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ABSTRACT 
Algorithms that generate computer game content require game 
design knowledge. We present an approach to automatically learn 
game design knowledge for level design from gameplay videos. 
We further demonstrate how the acquired design knowledge can 
be used to generate sections of game levels. Our approach 
involves parsing video of people playing a game to detect the 
appearance of patterns of sprites and utilizing machine learning to 
build a probabilistic model of sprite placement. We show how 
rich game design information can be automatically parsed from 
gameplay videos and represented as a set of generative 
probabilistic models. We use Super Mario Bros. as a proof of 
concept. We evaluate our approach on a measure of playability 
and stylistic similarity to the original levels as represented in the 
gameplay videos. 
Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games 
General Terms 
Algorithms, Human Factors 

Keywords 
Procedural content generation, probabilistic models, machine 
learning 

1. INTRODUCTION 
Procedural content generation (PCG) has been used to 
automatically create levels, maps, weapons, background scenery, 
and music for computer games [5, 12]. Intelligent generative 
methods must be provided with high quality design knowledge to 
create compelling content. Often this design knowledge is 
provided in the form of hand-coded heuristics [4] or evaluation 
functions [12]. Hand-coded heuristics and evaluation functions 
provide a PCG system with intuition about what makes a 
particular type of content good but also biases the system toward 
the particular beliefs of the system designer. Alternatively, design 
knowledge can be extracted from the game itself. For example, a 
system can parse game level files to extract level design patterns 
[4, 10]. However, such approaches make use of hand-authored 
information to both parse games’ unique file structures and to 
ascribe meaning to the collected structures.  

In this work we propose an alternative source of design 
knowledge: gameplay videos. Acquiring design knowledge from 
gameplay videos has a number of advantages. (1) Gameplay 
videos exist within a number of set formats that are largely 

interchangeable, meaning that an algorithm does not need to be 
rewritten to handle new asset formats. (2) Gameplay videos 
include a player’s reaction to game assets, meaning that such 
systems can learn not only design information but also its effect 
on player experience. (3) With the advent of “Let’s Plays” and 
“Long Plays,” in which individuals make video recordings of their 
game playthroughs publicly available, a large corpora of 
gameplay video data exists for many different games.   
We present an approach to acquire game level design knowledge 
from gameplay videos of Super Mario Bros. While we focus on 
this well understood game for our preliminary exploration, the 
technique we present can extend to other two dimensional 
platformer games. By applying the technique across a number of 
different platformer games, a system can theoretically learn genre 
knowledge, which can be beneficial for procedurally creating 
novel games of a given genre. Our technique may also extend to 
other game genres beyond platformers.  

As proof of concept, we focus on learning design knowledge from 
Super Mario Bros. in isolation. We focus on two specific aspects 
of learning level design knowledge from video data: (1) 
determining what to learn about level layout, and (2) a 
representation of level design knowledge in a reusable form that 
affords generation. To process gameplay videos, we use OpenCV 
[9], a freely-available, open source computer vision toolkit, to 
process each frame of each video.  

For the first problem, determining what to learn, we present a 
technique to identify and categorize high interaction areas in a 
game level as a means of showcasing the affordance of user 
interactions captured in gameplay video. A high interaction area is 
a section of a level in which players spend significantly more time 
than in other sections. This may be because the area is more 
visually interesting, more rewarding (e.g., a lot of coins or power 
ups), more challenging (e.g., a jumping puzzle), or requires more 
navigation to traverse. We extract sequences of high interaction 
from the full video trace and use OpenCV to extract features from 
these sequences by parsing the placement of sprites. 

For the second problem, representation of design knowledge, we 
present a technique for learning generative probabilistic models of 
level sections. A generative probabilistic model represents a 
section of game level as a set of distributions over sprites, their 
positions, and relationships with one another. Frames of video that 
cover sections identified as high interaction areas are clustered 
together to provide a training set for each graphical probabilistic 
model. In addition to representing knowledge about how high 
interaction areas are laid out, these models also act like templates, 
allowing new areas to be generated. Our technique extends the 
work of Kalogerakis et al [6], which was originally developed to 
procedurally generate variations of 3D graphical models. We 
show how the probabilistic models learned by our system can be 
used to generate new high interaction areas through a recursive 
walk of the model. 

 



To the best of our knowledge this work represents the first attempt 
to automatically learn game design knowledge from gameplay 
video data. The contributions of our work are as follows: (1) an 
approach to automatically identify and categorize level sections to 
be modeled from gameplay video, (2) an approach to 
automatically generate new level sections from these models, and 
(3) an initial evaluation of our generated level sections on 
playability and stylistic metrics. 

2. RELATED WORK 
PCG systems take in design knowledge, utilize that design 
knowledge to create assets or mechanics, and output game 
content. Approaches include evolutionary search, rule-based 
systems and instantiating content from probability tables [12]. 

Automated game design knowledge acquisition is a process of 
deriving understanding of some facet of a computer game for the 
purposes of analysis or procedural generation. Dahlskog and 
Togelius [3]; and Snodgrass and Ontañón [10] both make use of 
levels directly from the original Super Mario Bros. game. The 
former generates new levels via evolutionary computation with 
the original levels as part of the scoring criteria. The latter make 
use of hierarchical levels of Markov chains, representing both low 
and high level patterns in the original levels. Both approaches 
have been shown to produce good results, but require that the 
source code for levels be available. In addition, both approaches 
involve hand defined heuristics or patterns. Our technique avoids 
the potential pitfalls of too little human design knowledge, while 
not requiring additional authoring, and is theoretically extendible 
to a wide range of game genres. 

Machine vision is not often applied to computer games. Mnih et 
al. [7] used deep convolutional networks to learn how to the play 
Atari games from pixel input.  Although this system and our own 
work both use machine vision to process pixels over time, our 
system focuses on extracting design principles instead of merely 
learning how to play the game. 

The generative probabilistic model we use to represent game level 
design knowledge and for use in generating new level sections is 
inspired by work done in the field of computer graphics. 
Kalogerakis et al. [6] describes work on learning probabilistic 
grammars from which hundreds of new 3D graphical models can 
be produced from a small training set. Their technique was semi-
automated in the sense that they made use of human tagging of 
parts of the input 3D model (“arm”, “head”, “torso”, etc.). We 
contribute a fully automated extension of their approach, which 
has been customized to discrete sprite-based game worlds. 

3. LEARNING DESIGN KNOWLEDGE 
In this section we present an approach to learning and modeling 
game level design knowledge from gameplay video. Beyond 
patterns of assets, gameplay video demonstrates how these 
patterns of assets impact player behavior. We highlight the 
potential of using gameplay video as a source of design 
knowledge by automatically extracting areas of Super Mario Bros. 
in which the player spends above average time. We learn a 
generative probabilistic model of these high interaction areas, 
which acts like a template, allowing us to generate new level 
sections that would be anticipated to also take the player longer to 
traverse. This evidence-based approach is significant in that it 
only relies on how player behavior observably changes, which 
may be different from the original game designer’s intentions. 

Our specific technique for using gameplay video to acquire game 
level design knowledge consists of the following steps. First, we 
collect gameplay video data from online video portals. Using the 

OpenCV [9] machine vision toolkit, we scan each frame of each 
video, recording the sprites and their locations. Our system scans 
the records for periods in which players are significantly slower in 
progressing through the level as identified by periods in which the 
difference in frame features is small. We assume that high 
interaction areas have special significance from a level design 
perspective and target these areas specifically to learn game level 
design knowledge. 

Having identified sections of game levels of interest—in this case 
areas of increased player interaction—our system proceeds to 
create probabilistic models of level design rules for the identified 
clusters of frames. The result is game level design knowledge 
represented as a probabilistic grammar that expresses the likely 
arrangements of level assets (sprites) on the screen. Following 
Kalogerakis et al. [6], we search each frame for identical and 
adjacent sprites to build shapes of tiled sprites and then search for 
probabilistic relationships between these sprite shapes. 
The probabilistic models used to model different sections of game 
levels can be used to generate new game level sections. We use 
the probabilistic grammar and the original examples to search 
through all possible configurations of tiles for those that meet a 
user-supplied value of playability and approximate similarity of 
style to the original level sections. 

We describe these three sequential processes in detail in the 
sections below. 

3.1 Level Section Categorization 
The purpose of the first step of our approach is to pull usable level 
design information from the gameplay video data. In particular 
our process identifies the distinct sections of level design that are 
likely to have interesting design elements to learn. Toward future 
work to generate whole levels from level sections we use the 
notion of interaction value—the time a player spends in a 
particular section of a game level—as the metric for 
interestingness and track its variance across level sections. We 
collected eleven gameplay videos as an initial dataset, all of which 
demonstrated individuals playing through the entire game. 

Machine vision has progressed to the point where open toolkits 
such as OpenCV provide sufficient results for straightforward 
vision tasks. Classic computer games are amenable to machine 
vision due to the regularity and consistency of appearance of 
objects on the screen. In games this regularity and consistency is 
referred to as tiling and the individual objects on screen referred 
to as sprites. The implication of this tiling is that we can 
consistently identify everything in gameplay video of Super Mario 
Bros. with a database of 102 sprites. While this represents a 
significant task in terms of compiling these sprites, it only needs 
to occur once to parse any amount of footage. Parsing each 
gameplay video with OpenCV outputs a description of each frame 
as a list of sprites and their xy coordinates, which our process uses 
as its representation of a level section. 
The process next segments the frame data per video into distinct 
sections of level. This is accomplished by identifying edges of 
level sections where the contents of a frame differ by more than 
10% of the total possible differences. This technique identifies 
sections of level design and determines the start and end point of 
levels as moments where one frame differs completely from the 
last. Under this definition our system also identifies deaths of 
Mario as level endpoints because the screen turns black. To avoid 
this issue we make use of only expert gameplay data of Super 
Mario Bros., in which the player makes it through all levels 
without dying. 



The majority of games have some variance of qualities across 
game levels, and Super Mario Bros. is no exception. We measure 
player interaction time over a level section as a means of tracking 
this variance. These values of player interaction are measured by 
number of frames the player spends on each of the level sections 
identified in the previous step. Figure 1 is a graph of these 
interaction values over an entire gameplay video where each point 
on the x-axis a distinct level section within a level and the values 
along the y-axis are the interaction values of those sections. 

We next focus on categorization of our defined level sections. 
Categorization is used to identify level sections that share design 
patterns. At this time, we only categorize high interaction 
sections. We identify these sections as those whose interaction 
times are above average for an individual player. These sections 
are of interest as each player spends the largest proportion of their 
playtime in these sections. They therefore serve as an appropriate 
focus for initial work with our novel generation approach.  

Across high interaction areas, we make the assumption that 
different sprites and different numbers of these sprites indicate 
that different design rules are at play. For example, we are more 
likely to see higher numbers of “block” sprites in underground 
levels than in typical levels. Our system clusters high interaction 
level sections using K Means++ wherein K is estimated with the 
distortion ratio (c.f., [1, 8]). For a distance measure we used the 
Euclidean metric across vectors of count data for each sprite. To 
avoid issues related to variance in level section size, we only 
made use of the data from the first frame of each section.  

Our approach finds 21 clusters of frames within the eleven full 
playthroughs of Super Mario Bros. we collected. These clusters 
vary from 2 to 250 frames in size with a median value of 35 
frames. From a human perspective we find these clusters to be 
largely cohesive. 18 of the clusters have a clear theme that can be 
recognized by visual inspection. Examples of themes include 
“underwater,” “underground,” or “treetops.” Only three clusters 
do not have a clear theme to them and are also the three largest 
clusters. We find these clusters to be sufficient for this approach 
as any disparity of theme within the clusters can be identified via 
further sub-clustering during probabilistic modeling as discussed 
in the next section. 

3.2 Probabilistic Model Construction  
Design knowledge learned from the clusters in the previous 
section is represented in the form of a generative probabilistic 
graphical model that relates groupings of sprites to each other for 
distinct high interaction areas. The probabilistic model can then be 
used to generate brand new level sections that are implied by the 
model. Our model is inspired by Kalogerakis et al’s work on 
generating 3D models from an initial sample set. Their approach 
constructs a probabilistic graphical model that determines the 
values of latent or hidden variables that represent design rules 
(e.g., pipes go on top of ground or 3D models with arms have 

torsos) from observed variables. We use the same underlying 
intuitions, but due to key differences in domain make a series of 
alterations to our model, how we learn the model, and how we use 
it to generate new level sections. The key differences due to 
domain are (a) a lower reliance on human authored information 
and (b) its two dimensional, sprite-based nature. Figure 2 is a 
visual representation of the tree-like structure of our final model 
and Table 1 identifies its major components and their human 
interpretation. Our model uses three types of nodes, (G, D, N), to 
collect observable information from an initial data set, each of 
which collects unique information. In addition there are two 
nodes, (S, L), that represent latent or hidden information within 
the initial dataset and are derived from the observed information. 

The G node collects the geometric information of a shape 
composed of sprites of type t. Figure 3 (top) shows an example of 
the rectangular shape composed of the “bark” sprite that serves as 
the basis for a G Node highlighted in the center of the image. 
However, it is important to note that Figure 3 (top) actually 
contains three detected “bark” shapes, each of which is the basis 
for distinct G Nodes. Each shape is derived by joining sprites of 
the same type according to adjacency such that there are no 
disjoint sprites. By iterating through each level section within a 
high interaction category and across each sprite the model collects 
a set of G nodes for each sprite type t. This set may contain 
duplicates in terms of the same shape, which we will generalize 

 
Figure 2. A visualization of the probabilistic model. Blue 

nodes are those derived from observable variables. 

Table 1. Brief descriptions of each node by their 
interpretation. 

Node Interpretation 
L Level design style (latent) 
S Shape style per sprite t (latent) 
N Count data for the different categories of sprites 

found in an initial level section 
G Geometric information for patterns of sprite t 
D Relational information between patterns of sprite t 

and all other t values. 
 

 
Figure 1. A graph of a video’s level sections vs intensity values (units of 25 seconds), with gameplay levels coded in different colors.  



over in a later step. Since our domain’s atomic parts are sprites 
our G node makes use of the categorical information of its sprite 
type and continuous position information.1  
D nodes contain relational information from a G node to all other 
G nodes in its level section, regardless of type. This relational 
information takes the form of an (x, y) vector from the top left 
corner of each G node, and a second vector to that G nodes center, 
used in the generation phase. Figure 3 (bottom) represents a D 
node as the red lines from the G node given in the prior example 
to all other G nodes in the frame. This node differs the most from 
the Kalogerakis et al. model; their D node contains discrete 
information, notably derived from hand-authored edge points 
between parts of a 3D model. Given our goal to decrease the 
amount of human authoring required for level section creation, we 
bypass the human authoring step and instead naively track all 
possible relationships. In the generation phase we instantiate some 
of these relationships as edges based on a probabilistic value.  

The last of the nodes derived from observable attributes of the 
initial dataset is the N node. The N node tracks count data of 
sprites in each frame of our high interaction clusters by its sprite 
type t for each originating data point. For example, in Figure 3 our 
N node stores 251 bark, 31 treetop, 1 goomba, 1 bullet, 1 cloud, 
and 2 coin sprites. The N nodes’ count information serves as a 
guide during the generation phase. 2 
                                                                    
1 In the original Kalogerakis et al. model, the authors made use of 

a C node, which contained continuous, mesh information. 
2 Kalogerakis et al. store N values per part, so a humanoid model 

might have 1, 2, or 4 arms. 

The latent variables of the model represent underlying design 
rules used in the construction of level sections, as derived from 
the observed values. The S node is a latent variable that represents 
a category of shapes and their relative placement in a level 
section. The intuition behind the S node is that it represents a set 
of interchangeable shapes as learned from observable data. We 
derive each S node from (G, D) pairs of a sprite type t, where the 
D node tracks all relational information for the given G node. 
Figure 3 demonstrates one such (G,D) pair.  

The S node is derived in two steps. First, the system clusters on 
(G, D) pairs with the K Means++ clustering approach, with K 
estimated by the distortion ratio. The distance metric between 
pairs of (G,D) nodes used by K Means++ is a normalized 
combination of the different distance metrics for the G and D 
nodes individually. The distance between two G nodes comes 
from the edit distance between the two different shapes, which are 
guaranteed to be of the same type t. Between the two D nodes the 
distance metric is the sum of an iteration across both sets of sorted 
connections by (x, y) values and the magnitude of the differences 
between the relational vectors. This gives a sense of the relative 
position of the paired G node. For example if all the relational 
vectors point left this would indicate the G node is on the far right 
of a level section. If one D node has more connections than the 
other, then our technique simply uses the magnitude of its 
remaining relational vectors as this is equivalent to the magnitude 
difference of that vector from a zero vector. This combined 
distance metric means that even if two G nodes have equivalent 
shapes, they may end up in different categories if they appear in 
different relative positions consistently.   

In most cases this approach finds that there exists only one S node 
for each sprite type t. For example in the “treetop” category, our 
approach found a single S node category for bullets, goombas, and 

 

 
Figure 3. A visual representation of a G-Node (top) and its 

corresponding D-Node (bottom). 

 
Figure 4.  A representation of four different S nodes in terms of 

their shape information. 



koopas used in level sections. However, there exist eight “bark” S 
nodes. Figure 4 contains a sample of a collection of shape values 
from four of these S nodes, which contain (g, d) pairs of quantities 
2, 2, 3, 3, 3, 8, 9, and 23.   
The next step in deriving S nodes is to create a probability table of 
P(ti==edge | ti, d), which expresses the probability of some sprite 
type t being a required edge of another sprite type t given a 
distance d. By required edge we indicate an equivalent to the 
Kalogerakis et al. paper for the hand-defined edges that indicate 
implications between parts. For example, an arm implies a torso. 
However, since we do not have hand-defined edges we determine 
these implications probabilistically. We construct the probability 
table by first collecting all of the vector connections for all D 
nodes within S. We discretize these connections by their 
originating shape type ti, their connecting shape type tj, and a 
discretized value of the vector between them. This discrete value 
comes from splitting the max possible distance across level 
sections into 100 buckets. We then determine the likelihood of a 
given connection’s occurrence across all possible connections. We 
assume this probability to directly relate to the probability that the 
relationship is an edge, that one shape type at a distance implies 
another type.  Thus our model finds that “leaf” shapes have a high 
probability to imply bark shapes at low distances.  
The top-level latent variable is the L node, which represents a 
category of level design rules. One can interpret the L node as a 
template for a specific type of level section design. Figure 5 

represents four instantiations of the L node generated from the 
high interaction “treetop” cluster. This node represents a cluster 
across S nodes and the corresponding N node values from which 
the values in the S node arise. The clustering at this stage uses K 
medoids and the Hamming metric across all non-zero entries of an 
S node’s probability table. We make use of K medoids instead of 
K means at this step to minimize the possibility of combining two 
distinct clusters of level design rules. This typically leads to only 
one L node per high interaction cluster when there is a clear 
theme. However, in the case of loosely themed clusters as 
discussed earlier, this step separates them out. For example, in the 
case where a high interaction cluster ends up with both “lava” 
level sections and “underwater” level sections due to their joint 
use of the “wave” sprite, our process recognizes these two as 
having distinct level design rules and outputs two L nodes and 
their associated probabilistic models. The earlier clustering of 
high interaction areas based on assumed level design similarities 
is still important despite this as it vastly decreases the amount of 
time required to put together the model. Figure 6 demonstrates a 
representation of the final model this process generates for the 
“treetop” cluster. The model finds a single N node, a single S 
node for most  sprite types t, but multiple S nodes such as those 
shown in Figure 4. 

3.3 Generating Level Sections 
Generation of a level section is a constraint satisfaction processes 
wherein combinations of G and D nodes are selected based on 
requirements and compatibility. The generation algorithm, shown 
in Figure 7, starts with an empty level section and recursively 
adds (g, d) pairs until a stopping criterion is met. Recall that G 
nodes represent a group or shape of sprites of the same type, and 
D nodes store relative positioning information. The algorithm is 
seeded with an initial (g, d) pair, and our implementation 
generates all possible level sections by trying possible (g, d) pairs 
as starting points. The generation algorithm makes use of two 
control parameters: pE, which controls the degree to which 
sections must resemble original sections from video, and pC, 
which controls how “playable” a level is. These parameters will 
be described in greater detail below. 
When a (g, d) pair is added to a section, the D node indicates a 
number of potentially required connections to other shapes—
roughly the black vectors in Figure 4 (bottom). The algorithm 
greedily identifies the next best (g, d) pair to add to the section. 
First, the algorithm determines the type t of the next (g, d) pair to 
add. There are two possible candidate types. The first candidate 
type is the next most required sprite type in order to reach the 
number of sprites of type t as indicated by the closest N node 
value for the level section. The second candidate sprite type is that 
that has the highest probability of occurring in the section. The 
function get_next_required_edge_type iterates across each g in 

  

  
Figure 5. Four examples of visualizations of instantiations of the 

same L node, which used the N node values derived from the 
level section displayed in Figure 3. 

 
Figure 6. A visual representative of the resulting model for this process for the treetop category. 



the section and uses the probability table from its parent S-node to 
filter out any possible connections with probability less than pE. 
From the remaining d node connections, the type with the highest 
probability is chosen. The value pE can be understood as a style 
variance variable, as the lower the value the closer to the original 
level sections all outputted level sections will be because more 
relations will be preserved.  
Once the type of the sprite is chosen, the algorithm then looks at 
all S nodes for the type in the model and selects the (g, d) pair that 
most closely matches the required connections. Matching occurs 
by looking at the d node to see whether its connections link back 
to g nodes already placed. The proportion of connections matched 
by the new (g, d) pair must be above a threshold pC. This value 
can be understood to be a “playability” variable; the lower the 
value, the less cohesive and playable the output level section 
becomes. A playable section is one in which the player can 
navigate successfully from the left of the screen to the right of the 
screen according to the mechanics of the game (e.g., there exists 
no gaps too wide or walls to high to progress). 
The algorithm terminates if the current level section meets two 
conditions. First, if the level section’s sprite counts equal or 
exceed its closest N. Second, if all the required edges as defined 
by pE are filled. 

The output of the algorithm is a level section represented as a set 
of (g,d) pairs and the positions of each g node shape. It is 
converted into a list of sprites and their two-dimensional 
coordinates by tiling the sprite type across the patterns represented 
by its g node. This representation is identical to the level section 
representation used for the original level sections. It is then 
checked against both the original level sections in the dataset and 
all output thus far to ensure that it is not a duplicate, using the 
probabilistic distance measure between frames described in 3.1.  

4. EVALUATION 
We undertook an initial evaluation of our system to measure the 
effects of varying the variables pE and pC on playability and a 
measure for “Super Mario” style. We make use of the same 
“treetop” cluster used throughout this paper. We chose to make 
use of this specific type of level section as it represents a 
challenge to playability and style. If we made use of any level 
without the large amount of gaps common in the “treetop” level 
sections demonstrating playability would have been trivial given 
that our approach makes use of entire sprite sections from the 
original (such as an entire ground section). In addition, the 
“treetop” areas of Super Mario Bros. demonstrate more stylistic 
variance than the typical level sections in which objects such as 
pipes are placed on level ground.  

We consider a level section playable if it meets three conditions: 
1) there exists a sprite to the left of the level section that Mario 
could jump to from a platform in a previous section, 2) there 
exists a sprite to the right of the level section that Mario could 
jump from to in a successive section, 3) there exists a path 
between these two sprites. Note that we do not consider whether 
the platforms in the previous or successive section actually exist, 
but could exist. These conditions were chosen to support 
integration of generated sections together at a future time. For the 
final condition we constructed a simple greedy pather. While A* 
pathing agents cannot complete human-completable Mario levels, 
we found the agent’s behavior sufficiently accurate across a 
distribution of levels. We vary both pE and pC individually 
(holding the other at 0.1 and 0.8 respectively), sampling twenty 
level sections from the output and then determining the 
percentage of the output that is playable. We expect no real 
difference while varying the “style” variable pE, but significant 
impact upon playability when varying the “playability” variable 
pC.  

Style is not as easily defined as playability and thus a more 
difficult feature to measure. We make use of an approximation of 
style by measuring the distance from a generated section to  
known section from the gameplay videos as follows. We compute 
the distance a sprite has to move in a generated level section to 
match the same sprite type in the closest original level section. 
This can be understood as a relaxed edit-distance of a sprite for a 
generated level and its closest originator. We take the average 
across sprites rather than just summing across the difference for 
all sprites in order not to favor output levels with fewer total 
sprites. As with playability we vary both pE and pC individually, 
and sample twenty level sections. We report the median value of 
this per-sprite edit-distance. A strong correlation between the 
“style” variable pE and this value and no correlation between the 
value and pC would support our model.  
Figure 8 summarizes the results of our initial evaluation of 
playability. We sampled 20 of the generated level sections from 
each category to run the tests, given that some variable values lead 
to many more level sections than others. We report a percent 
playable as the percentage of this sample that were playable 
according to our playability metric.  Figure 8 (top) demonstrates 
the results of varying the playability variable pC on our measure of 
playability. Our model performed as expected, showing a strong 
correlation between values of the variable and generated level 
playability (Pearson’s r: 0.8778). One interesting and unexpected 
result can be seen in Figure 8 (bottom) as we vary the “style” 
variable pE. While the majority of the graph displays no 
relationship, both values 0.05 and 0.1 resulted in only playable 
levels. This can be understood as due to the fact that at low values 
of pE nearly all possible connections became required, meaning 
that the results were very similar to the original Super Mario Bros. 
levels, which are by definition, playable. 

Figure 9 summarizes the effects of pC and pE on style. Recall that 
lower values along the y-axis indicated levels closer to the 
originators given our style metric. Figure 9 (top) shows the result 
of varying the playability variable resulted in a noisy inverse 
relationship with the style value (Pearson’s r: -0.5831). This can 
be explained as the style variable was held at 0.1 for these tests, 
meaning that the space of possible levels was already constrained 
to output close to the original levels. Further constraining the 
output to be playable meant that the system generated output that 
was increasingly similar to the originals, which are also all 
playable. These results may be due to our explicit check that 90% 
of the sprites within the frame cannot be within the same position 

void function generate (section, (g, d)) 
  add_according_to_closest_connection(section, (g, d)) 
  tN, dN = get_next_type_for_nearest_N(section) 
  tE = get_next_required_edge_type(section, pE) 
  next_t = tN 
  if dN <= 0 and tE not null 
    next_t = tE 
  else if dN <= 0 and tE = null 
    return section 
  for snext_t in Lt 
    for (g, d) in snext_t 

      if coexist_probability(section, (g, d)) > pC 

        generate(section, (g, d)) 

Figure 7. The psuedocode for the generation algorithm 



as mentioned in section 3.1, meaning that we throw out all of the 
duplicates that would have low edit distances. Figure 9 (bottom) 
displays no clear relationship between varying the style variable 
and the median style value. This is a negative result, suggesting 
that our style metric may be determined by an interplay between 
variables or that the style variable may have less of an impact than 
the playability variable 
Looking at the output from the system qualitatively we find that 
while the output with lower values of pC definitely demonstrates 
less playability, from our perspective there is more creativity 
demonstrated in terms of further variation from the original 
levels’ structure. This is a fairly common issue in level generation. 
We hope to solve this issue in future work by learning game 
mechanics in addition to game design information from gameplay 
video, meaning that the system can automatically determine 
playability of a new section.  

In terms of raw counts of output, we saw an increase of close to 
an order of magnitude with this approach of unique level sections 
as determined by our difference metric. In particular, we found 
that with values of pC = 0.8 and pE = 0.1 our system outputted 151 
distinct level sections from an original dataset of 17 level sections 
in the “treetop” category. The output increased as the constraints 
lessened, with values of pC = 0.5 and pE = 0.1 producing 334 level 
sections. While we focused on the “treetop” cluster, Figure 10 
shows output from six different clusters. 

5. FUTURE WORK   
The clear next step of this process is full level generation. We 
believe that our process can be extended to learn the orderings of 

the level section categories it outputs as described in section 3.1. 
Substituting our own generated level sections into these orderings 
would allow us to evaluate whether our generated sections cause 
the same slow down in players seen in the original gameplay 
videos.  

Beyond level generation we seek to learn game mechanics from 
gameplay video by watching how sprites move or disappear in 
reference to one another. We have conducted an initial test in a 
simplified platformer domain using colored blocks that lead to 
promising results. We will need to extend this process to a real, 
more complex game like Super Mario Bros. Learning game 
mechanics is an essential part of learning game design knowledge, 
and represents a significantly more complex problem than level 
structure as it involves cause and effect information. Ultimately 
we hope to extend this process to many different platformers to 
learn a generalized level design and game mechanics rule-set for 
the genre. With such a knowledge base we could automatically 
build entirely new platformers, and extend into further game 
genres and hybridizations thereof.  

6. CONCLUSIONS  
Procedural content generation algorithms require design 
knowledge that captures the intuition of human designers about 
good content. Human authoring of design knowledge remains a 
large roadblock in procedural content generation and in general 
video game design for non-experts. We have presented a novel 
approach to automated learning of computer game design 
knowledge from gameplay video, with a specific focus on level 
design knowledge. An initial evaluation of our approach indicates 

  
Figure 8. The effects of playability (top) and style (bottom) 

variables on generated level section playability. 

  
Figure 9. The effects of playability (top) and style (bottom) 

variables on generated level section style. 



an ability to produce level sections that are both playable and 
close to the original Super Mario Bros. without hand coding any 
design criteria. Initial experiments suggest that our approach 
extends beyond the Super Mario Bros. platformer game and that 
additional design knowledge such as avatar mechanics may be 
acquired from gameplay video as well. As gameplay video 
becomes more accessible and as open machine vision toolkits 
become more advanced, we see gameplay video as a rich source 
of design knowledge to be exploited for future procedural content 
generation and procedural game generation systems.  
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Figure 10. Examples of generated level sections from six different high interaction categories. Examples outlined in black are failures 

of the system either stylistically (top middle) or not being a high interaction section (top right). 


