
Toward Game Level Generation from Gameplay Videos
Matthew Guzdial, Mark O. Riedl

School of Interactive Computing
Georgia Institute of Technology

{mguzdial3; riedl}@gatech.edu

ABSTRACT
Algorithms that generate computer game content require game
design knowledge. We present an approach to automatically learn
game design knowledge for level design from gameplay videos.
We further demonstrate how the acquired design knowledge can
be used to generate sections of game levels. Our approach
involves parsing video of people playing a game to detect the
appearance of patterns of sprites and utilizing machine learning to
build a probabilistic model of sprite placement. We show how
rich game design information can be automatically parsed from
gameplay videos and represented as a set of generative
probabilistic models. We use Super Mario Bros. as a proof of
concept. We evaluate our approach on a measure of playability
and stylistic similarity to the original levels as represented in the
gameplay videos.
Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games
General Terms
Algorithms, Human Factors

Keywords
Procedural content generation, probabilistic models, machine
learning

1. INTRODUCTION
Procedural content generation (PCG) has been used to
automatically create levels, maps, weapons, background scenery,
and music for computer games [5, 12]. Intelligent generative
methods must be provided with high quality design knowledge to
create compelling content. Often this design knowledge is
provided in the form of hand-coded heuristics [4] or evaluation
functions [12]. Hand-coded heuristics and evaluation functions
provide a PCG system with intuition about what makes a
particular type of content good but also biases the system toward
the particular beliefs of the system designer. Alternatively, design
knowledge can be extracted from the game itself. For example, a
system can parse game level files to extract level design patterns
[4, 10]. However, such approaches make use of hand-authored
information to both parse games’ unique file structures and to
ascribe meaning to the collected structures.

In this work we propose an alternative source of design
knowledge: gameplay videos. Acquiring design knowledge from
gameplay videos has a number of advantages. (1) Gameplay
videos exist within a number of set formats that are largely

interchangeable, meaning that an algorithm does not need to be
rewritten to handle new asset formats. (2) Gameplay videos
include a player’s reaction to game assets, meaning that such
systems can learn not only design information but also its effect
on player experience. (3) With the advent of “Let’s Plays” and
“Long Plays,” in which individuals make video recordings of their
game playthroughs publicly available, a large corpora of
gameplay video data exists for many different games.
We present an approach to acquire game level design knowledge
from gameplay videos of Super Mario Bros. While we focus on
this well understood game for our preliminary exploration, the
technique we present can extend to other two dimensional
platformer games. By applying the technique across a number of
different platformer games, a system can theoretically learn genre
knowledge, which can be beneficial for procedurally creating
novel games of a given genre. Our technique may also extend to
other game genres beyond platformers.

As proof of concept, we focus on learning design knowledge from
Super Mario Bros. in isolation. We focus on two specific aspects
of learning level design knowledge from video data: (1)
determining what to learn about level layout, and (2) a
representation of level design knowledge in a reusable form that
affords generation. To process gameplay videos, we use OpenCV
[9], a freely-available, open source computer vision toolkit, to
process each frame of each video.

For the first problem, determining what to learn, we present a
technique to identify and categorize high interaction areas in a
game level as a means of showcasing the affordance of user
interactions captured in gameplay video. A high interaction area is
a section of a level in which players spend significantly more time
than in other sections. This may be because the area is more
visually interesting, more rewarding (e.g., a lot of coins or power
ups), more challenging (e.g., a jumping puzzle), or requires more
navigation to traverse. We extract sequences of high interaction
from the full video trace and use OpenCV to extract features from
these sequences by parsing the placement of sprites.

For the second problem, representation of design knowledge, we
present a technique for learning generative probabilistic models of
level sections. A generative probabilistic model represents a
section of game level as a set of distributions over sprites, their
positions, and relationships with one another. Frames of video that
cover sections identified as high interaction areas are clustered
together to provide a training set for each graphical probabilistic
model. In addition to representing knowledge about how high
interaction areas are laid out, these models also act like templates,
allowing new areas to be generated. Our technique extends the
work of Kalogerakis et al [6], which was originally developed to
procedurally generate variations of 3D graphical models. We
show how the probabilistic models learned by our system can be
used to generate new high interaction areas through a recursive
walk of the model.

To the best of our knowledge this work represents the first attempt
to automatically learn game design knowledge from gameplay
video data. The contributions of our work are as follows: (1) an
approach to automatically identify and categorize level sections to
be modeled from gameplay video, (2) an approach to
automatically generate new level sections from these models, and
(3) an initial evaluation of our generated level sections on
playability and stylistic metrics.

2. RELATED WORK
PCG systems take in design knowledge, utilize that design
knowledge to create assets or mechanics, and output game
content. Approaches include evolutionary search, rule-based
systems and instantiating content from probability tables [12].

Automated game design knowledge acquisition is a process of
deriving understanding of some facet of a computer game for the
purposes of analysis or procedural generation. Dahlskog and
Togelius [3]; and Snodgrass and Ontañón [10] both make use of
levels directly from the original Super Mario Bros. game. The
former generates new levels via evolutionary computation with
the original levels as part of the scoring criteria. The latter make
use of hierarchical levels of Markov chains, representing both low
and high level patterns in the original levels. Both approaches
have been shown to produce good results, but require that the
source code for levels be available. In addition, both approaches
involve hand defined heuristics or patterns. Our technique avoids
the potential pitfalls of too little human design knowledge, while
not requiring additional authoring, and is theoretically extendible
to a wide range of game genres.

Machine vision is not often applied to computer games. Mnih et
al. [7] used deep convolutional networks to learn how to the play
Atari games from pixel input. Although this system and our own
work both use machine vision to process pixels over time, our
system focuses on extracting design principles instead of merely
learning how to play the game.

The generative probabilistic model we use to represent game level
design knowledge and for use in generating new level sections is
inspired by work done in the field of computer graphics.
Kalogerakis et al. [6] describes work on learning probabilistic
grammars from which hundreds of new 3D graphical models can
be produced from a small training set. Their technique was semi-
automated in the sense that they made use of human tagging of
parts of the input 3D model (“arm”, “head”, “torso”, etc.). We
contribute a fully automated extension of their approach, which
has been customized to discrete sprite-based game worlds.

3. LEARNING DESIGN KNOWLEDGE
In this section we present an approach to learning and modeling
game level design knowledge from gameplay video. Beyond
patterns of assets, gameplay video demonstrates how these
patterns of assets impact player behavior. We highlight the
potential of using gameplay video as a source of design
knowledge by automatically extracting areas of Super Mario Bros.
in which the player spends above average time. We learn a
generative probabilistic model of these high interaction areas,
which acts like a template, allowing us to generate new level
sections that would be anticipated to also take the player longer to
traverse. This evidence-based approach is significant in that it
only relies on how player behavior observably changes, which
may be different from the original game designer’s intentions.

Our specific technique for using gameplay video to acquire game
level design knowledge consists of the following steps. First, we
collect gameplay video data from online video portals. Using the

OpenCV [9] machine vision toolkit, we scan each frame of each
video, recording the sprites and their locations. Our system scans
the records for periods in which players are significantly slower in
progressing through the level as identified by periods in which the
difference in frame features is small. We assume that high
interaction areas have special significance from a level design
perspective and target these areas specifically to learn game level
design knowledge.

Having identified sections of game levels of interest—in this case
areas of increased player interaction—our system proceeds to
create probabilistic models of level design rules for the identified
clusters of frames. The result is game level design knowledge
represented as a probabilistic grammar that expresses the likely
arrangements of level assets (sprites) on the screen. Following
Kalogerakis et al. [6], we search each frame for identical and
adjacent sprites to build shapes of tiled sprites and then search for
probabilistic relationships between these sprite shapes.
The probabilistic models used to model different sections of game
levels can be used to generate new game level sections. We use
the probabilistic grammar and the original examples to search
through all possible configurations of tiles for those that meet a
user-supplied value of playability and approximate similarity of
style to the original level sections.

We describe these three sequential processes in detail in the
sections below.

3.1 Level Section Categorization
The purpose of the first step of our approach is to pull usable level
design information from the gameplay video data. In particular
our process identifies the distinct sections of level design that are
likely to have interesting design elements to learn. Toward future
work to generate whole levels from level sections we use the
notion of interaction value—the time a player spends in a
particular section of a game level—as the metric for
interestingness and track its variance across level sections. We
collected eleven gameplay videos as an initial dataset, all of which
demonstrated individuals playing through the entire game.

Machine vision has progressed to the point where open toolkits
such as OpenCV provide sufficient results for straightforward
vision tasks. Classic computer games are amenable to machine
vision due to the regularity and consistency of appearance of
objects on the screen. In games this regularity and consistency is
referred to as tiling and the individual objects on screen referred
to as sprites. The implication of this tiling is that we can
consistently identify everything in gameplay video of Super Mario
Bros. with a database of 102 sprites. While this represents a
significant task in terms of compiling these sprites, it only needs
to occur once to parse any amount of footage. Parsing each
gameplay video with OpenCV outputs a description of each frame
as a list of sprites and their xy coordinates, which our process uses
as its representation of a level section.
The process next segments the frame data per video into distinct
sections of level. This is accomplished by identifying edges of
level sections where the contents of a frame differ by more than
10% of the total possible differences. This technique identifies
sections of level design and determines the start and end point of
levels as moments where one frame differs completely from the
last. Under this definition our system also identifies deaths of
Mario as level endpoints because the screen turns black. To avoid
this issue we make use of only expert gameplay data of Super
Mario Bros., in which the player makes it through all levels
without dying.

The majority of games have some variance of qualities across
game levels, and Super Mario Bros. is no exception. We measure
player interaction time over a level section as a means of tracking
this variance. These values of player interaction are measured by
number of frames the player spends on each of the level sections
identified in the previous step. Figure 1 is a graph of these
interaction values over an entire gameplay video where each point
on the x-axis a distinct level section within a level and the values
along the y-axis are the interaction values of those sections.

We next focus on categorization of our defined level sections.
Categorization is used to identify level sections that share design
patterns. At this time, we only categorize high interaction
sections. We identify these sections as those whose interaction
times are above average for an individual player. These sections
are of interest as each player spends the largest proportion of their
playtime in these sections. They therefore serve as an appropriate
focus for initial work with our novel generation approach.

Across high interaction areas, we make the assumption that
different sprites and different numbers of these sprites indicate
that different design rules are at play. For example, we are more
likely to see higher numbers of “block” sprites in underground
levels than in typical levels. Our system clusters high interaction
level sections using K Means++ wherein K is estimated with the
distortion ratio (c.f., [1, 8]). For a distance measure we used the
Euclidean metric across vectors of count data for each sprite. To
avoid issues related to variance in level section size, we only
made use of the data from the first frame of each section.

Our approach finds 21 clusters of frames within the eleven full
playthroughs of Super Mario Bros. we collected. These clusters
vary from 2 to 250 frames in size with a median value of 35
frames. From a human perspective we find these clusters to be
largely cohesive. 18 of the clusters have a clear theme that can be
recognized by visual inspection. Examples of themes include
“underwater,” “underground,” or “treetops.” Only three clusters
do not have a clear theme to them and are also the three largest
clusters. We find these clusters to be sufficient for this approach
as any disparity of theme within the clusters can be identified via
further sub-clustering during probabilistic modeling as discussed
in the next section.

3.2 Probabilistic Model Construction
Design knowledge learned from the clusters in the previous
section is represented in the form of a generative probabilistic
graphical model that relates groupings of sprites to each other for
distinct high interaction areas. The probabilistic model can then be
used to generate brand new level sections that are implied by the
model. Our model is inspired by Kalogerakis et al’s work on
generating 3D models from an initial sample set. Their approach
constructs a probabilistic graphical model that determines the
values of latent or hidden variables that represent design rules
(e.g., pipes go on top of ground or 3D models with arms have

torsos) from observed variables. We use the same underlying
intuitions, but due to key differences in domain make a series of
alterations to our model, how we learn the model, and how we use
it to generate new level sections. The key differences due to
domain are (a) a lower reliance on human authored information
and (b) its two dimensional, sprite-based nature. Figure 2 is a
visual representation of the tree-like structure of our final model
and Table 1 identifies its major components and their human
interpretation. Our model uses three types of nodes, (G, D, N), to
collect observable information from an initial data set, each of
which collects unique information. In addition there are two
nodes, (S, L), that represent latent or hidden information within
the initial dataset and are derived from the observed information.

The G node collects the geometric information of a shape
composed of sprites of type t. Figure 3 (top) shows an example of
the rectangular shape composed of the “bark” sprite that serves as
the basis for a G Node highlighted in the center of the image.
However, it is important to note that Figure 3 (top) actually
contains three detected “bark” shapes, each of which is the basis
for distinct G Nodes. Each shape is derived by joining sprites of
the same type according to adjacency such that there are no
disjoint sprites. By iterating through each level section within a
high interaction category and across each sprite the model collects
a set of G nodes for each sprite type t. This set may contain
duplicates in terms of the same shape, which we will generalize

Figure 2. A visualization of the probabilistic model. Blue

nodes are those derived from observable variables.

Table 1. Brief descriptions of each node by their
interpretation.

Node Interpretation
L Level design style (latent)
S Shape style per sprite t (latent)
N Count data for the different categories of sprites

found in an initial level section
G Geometric information for patterns of sprite t
D Relational information between patterns of sprite t

and all other t values.

Figure 1. A graph of a video’s level sections vs intensity values (units of 25 seconds), with gameplay levels coded in different colors.

over in a later step. Since our domain’s atomic parts are sprites
our G node makes use of the categorical information of its sprite
type and continuous position information.1
D nodes contain relational information from a G node to all other
G nodes in its level section, regardless of type. This relational
information takes the form of an (x, y) vector from the top left
corner of each G node, and a second vector to that G nodes center,
used in the generation phase. Figure 3 (bottom) represents a D
node as the red lines from the G node given in the prior example
to all other G nodes in the frame. This node differs the most from
the Kalogerakis et al. model; their D node contains discrete
information, notably derived from hand-authored edge points
between parts of a 3D model. Given our goal to decrease the
amount of human authoring required for level section creation, we
bypass the human authoring step and instead naively track all
possible relationships. In the generation phase we instantiate some
of these relationships as edges based on a probabilistic value.

The last of the nodes derived from observable attributes of the
initial dataset is the N node. The N node tracks count data of
sprites in each frame of our high interaction clusters by its sprite
type t for each originating data point. For example, in Figure 3 our
N node stores 251 bark, 31 treetop, 1 goomba, 1 bullet, 1 cloud,
and 2 coin sprites. The N nodes’ count information serves as a
guide during the generation phase. 2

1 In the original Kalogerakis et al. model, the authors made use of

a C node, which contained continuous, mesh information.
2 Kalogerakis et al. store N values per part, so a humanoid model

might have 1, 2, or 4 arms.

The latent variables of the model represent underlying design
rules used in the construction of level sections, as derived from
the observed values. The S node is a latent variable that represents
a category of shapes and their relative placement in a level
section. The intuition behind the S node is that it represents a set
of interchangeable shapes as learned from observable data. We
derive each S node from (G, D) pairs of a sprite type t, where the
D node tracks all relational information for the given G node.
Figure 3 demonstrates one such (G,D) pair.

The S node is derived in two steps. First, the system clusters on
(G, D) pairs with the K Means++ clustering approach, with K
estimated by the distortion ratio. The distance metric between
pairs of (G,D) nodes used by K Means++ is a normalized
combination of the different distance metrics for the G and D
nodes individually. The distance between two G nodes comes
from the edit distance between the two different shapes, which are
guaranteed to be of the same type t. Between the two D nodes the
distance metric is the sum of an iteration across both sets of sorted
connections by (x, y) values and the magnitude of the differences
between the relational vectors. This gives a sense of the relative
position of the paired G node. For example if all the relational
vectors point left this would indicate the G node is on the far right
of a level section. If one D node has more connections than the
other, then our technique simply uses the magnitude of its
remaining relational vectors as this is equivalent to the magnitude
difference of that vector from a zero vector. This combined
distance metric means that even if two G nodes have equivalent
shapes, they may end up in different categories if they appear in
different relative positions consistently.

In most cases this approach finds that there exists only one S node
for each sprite type t. For example in the “treetop” category, our
approach found a single S node category for bullets, goombas, and

Figure 3. A visual representation of a G-Node (top) and its

corresponding D-Node (bottom).

Figure 4. A representation of four different S nodes in terms of

their shape information.

koopas used in level sections. However, there exist eight “bark” S
nodes. Figure 4 contains a sample of a collection of shape values
from four of these S nodes, which contain (g, d) pairs of quantities
2, 2, 3, 3, 3, 8, 9, and 23.
The next step in deriving S nodes is to create a probability table of
P(ti==edge | ti, d), which expresses the probability of some sprite
type t being a required edge of another sprite type t given a
distance d. By required edge we indicate an equivalent to the
Kalogerakis et al. paper for the hand-defined edges that indicate
implications between parts. For example, an arm implies a torso.
However, since we do not have hand-defined edges we determine
these implications probabilistically. We construct the probability
table by first collecting all of the vector connections for all D
nodes within S. We discretize these connections by their
originating shape type ti, their connecting shape type tj, and a
discretized value of the vector between them. This discrete value
comes from splitting the max possible distance across level
sections into 100 buckets. We then determine the likelihood of a
given connection’s occurrence across all possible connections. We
assume this probability to directly relate to the probability that the
relationship is an edge, that one shape type at a distance implies
another type. Thus our model finds that “leaf” shapes have a high
probability to imply bark shapes at low distances.
The top-level latent variable is the L node, which represents a
category of level design rules. One can interpret the L node as a
template for a specific type of level section design. Figure 5

represents four instantiations of the L node generated from the
high interaction “treetop” cluster. This node represents a cluster
across S nodes and the corresponding N node values from which
the values in the S node arise. The clustering at this stage uses K
medoids and the Hamming metric across all non-zero entries of an
S node’s probability table. We make use of K medoids instead of
K means at this step to minimize the possibility of combining two
distinct clusters of level design rules. This typically leads to only
one L node per high interaction cluster when there is a clear
theme. However, in the case of loosely themed clusters as
discussed earlier, this step separates them out. For example, in the
case where a high interaction cluster ends up with both “lava”
level sections and “underwater” level sections due to their joint
use of the “wave” sprite, our process recognizes these two as
having distinct level design rules and outputs two L nodes and
their associated probabilistic models. The earlier clustering of
high interaction areas based on assumed level design similarities
is still important despite this as it vastly decreases the amount of
time required to put together the model. Figure 6 demonstrates a
representation of the final model this process generates for the
“treetop” cluster. The model finds a single N node, a single S
node for most sprite types t, but multiple S nodes such as those
shown in Figure 4.

3.3 Generating Level Sections
Generation of a level section is a constraint satisfaction processes
wherein combinations of G and D nodes are selected based on
requirements and compatibility. The generation algorithm, shown
in Figure 7, starts with an empty level section and recursively
adds (g, d) pairs until a stopping criterion is met. Recall that G
nodes represent a group or shape of sprites of the same type, and
D nodes store relative positioning information. The algorithm is
seeded with an initial (g, d) pair, and our implementation
generates all possible level sections by trying possible (g, d) pairs
as starting points. The generation algorithm makes use of two
control parameters: pE, which controls the degree to which
sections must resemble original sections from video, and pC,
which controls how “playable” a level is. These parameters will
be described in greater detail below.
When a (g, d) pair is added to a section, the D node indicates a
number of potentially required connections to other shapes—
roughly the black vectors in Figure 4 (bottom). The algorithm
greedily identifies the next best (g, d) pair to add to the section.
First, the algorithm determines the type t of the next (g, d) pair to
add. There are two possible candidate types. The first candidate
type is the next most required sprite type in order to reach the
number of sprites of type t as indicated by the closest N node
value for the level section. The second candidate sprite type is that
that has the highest probability of occurring in the section. The
function get_next_required_edge_type iterates across each g in

Figure 5. Four examples of visualizations of instantiations of the

same L node, which used the N node values derived from the
level section displayed in Figure 3.

Figure 6. A visual representative of the resulting model for this process for the treetop category.

the section and uses the probability table from its parent S-node to
filter out any possible connections with probability less than pE.
From the remaining d node connections, the type with the highest
probability is chosen. The value pE can be understood as a style
variance variable, as the lower the value the closer to the original
level sections all outputted level sections will be because more
relations will be preserved.
Once the type of the sprite is chosen, the algorithm then looks at
all S nodes for the type in the model and selects the (g, d) pair that
most closely matches the required connections. Matching occurs
by looking at the d node to see whether its connections link back
to g nodes already placed. The proportion of connections matched
by the new (g, d) pair must be above a threshold pC. This value
can be understood to be a “playability” variable; the lower the
value, the less cohesive and playable the output level section
becomes. A playable section is one in which the player can
navigate successfully from the left of the screen to the right of the
screen according to the mechanics of the game (e.g., there exists
no gaps too wide or walls to high to progress).
The algorithm terminates if the current level section meets two
conditions. First, if the level section’s sprite counts equal or
exceed its closest N. Second, if all the required edges as defined
by pE are filled.

The output of the algorithm is a level section represented as a set
of (g,d) pairs and the positions of each g node shape. It is
converted into a list of sprites and their two-dimensional
coordinates by tiling the sprite type across the patterns represented
by its g node. This representation is identical to the level section
representation used for the original level sections. It is then
checked against both the original level sections in the dataset and
all output thus far to ensure that it is not a duplicate, using the
probabilistic distance measure between frames described in 3.1.

4. EVALUATION
We undertook an initial evaluation of our system to measure the
effects of varying the variables pE and pC on playability and a
measure for “Super Mario” style. We make use of the same
“treetop” cluster used throughout this paper. We chose to make
use of this specific type of level section as it represents a
challenge to playability and style. If we made use of any level
without the large amount of gaps common in the “treetop” level
sections demonstrating playability would have been trivial given
that our approach makes use of entire sprite sections from the
original (such as an entire ground section). In addition, the
“treetop” areas of Super Mario Bros. demonstrate more stylistic
variance than the typical level sections in which objects such as
pipes are placed on level ground.

We consider a level section playable if it meets three conditions:
1) there exists a sprite to the left of the level section that Mario
could jump to from a platform in a previous section, 2) there
exists a sprite to the right of the level section that Mario could
jump from to in a successive section, 3) there exists a path
between these two sprites. Note that we do not consider whether
the platforms in the previous or successive section actually exist,
but could exist. These conditions were chosen to support
integration of generated sections together at a future time. For the
final condition we constructed a simple greedy pather. While A*
pathing agents cannot complete human-completable Mario levels,
we found the agent’s behavior sufficiently accurate across a
distribution of levels. We vary both pE and pC individually
(holding the other at 0.1 and 0.8 respectively), sampling twenty
level sections from the output and then determining the
percentage of the output that is playable. We expect no real
difference while varying the “style” variable pE, but significant
impact upon playability when varying the “playability” variable
pC.

Style is not as easily defined as playability and thus a more
difficult feature to measure. We make use of an approximation of
style by measuring the distance from a generated section to
known section from the gameplay videos as follows. We compute
the distance a sprite has to move in a generated level section to
match the same sprite type in the closest original level section.
This can be understood as a relaxed edit-distance of a sprite for a
generated level and its closest originator. We take the average
across sprites rather than just summing across the difference for
all sprites in order not to favor output levels with fewer total
sprites. As with playability we vary both pE and pC individually,
and sample twenty level sections. We report the median value of
this per-sprite edit-distance. A strong correlation between the
“style” variable pE and this value and no correlation between the
value and pC would support our model.
Figure 8 summarizes the results of our initial evaluation of
playability. We sampled 20 of the generated level sections from
each category to run the tests, given that some variable values lead
to many more level sections than others. We report a percent
playable as the percentage of this sample that were playable
according to our playability metric. Figure 8 (top) demonstrates
the results of varying the playability variable pC on our measure of
playability. Our model performed as expected, showing a strong
correlation between values of the variable and generated level
playability (Pearson’s r: 0.8778). One interesting and unexpected
result can be seen in Figure 8 (bottom) as we vary the “style”
variable pE. While the majority of the graph displays no
relationship, both values 0.05 and 0.1 resulted in only playable
levels. This can be understood as due to the fact that at low values
of pE nearly all possible connections became required, meaning
that the results were very similar to the original Super Mario Bros.
levels, which are by definition, playable.

Figure 9 summarizes the effects of pC and pE on style. Recall that
lower values along the y-axis indicated levels closer to the
originators given our style metric. Figure 9 (top) shows the result
of varying the playability variable resulted in a noisy inverse
relationship with the style value (Pearson’s r: -0.5831). This can
be explained as the style variable was held at 0.1 for these tests,
meaning that the space of possible levels was already constrained
to output close to the original levels. Further constraining the
output to be playable meant that the system generated output that
was increasingly similar to the originals, which are also all
playable. These results may be due to our explicit check that 90%
of the sprites within the frame cannot be within the same position

void function generate (section, (g, d))
 add_according_to_closest_connection(section, (g, d))
 tN, dN = get_next_type_for_nearest_N(section)
 tE = get_next_required_edge_type(section, pE)
 next_t = tN
 if dN <= 0 and tE not null
 next_t = tE
 else if dN <= 0 and tE = null
 return section
 for snext_t in Lt
 for (g, d) in snext_t

 if coexist_probability(section, (g, d)) > pC

 generate(section, (g, d))

Figure 7. The psuedocode for the generation algorithm

as mentioned in section 3.1, meaning that we throw out all of the
duplicates that would have low edit distances. Figure 9 (bottom)
displays no clear relationship between varying the style variable
and the median style value. This is a negative result, suggesting
that our style metric may be determined by an interplay between
variables or that the style variable may have less of an impact than
the playability variable
Looking at the output from the system qualitatively we find that
while the output with lower values of pC definitely demonstrates
less playability, from our perspective there is more creativity
demonstrated in terms of further variation from the original
levels’ structure. This is a fairly common issue in level generation.
We hope to solve this issue in future work by learning game
mechanics in addition to game design information from gameplay
video, meaning that the system can automatically determine
playability of a new section.

In terms of raw counts of output, we saw an increase of close to
an order of magnitude with this approach of unique level sections
as determined by our difference metric. In particular, we found
that with values of pC = 0.8 and pE = 0.1 our system outputted 151
distinct level sections from an original dataset of 17 level sections
in the “treetop” category. The output increased as the constraints
lessened, with values of pC = 0.5 and pE = 0.1 producing 334 level
sections. While we focused on the “treetop” cluster, Figure 10
shows output from six different clusters.

5. FUTURE WORK
The clear next step of this process is full level generation. We
believe that our process can be extended to learn the orderings of

the level section categories it outputs as described in section 3.1.
Substituting our own generated level sections into these orderings
would allow us to evaluate whether our generated sections cause
the same slow down in players seen in the original gameplay
videos.

Beyond level generation we seek to learn game mechanics from
gameplay video by watching how sprites move or disappear in
reference to one another. We have conducted an initial test in a
simplified platformer domain using colored blocks that lead to
promising results. We will need to extend this process to a real,
more complex game like Super Mario Bros. Learning game
mechanics is an essential part of learning game design knowledge,
and represents a significantly more complex problem than level
structure as it involves cause and effect information. Ultimately
we hope to extend this process to many different platformers to
learn a generalized level design and game mechanics rule-set for
the genre. With such a knowledge base we could automatically
build entirely new platformers, and extend into further game
genres and hybridizations thereof.

6. CONCLUSIONS
Procedural content generation algorithms require design
knowledge that captures the intuition of human designers about
good content. Human authoring of design knowledge remains a
large roadblock in procedural content generation and in general
video game design for non-experts. We have presented a novel
approach to automated learning of computer game design
knowledge from gameplay video, with a specific focus on level
design knowledge. An initial evaluation of our approach indicates

Figure 8. The effects of playability (top) and style (bottom)

variables on generated level section playability.

Figure 9. The effects of playability (top) and style (bottom)

variables on generated level section style.

an ability to produce level sections that are both playable and
close to the original Super Mario Bros. without hand coding any
design criteria. Initial experiments suggest that our approach
extends beyond the Super Mario Bros. platformer game and that
additional design knowledge such as avatar mechanics may be
acquired from gameplay video as well. As gameplay video
becomes more accessible and as open machine vision toolkits
become more advanced, we see gameplay video as a rich source
of design knowledge to be exploited for future procedural content
generation and procedural game generation systems.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the NSF for supporting this research
under NSF award 1350339.

8. REFERENCES
[1] Arthur, D., and Vassilvitskii, S. 2007. k-means++: The

advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, 1027-1035.

[2] Cook, M., Colton, S., Raad, A., and Gow, J. 2013. Mechanic
miner: reflection-driven game mechanic discovery and level
design. In EvoGAMES, 284-293.

[3] Dahlskog, S., & Togelius, J. 2014. Procedural Content
Generation Using Patterns as Objectives. In Applications of
Evolutionary Computation 325-336.

[4] Hartsook, K., Zook, A., Das, S., and Riedl, M. O. 2011.
Toward supporting stories with procedurally generated game
worlds. In Computational Intelligence and Games (CIG),
297-304.

[5] Hendrikx, M., Meijer, S., Van der Velden, J., and Iosup, A.
2013. Procedural Content Generation for Games: A Survey.
ACM Transcripts on Multimedia Computing,
Communications and Applications.

[6] Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V.
2012. A probabilistic model for component-based shape
synthesis. ACM Transactions on Graphics (TOG), 31(4), 55.

[7] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., and Hassabis, D. 2015. Human-level
control through deep reinforcement
learning. Nature, 518(7540), 529-533.

[8] Pham, D. T., Dimov, S. S., and Nguyen, C. D. 2005.
Selection of K in K-means clustering. Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 219(1), 103-119.

[9] Pulli, K., Baksheev, A., Kornyakov, K., and Eruhimov, V.
2012. Real-time computer vision with OpenCV. In
Communications of the ACM, 55(6), 61-69.

[10] Snodgrass, S., and Ontañón, S. 2014. Experiments in map
generation using markov chains. In Proceedings of the 9th
International Conference on Foundations of Digital Games.

[11] Togelius, J., & Schmidhuber, J. 2008. An experiment in
automatic game design. In Computational Intelligence and
Games, 111-118.

[12] Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3), 172-186.

Figure 10. Examples of generated level sections from six different high interaction categories. Examples outlined in black are failures

of the system either stylistically (top middle) or not being a high interaction section (top right).

