
Optimization	Search	
	

	
	
Rook	Jumping	Maze	is	a	puzzle	problem	of	the	sort	that	one	might	find	in	a	
newspaper	alongside	a	crossword	puzzle	or	a	Sudoku	puzzle.	In	a	Rook	Jumping	
Maze,	start	at	the	circled	square	in	the	upper-left	corner	and	find	a	path	to	the	goal	
square	marked	“G”.		From	each	numbered	square,	one	may	move	that	exact	number	
of	squares	horizontally	or	vertically	in	a	straight	line.	For	more	information	on	Rook	
Jumping	Mazes,	see	http://cs.gettysburg.edu/~tneller/rjmaze/.		
	
Suppose	we	want	to	build	a	system	that	generates	Rook	Jumping	Mazes	from	
scratch.	That	is,	the	system	starts	with	an	empty	grid	and	must	determine	which	
number	to	put	in	each	cell.	The	system	must	also	determine	which	cell	should	be	the	
start	and	which	cell	should	be	the	goal.		
	
One	way	to	build	a	Rook	Jumping	Maze	generator	is	to	use	optimization	search:	hill-
climbing	search,	simulated	annealing,	or	a	genetic	algorithm.	An	optimization	search	
algorithm	starts	from	an	arbitrary	state	and	uses	an	evaluation	function	to	
determine	the	“quality”	of	a	potential	solution.	
	
1.	Describe	a	function	that	generates	a	starting	state.	
	
2.	Describe	as	many	evaluation	functions	as	you	can.	An	evaluation	function	will	
take	a	potential	solution	(in	this	case	a	grid	of	numbers,	one	of	which	is	marked	as	a	
start	and	one	that	is	marked	with	a	“G”)	and	returns	a	real	number	that	reflects	the	
quality	of	the	solution.	Be	as	precise	as	possible,	but	you	don’t	have	to	write	code.		
	
For	example,	one	criterion	for	a	good	Rook	Jumping	Maze	might	be	that	it	is	not	
impossible	to	solve.	How	would	one	determine	whether	a	maze	is	impossible	to	
solve?	Another	criterion	might	be	the	difficulty	of	the	maze.	How	might	one	measure	



the	difficulty	of	a	maze?	See	
http://modelai.gettysburg.edu/2010/rjmaze/evaluation2.html	for	some	other	ideas.	
	
3.	Describe	a	neighbor	function.	This	function	takes	a	potential	solution	and	
generates	a	neighbor	solution.	This	function	would	be	used	in	blind	hill	climbing	or	
simulated	annealing	to	produce	the	next	state.	In	a	genetic	algorithm	this	function	
would	be	the	mutation	operation.	
	


