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Abstract

Many computer games of all genres pit the player against a
succession of increasingly difficult challenges such as com-
bat with computer-controlled enemies and puzzles. Part of
the fun of computer games is to master the skills necessary
to complete the game. Challenge tailoring is the problem of
matching the difficulty of skill-based events over the course
of a game to a specific player’s abilities. We present a ten-
sor factorization approach to predicting player performance
in skill-based computer games. Our tensor factorization ap-
proach is data-driven and can predict changes in players’ skill
mastery over time, allowing more accurate tailoring of chal-
lenges. We demonstrate the efficacy and scalability of ten-
sor factorization models through an empirical study of human
players in a simple role-playing combat game. We further find
a significant correlation between these performance ratings
and player subjective experiences of difficulty and discuss
ways our model can be used to optimize player enjoyment.

Introduction
Many computer games of all genres pit the player against a
succession of increasingly difficult challenges: combat with
NPC enemies, puzzles, strategic planning and execution, etc.
The player is expected to master a set of skills pertaining to
the game mechanic over the course of the game. Some be-
lieve that this mastery of the game is a fundamental aspect
to having fun in computer games (Koster 2005). However,
contemporary computer games are being played by increas-
ingly diverse audiences that differ in their skills and interests
in games. This increasing variability in ability, speed of mas-
tery, and growing diversity in tastes for game aesthetic and
narrative content has prompted a recent growth of interest in
automated methods to fit game content to these diverse abil-
ities and interests. These efforts require both modeling the
abilities and interests of players as well as adapting existing
game content to those differences.

Many games revolve around skill-based events, periods of
game play, such as combat or puzzles, in which the player
must perform a specific skill. We see two main challenges
to adapting computer games to fit individual player differ-
ences: challenge tailoring and challenge contextualization.
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Challenge tailoring (CT) is the problem of matching the dif-
ficulty of skill-based events over the course of a game to
a specific player’s abilities. For example, in an action role-
playing game such as The Legend of Zelda challenge tai-
loring may manifest as configuring the number, health, or
damage dealt by various enemies at various times through-
out the game. CT is similar to Dynamic Difficulty Adjustment
(DDA), which only applies to online, real-time changes to
game mechanics to balance difficulty. In contrast, CT gener-
alizes DDA to both online and offline optimization of game
content and is not limited to adapting game difficulty. Chal-
lenge contextualization (CC) is the related problem of con-
structing game events that set up the conditions for skill
events and motivate their occurrence to the player. For exam-
ple, the challenge of slaying a dragon may be contextualized
by the dragon kidnapping a princess. Challenge contextual-
ization includes common AI problems of quest generation,
story generation in games, and interactive storytelling.

In this paper, we focus on the challenge tailoring prob-
lem in adventure role-playing games. Realizing challenge
tailoring requires both a player model and an algorithm to
adapt content based on that model. Effective player model-
ing for the purposes of challenge tailoring requires a data-
driven approach that is able to predict player behavior in sit-
uations that may have never been observed. Because play-
ers are expected to master skills over time when playing
a game, the player model must also account for temporal
changes in player behavior, rather than assume the player
remains fixed. Modeling the temporal dynamics of a player
enables an adaptive game to more effectively forecast future
player behavior, accommodate those changes, and better di-
rect players toward content they are expected to enjoy. Fur-
ther, forecasting enables player models to account for inter-
relations among sequences of experiences—accounting for
how foreshadowing may set up a better future revelation or
how encountering one set of challenges builds player abili-
ties to overcome related challenges that build off of those.

In this paper we present and evaluate a temporal player
modeling approach. We employ tensor factorization tech-
niques to create temporal models of objective player game
performance over time in a turn-based role-playing game
and demonstrate the efficacy of our approach over related
data-driven methods through comparisons from an empiri-
cal study. We model performance instead of difficulty be-



cause performance is objectively measurable while difficulty
is subjective; we show difficulty and performance are sig-
nificantly correlated for this particular domain. Finally, we
suggest how our tensor factorization player model may be
used for challenge contextualization.

Related Work
Smith et al. (2011) overview the landscape of player mod-
eling in computer games. In their taxonomy, we are investi-
gating individual, empirical, generative player models. Re-
search in player modeling has typically addressed the chal-
lenge tailoring problem either by developing purely behav-
ioral models or relying on predictions that ignore temporal
changes in player data. Hunicke and Chapman (2004) model
players by computing the average and variance of player
damage and item inventory. Dynamic Difficulty Adjustment
is achieved via a hand-crafted policy prescribing actions to
take based on player health and inventory states. Magerko
et al. (2006) interactive story players using a vector of com-
petence levels for various skills and associated confidence
values. The system selects from a pool of challenges based
on a best fit between the characteristics of the challenge
event and the current state of the skill vector. van Lankveld
et al. (2008) role-playing game players using their progress
and health, dynamically adjusting sets of presented enemies
to enforce a given level of player health over progress. In
contrast, our data-driven modeling approach explicitly fore-
casts changes in player performance, combines information
across players, and proactively constructs a long-term set of
challenges based on these predictions.

Subjective self-report indications of challenge have also
been used to dynamically tailor game play (Yannakakis and
Togelius 2011). Pedersen et al. (2009) train a neural network
to predict player self-reported experiences of fun, challenge,
and frustration based on measures of player behavior and
in-game content. Yannakakis, Lund, and Hallam (2006) em-
ploy a neural network to predict player self-reported inter-
est. Our approach extends these models by correlating time-
varying measures of performance to self-report measures,
enabling forecasts of player experience forward in time.

While we believe our work is the first application of tensor
factorization to challenge tailoring problems, we note that
similar techniques have been used to model student perfor-
mance over time on standardized tests (Thai-Nghe, Horvath,
and Schmidt-Thieme 2011).

Player Model
We explore tensor factorization techniques for modeling
player performance in action role-playing games. While
we focus on action role-playing games, we believe our
techniques generalize to any games that make regular use
of skill-based events. Tensor factorization techniques de-
compose multidimensional measurements into latent com-
ponents that capture underlying features of the high-
dimensional data. Tensors generalize matrices, moving from
the two-dimensional structure of a matrix to a three or more
dimensional structure. For our player modeling approach we
extend two-dimensional matrices representing player perfor-

mance against particular enemy types to add a third dimen-
sion representing the time of that performance measure.

We chose to use tensor factorization due to its favorable
scaling properties, ability to cope with missing data, high
accuracy, speed in generating predictions, and previous suc-
cess in other applications. Tensor factorization is an exten-
sion of matrix factorization, which has been used in collab-
orative filtering applications—such as the Netflix Prize data
mining competition—to great success. Matrix factorization
offers the key advantage of leveraging information from a
group of users that has experienced a set of content to make
predictions for what a new group of individuals that has only
been partially exposed to that content will do. Specifically,
user data is represented in a M = U × I matrix indicat-
ing user preference ratings on items and decomposition ex-
tracts latent factors relating to users and items. Tensor fac-
torization adds more dimensions, such as time, and extracts
latent factors related to these other dimensions as well. Ma-
trix and tensor factorization scale effectively to large num-
bers of users and items, handle missing information from
users and achieve high accuracy (Koren and Bell 2011;
Su and Khoshgoftaar 2009).

Formally, we represent player data in a tensor Z = U ×
I × T . In our simple spell-casting action role-playing game
(described in the next section), U is the player (“user”), I is
the spell type (“item”) and T is the time of the performance
recording. CP decomposition is a generalization of singular
value decomposition from matrices to tensors. In CP decom-
position the three-dimensional Z tensor is decomposed into
a weighted combination of three vector latent factors,

Z ≈
K∑

k=1

λkwk ◦ hk ◦ qk

where ◦ is the vector outer product, λk are positive weights
on the factors, wk are player factors, hk are spell type fac-
tors, and qk are time factors.K is the number of components
used for each factor as an approximation of the true struc-
ture, keeping the set of the K most important components
found (Kolda and Bader 2009). The decomposition can be
computed by minimizing the root mean squared error be-
tween the factor inner product above and true data values,
iteratively fitting each of the factors while fixing values of
the other factors until convergence. We employ the N-way
toolbox (Andersson and Bro 2000) to perform this decom-
position. Predictions in this model consist of taking the in-
ner product of these three factors, a computationally efficient
process.

Experiment
We focus on skill-based aspects of games that require proce-
dural knowledge: the ability to correctly act in given circum-
stances, typically with limited time for decision-making. To
test our tensor factorization model we conducted a study of
player learning in a turn-based role-playing game. Below we
present the game used for the study, study methodology, and
the results of comparing our modeling technique to related
approaches.



Figure 1: A battle between monsters and the player team.

Table 1: Spell Effectiveness Matrix.
Attack ↓ Def. → fire water acid ice light. earth force undeath

fire 1 0 1 2 1 2 1 0
water 2 1 0 1 0 1 2 1
acid 1 2 1 0 1 0 1 2
ice 0 1 2 1 2 1 0 1

lightning 1 2 1 0 1 0 1 2
earth 0 1 2 1 2 1 0 1
force 1 0 1 2 1 2 1 0

undeath 2 1 0 1 0 1 2 1

Game Domain

We implemented a turn-based role-playing game in which
the player leads a group of four characters through a se-
quence of spell-casting battles against groups of enemy
monsters. For the purpose of this study, we ignore the quest-
like contextualization of the battles. See Figure 1 for the
game’s battle interface. Turns are limited to 10 seconds to
require mastery of a complex spell system.

Each enemy is associated with one of eight spell types and
player-controlled characters can attack with four of the eight
possible spells. Casting a particular spell against an enemy
of a particular type results in an attack being effective, in-
effective, or super-effective, resulting in normal damage, no
damage, or double damage against an enemy (see Table 1).

We intentionally created a spell system that was dif-
ficult to completely memorize, but contained intuitive
combinations—water spells are super-effective against fire
enemies—and unintuitive combinations—undeath spells are
super-effective against force enemies—ensuring that skill
mastery could only be achieved by playing the game. Note
that pairs of spells—e.g., fire and force—are repeated in
Table 1. This ensures a simpler underlying skill structure
for players to learn; there are effectively only four spells.
A scoring system based on spell effectiveness motivates
players to learn; effective spells earn two points, ineffective
spells earn zero points, and super-effective spells earn five
points. Enemy attacks decrease player score by one. Player
characters were assigned different spell sets, forcing players
to learn the spell system.

Study Methodology
We recruited 32 participants to play our role-playing game,
which was simplified to present a series of battles one after
another, as in Figure 1. In our study we first gave players
five minutes to review a text document explaining the spell
system and the game interface. Once familiar with the game,
players completed the sequence of eleven battles while we
recorded the performance of the player in terms of effective-
ness of spells chosen against enemies. After each battle we
additionally asked players to report how difficult and enjoy-
able the battle was on a 5-point Likert scale.

We recorded each spell players cast on each enemy on
each turn and battle in the game along with the associated
performance value: 0 for ineffective, 1 for effective, and 2
for super-effective. Because spell effectiveness determines
damage to enemies, player behavior traces varied in the
number of turns taken, but had the same number of battles.
We average performance for each spell type across all turns
within a given battle, leaving the performance value missing
for any spells not used in the battle.

We hypothesize that a tensor factorization approach will
outperform non-tensor approaches. The tensor factorization
model organizes player data in a three-dimensional tensor
(player, enemy spell type, battle number), where each point
in the tensor is the average performance of the player in at-
tacking foes of a given spell type during a given battle. Spell
types not used in a given battle were recorded as missing val-
ues. This produces a 32 × 8 × 11 tensor for our 32 players,
8 spell types, and 11 battles. We compared the tensor model
to two other models: matrix factorization using an unfolded
tensor, and matrix factorization averaging over time. The
matrix unfolding of this tensor simply concatenates battles
column-wise, producing a 32 × 88 matrix recording player
performance on each spell type and battle number combina-
tion. The final matrix factorization approach averaged player
performance against spell types across all battles, remov-
ing any temporal information. Data points represent average
player performance over their entire battle history against an
enemy type. If our hypothesis is confirmed, then the tensor
model captures additional structure lost in the unfolded ma-
trix model when all time points are concatenated together.

We also hypothesize that there is an inverse relationship
between objective, measurable player performance and sub-
jective, self-reported difficulty. Should this hypothesis hold
it will verify that in the context of action role-playing games
we can use skill performance as a proxy for difficulty.

Results
We first compared players according to a variety of collected
demographic information (age, gender, race, ethnicity, prior
video game and role-playing game experience) and found
no significant differences among these groups in our data
set, validating the use of a single model across all players.
We measured the 10-fold cross-validated percent variance
explained of the tensor, matrix unfolded, and time-averaged
models. Percent variance explained is an error measure that
compares the total variation in the data across cases with the
variation remaining after a model has been applied to the



data. It describes how well a model captures variations in
the data, with higher percentages indicating more powerful
explanations.

The tensor model outperforms the other techniques for
three or more components (see Table 2). While the ten-
sor model does not achieve substantially better performance
than the unfolded or time-averaged models on few compo-
nents it shows much greater performance on larger numbers
of components, reflecting its greater capacity to model com-
plex underlying structure in the data. Notably, the tensor
model shows comparable high performance for three, four,
or five factors, indicating the spell matrix reflects an under-
lying structure testing the corresponding number of skills.
As noted earlier our spell matrix actually only contains four
spells (each spell has two names). This intuitively explains
a result suggesting four underlying factors—the four unique
spells—with similar numbers of factors reflecting a moder-
ate amount of noise around this underlying information. The
100% score for the time-averaged model with 8 factors re-
flects the fact that this model is modeling 8 spell types with
8 factors and thus can trivially recover the same model.

components tensor unfolded timeavg
2 92.59 90.82 95.86
3 92.18 89.44 72.41
4 88.72 86.30 39.99
5 90.11 61.77 45.02
6 89.11 63.66 24.28
7 87.11 24.29 36.30
8 80.05 -10.81 100.00

Table 2: Comparison of percent variance explained by dif-
ferent models using varying numbers of factors.

We evaluated the scaling of the tensor model in three
ways: (1) how well the model scales with additional data;
(2) how well the model forecasts into the future for players;
and (3) how well the model scales in the number of play-
ers used by the system. In all three cases we use 10-fold
cross-validated percent variance explained averaged over 10
repetitions of the experiment. Our first assessment hid a ran-
dom subset of all our data and generated predictions for
those missing values as shown in Figure 2. Model perfor-
mance increased with the amount of total data used, with the
simple two-component model showing high performance
across all amounts of data while the more complex six- and
eight-component models required approximately 60% of the
data to achieve high performance. Thus, tensor factoriza-
tion techniques perform well with this kind and amount of
data, with more complex models requiring additional data
but achieving high performance with more information.

Our second assessment evaluated the accuracy of the ten-
sor model predictions on future events by hiding all future
battles for a group of target players (Figure 3). The sim-
ple two-component tensor model achieved high performance
regardless of the number of battles used, while the more
complex six- and eight-component models required approx-
imately seven battles to achieve comparable performance.

Figure 2: Percent variance explained of the tensor model as
a function of the amount of data randomly subsampled from
the data set, averaged over 10 repetitions.

Figure 3: Percent variance explained of the tensor model
when using first subset of battle data from randomly selected
players, averaged over 10 repetitions.

Thus, tensor factorization models can generate useful fore-
casts after only a small number of battles observed for any
given player. From a game design perspective, this sug-
gests a relatively short training level in which the player can
demonstrate skills can yield reasonable predictive power.

Our third assessment examined the tensor model accuracy
when training and testing on varying numbers of players. We
randomly subsampled from our full data set to use 6, 11, 16,
21, or 27 players and performed the same cross-validation
analysis as above. Accuracy improved on the 2 component
model from 81.17% variance explained with 6 players to
86.52% with 27 players, while the 4 component model im-
proved from 52.55% to 86.29%, respectively. Other numbers
of components showed similar trends, converging to approx-
imately 86% accuracy with 27 players. The results of these
three assessments demonstrate the power of the tensor fac-
torization technique to scale with additional players and ad-
ditional data for those players.

Finally, we found a significant correlation between ob-
jectively measure performance and subjectively experi-
enced difficulty. Performance levels significantly differed
(Kruskal-Wallis test for analysis of variance, p < 0.001)
between subjective difficulty ratings. A Kruskal-Wallis test
assesses whether responses (here performance) in different
groups (difficulty ratings) shows significant differences—it
is a non-parametric alternative to the standard analysis of
variance tests that assume the data has a Gaussian distri-



Figure 4: Comparison between objective performance val-
ues for subjective difficulty ratings, showing median values
and the range from 25th and 75th percentiles.

bution, as our data showed skewing in performance mea-
sures for different response groups. A Dunnett’s test found
all adjacent pairs of difficulty ratings significantly differed
(p < 0.05) in performance value, ranging from −0.11 to
−0.22 (Figure 4). Dunnett’s test applies a more power-
ful version of the Student’s t-test to performance multiple
comparisons among groups. Thus our second hypothesis is
confirmed; objective measures of skill performance are in-
versely related to perceived difficulty.

Content Adaptation
Our temporal player model can predict player performance
on skill-based events in the future. To perform challenge tai-
loring of a game, the player model must be combined with
information about how to use the model. In the next sections
we describe (1) a target expected performance to compare
predictions of an individual user’s performance against, and
(2) an algorithm to select and/or parameterize skill-based
events to bring predicted player performance in line with tar-
get performance.

Target Performance Curve
We expand upon the concept of a performance curve (Zook
et al. 2012), as an indication of the desired player perfor-
mance over a sequence of skill-based challenges. In our
game this indicates desired player performance across a se-
quence of battles, provided by the human designer. Figure
5 shows an example of a performance curve. This particular
curve seeks a decrease in performance over time until the
very end of the game. This game should appear to a player
to increase in difficulty from challenge to challenge, even
as the player continues to master the skills involved. Other
curves are possible as well. A curve expressed by p = c
(a horizontal line at a fixed constant, c) indicates a game in
which the difficulty appears to remain the same, even as the
player’s skills improve. That is, the challenges may be pa-
rameterized to be more difficult, but because the challenge
level is increasing at the same rate as player skill mastery,
there should be little or no perceived change in difficulty.
More complicated patterns, such as a series of rises and falls,
can express complex designer intentions.
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Figure 5: An example performance curve indicating a game
that gets progressively more difficult until the very end, even
as the player’s skills improve. Dotted lines indicated pre-
dicted performance for two players.

Note that performance curves are specifications of de-
sired player performance, rather than difficulty. Although
our studies show that performance and difficulty are in-
versely correlated, there may be other aspects of the game—
such as ambiguity in game information—that are not nec-
essarily captured in the performance metric. A performance
curve bypasses the ambiguity of subjective difficulty while
enabling designers to specify how they desire a particular
performance metric to vary over the course of an experience.

Challenge Tailoring and Contextualization
Given a performance curve and a temporal player model,
challenge tailoring is the problem of selecting and spacing
a sequence of skill-based events—in our case, battles—that
match the predicted performance over time to the desired
performance. This is a discrete optimization problem—
battles are discrete units and the goal is to minimize the
difference between predicted and desired performance val-
ues for these battles. A variety of techniques may be ap-
plied to solve these problems including constraint satis-
faction, dynamic programming, and heuristic search tech-
niques such as genetic algorithms (Smith and Mateas 2011;
Togelius et al. 2011; Sorenson, Pasquier, and DiPaola 2011;
Zook et al. 2012). In contrast to the reactive, near-term
changes typically employed in DDA (Magerko, Stensrud,
and Holt 2006; Hunicke and Chapman 2004), temporal
player models are able to also proactively restructure long-
term content to optimize a global player experience.

Challenge contextualization is the problem of selecting
non-skill-based events that explain, motivate, or justify the
skill-based events. Quest generation and narrative genera-
tion techniques may be used to provide this contextualiza-
tion of skill-based events, although other, non-narrative con-
textualization may exist as well. Challenge tailoring and
challenge contextualization may be performed in a pipelined
fashion or in parallel. Pipeline techniques afford modular
and compositional approaches to tailoring game content. In
particular, if tailoring of skill-based events takes precedence
over contextualization such that contextualization (i.e., the
narrative, quest, or mission) can be sub-optimal then one
might choose to solve the discrete optimization problem of
selecting and spacing all skill-based events before “filling
the gaps” with non-skill-based, contextualizing events (cf.,
(Magerko, Stensrud, and Holt 2006)). Fixing the skill-based



events prior to contextualization makes challenge tailoring
easier, but constrains the searchable context space.

Parallel techniques, conversely, may explore the full space
of joint skill- and non-skill combinations, but trade this flex-
ibility for greater complexity in the tailoring task. For ex-
ample, we describe a technique that searches for a complete
sequence of skill- and non-skill-based events that simultane-
ously optimizes for player performance and context (Zook et
al. 2012). The question of whether to use a pipeline versus
parallel approach is depends on the importance of contex-
tualization relative to skill tailoring and the extent to which
skill- and non-skill-based events appear seamless.

Conclusions
As computer games grow in popularity personalization of
game content—which we cast as the paired problems of
challenge tailoring and challenge contextualization—will
also grow in importance. Unlike many other player model-
ing approaches to challenge tailoring and dynamic difficulty
adjustment, we use a data driven approach that explicitly in-
corporates a temporal component. This temporal component
allows us to more accurately forecast future player perfor-
mance by modeling changes in a player’s skills.

A performance curve provides authorial control over the
game in the form of a target level of performance. Since
objective performance is inversely correlated with subjec-
tive difficulty, a performance curve can guide an algorithm
in the selection and parameterization of skill-based events
over time. The tensor factorization model gives a system in-
sight into how the player will perform on various sequences
of challenges. With these tools, there are many discrete-
optimization algorithms that can solve the challenge tailor-
ing problem. Challenge contextualization, though outside
the scope of this paper, can further ensure challenges make
sense to the player while promoting player skill mastery.

Mastery of skills is correlated with fun (Koster 2005). A
game that is able to tailor its difficulty to meet the abilities
of the player may be perceived as more enjoyable to a wider
range of players because it is never unintentionally boringly
easy or frustratingly hard. This in turn has the potential to
increase game replayability and make certain games acces-
sible to a wider diversity of players.

Acknowledgments
The project or effort described here has been sponsored
by the U.S. Army Research, Development, and Engineer-
ing Command (RDECOM). Statements and opinions ex-
pressed do not necessarily reflect the position or the policy
of the United States Government, and no official endorse-
ment should be inferred.

References
Andersson, C., and Bro, R. 2000. The N-way toolbox for
MATLAB. Chemometrics and Intelligent Laboratory Sys-
tems 52(1):1–4.
Hunicke, R., and Chapman, V. 2004. AI for dynamic dif-
ficulty adjustment in games. In Proceedings of the AAAI
Workshop on Challenges in Game Artificial Intelligence.

Kolda, T., and Bader, B. 2009. Tensor decompositions and
applications. SIAM review 51(3):455–500.
Koren, Y., and Bell, R. 2011. Advances in Collaborative
Filtering. In Ricci, F.; Rokach, L.; Shapira, B.; and Kantor,
P. B., eds., Recommender Systems Handbook. Boston, MA:
Springer. 145–186.
Koster, R. 2005. A Theory of Fun in Game Design.
Paraglyph press.
Magerko, B.; Stensrud, B.; and Holt, L. 2006. Bringing the
schoolhouse inside the box - a tool for engaging, individ-
ualized training. In Proceedings of the 25th Army Science
Conference.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009.
Modeling Player Experience in Super Mario Bros. In Pro-
ceedings of the IEEE Symposium on Computational Intelli-
gence and Games.
Smith, A., and Mateas, M. 2011. Answer set programming
for procedural content generation: A design space approach.
IEEE Transactions on Computational Intelligence and AI in
Games 3(3):187–200.
Smith, A.; Lewis, C.; Hullett, K.; Smith, G.; and Sullivan, A.
2011. An inclusive view of player modeling. In Proceedings
of the 6th International Conference on Foundations of Digi-
tal Games.
Sorenson, N.; Pasquier, P.; and DiPaola, S. 2011. A Generic
Approach to Challenge Modeling for the Procedural Cre-
ation of Video Game Levels. IEEE Transactions on Compu-
tational Intelligence and AI in Games 3(3):229–244.
Su, X., and Khoshgoftaar, T. M. 2009. A Survey of Collab-
orative Filtering Techniques. Advances in Artificial Intelli-
gence 2009:1–19.
Thai-Nghe, N.; Horvath, T.; and Schmidt-Thieme, L. 2011.
Factorization Models for Forecasting Student Performance.
In Proceedings of the 4th International Conference on Edu-
cational Data Mining.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-Based Procedural Content Generation: A Tax-
onomy and Survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
van Lankveld, G.; Spronck, P.; and Rauterberg, M. 2008.
Difficulty scaling through incongruity. In Proceedings of
the 4th AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment.
Yannakakis, G. N., and Togelius, J. 2011. Experience-
Driven Procedural Content Generation. IEEE Transactions
on Affective Computing 2:147–161.
Yannakakis, G.; Lund, H.; and Hallam, J. 2006. Model-
ing children’s entertainment in the playware playground. In
Proceedings of the 2nd IEEE Symposium on Computational
Intelligence and Games.
Zook, A.; Riedl, M. O.; Holden, H. K.; Sottilare, R. A.; and
Brawner, K. W. 2012. Automated scenario generation: To-
ward tailored and optimized military training in virtual en-
vironments. In Proceedings of the 7th International Confer-
ence on the Foundations of Digital Games.


