
WeQuest: Scalable Alternate Reality Games Through
End-User Content Authoring

Andrew Macvean†, Sanjeet Hajarnis‡, Brandon Headrick‡, Aziel Ferguson‡, Chinmay
Barve‡, Devika Karnik‡, and Mark O. Riedl‡

† School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
apm8@hw.ac.uk

‡ School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia USA
{sanjeet, brandonheadrick, aziel.ferguson, cbarve, karnik, riedl}@gatech.edu

ABSTRACT
Alternate Reality Games (ARGs) are interactive narrative
experiences that engage the player by layering a fictional
world over the real world. Mobile ARG stories are often
geo-specific, requiring players to visit specific locations in the
world. Consequently, mobile ARGs are played infrequently
and only by those who live within proximity of the locations
that the stories reference. In this paper, we describe an
ARG platform, WeQuest, that addresses the geo-specificity
limitation through end-user content generation. An author-
ing tool allows end-users to create new ARG stories that
can be executed automatically on geo-location aware mobile
devices, leading to greater numbers of available stories to
be played. An intelligent process called location translation
makes geo-specific ARGs playable anywhere in the world.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games; H.5.1
[Information Interfaces and Presentation]: Multime-
dia Information Systems—Artificial, augmented, and virtual
realities

General Terms
Design, Human Factors

Keywords
Alternate Reality Games, End-User Content Generation,
Authoring Tools, Location Translation

1. INTRODUCTION
Alternate Reality Games (ARGs) have recently emerged

as a new genre of games. ARGs are interactive narrative ex-
periences that engage the player by layering a fictional world
over the real world; as players act in the real world their ac-
tions influence the state of the fictional world. With the ad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Short presentation, ACE’2011 - Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11 ...$10.00.

vent of geo-location aware mobile devices, ARGs make use
of the actual, physical world as the environment for which
the game plays out. By bringing the player out into the
real world, the player can also benefit from the type of rich
social experiences and physical activity not possible play-
ing a console game [8]. ARGs to date require a significant
amount of human effort to run. Games must be authored—a
game instance tells a story, which may be a linear sequence
of events or may contain branching user-decision points. A
Game Master runs the game and monitors players from re-
mote in order to make adjustments to the narrative arc or
trigger branching points as necessary. Many ARGs addi-
tionally utilize confederate actors planted throughout the
physical world to interact with players in real time.

The ARG genre is limited in two significant ways, prevent-
ing it from becoming a mainstream form of entertainment.
First, supporting an ARG is effort-intensive on the part of
human Game Masters and confederates. Second, ARG sto-
ries can be geo-specific—they can reference real world geo-
graphical locations and landmarks requiring visits to these
places to advance the narrative. Consequently, a particular
ARG story is fixed to a specific region of the real world; a
story set in New York City cannot be played in London with-
out substantial re-authoring. Taken together, the scalability
limitations result in a situation where ARGs are played in-
frequently and can only be played by those who live within
proximity of the region in which the game story is set.

In this paper, we present the WeQuest platform, which
has been designed to overcome the above limitations through
end-user content authoring and automated execution of ARG
stories. End-user content generation is an increasingly com-
mon means of increasing the amount of game content avail-
able to players. Thus, highly motivated players can use an
authoring tool to create and share ARG stories that are set
in places they want to play in. Automation of the story exe-
cution process eliminates the need for a human Game Master
and replaces confederate actors with Non-Player Characters
(NPCs) that appear on the mobile device screen.

While end-user authoring of new ARG stories has the po-
tential to dramatically increase access to playable content,
it is only part of the solution; the geo-specificity of newly
authored ARG stories inherently limits sharing with other
players in other regions. Thus, to help scale up sharing
of end-user authored content, WeQuest uses an artificial
intelligence process called location translation to break the
geo-specificity constraints of ARG stories and make it pos-
sible to play stories anywhere in the world.

2. BACKGROUND AND RELATED WORK
As mobile geo-location aware devices improve, people have

become interested in playing pervasive games—games that
blur the line between the virtual world of the game and the
real world of the player in order to bring a more immersive
and entertaining game experience. With mobile geo-location
aware devices it is possible to create a wide variety of game
playing experiences—both collaborative and competitive [1,
2, 3]. However, unlike other forms of pervasive games that
rely on more traditional gameplay mechanisms, ARGs are
distinguished by their emphasis on story as the primary en-
joyment mechanism, with social aspects enhancing the pri-
mary mechanic.

Alternate Reality Games are interactive, fictional narra-
tive experiences that unfold the real world. The first ARGs
were played on the Internet; but there has been a recent
push to move ARGs into real physical spaces. Current ARGs
are about blurring and breaking through the boundaries of
traditional games by expanding along the social and spa-
tial axes, allowing players to play unexpected games in un-
expected scenarios at multiple locations simultaneously [9].
Social expansion offers opportunities of forming collabora-
tive communities where players can share content in the form
of games. Spatial expansion allows games to be played out
in the real world and away from the console.

There are numerous examples of commercial ARGs that
utilize mobile technology but are constrained to a specific
time and place. The fact that most people are not in the
right place at the right time to participate in an ARG sug-
gests the need to overcome scalability limitations inherent to
ARGs. How can one reduce the need for human confederate
actors and game master? The use of virtual character agents
can reduce the need for human confederate actors. Lim and
Aylett [6] and Stock et al. [12] implemented virtual tour
guides for a museum that can adapt their presentations of
existing exhibits. However, such systems do not overcome
geo-specificity limitations; agents can only perform in the
vicinity of fixed landmarks.

Efforts are under way to automate game mastering as
well. The Spyfeet ARG [10] uses a rule-base implemented
in the popular interactive fiction programming language,
Inform7TM, to control interactions with virtual characters.
The Spyfeet story does not reference specific geographical lo-
cations and instead requires certain activities such as finding
an NPC that has been mapped to an arbitrary geo-location.
The Backseat Playground [4] is a mobile ARG system that
triggers story elements based on features of the local envi-
ronment as one rides in the back seat of a car. Backseat
Playground story content also does not make specific refer-
ence to location or landmark. WeQuest also automates the
Game Master and confederate actor roles, although with a
story representation that is easier for end-users to author
than rules. Further, WeQuest allows ARG stories to refer-
ence specific geographical landmarks and uses location trans-
lation to make the game playable to people in other areas.

End-user content generation has the potential to increase
the number of games and the diversity of places that the
games have been authored for; it has been a prominent way
of expanding content of desktop computer games. To that
end, authoring tools can be devised to allow motivated play-
ers to create new games for the places that they live. Au-
thoring tools can be provided for ARG platforms as well,
as long as the story representation is easy to understand

and the tools are easy to use. For example, authoring tools
have been developed for audio tour guides (cf., [13]); such
techniques could be extended to ARGs. Our platform, We-
Quest, provides an end-user authoring tool as the first step
toward addressing the scalability of the ARG genre. How-
ever, without location translation, end-user authored ARG
stories will only be accessible to those who live in the vicinity
of the place that the story is set. To our knowledge, We-
Quest is the first system to address geo-specificity limita-
tions of the ARG genre through the combination of end-user
authoring and location translation.

3. THE WEQUEST SYSTEM
Story-based games do not have a high replay value, moti-

vating the need for end-user authoring and location transla-
tion as means of providing greater amounts of unique content
and making that content more accessible to a greater num-
ber of people. WeQuest is a platform designed to scale up
accessibility of ARGs through the use of three components:

• A game engine that runs on a geo-location aware mo-
bile device and can download and execute single- and
multi-player ARG stories.

• An authoring tool that supports end-user authoring of
new geo-specific stories.

• A location translation process that adapts ARG stories
to new areas, allowing them to be played anywhere.

The remainder of this section overviews the story represen-
tation used by WeQuest and game engine execution loop.

In WeQuest, ARG stories are represented by a depen-
dency graph, a directed, acyclic graph (DAG) where the
nodes correspond to story events and arcs impose constraints
on story event visitation order. Inspired by classic Role-
Playing Games (RPGs)—a metaphor that works well with
ARGs [10]—story events involve engaging in dialogue with
virtual Non-Player Characters (NPCs) and using or acquir-
ing virtual inventory items. Story event nodes reference spe-
cific GPS coordinates that a player is required to be within
a certain radius of for the interaction to occur. Arcs be-
tween nodes represent dependencies that must be fulfilled
for a particular event to fire. A dependency graph is a ba-
sic technique for managing lock-and-key style game play;
for an event to occur, it must be “unlocked” by complet-
ing all other events it depends upon. Unlike finite state
machines, dependency graphs can support branching sto-
ries (e.g., choose-your-own-adventure), partial ordering of
events, and and parallel multiplayer events. The dependency
graph defines the logical progression of the story and NPC
actions, enabling the game engine to perform the roles of
Game Master and confederate actors.

A game dependency graph is represented in XML format.
Figure 1 shows several event nodes representing contact from
an NPC, two options in a dialogue tree, and an inventory
item. The XML references images and movies on a server,
which are only downloaded when needed. As described in
Section 4, ARG story authors never need to edit XML or
manage image and movies on the server; these tasks are
managed through an authoring tool interface.

Figure 2 shows the game engine in action, presenting an
NPC interaction to the player. Players communicate with
NPCs through dialogue trees, branching structures where

<node id="27" location="33.777455,-84.390096" dependencies="">
<subnode type="dialogue" image="27.jpg">
<line speaker="Detective">Welcome...</line>

</subnode>
</node>
<node id="28" location="" dependencies="27">
<subnode type="option" id="29">I accept</subnode>
<subnode type="option" id="30">No thanks</subnode>

</node>
...
<node id="41" location="33.777203,-84.39774" dependencies="29,36">
<subnode type="inventory" image="41.jpg">
<inventory type="global">Receipt</inventory>

</subnode>
</node>

Figure 1: A fragment of dependency graph XML.

Figure 2: The game engine showing an NPC inter-
action.

players are presented with dialogue options to select from
and the NPC responds accordingly. Dialogue trees can be
implemented with a dependency graph (see Figure 3).

Because the logic of story progression is encoded into the
dependency graph structure, the Game Engine execution
loop is simple. Once a game instance dependency graph has
been downloaded, the Game Engine periodically searches
through the list of nodes to see if it there are any nodes in
which the following conditions hold: (a) the mobile device is
within a certain radius of the node, and (b) all dependencies
of the node are unlocked. When these conditions hold, the
Game Engine follows the instructions in the node for how
to interact with the user: show a picture of an NPC, show
a movie, play an audio file, display a line of dialogue from
an NPC, provide a set of dialogue options for the player, or
present a virtual inventory item.

The Game Engine supports both single and multi-player
gameplay. Dependencies are synchronized between players
of the same game so that team members can unlock differ-
ent parts of the story independently of each other, creating
opportunities for cooperative problem-solving and also com-
petition. The dependency graph story representation can be
used to implement classical ARG mystery and conspiracy
stories, role-playing adventure games, tours, and races be-
tween teams of players. To support different types of games,
parameters can disable checkpoint flags and other players’
location on the game engine’s map screen. In general, we
believe our dependency graph representation to be flexible
enough to afford end-user authors a high degree of creativity
when it comes to what and how ARGs should play out.

4. AUTHORING TOOL
Key to ARG scalability is the idea that the end-users are

capable of authoring their own games, rather than being re-

liant on a few expert game designers. To lower barriers to
ARG story creation with the WeQuest platform, we pro-
vide an authoring tool that hides the complexities of author-
ing an XML dependency graph. The WeQuest authoring
tool can be accessed through a JavascriptTM enabled web
browser (including tablet PCs which can be used to author
in-situ). To facilitate authoring of geo-location material, the
authoring tool is integrated with Google MapsTM. As shown
in Figure 3, authors can directly manipulate the dependency
graph and see the events superimposed on a map.

The dependency graph is portrayed to the user as loca-
tion nodes, specifying places where things can happen in the
game, with embedded event nodes. Location nodes are not
part of the dependency graph representation—they are a vi-
sualization convenience to the author to break locations out
as a separate concept from story event nodes. Because of
the modular nature of ARGs [7], we believe that it is eas-
ier for authors to think about locations and the events that
happen at those locations as separate concepts. The visual
representation is automatically converted to the dependency
graph representation, which stores the GPS coordinates of
locations in the story nodes.

New locations can be created by querying the map inter-
face, which utilizes the Google MapsTM API. Event nodes
specify what happens to the players when they arrive at a
particular place; authors can specify the instructions by se-
lecting and parameterizing different types of event nodes.
Figure 3 shows part of a story for a multiplayer game. The
first few events create a dialogue tree with interleaved NPC
dialogue nodes and player response options. Later events
can occur in un-specified order, or in parallel if multiple
players spilt up.

Although game players generally have a good idea of what
games they enjoy, and there are objective measures of ARG
story quality (cf., [7]), it is not necessarily the case that ARG
game players make effective game authors. To understand
the effectiveness of end-user content authoring for ARGs,
two questions must be answered. First, are end-users of an
ARG platform interested and likely to generate new game
content? Second, how well does the WeQuest authoring
tool support amateur end-user authoring of new ARG sto-
ries? We ran a small-scale preliminary study to determine
the extent to which amateurs were able to author their own
games and how they perceive the process.

We recruited 9 participants to create ARG stories from
scratch using the WeQuest authoring tool. Of the 9 partici-
pants, 1 participant had never played nor had previously au-
thored computer game content, 3 were“infrequent”or casual
gamers, 3 described themselves as regular gamers who had
never created their own games, and 2 were regular gamers
who had also previously created their own desktop video
games. All participants were computer scientists at Georgia
Tech and Heriot-Watt universities.

Participants were given a tutorial story to author and then
asked to use the WeQuest authoring tool to create their
own ARG adventure. All participants were provided with a
common set of constraints so that participants’ stories could
be compared: participants were instructed to use at least 5
locations, to use all of the story event types (NPC dialogues,
player options, and inventory items), and to author at least
one branch in the story. Aside from meeting the constraints
of the study, participants were free to explore the tool at
their leisure and utilize the available functionality as they

Figure 3: The authoring tool with a simple branching story involving character dialogues at five locations.

(a) The non-gamer author
actions.

(b) The experienced gamer
author actions.

Figure 4: Case study action breakdown.

saw fit. On completion of the authoring, participants were
provided with a questionnaire asking them to assess the au-
thoring process. The WeQuest authoring tool logged all
actions the participants took, allowing us to reconstruct a
picture of the authoring processes used by each participant.

To author a new ARG story from scratch with the above
constraints, participants took between 43 minutes and 1.5
hours. Using Likert scales, marked from 1 to 5, we asked
the participants to rate how much they enjoyed authoring
their own ARG using WeQuest, whether they would like
to use the authoring tool again, and whether they would like
to play through a user authored game. The mean response
for enjoyment of the authoring process was 4.3 (sd = 0.71),
the mean desire to author again was 4.2 (sd = 0.83), and
the mean desire to play a WeQuest user authored game
was 4.1 (sd = 0.93). Despite the varying background of our
participants, it was positive to note the consistently high
marks and low deviation within our results.

We present two case studies that illustrate how people
use the authoring tool to create ARG stories. From the nine
participants in our study, we selected one case to represent
the authoring patterns of (a) non-gamers, and the other case
to represent (b) experienced gamers who have designed and
built games before. These cases represent the extreme ends
of the expertise spectrum in our data. For each case study,
we present a pie chart showing the action breakdown (Fig-
ure 4). In the charts, actions are characterized as follows:
(a) adding new elements such as locations, NPCS dialogue
entries, and inventory items; (b) editing existing elements to
make changes; (c) deleting existing elements; and (d) other
actions that do not affect game content such as saving the
game or manipulating the interface. As can be seen from
Figure 4, both cases have very similar usage patterns despite
having very different backgrounds. The large percentage of
“other” actions suggests there may be user interface ineffi-
ciencies. In particular, we note that screen real-estate can be
quickly consumed, requiring frequent node re-arrangement
in the interface.

When analyzing the traces of authoring actions, we see
two very different authoring styles. Due to the modular
nature of ARG games [7], stories are constructed from a
number of ‘location’ nodes where the main parts of the nar-
rative take place. We can therefore analyze the order in
which authors create and populate these location nodes to
get a picture of their approach to authoring. Figure 5 show
the patterns adopted by our two case study participants.
The boxes in the figure represent the different locations au-
thored and the arcs represent shifts of attention. Arcs are
numbered in the order the attention shifts occurred and are
annotated with the number of added story events, deleted
story events, and edits to content that occurred once atten-
tion shifted to that location. We can therefore construct
a picture of how linearly/iteratively our case-study authors

Location
1

Location
2

Location
3

Location
4

Location
5

1: 10a 4e

0: 32a 4d 9e

2: 3a 5e

3: 12a 1e

4: 2a 1e

5: 4a 3e
7: 5a 2e

8: 9a 2e
6: 2e

9: 4a 2e

(a) The non-gamer pattern.

Location
1

Location
2

Location
3

Location
4

Location
5

Location
6

Location
8

Location
7

Location
9

1: 15a 1e

3: 1e
5: 1e

6: 5a 1e
4: 15a 1d 2e
2: create

9: 3d 1e

12: 3a
10: 1a 1e
7: create

11: 2a 1e

13: 3a
8: create

14: 8a 1d 4e

26: 1e
22: 3a
17: 2a 1d
15: 1a

16: 3a 1d 1e
18: 3a
21: 2a 1e
25: 2e

19: 3a 1d

20: 4a 1e
24: 1e

23: 6a
27: 2a 2e 28: 3a 1d

29: 10a

30: 2a
0: 1a

(deleted)

(b) The expert gamer pattern.

Figure 5: Contrasting authoring patterns adopted by our two case study participants. Arcs denote attention
shifts annotated with adds, deletes, and edits that occurred while attention was focused on each node.

created their game content and the order in which they cre-
ated locations and story nodes.

As illustrated by Figure 5(a), our inexperienced author
chose to work relatively linearly from the first location to
the last, with very little revisitation of perviously created
locations. This participant created a new location, popu-
lated it with content, and then moved onto the next loca-
tion to appear in their game. In contrast, our experienced
author (Figure 5(b)) took a far more iterative approach, fol-
lowing strands of the narrative to other locations before re-
visiting previously made locations in order to progress other
paths through their story. While Figure 4, show very sim-
ilar overall usage, we see from Figure 5 the tool supports
very different authoring styles, showing a flexibility which
allows people of all backgrounds to create games. We note
that our other participants fell between these two polar au-
thoring styles, anecdotally we observed that the degree of
iterative authoring is relative to the experience level and
background of the participant.

Having identified that the tool affords the flexibility for
differing authoring approaches, future work will involve a
larger scale study to test hypotheses about the relationship
between non-linear authoring and expertise , to determine
whether there are categories of authoring patterns that can
be learned, and to analyze end-user authored stories with
respect to existing ARG enjoyment metrics [7] in order to
establish design principles in support of end-user authoring
of enjoyable ARGs.

5. LOCATION TRANSLATION
While end-user authoring has the potential to increase the

amount of content available for players, location translation
seeks to make all content accessible to all players regardless
of geographical contstraints. Location translation maps lo-
cations in a game story to analogous locations in a new city

where the user intends to play.
To formalize the problem, consider an original story set

in one area as a number of locations L derived from a de-
pendency graph. For each location Li in the original story,
there can be ni analogous candidate locations in the vicinity
of the target area, denoted Mi,j for j = 1...ni. The goal of
the translation agent is to select one location Mi,j for each
Li such that: (a) the analogical similarity between any lo-
cations in the original and translated graphs is maximized,
irrespective of geography, and (b) the difference in distances
between adjacent locations in original story and translated
story is minimized when geography is considered.

5.1 Translation Search Algorithm
Our location translation process searches for the optimal

candidate Mi,j for each location Li, given a dependency
graph. Viewing game instance translation as an optimiza-
tion problem, we observe that the optimal substructure prop-
erty holds—the optimal solution to a problem can be ob-
tained through the combination of optimal solutions to its
subproblems. That is, the optimal choice of candidate for a
particular location Li is a function of the optimal choice
of candidates for locations immediately adjacent to it in
the dependency graph. We solve the location translation
problem with dynamic programming (DP), an optimization
algorithm specifically designed to exploit the optimal sub-
structure property through an inductive process that runs
in O(nmax ∗ |L|). The solutions to subproblems are cached
to avoid repetitious computation. Our DP implementation
determines the suitability of any given candidate Mi,j for
original location Li by computing the cost of Mi,j given
the optimal solutions for locations prior to Mi,j in the de-
pendency graph. Because dependency graphs can branch
arbitrarily, we extend dynamic programming to account for
multiple subproblems. Our location translation algorithm is

Input: A list of locations L, origin and target cities city1, city2,
and a set of similarity matricies.

Output: A list of locations S that is analogous to those in L.
let S ← C ←M ← ∅
for i = 1 to number of locations |L|, consistent with the
dependency graph do

let Mi ← candidates(Li, city1, city2, type(Li))
for j = 1 to number of candidates |Mi| do

let cost← 0
for l = 1 to number of parents of Mi,j in dependeny
graph do

cost← cost + length difference of edge between
Mi,j and Sl

cost← cost + (k/sim(Li, Mi,j , city1, city2, type(Li)))
if cost < Ci then

Si ←Mi,j ;
Ci ← cost;

Figure 6: Modified dynamic programming for lo-
cation translation.

shown in Figure 6.
A cost function evaluates a candidate location Mi,j based

on similarity of Mi,j to the original location Li plus the
difference in distances between the candidate and its de-
pendency graph predecessor as compared to the original de-
pendency graph when locations are positioned geographi-
cally. Specifically, the cost of candidate Mi,j is computed as:P

d∈Dep(Mi,j)

“˛̨
length(edged,j) − length(edgeorig)

˛̨”
+ k

sim

where Dep(Mi,j) returns the nodes that candidate Mi,j are
dependent on according to the dependency graph, edged,j

is a edge in the new graph between the current candidate
location and the candidate selected as the solution to a sub-
problem, edgeorig is the corresponding edge in the original
dependency graph, and sim is the probability ([0..1]) that
two locations in two different cities are similar. Thus, as
similarity decreases, cost increases exponentially. The con-
stant k penalizes dissimilarity relative to edge difference and
can be tuned manually to shift emphasis between similarity
and geographical distance. Our DP implementation selects
candidates in the target city that minimize cost.

5.2 Location Similarity
How do we compute the analogical similarity between lo-

cations in different cities? Analogical reasoning is a difficult
problem typically requiring large amounts of well-formed
common-sense knowledge. Since there is no readily-available
knowledge-base of semantic features of locations, shops, and
landmarks,1 we use an alternative approach to finding analo-
gies that finds statistical correlations based on information
about locations retrieved from the World Wide Web. Web-
sites such as CitysearchTM and YelpTM allow their users
to write reviews of restaurants, shops, and other landmarks.
We make the assumption that the words people use to de-
scribe their experiences at these locations captures some la-
tent (e.g., hidden) semantic information [5]. That is, some
words in the user reviews of places capture salient features
of the place and algorithms can analyze and compare word
usage to derive similarity between places by inferring, with
some probability, the existence of common, salient features.
When this assumption holds, term-frequency vector similar-
ity techniques can be used to compute the distance between

1There are ontological knowledge-bases such as FreebaseTM,
but these resources tend to be incomplete and/or too
sparsely populated for our needs.

texts. Our approach to identifying similar locations based
on reviews is inspired by the phrase-similarity computa-
tion technique of Sahami and Heilman [11], which compares
term-frequencies vectors between documents retrieved from
GoogleTM. Our technique, however, uses web-retrieved re-
views as a document corpus instead of the entire Web Wide
Web, and compares locations instead of phrases.

Location translation begins with a pre-processing phase
in which a similarity matrix is built that captures the prob-
ability that locations in disparate cities are analogous. We
further specialize the similarity matrices by type of location
(e.g., restaurant, park, salon, etc.). Thus, each similarity
matrix represents a combination of City × City × Type.
For each location of each type in each city, we download
all reviews from CitysearchTM through their API. Reviews
are merged into a single document representing the loca-
tion and stop-words, words that are not nouns (according
to Wordnet), and common proper nouns (such as the names
of credit card companies) are removed. Removing non-noun
words from reviews is to avoid relating two places based
on similar sentiment. While sentiment analysis is useful for
product recommendation, we require an objective account;
noun-only similarity is a simple form of feature-only com-
parison under the assumption that nouns identify salient
features of a place.

Review documents are converted into term frequency vec-
tors where each dimension in the vector is a term and the
value for each term is computed by Term-Frequency Inverse-
Document Frequency (TFIDF), a common measure of term
importance based on term uniqueness across documents.
The Cosine similarity measure is used to determine simi-
larity of document vectors by measuring the angle between
each pair of vectors. Applied to all pairs of locations from
two cities, the result is a similarity matrix with columns rep-
resenting places in one city, rows representing places in the
other city, and cells containing the probability that the two
places are the same. Figure 7 illustrates the process of com-
puting a similarity matrix for two cities. Repeating this pro-
cess for all pairs of cities and all types of locations produces
|City×City×Type| similarity matrices. This process must
only be done occasionally to incorporate new locations and
new reviews. Given an origin city, target city, and location
type, the candidates for a story location Li are generated
by extracting an entire column or row of the appropriate
similarity matrix.

5.3 Results and Evaluation
In practice, we find ARGs are subjective experiences and

that players do not differentiate between game instances as
long as the locations are reasonably chosen. Figure 8 shows
an example of an ARG story and its translation to a differ-
ent part of the same city (disallowing self-matching), which
allows us to visually inspect the results. The similarity ma-
trices were built from a relatively small selection of 185 lo-
cations of different types in the city. The original story loca-
tions are (1a) a fresh-faire pan-asian cafe, (1b) Barnes and
Noble bookstore, (1c) a NY-style pizza restaurant, (1d) the
Fox Theatre, and (1e) the World of Coke museum. The story
required a minimum of 2.1 miles to traverse. The translated
story locations are (2a) an organic foods cafe, (2b) an in-
dependent bookseller, (2c) a bar with a number of pizza
selections, (2d) the Center for Puppetry Arts (which has
theatre shows), and (2e) the Art Museum. The translated

L11 L12 Ln1...
L12
L22

...

Lm2

Location11
review1 + review2 + ...
...
Locationn1
review1 + review2 + ...

Query <type> at
City1.Citysearch.com

Query <type> at
City2.Citysearch.com

Cosine
similarity
measureLocation12

review1 + review2 + ...
...
Locationm2
review1 + review2 + ...

Figure 7: The similarity matrix construction process for a pair of cities and a type of location.

Figure 8: An ARG story translated from one part of a city to another. Blue lines are dependency arcs. Red
lines show analogical matches between locations.

story required a minimum of 3.1 miles to traverse. Note that
the quality of translation is dependent on the quality of re-
views from CitysearchTM, the coverage of the target city in
terms of the number of locations that we retrieve, and the
particular geometrical layout of each city.

Reliable location translation requires accuracy in the abil-
ity of our system to capture meaningful similarities between
locations. To evaluate the quality of the similarity computa-
tions, we randomly sampled 10 source restaurants from our
dataset of locations. For each source restaurant, we ran-
domly sampled 10 target restaurants against which to evalu-
ate similarity. We asked 5 participants familiar with the city
to sort each list of targets based on their judgement of sim-
ilarity to the source. From participant data, we computed
a gold standard ranking as follows. Treating each partici-
pant’s trial as a competition amongst target restaurants to
be the most similar to the source restaurant, we use the
ELO tournament rating method to determine a total order
of target restaurants for each source restaurant. The ELO
rating for a target restaurant is the aggregate number of
other restaurants ordered below it by participants. We then
used similarity matrix lookups to generate an ordered list
of targets for each source (geography was ignored). Thus,
humans and WeQuest performed the same ranking tasks.

To compare the WeQuest similarity matrix ranking

against the gold standard, we used the Kendall’s Tau rank
correlation coefficient to assess the association between
ranked lists. We calculated an average τ of 0.533 (where 1.0
indicates perfect agreement) across the 10 source restaurant
comparisons. The Tau value is significant at p = 0.0318,
indicating that that the gold standard and generated rank-
ings tend to be highly associated. Not all source restau-
rants resulted in statistically significant results; we observed
a spread from τ = 0.2 to τ = 0.822. We conclude that, on
average, WeQuest-generated and gold standard rankings
statistically describe the same ranking. We note that, anec-
dotally, human participant ranking becomes increasingly ar-
bitrary when actual similarity between locations is low, mak-
ing the gold standard ELO values for low-similarity restau-
rants unreliable. Thus, looking at the tops of the rankings,
WeQuest’s top pick concurred with the gold standard’s
top-pick 60% of the time, was in the top two 80% of the time,
and was in the top three 100% of the time. Thus, accuracy
is highest when human-rated similarity is also high, which
is significant considering that the optimization search must
balance maximizing similarity with minimizing distances; it
doesn’t always pick the most similar location. Further im-
provements potentially may be achieved through more in-
formed feature selection and through alternative document
similarity measures, such as Latent Semantic Analysis [5].

Download game to
game engine

Can it be
played in your

area?

Play game

Location
translation

yes

no

Manual edits
to game

Publish new
game to server

Choose a game
from server

Figure 9: The flow of game play, end-user authoring,
and location translation.

Results will improve with a larger corpus of greater num-
bers of locations and more/longer reviews per location.

5.4 Semi-Automated Translation
The optimization search process, in its attempt to balance

graph size differences and analogical similarity, may choose
candidates that are too far away, not analogical enough, or
are in unsafe neighborhoods. We also cannot rule out the
possibility of a poor analogy, especially for locations that are
not well-reviewed by users. Consequently, we provide the
ability for the end-user to edit the translated story before
play occurs, as shown in Figure 9. We assert that editing an
existing, translated story is easier than writing a new story
from scratch or completely manually translating an existing
story. Translated stories are pushed back to a central server,
allowing other people in the same area to immediate begin
using the stories. We believe this to be a key element to
achieving ARG scalability.

6. CONCLUSIONS
The ability to play through stories in the real world cou-

pled with the opportunities for socialization during game
play are some of the reasons that ARGs have gained in pop-
ularity. Despite the positive qualities of ARGs, the geo-
specificity of stories coupled with the human effort required
to create and run games have been critical factors in pre-
venting the ARG genre from becoming a mainstream form
of entertainment. We believe that ARGs can be scaled to
the point that they become a form of game that everyone
can play. To achieve this, human Game Masters and con-
federate actors must be eliminated, greater amounts of story
content must be available, and the geo-specificity of stories
must be mitigated.

The WeQuest attempts to overcome scalability limita-
tions in three ways. First, by providing a game engine that
runs on geo-location aware mobile devices, the execution of
ARG stories is automated. This is accomplished through the
use of the dependency graph story representation, which is
flexible enough to account for a wide variety of ARG expe-
riences but precise enough to implement non-player charac-
ter dialogues. Second, an authoring tool allows end-users to
generate their own stories, thus providing availability of con-
tent for where ever there are individuals motivated to make
their own games. We find the authoring tool to support
a spectrum of authoring practices. While end-user content
generation is good means of acquiring large amounts of con-
tent, the geo-specific nature of ARG stories still must be
overcome to facilitate greater accessibility to existing con-
tent. Thus, location translation allows players to quickly
and easily convert any ARG story into one that can be
played in their locality.

7. REFERENCES
[1] L. Barkhuus, M. Chalmers, P. Tennent, M. Hall,

M. Bell, S. Sherwood, and B. Brown. Picking pockets
on the lawn: The development of tactics and
strategies in a mobile game. In Proceedings of the 7th
International Conference on Ubiquitous Computing,
2005.

[2] S. Benford, R. Anastasi, M. Flintham, A. Drozd,
A. Crabtree, C. Greenhalgh, N. Tandavanitj,
M. Adams, and J. Row-Farr. Coping with uncertainty
in a location based game. IEEE Pervasive Computing,
2(3):34–41, 2003.

[3] S. Benford, D. Rowland, M. Flintham, A. Drozd,
R. Hull, J. Reid, J. Morrison, and K. Facer. Life on
the edge: supporting collaboration in location-based
experiences. In Proceedings of the 2005 Conference on
Human Factors in Computing Systems, 2005.

[4] A. Gustafsson, J. Bichard, L. Brunnberg, O. Juhlin,
and M. Combetto. Believable environments:
Generating interactive storytelling in vast
location-based pervasive games. In Proceedings of the
2006 ACM International Conference on Advances in
Computer Entertainment, 2006.

[5] T. Landauer and S. Dumais. A solution to Plato’s
problem: The latent semantic analysis theory of the
acquisition, induction, and representation of
knowledge. Psychological Review, 104:211–240, 1997.

[6] M. Y. Lim and R. Aylett. Narrative construction in a
mobile tour guide. In Proceedings of the 4th
International Conference on Virtual Storytelling, 2007.

[7] A. Macvean and M. O. Riedl. Evaluating enjoyment
within alternate reality games. In Proceedings of the
38th International Conference on Computer Graphics
and Interactive Techniques, 2011.

[8] C. Magerkurth, A. Cheok, R. Mandryk, and T. Nilsen.
Pervasive games: bringing computer entertainment
back to the real world. ACM Computers in
Entertainment, 3(3), 2005.

[9] M. Montola. Exploring the edge of the magic circle:
Defining pervasive games. In Proceedings of the 2005
Digital Arts and Culture Conference, 2005.

[10] A. Reed, B. Samuel, A. Sullivan, R. Grant, A. Grow,
J. Lazaro, J. Mahal, S. Kurniawan, M. Walker, and
N. Wardrip-Fruin. A step towards the future of
role-playing games: The SpyFeet mobile RPG project.
In Proceedings of the 7th Annual Conference on
Artificial Intelligence and Interactive Digital
Entertainment, 2011.

[11] M. Sahami and T. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In Proceedings of the 15th International
World Wide Web Conference, 2006.

[12] O. Stock, M. Zancanaro, P. Busetta, C. Callaway,
A. Kruger, M. Kruppa, T. Kuflik, E. Not, and
C. Rocchi. Adaptive, intelligent presentation of
information for the museum visitor in PEACH. User
Modeling and User-Adapted Interaction,
17(3):257–304, 2007.

[13] K. Tsuruoka and M. Arikawa. An authoring tool for
urban audio tours with animated maps. In Proceedings
of the 2008 ACM International Conference on
Advances in Computer Entertainment, 2008.

	Introduction
	Background and Related Work
	The WeQuest System
	Authoring Tool
	Location Translation
	Translation Search Algorithm
	Location Similarity
	Results and Evaluation
	Semi-Automated Translation

	Conclusions
	References

