. It is useful when the resources on
the mobile platform are highly constrained and users don’t
always know when they will enter and leave the environ-
ment ahead of time. Carrying strategy requires more re-
sources on mobile device and requires explicit notification
of departure. However, it can be used more generally in
most scenarios, regardless of whether the environment is
standalone or connected.

4.2.3 State Management

I/O migration moves a service from one I/O device to the
other in a single environment. When a mobile platform is-
sues aSwitchrequest (either explicitly or implicitly), Ser-
vice Control extracts the target I/O device and send a com-
mand IOSwitch to the application wrapper. Application
wrappers may have different techniques to switch the I/O,
depending on the interface the application provides. There
is no state storing/retrieving in the process, as shown in Fig-
ure 3.

Figure 4 shows the migration of soft state using carry-
ing strategy: when a user is leaving an environment, the
mobile platform sends out aPAUSErequest. Service Con-
trol first pauses the service, retrieves the soft state and saves
it to the mobile platform. When the user enters a new envi-
ronment B, the mobile platform discovers available services
and contacts Service Control to provide the soft state with
aRESUMErequest. Service Control then interprets the soft
state and instructs application wrapper to resume the execu-
tion of the service.

Figure 5 shows the hard state migration where the video
file is duplicated in multiple places. Due to the typical large
size of the video, it is better to find a best source (i.e., a
low latency and high bandwidth connection) to stream the
video, even if the video is carried in the mobile platform.
The choice of file source in one environment may be differ-
ent in another depending on the connectivity. Upon entering

Figure 4. Soft State Migration

Figure 5. Hard State Migration

an environment, the mobile platform provides possible file
sources and the Location Selector evaluates different con-
nections (including wireless connection between device and
environment) before choosing one to stream the video.

4.2.4 Trust

The authentication modules ensure the security and trust of
the entire system. The trust should be mutual for both the
mobile platform and the environment. Currently we only al-
low one user per service at any given time to avoid conflict.
Services in use are not discoverable by new entrants of the
environment. A user will get an error message if he wants
to launch a service that is in his service list but currently
used by another user. We plan to incorporate other peo-
ple’s work [27] into MobiGo to enhance the management
of user’s identity and trust of the environment.

5. Supported Applications

A number of applications that people use everyday can
be supported by MobiGo, such as email, browsing, video
playing and music listening. To make the discussion con-
crete, we narrow down our focus on a specific application:
ubiquitous video service, which demands continuity, high
quality and efficient management of state. Here is an imag-
inary application scenario for this service. Bob (a frequent
traveller on business trips) has a collection of movies that he



Field Name Description Example

FILENAME The name of the file Terminator-II.mpg
LOCATION An array that includes all user@video.foo.org:

possible sources of the file /share/Terminator-II.mpg
STATE Internal soft state of the file 10000 ms from

(such as played time) start of file
MODIFIED Last modified timestamp Oct 31. 2006, 11:09s

Table 4. Structure of Ubiquitous Virtual State
has access to from a server somewhere on the WWW. One
day, he is at home in San Francisco, watching one of his fa-
vorite movies, when he suddenly gets a phone call from his
company, asking him to travel to New York to meet a cus-
tomer. He uses his PDA to “pause” the movie and drives to
the airport. Upon arrival at the airport, he finds out that his
flight is delayed by 2 hours due to “weather” in Chicago. In
the Crown lounge while waiting for his flight, he “resumes”
the movie where he left off on a big screen (available in the
lounge). Upon boarding call, he leaves the Crown room still
watching the remaining minutes of the movie on his PDA at
the gate area.

To enable the above scenario, the environment first sug-
gests through its discovery service the available video ser-
vice and displays; upon explicit selection by the user, the
environment implicitly migrates the soft state (pause point)
from PDA, and streams the hard state (video file) either
from the web server or from the user’s home machine.

6. Implementation

6.1. Soft State and Hard State Management

We use a pivotal data structure, called Ubiquitous Virtual
State (shown in Table 4), associated with each video to facil-
itate soft and hard state migration. There may be additional
bookkeeping information such as owner and summary in
this structure. LOCATION in UVS is used for managing
hard state and STATE is for managing soft state.

UVS is created when user downloads or gets access to
the video file and will be updated when user is moving
around. For example, when a user buys a movie from a
website, the website provide the UVS to the user and it may
specify the streaming server addresses in the UVS if such
service is available. Thus, upon entering a new environ-
ment, by providing UVS to the environment, user can allow
the system to choose the best source to stream the video.
When user leaves an environment, the STATE field is up-
dated and will be transferred to the new environment later
for resuming the service.

6.2. Application Wrapper

In current implementation, we have two application
wrappers: (1)a native mplayer wrapper that simulates the
input commands from standard input (stdin) to control

mplayer and (2) a UPnP windows media player wrapper re-
ceiving UPnP commands. Service Control knows the types
of wrapper for each application.

6.3. Location Selector

In our current implementation, we use an intuitive al-
gorithm in the location selector to decide the best place to
retrieve the hard state: it first determines the required band-
width of streaming a video from a server based on its frame
rate and resolution (e.g., a352× 240 30fps MPEG-1 video
requires 1.5Mbit/s bandwidth). It then chooses the lowest
latency connection among all candidates that can cater to
this bandwidth requirement.

We also notice that the measurement of latency and
bandwidth of connections may be time-consuming, espe-
cially for wireless link between device and environment.
Therefore, the environment profiles the wireless connectiv-
ity as soon as the user is authenticated, even before she
chooses to use any service. Performing this pre-pinging
helps in reducing the end-to-end latency experienced by the
user. The pre-ping statistic serves as a baseline for evaluat-
ing other sources of hard state specified in the UVS.

7. Performance

In order to show how the system performs quantita-
tively, we conduct experiments using the following set up:
(1) a mobile platform: an Arm-Linux iPAQ with 802.11b
wireless card (2) two environments:<A> a 4 × 450MHz
UltraSPARC-II SMP machine with 4 GB memory running
Solaris, and<B> a 2×3.2GHz Xeon SMP machine with
4 GB memory running Red Hat Enterprise Linux 4.0, con-
nected through wired gigabyte network. We use a stream-
ing video service for testing, which requires 512KBytes -
1024KBytes buffering before starting.

7.1. Migration latency

The first experiment is to measure the switching cost of
three state migration discussed in section 4.2.3. I/O migra-
tion cost is the latency incurred in the application wrapper
to switch displays in a single environment. The cost of soft
state migration, which implies I/O migration, includes paus-
ing the video, dumping the soft state to the mobile device,
feeding the soft state to the other environment and resum-
ing the video. Hard state migration cost, while including
the soft state migration cost, also involves the link evalu-
ation time. We use carrying strategy for the migration of
soft state (1KB) and fetching strategy for hard state (512KB
buffer). We can see from Figure 6 that the one-time switch-
ing cost ranges from 0.5s - 1.5s, which are acceptable from



Figure 6. Migration latency

Figure 7. Improvement from location selector

user experience perspective1.

7.2. Latency improvement by location se-
lector

In this experiment, we measure how the location selec-
tor can help reduce the end-to-end latency. We assume that
the video is available on the mobile platform as well as at a
remote servers<B>. Figure 7 shows the cost of retrieving
states using the location selector (light bar) or not using it
(dark bar). The link evaluation cost is included in the former
case but not the latter. As can be seen from the figure, for
small sizes (up to 100 KB), there is no advantage for link
evaluation and thus it is better not to use location selector
for soft states (typically a few KB). On the other hand, there
is upwards of 60% performance improvement for large file
sizes (1 MB or more), which suggests we should use loca-
tion selector for determining the best source for streaming
the video (buffer size 512KB-1MB).

7.3. Simulating different network conditions

In this experiment, we will investigate the end-to-end la-
tency of the migration and answer questions like “what if I
deployed MobiGo in my home with only 1.5Mbit/sec con-
nection?”. The end-to-end latency is the elapsed time be-

1We assume a 2 second latency between initiating an action and ob-
serving its effect is tolerable from a user experience standpoint

tween pressing the SWITCH button and the resumption of
the migrated service. We divide this latency into three parts:
(1) MobiGo overhead to process messages, (2) player over-
head to play/pause/seek the movie and (3) network latency
for transferring data. The first two are relatively constant
while the third one varies in different network conditions.
In our current implementation, MobiGo overhead is 100-
150ms for each migration and player overhead is 60-80ms
for single commands (e.g., play or pause). Every migration
needs 4-6 commands depending on the player’s capability2.
To simulate the network latency, we modified the MobiGo
implementation to add network delays commensurate with
the network bandwidths. Figure 8 shows the end-to-end la-
tency in different bandwidth conditions3.

Figure 8. Migration latency affected by net-
work bandwidth (for different sizes)

Since the fixed cost (1) and (2) are incurred in any cir-
cumstance, the influence of the network bandwidth is not
significant for small downloads (e.g., soft state migration).
The larger the size of the state to be migrated, the more
the influence of the bandwidth on end-to-end latency. For
a 1.5Mbit/sec connection like a home DSL, it may take 6-7
sec to buffer 1MByte video from a remote site. This may
be acceptable in some cases but it is better if a closer state
provider, perhaps a server in the home with a 100Mbit/sec
Ethernet connection, is chosen for better performance. Fur-
thermore, movie players tend to buffer more than 1 MByte
for high quality movies (image size640× 480). Therefore,
the importance of the location selector becomes more ap-
parent for those cases.

Besides affecting the latency prior to starting the movie,
the location selector can also ensure the user experience
during the actual movie playing by selecting the source with
averagebandwidth greater than the video bitrate. It can also
help instruct the player on the expected amount of buffering
to be done to ensure there is no jitter during playback.

2Some players need a play and a pause before a seek
3All the latencies more than 7 seconds are removed for better view.



8. Conclusion and Future Work

In this paper, we identified the need for seamless
mobility, and constructed the MobiGo system to address
this need, which provides the ability to migrate a user’s
soft state, hard state, and I/O state between environments.
By targeting a demanding video service, we show that our
system is able to avail the services and resources in the
environment to provide a rich user experience. Through
performance evaluation, we show that our system is able
to find the best way to provide continuity of services to
users and the overhead is reasonable. Our future work
includes considering multi-user scenarios and interactive
services (like gaming) wherein consistency of the shared
content becomes an issue. We will also plan to layer
MobiGo on top of uMiddle [12] to leverage the device
level interoperability with service level interoperability. In
addition, we are exploring more sophisticated algorithms
for the selection of hard state migration, as well as low
latency mechanisms for ensuring security and data integrity.

Acknowledgements
The work has been funded in part by an NSF ITR grant CCR-01-
21638, NSF NMI grant CCR-03-30639, NSF CPA grant CCR-05-
41079, and the Georgia Tech Broadband Institute. The equipment
used in the experimental studies is funded in part by an NSF Re-
search Infrastructure award EIA-99-72872, and Intel Corp. We
thank the members of the Embedded Pervasive Lab at Georgia
Tech (http://wiki.cc.gatech.edu/epl/) for their helpful feedback.

References

[1] M. Satyanarayanan and et al., “Pervasive Computing:
Vision and Challenges”, IEEE PCM Aug. 2001, pp.10-17

[2] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B.
Lyon, “Design and Implementation of the Sun Network
Filesystem”, Proc. Summer 1985 USENIX Conf.,

[3] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, T.
Winograd. “ICrafter: A service framework for ubiquitous
computing environments”, UBICOMP 2001

[4] T. Richardson, Q. Stafford-Fraser, K. R. Wood and A.
Hopper, “Virtual Network Computing”, IEEE Internet
Computing, volume 2, pages 33-38, 1998

[5] J. Zhang, A. Helal and J. Hammer, “UbiData: Ubiquitous
Mobile File Service”, Proceedings of the ACM Symposium
on Applied Computing, March 2003

[6] Your Desktop on Your Keychain,http://research.
microsoft.com/research/sv/keychain/

[7] S. Kalasapur, M. Kumar and B. Shirazi, “Seamless service
composition (SeSCo) in pervasive environments”, In First
ACM Int. workshop on Multimedia service composition,
2005

[8] S. Goyal and J. Carter. “A lightweight secure cyber foraging
infrastructure for resource-constrained devices”. WMCSA
2004

[9] X. Gu, A. Messer, I. Greenberg, D. Milojicic and K.
Nahrstedt, “Adaptive Offloading for Pervasive Computing”,
IEEE Pervasive Computing, vol.3, num.3, July, 2004

[10] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen,
T.J. Giuli and X. Gu. “Towards a Distributed Platform for
Resource-Constrained Devices”, ICDCS, 2002

[11] E. Solomita, J. Kempf and D. Duchamp, “XMOVE: A
Pseudoserver for X Window Movement”, The X Resource,
volume 11, page 143–170, 1994

[12] J. Nakazawa, H. Tokuda, K. Edwards and U.
Ramachandran, “A Bridging Framework for Universal
Interoperability in Pervasive Systems”, ICDCS 2006

[13] R. Caceres, C. Carter, C. Narayanaswami, M. T. Raghunath,
“Reincarnating PCs with Portable SoulPads”, Proc of
ACM/USENIX MobiSys 2005

[14] HP Cooltown,http://www.champignon.net/
TimKindberg/cooltown.php

[15] Sun Ray Deployment on Shared Networks,http://www.
sun.com/blueprints/0204/817-5490.pdf

[16] Bluetooth Technology,http://www.bluetooth.com

[17] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham and R. Neugebauer, “Xen and the
Art of Virtualization”, SOSP 2003

[18] F. Douglis and J. K. Ousterhout, “Transparent Process
Migration: Design Alternatives and the Sprite
Implementation”, Software - Practice and Experience, 1991

[19] Gaia project in UIUC,http://gaia.cs.uiuc.edu/

[20] Intel Personal Server,http://www.intel.com/
research/exploratory/personal_server.htm

[21] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen
and H. Yang. “The Case for Cyber Foraging” In the 10th
ACM SIGOPS European Workshop, September 2002

[22] D. R. Krishna and et al., “Simplifying Cyber Foraging for
Mobile”, CMU tech report, CMU-CS-05-157

[23] E. de Lara, R. Kumar, D. S. Wallach and W. Zwaenepoel,
‘Collaboration and Multimedia Authoring on Mobile
Devices”, MobiSys 2003

[24] R. Wolski and N. T. Spring and J. Hayes, “The network
weather service: a distributed resource performance
forecasting service for metacomputing”, Future Generation
Computer Systems, volume 15, pages 757-768, 1999

[25] Microsoft Remote Desktop,
http://www.microsoft.com/windowsxp/
using/mobility/default.mspx

[26] Universal Plug and Play Device Architecture,
http://www.upnp.org/

[27] T. Woo, S. Lam, “Authentication for Distributed Systems”,
in IEEE Computer (January 1992) pp 39–52


