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Abstract

Humans are increasingly coming into contact with artificial intelligence
and machine learning systems. Human-centered artificial intelligence is a
perspective on AI and ML that algorithms must be designed with aware-
ness that they are part of a larger system consisting of humans. We lay
forth an argument that human-centered artificial intelligence can be bro-
ken down into two aspects: (1) AI systems that understand humans from
a sociocultural perspective, and (2) AI systems that help humans under-
stand them. We further argue that issues of social responsibility such as
fairness, accountability, interpretability, and transparency.

1 Introduction

Artificial intelligence (AI) is the study and design of algorithms that perform
tasks or behaviors that a person could reasonably deem to require intelligence
if a human were to do it. Broadly construed, an intelligent system can take
many forms: a system designed to be indistinguishable from humans; a speech
assistant such as Alexa, Siri, Cortana, or Google Assistant; a self-driving car; a
recommender in an online commerce site; or a non-player character in a video
game. We refer to intelligent systems as agents when they are capable of making
some decisions on their own based on given goals. Machine learning (ML) is
a particular approach to the design of intelligent system in which the system
adapts its behavior based on data. It is the success of machine learning algo-
rithms in particular that have lead to recent growth in commercialization of
artificial intelligence.

Humans are increasingly coming into contact with artificial intelligence and
machine learning systems. At times it is evident, as in the case of Siri, Alexa,
Cortana, or Google Assistant. It is also evident in the case of self-driving cars
or non-player characters in computer games. At times it is less evident, as in
the case of algorithms that work behind the scenes to recommend products,
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and approve bank loans. Given the potential for intelligent system to impact
people’s lives, it is important to design intelligent systems with this in mind.

There is a growing awareness that algorithmic advances to artificial intel-
ligence and machine learning alone are insufficient when considering systems
designed to interact with and around humans. Human-centered artificial in-
telligence is a perspective on AI and ML that intelligent systems must be de-
signed with awareness that they are part of a larger system consisting of hu-
man stake-holders, such as users, operators, clients, and other people in close
proximity. Some AI researchers and practitioners have started to use the term
human-centered AI to refer to intelligent systems that are designed with social
responsibility in mind, such as addressing issues of fairness, accountability, in-
terpretability, and transparency. Those are important issues. Human-centered
AI can encompass more than those issues and in this desiderata we look at
the broader scope of what it means to have human-centered artificial intelli-
gence, including factors that underlie our need for fairness, interpretability, and
transparency.

At the heart of human-centered AI is the recognition that the way intelligent
systems solve problems—especially when using machine learning—is fundamen-
tally alien to humans without training in computer science or AI. We are used
to interacting with other people, and we have developed powerful abilities to
predict what other people will do any why. This is sometimes referred to as
theory of mind—we are able to hypothesize about the actions, beliefs, goals, in-
tentions, and desires of others. Unfortunately, our theory of mind breaks down
when interacting with intelligent systems, which do not solve problems the way
we do and can and come up with unusual or unexpected solutions even when
working as intended. This is further exacerbated if the intelligent system is a
“black box.” Black box AI and ML refers to the situations wherein the user
cannot even know what algorithms it uses, or that the system is so complicated
as to defy easy inspection. Regardless of whether an intelligent system is a
black box or not, we are seeing more interaction between intelligent systems
and people who are not experts in artificial intelligence or computing science.
How can we design intelligent systems that are capable of helping people un-
derstand their decisions? Must we design intelligent systems to solve problems
more like humans, or can we augment existing algorithms? What do people
need to know about an intelligent system to be able to trust its decisions or
be comfortable working with an intelligent system? Can the intelligent system
itself convey this information to its users in a meaningful and understandable
manner?

Human-centered AI is also in recognition of the fact that humans can be
equally inscrutable to intelligent systems. When we think of intelligent systems
understanding humans, we mostly think of natural language and speech pro-
cessingwhether an intelligent system can respond appropriately to utterances.
Natural language processing, speech processing, and activity recognition are im-
portant challenges in building useful, interactive systems. To be truly effective,
AI and ML systems need a theory of mind about humans. Just as we use our
commonsense reasoning to interpret and predict the actions of others, intelligent
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systems can benefit from having commonsense understanding of what people do
and why they do it in particular ways; we are unconsciously influenced by our
sociocultural beliefs. Intelligent systems, however, do not “grow up” immersed
in a society and culture in the way humans do. These sociocultural beliefs and
norms provide a context surrounding everything that people do. An intelligent
system that can model sociocultural beliefs and norms may be able to disam-
biguate human behavior and make more educated guesses on how to anticipate
and respond to human needs. At a minimum, intelligent systems that better un-
derstand the sociocultural underpinnings of human behavior may be less likely
to make mistakes about subjects that people take for granted, making them
safer to use and safer for them to be in close proximity to people. It may also
be possible someday for intelligent systems to evaluate their own behaviors for
consistency with ethical norms about fairness.

In the following sections lay out arguments that AI and ML systems that
are human-centered (1) have an understanding of human sociocultural norms
as part of a theory of mind about people, and (2) are capable of producing
explanations that non-expert end-users can understand. These are underlying
capabilities from which much of our need for AI that contributes to social good
stems.

2 Understanding Humans

Many artificial intelligence systems that will come into contact with humans will
need to understand how humans behave and what they want. This will make
them more useful and also safer to use. There are at least two ways in which
understanding humans can benefit intelligent systems. First, the intelligent
system must infer what a person wants. For the foreseeable future, we will design
AI systems that receive their instructions and goals from humans. However,
people dont always say exactly what they mean. Misunderstanding a person’s
intent can lead to perceived failure. Second, going beyond simply failing to
understand human speech or written language, consider the fact that perfectly
understood instructions can lead to failure if part of the instructions or goals
are unstated or implicit.

Commonsense failure goals occur when an intelligent agent does not achieve
the desired result because part of the goal, or the way the goal should have
been achieved, is left unstated (this is also referred to as a corrupted goal or
corrupted reward (Everitt et al., 2017)). Why would this happen? One reason is
that humans are used to communicating with other humans who share common
knowledge about how the world works and how to do things. It is easy to fail
to recognize that computers do not share this common knowledge and can take
specifications literally. The failure is not the fault of the AI system—it is the
fault of the human operator.

It is trivial to set up commonsense failures in in robotics and autonomous
agents. Consider the hypothetical example of asking a robot to go to a pharmacy
and pick up a prescription drug. Because the human is ill, he or she would
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like the robot to return as quickly as possible. If the robot goes directly to
the pharmacy, goes behind the counter, grabs the drug, and returns home, it
will have succeeded and minimized execution time and resources (money). We
would also say it robbed the pharmacy because it did not participate in the
social construct of exchanging money for the product.

One solution to avoiding commonsense goal failures is for intelligent sys-
tems to possess commonsense knowledge. This can be any knowledge com-
monly shared by individuals from the same society and culture. Commonsense
knowledge can be declarative (e.g., cars drive on the right side of the road) or
procedural (e.g., a waitperson in a restaurant will not bring the bill until it is
requested). While there have been several efforts to create knowledge bases of
declarative commonsense knowledge (CYC (Lenat, 1995), ConceptNet (Liu and
Singh, 2004)), these efforts are incomplete and there is a dearth of knowledge
readily available on procedural behavioral norms.

There are a number of sources from which intelligent systems might acquire
common knowledge, including machine vision applied to cartoons (Vedantam
et al., 2015), images (Sadeghi et al., 2015), and video. Unsurprisingly, a lot
of commonsense knowledge can be inferred from what people write, including
stories, news, and encyclopedias such as Wikipedia (Trinh and Le, 2018). Stories
and writing can be particularly powerful sources of common knowledge; people
write what they know and social and cultural biases and assumptions can come
out, from descriptions of the proper procedure for going to a restaurant or
wedding to implicit assertions of right and wrong. Procedural knowledge in
particular can be used by intelligent systems to better provide services to people
by predicting their behavior or detect and respond to anomalous behavior. In
the same way that predictive text completion is helpful, predicting broader
patterns of daily life can also be helpful.

Combining commonsense procedural knowledge with behavior can yield in-
telligent agents that are safer. To the extent that it is impossible to enumer-
ate the “rules” of society—which is more than just the laws a society has—
commonsense procedural knowledge can help intelligent systems and robots fol-
low social conventions. Social conventions often exist to help avoid humans avoid
conflict with each other, even though they may inconvenience us. Harrison and
Riedl (2016) used the pharmacy scenario summarized above to show that intelli-
gent autonomous agents that use written stories as training demonstrations can
implicitly learn to avoid behaviors that are socially undesirable. This happens
as a side effect because stories are more often than not positive examples of
behavior. Their system directly addresses the challenge of commonsense goal
failures by deriving reward information from following commonly agreed-upon
story progressions as close as possible. Thus the agent learns not to steal the
prescription drugs because most stories refer to exchange of money leading the
agent to prefer that behavior even though it is faster and less costly to do the
opposite. The agent thus never has to be told what “stealing” is and why it
should be avoided.

Commonsense knowledge, the procedural form of which can act as a basis
for theory of mind for when interacting with humans, can make human-AI
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interaction more natural. Even though ML and AI decision-making algorithms
operate differently from human decision-making, the behavior of the system
is consequently more recognizable to people. It also makes interaction with
people safer: it can reduce commonsense goal failures because the agent fills
in an under-specified goal with commonsense procedural details; and an agent
that acts according to a persons expectations will innately avoid conflict with
a person who is applying their theory of mind of human behavior to intelligent
agents.

3 AI Systems Helping Humans Understand Them

Invariably, an intelligent system or autonomous robotic agents will make a mis-
take, fail, violate an expectation, or perform an action that confuses us. Our
natural inclination is to want to ask: “Why did you do that?” Although people
will be responsible for providing goals to intelligent, autonomous systems, the
system is responsible for choosing and executing the details.

Neural networks, in particular, are often regarded as un-interpretable, mean-
ing that it takes a large amount of effort to determine why the systems response
to a stimulus is what it is. We often speak of “opening the black box” to figure
out what was going on inside the autonomous system’s decision-making process.
A majority of the work to date is on visualizing the representations learned by
neural networks (e.g., generating images that activate different parts of a neural
network (Zhang and Zhu, 2018)) or by tracing the effects of different portions
of the input data on output performance. (e.g., removing or masking parts of
training data to see how performance is affected (Ribeiro et al., 2016)). Even
AI experts can have a hard time interpreting machine-learned models and this
type of work is geared largely toward AI power-users, often for the purposes of
debugging and improving a machine learning system.

However, if we want to achieve a vision of autonomous agents and robots
being used by end users and operating around people, we must consider non-
expert human operators. Non-experts have very different needs when it comes
to interacting with autonomous agents and robots. Non-expert operators are
likely not going to seek a detailed inspection of the inner workings of the sys-
tem, but is more likely seeking remedy. Remedy is the concept that a user
should be able to correct or seek compensation for a perceived failure. An in-
telligent agent did what it thought at the time was the right thing to do only
to have been mistaken or to appear to have made a mistake because the be-
havior violated user expectations. The first step in remedy is getting enough
information to choose the appropriate remedial course of action. Was the failure
(or appearance of failure) due to sensor error, effector error, incorrect model,
incomplete model, dataset bias, or other cause? In many cases the information
can be the remedy itself, in the form of an explanation that helps one revise
their theory of mind about the agent or as an admission of failure. Explana-
tions are post-hoc descriptions of how a system came to a given conclusion or
behavior. Explanations can be visual, as in highlighting the portions of sensory
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input that contributed most to the output (Selvaraju et al., 2017), or through
natural language processing (Andreas et al., 2017).

The question of what makes a good explanation of the behavior of a machine
learning system is an open question that has not been explored at depth from
a human factors perspective. One option for natural language explanation is to
generate a description of how the algorithm processes sensory input. This can
be unsatisfactory because algorithms such as neural networks and reinforcement
learning defy easy explanation (e.g., “the action was taken because numerous
trials indicate that in situations similar to this the action has the highest like-
lihood of maximizing future reward”).

Another option is to take inspiration from how humans respond to the ques-
tion “why did you do that?”. Humans produce rationales—explanations after
the fact that plausibly justifies their actions. People do not know how the exact
cascades of neural activation resulted in a decision; we invent a story, consistent
with what we know about ourselves and with intent on being as informative as
possible. In turn, others accept these rationales knowing that they are not abso-
lutely accurate reflections on the cognitive and neural processes that produced
the behavior at the time. Rationale generation is thus the task of creating an
explanation comparable to what a human would say if he or she were performing
the behavior that the agent was performing in the same situation. Ehsan et al.
(2019) show that human-like rationales, despite being true reflections of the
internal processes of a black-box intelligent system, promote feelings of trust,
rapport, familiarity, and comfort in non-experts operating autonomous systems
and robots.

Rationales are generated by first collecting explanations of humans perform-
ing a similar task to that of the autonomous system. A neural network is trained
to translate the internal state of an autonomous agent into the natural language
explanations in the corpus. This results in automatically generated rationales
that read like human rationales, including culturally specific idioms, if present in
the corpus. This leads to interesting open research questions. When is explana-
tion generation by layering one black box on top of another appropriate? How
do incorrect rationales and explanations affect operator perceptions of trust?
Rationales are probably only one part of the solution—they address a high-level
need for explanation and cannot answer specific questions in which an operator
asks for elaboration. Rationales may be used as one of a set of techniques that
meet different levels of need from different types of users.

4 Conclusions

With these desiderata, we break human-centered artificial intelligence into two
critical capacities: (1) understanding humans, and (2) being able to help humans
understand the AI systems. There may be other critical capabilities that this
article does not address. However, it seems that many of the attributes we desire
in intelligent systems that interact with non-expert users and in systems that are
designed for social responsibility can be derived from these two capabilities. For
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example, there is a growing awareness of the need for fairness and transparency
when it comes to deployed AI systems. Fairness is the requirement that all users
are treated equally and without prejudice. Right now, we make conscious effort
to collect data and build checks into our systems to prevent our systems from
prejudicial behavior. An intelligent system that has a model ofand can reason
aboutsocial and cultural norms for the population it interacts with can achieve
the same effect of fairness and avoid discrimination and prejudice in situations
not anticipated by the system’s developers. Transparency is about providing
some means of access to the datasets and workflows inside a deployed AI system
to end-users. The ability to help people understand their decisions through
explanations or other means accessible to non-experts will provide people with
greater sense of trust and make them more willing to continue the use of AI
systems. Explanations may even be the first step toward remedy, a critical
aspect of accountability.

Human-centered artificial intelligence does not mean that an artificial intel-
ligence or machine learning algorithm must think like a human or be cognitively
plausible. However, it does recognize the fact that people who are non-experts in
artificial intelligence or computing science fall back on a theory of mind designed
to facilitate their interaction with other people and draw on sociocultural norms
that have emerged to avoid human-human conflict. Making intelligent systems
human-centered means building the intelligent systems to understand the (of-
ten culturally specific) expectations and needs of humans and to help humans
understand them in return. The pursuit of human-centered artificial intelli-
gence presents a research agenda that will improve our scientific understanding
of fundamental artificial intelligence and machine learning while simultaneously
supporting the deployment of intelligent products and services that will interact
with people in everyday contexts.
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