CS 3600 Introduction to AI

Constraint Satisfaction Problem

Solve the cryptarithmetic problem in Figure 6.2 of the Russell & Norvig textbook by hand, using the strategy of back-tracking with forward checking and the MRV and least-constraining value heuristics.

The exact steps depend on certain choices you are free to make; here are the ones I made:

- **a.** Choose the X_3 variable. Its domain is $\{0, 1\}$.
- **b.** Choose the value 1 for **X**3. (We can't choose 0; it wouldn't survive forward checking, because it would force **F** to be 0, and the leading digit of the sum must be non-zero.)
- **c.** Choose **F**, because it has only one remaining value.
- **d.** Choose the value 1 for **F**.
- e. Now X2 and X1 are tied for minimum remaining values at 2; let's choose X2.
- **f.** Either value survives forward checking, let's choose 0 for **X**2.
- **g.** Now X_1 has the minimum remaining values.
- **h.** Again, arbitrarily choose 0 for the value of X_1 .
- i. The variable O must be an even number (because it is the sum of T + T less than 5 (because $O + O = R + 10 \text{ Å} \sim 0$). That makes it most constrained.
- **j.** Arbitrarily choose 4 as the value of **O**.
- **k. R** now has only 1 remaining value.
- **l.** Choose the value 8 for **R**.
- **m.** T now has only 1 remaining value.
- **n.** Choose the value 7 for **T**.
- **o.** U must be an even number less than 9; choose U.
- **p.** The only value for U that survives forward checking is 6.
- **q.** The only variable left is **W**.
- **r.** The only value left for **W** is 3.
- s. This is a solution.

This is a rather easy (under-constrained) puzzle, so it is not surprising that we arrive at a solution with no backtracking (given that we are allowed to use forward checking).