
Optimization	Search	
	

	
	
Rook	Jumping	Maze	is	a	puzzle	problem	of	the	sort	that	one	might	find	in	a	
newspaper	alongside	a	crossword	puzzle	or	a	Sudoku	puzzle.	In	a	Rook	Jumping	
Maze,	start	at	the	circled	square	in	the	upper-left	corner	and	find	a	path	to	the	goal	
square	marked	“G”.		From	each	numbered	square,	one	may	move	that	exact	number	
of	squares	horizontally	or	vertically	in	a	straight	line.	For	more	information	on	Rook	
Jumping	Mazes,	see	http://cs.gettysburg.edu/~tneller/rjmaze/.		
	
Suppose	we	want	to	build	a	system	that	generates	Rook	Jumping	Mazes	from	
scratch.	That	is,	the	system	starts	with	an	empty	grid	and	must	determine	which	
number	to	put	in	each	cell.	The	system	must	also	determine	which	cell	should	be	the	
start	and	which	cell	should	be	the	goal.		
	
One	way	to	build	a	Rook	Jumping	Maze	generator	is	to	use	optimization	search:	hill-
climbing	search,	simulated	annealing,	or	a	genetic	algorithm.	An	optimization	search	
algorithm	starts	from	an	arbitrary	state	and	uses	an	evaluation	function	to	
determine	the	“quality”	of	a	potential	solution.	
	
1.	Describe	a	function	that	generates	a	starting	state.	
	

For	each	cell	in	the	grid,	randomly	pick	a	number	between	0	and	k	where	k	is	
the	number	of	columns/rows	in	the	grid.	Randomly	pick	a	cell	to	mark	as	the	
start.	Randomly	pick	a	cell	to	mark	with	a	“G”.	

	
2.	Describe	as	many	evaluation	functions	as	you	can.	An	evaluation	function	will	
take	a	potential	solution	(in	this	case	a	grid	of	numbers,	one	of	which	is	marked	as	a	
start	and	one	that	is	marked	with	a	“G”)	and	returns	a	real	number	that	reflects	the	
quality	of	the	solution.	Be	as	precise	as	possible,	but	you	don’t	have	to	write	code.		



	
For	example,	one	criterion	for	a	good	Rook	Jumping	Maze	might	be	that	it	is	not	
impossible	to	solve.	How	would	one	determine	whether	a	maze	is	impossible	to	
solve?	Another	criterion	might	be	the	difficulty	of	the	maze.	How	might	one	measure	
the	difficulty	of	a	maze?	See	
http://modelai.gettysburg.edu/2010/rjmaze/evaluation2.html	for	some	other	ideas.	
	

1. Impossibility:	return	a	0	if	the	maze	is	impossible,	return	1	otherwise.	To	
compute	impossibility,	run	a	breadth-first	search	backward	from	the	“G”	
to	the	start.	If	the	BFS	fails	to	find	a	solution,	then	the	maze	is	impossible.	
Running	the	search	backward	typically	reduces	the	branching	factor.	

2. Difficulty	as	measured	by	the	number	of	moves	to	solve	the	puzzle.	Run	a	
BFS	and	count	the	length	of	the	solution.	To	make	easier	mazes	use	
max_length	–	solution_length.	To	target	a	difficulty,	use	abs(target_length	
–	solution_length).	

3. Reduce	the	number	of	“black	holes”.	A	black	hole	is	a	cell	that	can	never	
be	reached.	Use	an	exhaustive	search	such	as	Djikstra’s	algorithm.	Must	
covert	that	to	a	real	number,	which	is	not	entirely	clear.	

4. Reduce	number	of	“white	holes”.	A	white	hole	is	a	cell	that	can	never	be	
reached	when	trying	to	solve	the	problem	backward	(from	“G”	to	start).	
See	#3	above.	

5. Difficulty	as	measured	by	branching	factor.	Run	BFS	and	measure	the	
average	number	of	successors	generated	at	each	iteration.	

6. Difficulty	as	measured	by	the	number	of	solutions.	Run	BFS	but	don’t	stop	
when	the	first	solution	is	found.	

	
Others	exist	too.	The	above	list	is	not	exhaustive.		
	
Note	that	running	a	breadth-first	search	as	the	evaluation	function	means	
that	every	iteration	of	the	hill	climbing	search	must	solve	an	NP-Complete	
search	problem	before	determining	whether	the	hill	climber	has	gone	up	hill	
or	down	hill.	This	makes	for	a	very	slow	optimization	search	because	
optimization	search	itself	is	NP-hard.	However,	the	number	of	states	that	can	
be	visited	in	BFS	is	bounded—in	the	worst	case,	BFS	will	only	visit	n2	states	
where	n	is	the	number	of	rows/columns	in	the	grid.	That	is,	BFS	can	be	
considered	a	polynomial-time	algorithm	for	the	purposes	of	solving	the	maze.	
This	means	the	optimization	search	is	still	NP-hard	but	with	a	high	time	
complexity	evaluation	function.	
	
Also	consider	the	question:	why	breadth-first	search	instead	of	A*?	BFS	and	
A*	have	the	same	worst-case	time	complexity	but	A*	typically	has	a	better	
average	time	complexity.	A*	doesn’t	have	a	better	average	time	complexity	
when	solving	Rook	Jumping	Mazes.	Why?	

	
3.	Describe	a	neighbor	function.	This	function	takes	a	potential	solution	and	
generates	a	neighbor	solution.	This	function	would	be	used	in	blind	hill	climbing	or	



simulated	annealing	to	produce	the	next	state.	In	a	genetic	algorithm	this	function	
would	be	the	mutation	operation.	
	

There	are	many	potential	neighbor	functions.	The	simplest	one	is	to	
randomly	pick	a	single	cell	and	randomly	change	the	number	in	that	cell.	


