Reinforcement Learning

Suppose a reinforcement learning system is using Q-learning to learn how to navigate in an environment from a given start state. The environment has a *terminal* goal state (Goal T) that gives reward R(T)=10 and a *non-terminal* intermediate goal state (Goal I) that gives reward R(I) = 2.

1		2		3		4
		Goal I				
		_		_		
Start		5		6		
						→
7		8		9		10

Q Table:

State	Up	Down	Left	Right
1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0

The discount factor is 0.5. The learning rate is 0.1. The agent does not have uncertain actions.

The first trial is marked blue.

During the first trial, compute the Q-table row for state 6.
The second trial is marked red.

2. During the second trial, compute the Q-table row for state 5.

3. During the second trial, compute the Q-table row for state 3.

During the second trial, compute the Q-table row for state 6.
The third trial is marked yellow.

5. During the third trial, compute the Q-table row for state 1.

6. During the third trial, compute the Q-table row for state 2.

7. During the third trial, compute the Q-table row for state 3.

8. During the third trial, compute the Q-table row for state 6.