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Abstract 

Narrative intelligence is the use of narrative to make sense of the world and to communicate with other people. The generation of 
stories involving social and cultural situations (eating at a restaurant, going on a date, etc.) requires an extensive amount of 
experiential knowledge. While this knowledge can be encoded in the form of scripts, schemas, or frames, the manual authoring of 
these knowledge structures presents a significant bottleneck in the creation of systems demonstrating narrative intelligence. In this 
paper we describe a technique for automatically learning robust, script-like knowledge from crowdsourced narratives. 
Crowdsourcing, the use of anonymous human workers, provides an opportunity for rapidly acquiring a corpus of highly specialized 
narratives about sociocultural situations. We describe a three-stage approach to script acquisition and learning. First, we query 
human workers to write natural language narrative examples of a given situation. Second, we learn the set of possible events that can 
occur in a situation by finding semantic similarities between the narrative examples. Third, we learn the relevance of any event to the 
situation and extract a probable temporal ordering between events. We describe how these scripts, which we call plot graphs, can be 
utilized to generate believable stories about social situations. 
 

Introduction 
Storytelling, in oral, visual, or written forms, plays a 
central role in various types of entertainment media, 
including novels, movies, television, and theatre. The 
prevalence of storytelling in human culture may be 
explained by the use of narrative as a cognitive tool for 
situated understanding (Bruner 1991; McKoon & 
Ratcliff 1992; Gerrig 1993; Graesser, Singer & Trabasso 
1994). This narrative intelligence (Mateas & Sengers 
1999) is central in the cognitive processes employed 
across a range of experiences, from entertainment to 
active learning. It follows that computational systems 
possessing narrative intelligence may be able to interact 
with human users naturally because they understand 
collaborative contexts as emerging narrative and are able 
to express themselves by telling stories.  

In this paper we consider the problem of creating 
and telling stories that involve common social situations. 
Most stories are about people (or objects and animals 
that behave like people in some way). Characters in 
generated stories should respect social and cultural 
norms, and perform common tasks in socioculturally 
acceptable ways. For example, during a trip to a 
restaurant, a character should perform actions that meet 
readers' expectation of what should happen in a 
restaurant. Further, to generate a love story in which a 
boy asks a girl out to a date at the movies, a system 
should know when it is okay for the boy to hold the girl’s 
hand or when to try for a kiss. To omit these elements or 
to use them at the wrong time invites failures in 
believability or breakdowns in communication.  

The generation of believable stories requires 
extensive knowledge that captures common social and 
cultural activities. Unfortunately, social and cultural 
models are notoriously hard to model by hand. For 
example, a simple model of restaurant behaviour uses 87 
rules (Mueller 2007). A simulation game about attending 
a prom (McCoy et al. 2010) required 5,000 rules to 

capture the social dynamics associated with that 
situation.  

As an alternative to production rules, one may 
consider employing scripts (Schank and Abelson 1977), 
a form of procedural knowledge that describes how 
common situations are expected to unfold, thus capturing 
social and cultural norms. A script about visiting a 
restaurant, for example, would encode the typical 
progression of events (entering, being seated, reading a 
menu, paying the bill, etc.). Many story generation 
systems make use of manually coded script-like 
knowledge, such as cases or hierarchical task libraries 
(e.g. Meehan 1976; Lebowitz 1987; Turner 1994; Perez y 
Perez & Sharples 2001; Cavazza, Charles, & Mead 2002; 
Gervas et al. 2005; Swanson & Gordon 2008; Riedl 
2010; Li & Riedl 2010; Hajarnis et al. 2011). However, 
the effort required to manually code script-like 
information becomes a significant bottleneck. As a 
result, most story generation systems to date are 
restricted to a small number of hand-authored knowledge 
structures and can thus only operate within the bounds of 
a limited micro-world for which knowledge has been 
provided.  

Automatically acquiring sociocultural knowledge 
can open up story generation systems to a wider 
repertoire of possible stories and domains. In this paper, 
we propose an approach for learning script-like 
knowledge from crowdsourced narrative examples. 
Crowdsourcing replaces a dedicated expert who solves a 
complicated problem with many members of the general 
public, or workers, each solving a simple problem (cf. 
Howe 2006, Quinn & Bederson 2011). In our case, we 
request each worker to provide a short real-world 
example of a common situation for which we wish to 
learn a script. For example, we may ask workers to 
describe an experience of a restaurant visit. Workers then 
tell stories in natural language that include typical events 
for that situation. Crowdsourcing thus provides a means 
for rapidly acquiring a highly specialized corpus of 



examples of a given situation, significantly simplifying 
the subsequent learning. Our initial results suggest that 
robust knowledge structures can be learned from small 
corpora containing only about 40 worker responses. 

Our automated approach simultaneously learns both 
the events that comprise a situation and the typical 
ordering of these events from the crowdsourced 
narratives. By leveraging the crowd and its collective 
understanding of social constructs, we can learn a 
potentially unlimited range of scripts regarding how 
humans generally believe real-world situations unfold. 
We seek to apply this script-like knowledge to the 
generation of believable stories that involve common 
social situations or the direct engagement of virtual 
characters in social behaviors. 

Background and Related Work 
This section reviews story generation systems and 
discusses their reliance on hand-coded knowledge 
structures. We compare our crowdsourced approach for 
the acquisition of script-like knowledge to previous 
knowledge acquisition techniques and highlight its 
strengths and weaknesses. 

Story Generation 
Automated story generation systems search for a novel 
sequence of events that meet a given communicative 
objective, such as to entertain or convey a message or 
moral. The most common approaches to story generation 
are planning and case-based reasoning.  

Planning-based story generation systems (Meehan 
1971; Lebowitz 1987; Cavazza, Charles, & Mead 2002; 
Riedl & Young 2010; Li & Riedl 2010; Ware & Young 
2011) use a causality-driven search to link a series of 
primitive actions to achieve a goal. The knowledge 
structures are usually too lean to fully represent common 
social scripts. Some story generation systems (cf., 
Lebowitz 1987; Cavazza, Charles, & Mead 2002; Li & 
Riedl 2010) attempt to enrich the generation process with 
hierarchical scripts that capture common ways of solving 
goals and performing tasks. System designers typically 
handcraft these hierarchical scripts. 

Case-based story generators (Turner 1994; Perez y 
Perez & Sharples 2001; Gervas et al. 2005; Swanson & 
Gordon 2008; Riedl 2010; Hajarnis et al. 2011) attempt 
to construct novel stories by reusing prior stories, or 
cases. Sociocultural norms can be “baked into” the prior 
cases. Most case-based story generators to date have 
relied on hand-coded cases and stories, with two 
exceptions of note. First, the system described by 
Hajarnis et al. (2011) learns cases from human 
storytellers who enter stories via a custom interface. 
Cases can only be expressed in terms of a known set of 
possible actions, and are thus limited to a given 
micro-world. Second, SayAnything (Swanson & Gordon 
2008) constructs new stories from fragments of stories 
mined from online blogs. This is a promising approach, 
although reliably selecting and reusing appropriate 
narrative fragments in the correct context remains an 

open problem. In contrast, our approach starts with a 
smaller number of crowdsourced stories specifically 
aimed at a particular situation that we wish to tell stories 
about, reducing the need to reason about context.  

Script Knowledge Acquisition  
Work on commonsense reasoning has sought to acquire 
propositional knowledge from a variety of sources. 
LifeNet (Singh & Williams 2003) is a commonsense 
knowledge base about everyday experiences constructed 
from 600,000 propositions asserted by the general 
public. According to Singh and Williams, this technique 
tends to yield spotty coverage. Gordon et al. (2011) 
describe an approach to mine causal relations from 
millions of blog stories. These systems do not attempt to 
create script-like knowledge representations; it is not 
clear how this knowledge would be used to generate 
novel stories. Open Mind Experiences (Singh & Barry 
2003; Singh, Barry, & Liu 2004) is a database of stories 
and has been proposed as a means to generate new 
stories (Liu & Singh 2002). 

Script-like knowledge can also be acquired from 
large-scale corpora with the goal of applying knowledge 
learned to the task of understanding news stories (Girju 
2003; Bean & Riloff 2004; Brody 2007; Chambers & 
Jurafsky 2009; Kasch & Oates 2010). These systems 
attempt to find correlations between events appearing in 
these stories. In particular, the technique by Chambers 
and Jurafsky (2009) attempts to identify related event 
sentences and learn partially ordered before relations 
between events. While these works are intended to 
further natural language processing goals, such as script 
recognition, the learned scripts are general in nature and 
thus can be applied to a range of problems including 
story generation. 

While corpus-based script learning can be very 
powerful, it also suffers from two limitations. First, the 
topic of the script to be learned must be represented in 
the corpus. Thus, it might be difficult to learn the script 
for how to go on a date to a movie theatre from a news 
article corpus. Second, given a topic, only the relevant 
events from the corpus should be extracted and irrelevant 
events should be excluded whereas a general corpus will 
have many irrelevant events that must be filtered. Ideally, 
one has a specialized corpus for each situation one 
wishes to learn a script for, but such specialized corpora 
rarely exist.  

Crowdsourcing can be used to rapidly acquire a 
specialized corpus by paying, or otherwise incentivizing, 
a number of untrained human workers to provide 
examples of the topic in narrative form. With proper 
instructions, a crowd of amateurs can collectively create 
a specialized corpus from which high-quality scripts can 
be learned. The corpus will contain only relevant data 
and relatively complete examples of situations. In 
addition, the corpus may be specialized for any target 
domain. That is, crowdsourcing provides a means for 
rapidly acquiring a highly specialized corpus of 
examples of a given situation, which may significantly 



simplify subsequent learning.  
Crowdsourcing usually breaks up a complex 

problem into a number of simpler subproblems to make 
them easily solvable for ordinary workers. Hence, 
crowdsourced results must still be filtered, aggregated, 
and summarized in an automated fashion to create a 
complete solution. This collaborative human-AI 
approach has been used to train spell checkers (Lasecki 
et al. 2011), teach robots to perform tasks (Butterfield et 
al. 2010; Chernova, Orkin, and Breazeal 2010), construct 
learning materials (Boujarwah, Abowd, and Arriaga 
2012), and tackle other challenging problems.  

Jung et al. (2010) extract procedural knowledge from 
eHow.com and wikiHow.com where humans enter 
how-to instructions for a wide range of topics. Although 
these resources are sufficient for humans, for 
computational systems, the coverage of topics is sparse 
(very common situations are missing). Further, 
instructions in these websites tend to use complex 
language, conflate instructions and recommendations, 
and involve complex and nuanced conditionals. 

In the Restaurant Game, Orkin and Roy (2009) use 
traces of people in a virtual restaurant to learn a 
probabilistic model of restaurant activity. The Restaurant 
Game as a playable interactive system has an a priori 
known set of actions that can occur in restaurants (e.g., 
sit down, order, etc.) that were programmed in advance. 
Users select actions to perform to recreate 
restaurant-going experiences, which the system then uses 
to learn probabilistic event ordering knowledge. Our 
work is similar to this, except our approach also learns 
the primitive events from natural language narrative 
texts, in addition to temporal orderings between events.  

Crowdsourcing Narrative Examples 
To learn a script for a particular, given situation we use a 
three-step process. First, we query crowd workers to 
provide linear, natural language narratives of the given 
situation. After some time, a small, highly specialized 
corpus of examples is acquired. Second, we identify the 
salient events in these narratives. This is in contrast with 
Orkin and Roy (2009), where the set of possible actions 
are known in advance. Third, we identify the order of 
these events. The second and third step work together to 
extract a script as a graph from the crowd-supplied 
narratives. As workers are not experts in knowledge 
representation, we do not ask workers to author script 
graphs directly; we believe that for lay workers, 
providing step-by-step narratives is a more intuitive and 
less error-prone means of conveying complex 
information than manipulating complex graphical 
structures. 

In the crowdsourcing stage, to facilitate the 
subsequent learning of events and their ordering, our 
system includes precise instructions to the anonymous 
workers. First, we ask workers to use proper names for 
all the characters in the task. This allows us to avoid 
pronoun resolution problems. We provide a cast of 
characters for common roles, e.g., for the task of going to 

a fast-food restaurant, we provide named characters in 
the role of the restaurant-goer, the cashier, etc. Currently, 
these roles must be hand-specified, although we envision 
future work where the roles are extracted from online 
sources of general knowledge such as Wikipedia. 
Second, we ask workers to segment the narrative such 
that each sentence contains a single activity. Third, we 
ask workers to use simple natural language; specifically 
we ask them to use one verb per sentence and avoid 
using compound sentences. Throughout the remainder of 
the paper, we will refer to a segmented activity as a step. 
Figure 1 shows two fragments of narratives about the 
same situation. 

Once a corpus of narrative examples for a specific 
situation is collected from the crowd, we begin the task 
of learning a script. In our work, a script is a set of before 
relations, B(e1, e2), between events e1 and e2 signifying 
that e1 occurs before e2. These relations coincide with 
causal and temporal precedence information, which are 
important for narrative comprehension (Graesser, Singer, 
and Trabasso 1994). A set of before relations allows for 
partial orderings, which can allow for variations in legal 
event sequences for the situation. The tasks of learning 
the main events that occur in the situation and learning 
the ordering of events are described in the next sections. 

Event Learning 
Event learning is a process of determining the primitive 
units of action to be included in the script. By working 
from natural language descriptions of situations, we learn 
the salient concepts used by a society to represent and 
reason about common situations. We must overcome 
several challenges:  

1. The same step may be described in different 
ways.  

2. Some steps may be omitted by some workers. 
3. A task may be performed in different ways and 

therefore narratives may have different steps, or 
the same steps but in a different order.  

Our approach is to automatically cluster steps from 
the narratives based on semantic similarity such that 
clusters come to represent the consensus events that 
should be part of the script. Each step in a narrative is a 
phrase that may or may not be semantically equivalent to 
another step in another narrative. There are many 
possible ways to cluster sentences based on semantic 
similarity; below we present the technique that leverages 
the simple language encouraged by our crowdsourcing 
technique. First, we preprocess the narratives to extract 

Story A Story B 
a. John drives to the restaurant. 
b. John stands in line. 
c. John orders food. 
d. John waits for his food. 
e. John sits down. 
f. John eats the food. 
… 

a. Mary looks at the menu. 
b. Mary decides what to order. 
c. Mary orders a burger. 
d. Mary finds a seat. 
e. Mary eats her burger. 
… 

Figure 1. Example crowd-sourced narratives. 



the core components of each step: the main verb, the 
main actor, and the verb patient if any. Second, we 
identify the semantic similarity of each step using 
semantic gloss information from WordNet (Miller 1995). 
Finally we cluster steps in order to identify the core set 
of events. 

Semantic Similarity 
We use the Stanford parser (Klein & Manning 2003) to 
identify the actor, verb, and the most salient non-actor 
noun for each step. The most salient non-actor noun is 
identified using a rule-based approach. Once we have 
these components, the similarity between two 
corresponding components is computed as follows. For a 
pair of words (verbs or non-proper nouns), we obtain 
their similarity using the WordNet Gloss Vector 
technique (Patwardhan & Pedersen 2006). The WordNet 
Gloss Vector technique uses the cosine similarity metric 
to determine the similarity [0,1] for any two weighted 
term vectors for the desired synsets. To apply this 
technique, we need the appropriate WordNet synset for 
each verb or noun; we the Pedersen and Kolhatkar 
(2009) word-sense disambiguation technique to identify 
the best WordNet synset.  

The similarity between two steps thus is computed 
as a weighted sum of the following elements: 

• Semantic similarity of verbs 
• Semantic similarity of nouns 
• The difference in event location 

Event location—a step’s location as the percentage of the 
way through a narrative—helps disambiguate 
semantically similar steps that happen at different times, 
especially when a situation is highly linear with little 
variation. For example, when going to a movie theatre, 
one will “wait in line” to buy tickets and then may “wait 
in line” to buy popcorn. While both activities share 
semantic information, they should be considered distinct 
events.  

Event Clustering 
We model event learning as the clustering of steps, 
making use of the semantic information computed above. 
The resultant clusters are the events that can occur in the 
given situation.  
 Event clustering is performed in two stages. In the 
first stage, we make initial cluster assignments of steps 
from different narratives using shallow information. For 
each pair of steps from the same narrative, we record a 
no-link constraint, prohibiting these two steps from being 
placed into the same cluster. For each pair of steps from 
different narratives that have identical verbs and nouns, 
we record a must-link constraint, requiring that these two 
steps be placed within the same cluster. From this 

information, we produce an initial assignment of steps to 
clusters that respects all constraints.  

In the second stage, we iteratively improve the 
cluster quality through the application of the k-Medoids 
clustering algorithm. The k-Medoids makes use of 
similarity between steps, as discussed above. We 
automatically set the similarity score to 1.0 if there is a 
must-link constraint between steps and 0.0 if there is a 
no-link constraint between steps.  

The k-Medoid clustering algorithm requires k, the 
number of total clusters, to be known. We use a simple 
technique to sample different values for k, starting with 
the average narrative length, searching for a solution that 
minimizes intra-cluster variance while maximizing the 
extra-cluster distance. 

Experiments and Results 
To evaluate our event learning algorithm, we collected 
two sets of narratives for the following situations: going 
to a fast food restaurant, and taking a date to a movie 
theatre. While restaurant activity is a fairly standard 
situation for story understanding, the movie date 
situation is meant to be a more accurate test of the range 
of socio-cultural constructs that our system can learn. 
Table 1 shows the attributes of each specialized corpus.  

For each situation, we manually created a gold 
standard set of clusters against which to calculate 
precision and recall. Table 2  presents the results of event 
learning on our two crowdsourced corpora, using the 
MUC6 cluster scoring metric (Vilain et al. 1995) to 
match computed cluster results against the gold standard. 
These values were obtained using parameter 
optimization to select the optimal weights for the 
clustering similarity function. The ideal weights for a 
given situation, naturally, depend on language usage and 
the degree to which variability in event ordering can 
occur. Table 2 shows how each portion of our algorithm 
helps to increase accuracy. Initial cluster seeding makes 
use of shallow constraint information. The semantic 
similarity columns show how phrase expansion improves 
our clusters. Event location further increases cluster 
accuracy by incorporating information contained in the 
implicit ordering of events from the example narratives. 
For each set of results, we show the average precision, 
recall, and F1 score for the best weightings for verb, 
noun, and event location similarity components.  

Noting the differences between data sets, the movie 

Table 1. Crowd-sourced data sets. 

Situation Num. 
stories 

Mean 
num. steps 

Unique 
verbs 

Unique 
nouns 

Fast food  30 7.6 55 44 
Movie date 38 10.7 71 84 

 

Table 2. Precision, Recall, and F1 Scores for the restaurant and movie data sets. 

Situation 
Gold std. 

num. events 
Initial seed clusters Semantic similarity Semantics + Location 

Pre. Recall F1 Pre. Recall F1 Pre. Recall F1 
Fast food restaurant 21 0.780 0.700 0.738 0.806 0.725 0.763 0.814 0.739 0.775 
Movie theatre date 56 0.580 0.475 0.522 0.725 0.580 0.645 0.763 0.611 0.679 

 



date corpus has a significantly greater number of unique 
verbs and nouns, longer narratives, and greater usage of 
colloquial language. Interestingly, the movie date corpus 
contains a number of non-prototypical events about 
social interactions (e.g., Sally slaps John.) that appear 
rarely. This greater number of clusters containing few 
steps has a negative effect on recall values; a larger 
number of narratives would ameliorate this effect by 
providing more examples of rare steps. By 
crowdsourcing a highly specialized corpus, we are able 
to maintain precision in the face of a more complicated 
situation without restricting worker ability to express 
their conception of the salient points of the situation.   

Improving Event Clustering with 
Crowdsourcing 
While we believe that our event learning process 
achieves acceptably high accuracy rates, errors in event 
clustering may impact overall script learning 
performance (the effects of clustering errors on script 
learning will be discussed in a later section). To improve 
event-clustering accuracy, we can adopt a technique to 
improve cluster quality using a second round of 
crowdsourcing, similar to that proposed by Boujarwah, 
Abowd, and Arriaga (2012). Workers are tasked with 
inspecting the members of a cluster and marking those 
that do not belong. If there is sufficient agreement about 
a particular step, it is removed from the cluster. A second 
round of crowdsourcing is used to task workers to 
identify which cluster these “un-clustered” steps should 
be placed into. According to Boujarwah (personal 
communication), the multiple rounds of crowdsourcing 
required $110 for a single script, linearly increasing with 
situation complexity. Crowdsourcing is often used to 
improve on artificial intelligence results (von Ahn 2005) 
and we can increase clustering accuracy to near perfect 
in this way. However, in the long term our goal is 
minimize the use of the crowd so as to speed up script 
acquisition and reduce costs. 

Plot Graph Learning 
Once we have the events, the next stage is to learn the 
script structure. Following Chambers and Jurafsky 
(2009) we learn before relations B(e1, e2) between all 
pairs of events e1 and e2. See Figure 2 for a visualization 
of a script as a graph. Chambers and Jurafsky train their 
system on the Timebank corpus (Pustejovsky et al. 
2003), which uses temporal signal words. Girju (2003) 
uses causal signal words. Because we are able to 
leverage a highly specialized corpus of narrative 
examples of the desired situation, we can avoid reliance 
on signal words and instead probabilistically determine 
ordering relations between events directly from the 
narrative examples. The result of this process is a 
script-like structure similar in nature to a plot graph 
(Weyhrauch 1997), a partial ordering of events that 
defines a space of possible event sequences that can 
unfold during a given situation. Not only is a plot graph 
similar to a script, but it is also a data structure that has 

been used for AI story generation (Weyhrauch 1997; 
Nelson & Mateas 2005; Roberts et al. 2006; Sharma et 
al. 2010).  

Initial Script Construction 
Script construction is the process of identifying the plot 
graph that most accurately captures the most information 
out of the set of crowdsourced narratives. Each possible 
before relation between a pair of events is a hypothesis 
(i.e. B(e1, e2) = true or B(e2, e1) = true) that must be 
verified. For every pair of events e1 and e2, we count the 
observation of evidence for and against each hypothesis. 
Let s1 be a step in the cluster representing event e1, and 
let s2 be a step in the cluster representing event e2. If s1 
and s2 appear in the same input narrative, and if s1 
appears before s2 in the narrative, then we consider this 
as an observation in support of B(e1, e2) = true. If s2 
appears before s1 in the same narrative, this observation 
supports B(e2, e1) = true.  

The probability 𝑝!  of a hypothesis ℎ  equals  
𝑘 𝑛, where 𝑛 is the number of observations and 𝑘 is the 
observations that support ℎ . Considering that the 
probability is only an estimate of the real world based on 
limited observations, we also estimate its confidence (cf. 
Wang 2009); a probability computed based on a small 
number of observations has low confidence. Without 
assuming prior distributions for orderings between 
arbitrary events, we use the imprecise Dirichlet model 
(Walley 1996) to represent this uncertainty. Suppose we 
have s additional observations whose values are hidden, 
the most optimistic estimate of the probability occurs 
when all hidden observations support hypothesis ℎ, 
yielding an upper bound 𝑝!! = (𝑘 + 𝑠) 𝑛 + 𝑠 . Similarly, 
the most pessimistic estimate is 𝑝!! = 𝑘 (𝑛 + 𝑠). Thus, 
the confidence in a probability is 𝑐! = 1 − 𝑝ℎ

+ − 𝑝ℎ
− =

1 − 𝑠/(𝑛 + 𝑠), where s is a parameter 
We select relations for the plot graph in which the 

probability and confidence exceed thresholds  
Tp,Tc ∈ [0,1], respectively. Tp and Tc apply to the entire 
graph and provide an initial estimate of the best plot 
graph. However, a graph that better explains the 
crowdsourced narratives may be found if the thresholds 
could be locally relaxed for particular relations. Below, 
we introduce a measure of plot graph error and an 

 
Figure 2. An example plot graph, adapted from Chambers and 

Jurafsky (2009). 



algorithm for iteratively improving the plot graph to 
minimize the error. 

Plot Graph Improvement 
Since a plot graph encodes event ordering, we introduce 
an error measure based on the expected number of 
interstitial events between any pair of events. The error is 
the difference between two distance measures, DG(e1, e2) 
and DN(e1, e2). DG(e1, e2) is the number of events on the 
shortest path from e1 to e2 on the graph (e1 excluded); 
this is also the minimum number of events that must 
occur between e1 and e2 in all legal totally ordered 
sequences consistent with the before relations of the plot 
graph. In contrast, DN(e1, e2) is the normative distance 
from e1 to e2 averaged over the entire set of narratives. 
For each input narrative that includes sentence s1 from 
the cluster representing e1 and sentence s2 from the 
cluster representing e2, the distance (i.e. number of 
interstitial sentences plus one) between s1 and s2 is dN(s1, 
s2). DN(e1, e2) is thus the average of dN(s1, s2) over all 
such input narratives. The mean squared graph error 
(MSGE) for the entire graph is: 

𝑀𝑆𝐺𝐸 =
1
𝑃

𝐷! 𝑒!, 𝑒! − 𝐷! 𝑒!, 𝑒!
!

!!,!!∈!

 

where P is the set of all ordered event pairs (e1, e2) such 
that e2 is reachable from e1 or that they are unordered. 

We utilize this error measure to improve the graph 
based on the belief that DN represents the normative 
distance we expect between events in any narrative 
accepted by the plot graph. That is, typical event 
sequences in the space of narratives described by the plot 
graph should have DG(e1, e2) ≈ DN(e1, e2) for all events. A 
particularly large |DN(e1, e2) – DG(e1, e2)| may indicate 
that some edges with low probability or confidence could 
be included in the graph to make it closer to user inputs 
and reduce the overall error.  

We implement a greedy, iterative improvement 

search for a plot graph that reduces mean square graph 
error (Figure 3). For each pair of events (e1, e2) such that 
e2 is reachable from e1 in the plot graph of directed 
edges, we search for all events E such that if ei ∈ E were 
the immediate predecessor of e2 then DG(e1, e2) would be 
equal to DN(e1, e2). If there is a possible edge from ei to 
e2 (i.e., at least one observation that supports such an 
edge) then we strengthen the edge hypothesis by one 
observation. This intuition is illustrated in Figure 4 
where the edge (dashed arrow) from event C to event B 
was originally insufficiently supported; adding the edge 
to the graph creates the desired separation between 
events A and B. This process repeats until no new 
changes to graph structure can be made that reduce the 
mean square graph error.  

We find this approach to be effective at reducing 
graph error when Tp is set relatively high (> 0.5) and Tc 
≈ 0.4. A conservative Tp initially discards many edges 
in favor of a more compact graph with many unordered 
events. A moderate Tc allows the improvement algorithm 
to opportunistically restore edges to the graph.  

Experiments and Results  
Figure 5 shows plot graphs learned for the fast food 
restaurant and movie theatre date situations. These plots 
were learned from the gold standard clusters under the 
assumption that we can achieve near perfect clustering 
accuracy with a second round of crowdsourcing. The 
event labels are English interpretations of each event 
based on manual inspection of the sentences in each 
event. For clarity, some edges are omitted from the 
figure that do not affect the partial ordering. Rare events, 
such as Sally slaps John are excluded from the graphs 
because their clusters contain too few sentences and thus 
do not meet our probability and confidence thresholds. 

Some statistics about the two graphs are shown in 
Table 3. Over 128 sets of different parameter settings, we 
found that iterative graph improvement led to an average 
error reduction of 42% and 47% for the fast-food 
restaurant and movie data situations respectively. The 
asterisks in Figure 5 indicate edges that were added 
during graph improvement. Note that it is not always 
possible to reduce graph errors to zero when there are 
plausible ordering varations between events. For 
example choose menu item and wait in line can happen in 
any order, introducing a systematic bias for any graph 
path across this pair. In general we tend to see ordered 
relations when we expect causal necessity, and we see 
unordered events when ordering variations are supported 
by the data.  

Q := all of events (e1, e2) where e2 is reachable from e1 or unordered 
Foreach (e1, e2) ∈ Q in order of decreasing DN(e1, e2) – DG(e1, e2) do: 
E :=	
  all events such that for each ei ∈ E, DG(e1, ei) = DN(e1, e2) – 1 
Foreach ei ∈ E do: 

 If edge ei→e2 has probability and confidence less than Tp, Tc 
  and will not create a cycle if added to the graph do: 

Strengthen the edge by adding one observation in support of 
it 
If ei→e2 has probability and confidence greater than Tp, Tc  

and adding ei→e2 to the graph decreases MSGE do: 
 Add ei→e2 to the graph  

Return graph 

Figure 3. The plot graph improvement algorithm. 

 
Figure 4. Compensation for errors between pairs of events. 

 

Table 3. Error reduction for both situations. 

Situation 
Error before 
Improvement 

Error after 
Improvement Avg. Error  

Reduction Avg. Min. Avg. Min. 
Fast food  4.05 1.23 2.31 0.85 42% 

Movie date 6.32 2.64 2.99 1.88 47% 
 



Discussion and Future Work  
There are several ways in which errors during event 
learning (i.e., clustering) can impact plot graph 
generation. First, steps may be improperly clustered, thus 
introducing observations of ordering relations between 
otherwise unrelated events, possibly causing cycles in 
the plot graph. If the number of improperly clustered 
sentences is relatively small, these relations have low 
probability and confidence and will be filtered out. 
Second, two distinct events may be merged into one 
event, causing ordering cycles in which all edges have 
high probability and confidence. When this happens, it is 
possible to eliminate the cycle by choosing an event to 
split into two. We select the event cluster in the cycle 
with the highest inter-cluster variance in the belief that 
high inter-cluster variance indicates that there is a natural 
split of sentences into two clusters. Third, an event may 
be split into two clusters unordered relative to each other. 
This creates the appearance that an event must occur 
twice in any story generated from this script.   

Closely inspecting Figure 5, we note that before 
relations includes causal sufficiency and mere temporal 
precedence as well as strict causal necessity. For 
example, before placing an order at a fast-food 
restaurant one can wait in line or drive to drive-thru but 
not both. Thus, both are sufficient for placing an order. 
The crowdsourced corpus for the restaurant is split 
relatively evenly between walk-in and drive-thru 
narratives, implying two main variations to the situation 
(this also accounts for the unordered leave restaurant and 
drive home events). Future work will be necessary to 

distinguish causal and temporal relations as well as 
necessity versus sufficiency. We believe this can be 
accomplished by more fully leveraging correlations (e.g. 
mutual information) between events. As with the event 
learning phase, it is always possible to ask crowd 
workers to provide causal information with questions 
about causal counterfactuals, a technique adapted from 
Trabasso and Sperry (1985). 

Toward Story Generation 
To an extent, the plot graph learned as described above 
grants narrative intelligence to a computational process. 
A model of common social situations—in the form of a 
plot graph—captures common beliefs of how those 
real-world situations unfold. A computational system 
must also be able to act on this narrative intelligence in 
order to: (a) tell a story about a sociocultural situation, 
(b) tell a story in which a common social situation 
occurs, or (c) directly engage in a social situation in a 
virtual world. Fortunately, the plot graph representation 
facilitates story generation and interactive execution (cf., 
Weyhrauch 1997; Nelson & Mateas 2005; Sharma et al. 
2010; Roberts et al. 2006).  

A plot graph defines a space of totally ordered 
event sequences that are believed to be “legal” ways for 
a given situation to unfold. By virtue of the way we learn 
the plot graph from human-provided examples, the 
knowledge structure generalizes across the most 
common ways in which the given situation manifests. 
Within the space of legal stories, we may consider 
different possible storytelling goals: the most 
prototypical story, the most unusual story, the most 

        
Figure 5. Plot graphs generated for the restaurant situation (left) and movie date situation (right). 



surprising, etc. According to Bruner (1991), interesting 
stories are those that deviate from the norm in some way. 

The plot graph representation was originally used to 
determine what was possible for a user to do in an 
interactive fiction game. Although these systems are 
meant to provide narrative structure to games, we can 
view these systems as story generation systems when the 
interactive component is removed. To generate a story 
using a plot graph, a system must search for and select 
one totally ordered sequence from this set (Weyhrauch 
1997; Nelson & Mateas 2005; Roberts et al. 2006; 
Sharma et al. 2010). To date, algorithms that use plot 
graphs have used the same set of heuristics to find 
sequences that reduce cognitive burden and reduce 
flailing, including:  
• Location flow—events in the same location 

should occur together. 
• Thought flow—events that are conceptually 

related should occur together. 
• Motivation—a measure of whether plot points are 

motivated by previous plot points. 
Other heuristic functions are used as well. 

Generation of stories from learned plot graphs 
requires a slightly different approach. The plot graph 
describes a social situation that is relatively well 
constrained, so the only question that remains is how 
prototypical should the resultant story be. We define 
typicality as a function of the likelihood of events 
(nodes) and of specific sub-sequences (node-link-node 
sequences). By varying the inclusion of nodes and links 
according to their likelihood while respecting the before 
relations, we can generate stories that are legal but with 
arbitrary typicality within the norm.  

We have a wealth of probabilistic information to 
draw from as a consequence of how we learn the plot 
graph, including:  
• Typicality of events—the probability of an event 

being part of a situation, P(e). 
• Typicality of event orderings—the probability 

that a given ordering occurs, P(e1→e2 | e1 ∧ e2). 
• Adjacency—the probability that two events 

should occur immediately adjacent to each other, 
P(e1*e2 | e1 ∧ e2). 

• Co-occurrence—the probability that any two 
events have been observed in the same 
crowdsourced story, P(e1 ∧ e2). 

The most prototypical story that can be generated from a 
given plot graph, for example, may be defined as 
inclusion of the n most probable events, ordered 
according to the most probable before relations between 
those n nodes. We can generate more interesting stories 
about the same situation by finding a legal sequence with 
(a) an unlikely event, such as kissing (kissing occurs in 
~10% of crowdsourced examples); (b) likely events that 
occur in an unlikely ordering; (c) non-adjacent events 
that are typically adjacent; (d) pairs of events that have 
low co-occurrence; or (e) omission of an event that 
frequently co-occurs with a present event. We intend to 
investigate the effects of each of the above hypotheses on 

story novelty in order to develop tunable heuristics for 
the generation process. 
 Story generation from sociocultural plot graphs 
reaches full expressivity once we are able to differentiate 
links in the graph as denoting causal necessity or simple 
temporal precedence; this provides the richest variation 
among legal stories from which to choose a specific 
story or guide a virtual character’s behavior. Once we 
differentiate between causal necessity and precedence, 
the story generation process can be performed using 
standard search techniques such as A*, forward or 
backward search, genetic algorithms and Monte Carlo 
methods. 

Conclusions 
Crowdsourcing provides direct access to humans and the 
ways in which they express experiential knowledge. A 
crowdsourcing approach has advantages over general 
corpus based learning: filtering irrelevant information, 
segmentation, and control of natural language 
complexity. Our approach capitalizes on these 
advantages by learning the primitive events from the 
segmented natural language and learning ordering 
constraints on these events directly from the 
crowd-sourced narrative examples. 

Plot graph learning overcomes one of the primary 
bottlenecks in acquiring sociocultural knowledge 
required for effective generation of believable stories. 
While future work remains to tease out the full 
expressive power of automatically learned plot graphs, 
our approach makes it possible for a computational 
system to extend its narrative intelligence beyond a 
single, hand-crafted micro-world.  

One of the strengths of our approach is the way in 
which we can leverage shared social constructs acquired 
directly from humans. Our approach learns the events 
that make up common situations directly from the 
language people use to describe those situations; event 
ordering captures shared social and cultural 
understanding based on people’s descriptions of 
experiences. Thus, in addition to learning scripts for 
story generation, our system also learns a functional 
form of socio-cultural knowledge that could be applied 
to other computational narrative intelligence tasks such 
as story understanding. 

Believable story generation requires in-depth 
understanding of the rich social situations that humans 
recognize and participate in everyday, yet this sort of 
experiential knowledge is rarely possessed by intelligent  
computational systems. A human-AI collaborative 
approach in which humans naturally convey experiential, 
social, and cultural knowledge to an intelligent system 
can overcome many of the hurdles to human-level AI 
problems. 
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