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ABSTRACT 
The ease with which a user interface can be navigated 
strongly contributes to its usability.  In this paper we 
describe preliminary results of a project aimed at making 
the evaluation of user interfaces from this perspective more 
routine.  We have designed a system to carry out an 
autonomous, exploratory navigation through the graphical 
user interface of interactive, off-the-shelf software 
applications.  The system is not a robust tool, but rather a 
proof of concept that can exhibit interesting behaviors.  
The traversal process generates a representation of the 
connectivity of the user interface, as well as navigational 
paths to specific commands.  The reasoning component of 
the system is based on the ACT-R architecture, while the 
perceptual and motor components of the system are built 
on top of the SegMan perception/action substrate.  We 
present the design of the system and its use in exploring a 
simple user interface. 
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INTRODUCTION 
User interfaces are generally designed to be learnable [5], 
in the sense that a curious user can learn at least some of a 
system's functionality through experimentation, by trying 
out its operations to see the results.  This process teaches 
the user about the capabilities of the system and the way it 
decomposes the domain into separate areas of 
functionality. Ideally, all of a system's functionality should 
be accessible in this fashion (though in practice, especially 
in complex problem domains, this goal may be 
unattainable.)  In operational terms, learnability is closely 
tied to the navigational properties of an interface. 

Exploration is demanded by the design of menu-based 
systems, in which operations are organized hierarchically 
and information is made available incrementally, through 
the selection of these operations. As a very simple 

example, to open a document in Microsoft Notepad a user 
must enter the name of the document into the Open 
dialog.  A user experienced with Notepad will know that 
the File menu contains a menu option called "Open" and 
that selecting this option will activate the Open dialog.  A 
less knowledgeable user may still be able to infer this 
information from knowledge about other applications, and 
even a complete novice may learn it by trial and error.  It 
is a reasonable assumption that all users must resort to 
exploratory navigation at some point in their use of an 
unfamiliar application.  The prevalence of this activity 
makes it worthwhile to understand the navigational 
properties of an interface in human information processing 
terms. 

A good deal of research has been devoted to analyzing the 
navigation properties of interfaces, especially for hypertext 
systems, from the perspectives of design and evaluation 
(e.g., browsing strategies [4, 6]).  Our particular interest is 
in the design of automated systems to assist in evaluation.  
While the navigational process as outlined above can 
easily be grasped by even novice users, it poses a more 
difficult and interesting problem for an automated system; 
questions arise in several areas. 

• System issues, e.g., can the low-level actions necessary 
for interface navigation be carried out by an automated 
process? 

• Task analysis issues, e.g., which navigation paths are 
most important?  Are all navigation paths relevant? 

• Cognitive issues, e.g., what knowledge (procedural and 
declarative) is necessary for navigation to take place?  
How does navigation augment or modify existing 
knowledge? 

We have developed a system, based on the ACT-R 
cognitive architecture, that autonomously carries out a 
limited form of exploratory navigation, in an unmodified 
interactive system.  Production systems such as those based 
on ACT-R [1] and Soar [9] are well-adapted to the task of 
exploration.  A production system as implemented in an 
ACT-R model encodes facts the agent knows about the 
world, or declarative knowledge, and production rules that 
transform declarative knowledge into behavior.  The 
agent's behavior alters the state of the world, new 
declarative knowledge is generated, and new productions 
are used to generate behavior.  Cognitive models like 
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ACT-R also have the ability to learn.  The assumptions 
that a human agent might make when exploring a novel 
application interface can be encoded into declarative 
knowledge in a model.  The actions that a human agent 
might make when manipulating the interface are encoded 
into production rules.  A well-designed cognitive model 
should be able to start with a minimal amount of 
declarative knowledge about the user interface and a 
simple set of productions and, through exploring an 
application's interface, develop a declarative representation 
of the interface and how it operates. 

The work described in this paper is part of a more 
comprehensive project in automated interface evaluation.  
Cognitive modeling architectures (e.g., ACT-R, Soar, and 
EPIC [8]) are now mature enough to produce reliable 
predictions about user performance, prior to evaluation 
with real users.  The application of these models to specific 
problems, however, requires significant expertise in 
modeling, task analysis, and interface design.  Our long-
term goal is to build what we call Cognitive Model 
Interface Evaluation (CMIE) tools, systems that support 
the display of the user interface, experimental control over 
the cognitive model and its simulation runs, feedback on 
model execution, model execution diagnostics, and simple 
display facilities for model traces [11].  The system and the 
embedded cognitive model that we describe below 
constitute a step in the direction of a practical CMIE tool. 

THE COGNITIVE MODEL 
The ACT-R architecture is well-suited to the exploration 
of a user interface, in part because it explicitly divides 
knowledge into declarative and procedural elements.  The 
declarative elements are chunks of factual knowledge 
stored in working memory.  The procedural elements are 
production rules that operate on declarative chunks to 
generate behavior and to generate new chunks of 
knowledge.  ACT-R models have been applied to many 
cognitive problems, such as counting and arithmetic, in 
which productions generate new declarations until a chunk 
that stores the answer to the problem is generated. 

ACT-R also contains perceptual and motor modules that 
allow models to handle tasks of searching and attending to 
a computer display, under some implementation 
restrictions.  The motor module simulates hand and finger 
movements for manipulation of a keyboard and a mouse, 
while the perceptual module searches and attends to 
features on the display.  Production rules describe how the 
perceptual module should focus attention on perceptual 
elements in the computer display, and how the motor 
module should execute appropriate responses to the 
display.  ACT-R models have been applied to simple 
problems, such as scanning menus for target elements, as 
well as to more complex problems, such as simulations of 
driving behavior. 

The cognitive model we have designed explores a 
graphical user interface in real-time.  It builds directly on 
well-understood models of low-level cognitive tasks.  The 
model scans the display for meaningful visual features, the 
way a model might scan a menu list of words for a target 
word.  Simple cognitive transformations are made to 
interpret how particular visual features might be used; 
widgets are identified and catalogued.  The model chooses 
a widget and moves the mouse to click on that visual 
feature.  We flesh out this brief description in the sections 
below. 

A metaphor for exploring the user interface 
An application's interface in the Windows graphical 
display commonly consists of a main window and some 
number of pull-down menus.  Pull-down menus 
themselves look like windows, small bounded regions 
rendered to appear raised above the application's display.  
Menus can be thought of as separate from the main 
window, revealing functionality that was previously 
hidden.  In our cognitive model, the graphical user 
interface is treated as a set of distinct screens that are 
causally connected but graphically separate.  In this way 
the graphical user interface for a specific application 
becomes like a set of rooms, a common user interface 
metaphor.  Each room has individual characteristics, such 
as the items it contains, that distinguish it from other 
rooms.  Doorways provide a mechanism for transition 
between rooms.  In the graphical user interface each 
window, dialog, or menu constitutes a screen that 
corresponds to a room.  The features unique to each screen 
are familiar widgets: strings of text, buttons, etc.  Some 
widgets are special in that their use causes a transition to a 
new screen.  This is true of pull-down menus, for example; 
clicking on the string of a pull-down menu causes the 
appearance of a new screen containing a list of menu 
options.  Some menu options cause transitions to new 
screens by causing dialog windows to appear. 

Though the rooms metaphor is useful, it is not exact down 
to the lowest level of detail.  In particular, transitions are 
not necessarily reflexive.  For example, to transition to the 
Open dialog screen, we must transition to the file-menu 
screen by clicking on the "File" string and then transition 
to the Open dialog screen by clicking the "Open" string.  
Clicking on the "Open" string causes the menu screen to 
disappear and the Open dialog to appear.  Closing the 
Open dialog does not cause a transition back to the file 
menu screen, but back to the main application screen, from 
which we started. 

Building the cognitive model around the screens-as-rooms 
metaphor provides a useful representation of the 
application's interface when exploration is terminated.  
The representation of the application's interface in the 
agent's memory is of screens and the widgets that cause 
transition.  Figure 1 shows a partial dump of the ACT-R 



memory after exploration.  Main-screen is the main 
application window, Newscreen782 is the file menu, and 
Newscreen1586 is the open file dialog.  The widgets that 
enable transition between the screens are Newmenu660, 
the "File" string that causes the file menu to pull down, 
Newstring842, the "Open" string in the file menu that 
causes the appearance of the Open dialog, and 
Newcloser907 is the "Cancel" button in the Open dialog.  
The full representation would include a catalog of all 
transitional widgets as well as non-transitional widgets 
found on each screen.  Figure 2 is a graphical 
representation of the declarative knowledge presented in 
Figure 1.  The dialog on the top left is an application we 
will use for examples throughout this paper.  The 
hierarchical order of the screens is explicitly captured, as 
are the transitional mechanisms.  The pathways through 
the application's interface can easily be reconstructed from 
the model's internal representation. 

Widget identification 
The screens-as-rooms metaphor abstracts away some of the 
complexity of building a model that can identify and focus 
attention on windows and menus.  However, the task of 
identifying widgets, especially those that will cause 
transition from one screen to the next, remains.  We 
assume that the screen is segmented into visual features 

pre-attentively before the cognitive model ever considers 
the meaning of these visual features.  Thus the cognitive 
model is presented with visual objects that consist of 
entities such as words, rectangles, icons, and so forth.  The 
process of segmenting the graphical user interface is 
handled by an independent system (SegMan, as described 
below) tied into the ACT-R perceptual module.  The ACT-
R model needs only to direct attention to these visual 
objects and apply productions to the visual objects in order 
to catalog them.  For simplicity's sake, the model 
categorizes all visual objects as widget or non-widget.  
Visual objects categorized as widgets are further 
categorized as transitional or non-transitional. 

The identification of transitional widgets is essential to 
task of exploration.  This identification is simplified by 
conventions of the Windows interface.  Widgets that cause 
the appearance of dialog windows are often labeled with 
strings ending with ellipses, indicating that unseen 
functionality is to be revealed when the widget is activated.  
Widgets so labeled are automatically cataloged as 
transitional widgets.  This convention is not by itself 
sufficient enough for the model to identify all transitional 
widgets.  Pull-down menus are transitional widgets but do 
not use ellipses.  Instead, the transitional nature of menus 
is implied by the location of strings of text at the top of the 
window, in the visually distinct area of the menu bar.  
Special production rules can identify menus as transitional 
widgets by applying a heuristic that tests whether strings 
are within the bounds of the menu bar, an approximation 
of the heuristic a human user might use to identify a string 
of text as a menu.  Finally, there are widgets that do not 
follow the ellipses convention and are not menus.  Further 
heuristic productions are based on a simple set of 

Figure 2. Graphical representation of declarative 
knowledge after  exploration. 

Mai n- Scr een 
  i sa SCREEN 
  pr ev ni l  
  t ype Per si st ent  
  cur r ent  t  

Newscr een782 
  i sa SCREEN 
  t r i gger  Newmenu660 
  pr ev Mai n- Scr een 
  t ype Tr ansi ent  
  cur r ent  ni l  

Newscr een1586 
  i sa SCREEN 
  t r i gger  Newst r i ng842 
  pr ev Newscr een782 
  t ype Per si st ent  
  cur r ent  ni l  

Newcl oser 908 
  i sa WI DGET 
  name “ cancel ”  
  scr een Newscr een1586 
  obj  Text 896 
  got o Mai n- Scr een 
  ki nd Cl oser  

Newmenu660 
  i sa WI DGET 
  name “ f i l e”  
  scr een Mai n- Scr een 
  obj  Text 629 
  got o Newscr een782 
  ki nd Menu 

Newst r i ng842 
  i sa WI DGET 
  name “ open”  
  scr een Newscr een782 
  obj  Text 806 
  got o Newscr een1586 
  ki nd St r i ng 

Figure 1. Declarative representation of an 
application inter face after  exploration. 



vocabulary terms that tend to identify transitions.  Terms 
like "Properties," "Options," and "Setup" usually cause the 
appearance of dialog windows even if they do not contain 
ellipses.  Other terms like "Cancel" and "OK" usually 
cause screen transitions by closing the current window or 
dialog.  This vocabulary set is a plausible replacement for 
the contextual understanding that even a novice human 
user can rely upon. 

Model validity 
While the techniques and productions used in the 
exploratory ACT-R model are based on simpler, validated 
models, there is no guarantee that our model is also a valid 
representation of a human user performing the same 
exploring task.  Our representational choices are consistent 
with higher-level representations of exploratory navigation 
(e.g. Spence's model [15]), but the model itself has not 
been validated with respect to human performance.  This is 
not unusual in cognitive modeling research, in cases where 
a model is used as a proof of concept or to elucidate a 
plausible reasoning process, though it does reflect the 
maturity of the work.  In our case, validation and 
performance tuning are open questions for further 
research. 

MODEL PROCESSING 
ACT-R provides perceptual and motor modules for 
interaction with a computer display.  ACT-R models do 
not interact directly with the computer display, however, 
but instead rely on modifications to the user interface 
management systems (UIMS) for input and output. One of 
our goals is to build a system that can explore a real 
application running on the Windows graphical desktop, in 
a cognitively plausible manner.  To do this, the model 
needs to segment the actual running graphical display in 
real-time and convert the display into visual objects that 
the ACT-R model could understand.  SegMan, a successor 
to the VisMap system [18, 17], is designed to segment the 
graphical user interface using simple pattern-matching 
templates and procedural relationships in order to segment 
the pixels of the display into meaningful groups that 
represent letters, words, buttons, windows, and icons.  The 
implementation details of the SegMan system have been 
presented elsewhere; suffice it to say that it does a 

reasonable job of identifying the features of the graphical 
user interface that are relevant to its usage.  Using the 
SegMan system enables us to connect the ACT-R model 
directly to the state of the Windows graphical user 
interface from the same perspective as a human user. 

Screen segmentation 
To interface the SegMan system with the ACT-R 
perceptual model, we first constrain SegMan to segment 
only within the bounds of the current "screen" that the 
cognitive model is considering, eliminating all distracting 
information from consideration.  This is done to make the 
implementation of the cognitive model easier, so that it 
does not have to determine the bounds of application 
window itself.  Windowing applications present 
themselves in a way that naturally constrains the user's 
attention by presenting its windows and sub-windows in a 
stack.  Even if the sub-windows are not occluding previous 
windows, the top-most window still forces the user's 
attention because all windows lower in the stack are inert.  
We assume that any agent that uses the graphical user 
interface will be capable of constraining its focus of 
attention to within the bounds of the field of view 
associated with the top-most window in the application's 
stack. 

The SegMan system uses segmentation to determine which 
window or menu is top-most.  Within the real estate of the 
top-most screen, the SegMan system further segments the 
display to identify all the words and their positions relative 
to the screen bounds.  These strings are passed on to the 

( p at t end- t o- menu 
   =goal > 
          i sa f i nd- obj ect  
          ki nd menu 
   =l oc> 
          i sa vi sual - l ocat i on 
          t i me now 
          at t ended ni l  
          scr een- y ( l ess- t han 35)  
   ==> 
   ! send- command!  : VI SI ON 
      move- at t ent i on : l ocat i on =l oc 
   =goal > 
          l ast l oc =l oc)  

Figure 3. Production to find a menu str ing. 

( p f ound- wi dget - menu 
   =goal > 
          i sa f i nd- obj ect  
          ki nd menu 
          l ast l oc =l oc 
   =l oc> 
          i sa vi sual - l ocat i on 
          at t ended t  
   =obj > 
          i sa vi sual - obj ect  
          scr een- pos =l oc 
          val ue =val ue 
   =vocab> 
          i sa vocabul ar y 
          name =val ue 
          ki nd menu 
   =scr een> 
          i sa scr een 
          cur r ent  t  
          t ype per si st ent  
   =st at e> 
          i sa modul e- st at e 
          modul e : VI SI ON 
          modal i t y f r ee 
          l ast - command move- at t ent i on 
   ==> 
   =newmenu> 
          i sa wi dget  
          name =val ue 
          scr een =scr een 
          obj  =obj  
          ki nd menu 
   ! pop! )  

Figure 4. Production to incorporate a valid menu 
feature into internal representation 



ACT-R perceptual module as text features.  At this time all 
other features except text are disregarded.  This is done 
because widgets in the graphical user interface tend to be 
labeled textually.  Thus, searching for the string, "OK", 
can identify the "OK" button.  Not all features have text 
labels.  Icon buttons in the toolbar is a prime example of 
this exception.  It should be noted, however, that the 
functionality provided by buttons on the toolbar is almost 
always available in the pull-down menus.  We are able to 
utilize a significant portion of any standard Windows 
application when only considering textual information. 

Production rules 
The declarative portion of the ACT-R model's memory is 
broken into chunks where a chunk can be any piece of 
factual information and all the parameters that describe it 
or a goal that needs to be accomplished and all the 
parameters that explicitly describe the goal. The 
production rules are memorized procedures about how to 
process goals.  A production rule fires when the goals and 
the declarative facts in declarative memory match a 
specific activation pattern.  For example, the find-
something-to-explore production fires if, and only if, there 
is an unfinished goal to explore the interface and when 
there is a transitional widget on the current screen that has 
not been explored yet.  The find-something-to-explore 
production fires, resulting in a new declarative goal being 
generated: to click on the unexplored transitional widget 
and record the changes that place on the display.  This 
new goal and any new chunks created in memory will 
cause other productions to fire, such as the use-widget 
production.  Through the selection of production rules and 
their manipulations of declarative memory, the following 
pattern of behavior emerges: 

1. Serially attend to every text feature on the current 
screen and create new declarative chunks for 
transitional widgets. 

2. Choose a transitional widget that has not been 
explored. 

3. Move mouse to the chosen widget. 

4. Click on the widget and create a new screen chunk. 

5. Repeat. 

This pattern causes the agent to explore the application 
interface in a depth-first-like fashion.  Fortunately, most 
applications do not provide many levels of sub-screens and 
have a low branching factor.  Furthermore, almost all sub-
screens provide some widget that closes the screen, 
providing the agent with the ability to backtrack.  The 
exception to this is menus.  Menu screens (Menu screens 
are referred to as transient screens because they disappear 
when an action is taken, as opposed to windows and 
dialogs which are referred to as persistent screens which 
do not disappear until commanded) disappear once used, 
so backtracking from a screen spawned by a menu screen 

necessarily requires the agent to backtrack two levels 
instead of the customary one level.  Because of this, 
exploration of the application interface cannot be strictly 
depth-first.  The agent must, after backtracking two levels 
past a menu screen, retrace its steps back to the menu 
screen in order to fully explore all additional transitions 
from the menu screen.  We illustrated an example of this 
in the scenario where the agent navigates to the Open 
dialog screen.  Upon closing the Open dialog screen, the 
agent is returned to the main screen.  If the agent had not 
yet explored the ``Print setup'' option on the file menu 
screen, it must return to the file menu screen by retracing 
its steps.  Fortunately, the agent can rely on its internal 
model of the interface. 

Serially attending to widgets on the current screen is very 
similar to finding a visual target in a field of visual 
distractors.  The production to shift attention to a menu 
means that the model must pick out a string of text from 
the sensory buffer (implemented in the low-level ACT-R 
perceptual module) that meets certain qualifications.  That 
qualification is a visual feature that is text and is less than 
35 pixels from the top of the screen.  Figure 3 shows the 
production to shift attention to a menu string.  Once the 
perceptual attention has been drawn to a candidate, the 
model can confirm that the attended visual feature is in 
fact a valid menu by comparing it to the vocabulary that 
has stored in declarative memory.  If the attended visual 
feature is determined to be a menu, then a new declarative 
chunk is created to represent that visual feature.  Figure 4 
shows the production to incorporate a valid menu into the 
agent's internal declarative representation of the interface. 

Choosing an unexplored widget to explore is trivial in 
ACT-R.  On the left-hand side of the production we 
specify the criteria for a widget that has not been explored 
yet.  ACT-R will automatically bind a declarative chunk 
that satisfies the established criteria.  A widget that has not 
been explored has a null goto field, indicating that we do 
not know what screen we will transition to.  With the 
unexplored widget chunk bound to a variable, we can push 
a new goal to click on that widget onto the stack.  The 
production to the left in  binds an unexplored widget and 
creates the sub-goal to click on that widget.  It is important 
to indicate that the unexplored widget that we bind is not a 
widget that will close the screen because we do not want to 
backtrack to a previous screen before we have exhausted 
the unexplored widgets on the current screen.  Another 
important aspect of the explore-screen production is that it 
also pushes the goal to register the next screen onto the 
ACT-R goal stack.  This will ensure that when the widget 
is clicked the next goal to be considered will be to serially 
scan the screen for widgets.  This sets up the child screen 
so that it can be explored and, since the explore goal is not 
removed from the goal stack, the explore-screen 
production will again become valid for the child screen, 



causing further depth-first browsing.  The production will 
continue to fire repeatedly as long as there are unexplored 
widgets on the current screen, after which point, a new 
productive will become valid.  The production to the right 
in Figure 5 chooses a widget that will close the current 
window once all other widgets on the current window have 
been explored. 

The productions to move and click the mouse on 
transitional widgets are straightforward.  Each widget 
chunk in declarative memory has a corresponding location 
in the visual array.  Moving the cursor requires the agent 
to recognize that the mouse cursor's location in the visual 
array is not the same as the widget's location in the visual 
array.  A command is sent to the motor module to move 
the hand – which is holding the mouse – so that the mouse 
cursor's location is that of the widget's position.  Clicking 
on the widget, likewise, requires a production to send a 
command to the motor module to click the mouse button.  
Once the widget has been clicked upon, the same 
production that initiated the click command must create a 
new chunk to represent the new screen that appears.  
Depending on what kind of widget has been clicked on, 
the new screen could be a window or dialog (a persistent 
screen), or a menu (a transient screen).  Different 
productions are required for each possibility.  Aside from 
the type of screen chunk that is added to declarative 
memory, there is no other difference between the 
production that clicks on a menu widget and the 
production that clicks on a regular string widget.  

Altogether, the model contains 42 productions of the types 
discussed above.  Working memory is initially loaded with 
22 chunks representing widget and screen types, 
vocabulary, and goals.  At the end of the exploration of the 
application shown in Figure 2, over 700 items have been 
processed by working memory. 

Limitations 
The current exploration system suffers from a number of 
limitations of varying severity.  The first limitation is that 

its cognitive model's productions were designed with the 
``typical'' Windows application in mind.  The typical 
Windows application uses a standard set of widgets and 
obeys certain conventions.  Applications such as Adobe 
Photoshop could not be explored with the current system 
because of its rampant use of non-standard widgets, non-
standard toolbars, and the use of multiple open 
documents.  Even running in a typical application, the 
exploration model is limited by its reliance on conventions 
and on its built-in vocabulary.  If the conventions, such as 
the use of ellipses, are violated, the model will fail to 
recognize transitional widgets.  If the model's vocabulary 
is used in unanticipated ways, the model will see 
transitional widgets where there are none. 

The exploration model relies heavily on its understanding 
of conventions and vocabulary, at least partly because the 
current implementation is unable to distinguish an entirely 
new screen from an existing screen that has just changed.  
Often clicking on widgets in the screen will cause the 
screen features to change.  New widgets could appear or 
text within the screen could change radically enough that 
the model might not be able to find a sufficient number of 
similarities.  The flip side of this limitation is that if a 
child window is spawned, it might be too similar to the 
previous screen to be regarded as a new screen.  In order to 
simplify the domain, the model tries to identify those 
widgets that will cause transitions to other screens.  We 
believe that making that determination is easier than 
determining which screen we are in at any given time, 
given that a screen can be highly dynamic.  To determine 
which widgets are transitional widgets requires the system 
to possess more background knowledge however, and the 
sufficiency of the background knowledge is limited by the 
designer's ability to predict new situations. 

For similar reasons, our approach also cannot handle 
tabbed dialogs and other interaction scenarios in which 
clicking a widget causes a change in the state of a window 
without generating an entirely new window. 

( p expl or e- scr een 
   =goal > 
          i sa expl or e 
   =scr een> 
          i sa scr een 
          cur r ent  t  
          r egi st er ed t  
   =obj ect > 
          i sa wi dget  
          scr een =scr een 
          got o ni l  
        -  ki nd cl oser  
   ==> 
   =newgoal - use- wi dget > 
          i sa use- wi dget  
          t ar get  =obj ect  
   =newgoal - r egi st er > 
          i sa r egi st er - wi dget s 
   ! push!  =newgoal - r egi st er  
   ! push!  =newgoal - use- wi dget )  

( p f i ni shed- expl or i ng- i n- per si st ent  
   =goal > 
          i sa expl or e 
   =scr een> 
          i sa scr een 
          cur r ent  t  
          t ype per si st ent  
   =obj ect > 
          i sa wi dget  
          scr een =scr een 
        -  got o ni l  
   =cl oser > 
          i sa wi dget  
          scr een =scr een 
          ki nd cl oser  
          got o = 
   ==> 
   =newgoal > 
          i sa use- wi dget  
          t ar get  =cl oser  
   ! push!  =newgoal )  

Figure 5. Productions for  explor ing unexplored widgets and for  closing the screen. 



A more general limitation arises from the tabula rasa 
flavor of this approach.  With no information about the 
specific domain of an application, the system cannot take 
actions that lead to states in which different sets of 
operations are appropriate.  A simple example of this 
limitation can be seen if we consider Cut or Copy 
operations: these are only active if some object is selected 
in the application.  Cut and Copy are immediate rather 
than transitional operations, but they have analogs, for 
example, in operations that allow the modification of 
object properties.  In the tasks to which we have put the 
exploration system, it has generally worked in an open 
application with no external document or other 
information loaded.  To be able to handle operations such 
as Cut and Copy, the model would require an 
understanding what it means to perform Cut and Copy 
operations and when they are applicable.  In the future, the 
agent will allow such information to be provided during 
initialization.  In fact, the declarative background 
knowledge should be customizable to any level of 
expertise. 

A different but equally general limitation lies in the 
stability of the graphical user interface as a domain in 
which autonomous agents, whether based on cognitive 
models or not, can operate.  If the domain is highly 
unstable, then the agent is likely to mistake changes in the 
Windows desktop that are unrelated to the operation of the 
target application as being significant.  Furthermore, if 
unrelated elements in the Windows desktop occlude part of 
the target application's interface, the agent can become lost 
or confused.  When the agent becomes confused or lost, the 
ACT-R production system on which it is built will halt 
because the cognitive model will have entered a state in 
which no productions are valid. 

Finally there are a few shortcomings in the specific 
implementation we have built.  Our system is still 
relatively fragile, a proof of concept rather than a working 
tool.  Because of vocabulary and image processing 
limitations, the system currently performs a single-level 
traversal of arbitrary applications (i.e., examining the 
contents of all top-level menus) completely, but with only 
selective exploration of dialogs arising from some menu 
items.  Thus the only application that the system has 
explored in detail is the example application shown in 
Figure 2.  We will soon have performed partial exploration 
of Notepad, Internet Explorer, PowerPoint, and XEmacs.  
The implementation problems are not conceptual, but 
more a matter of bookkeeping, and we expect to be able to 
address them in the short term.  As another part of our 
continuing development we are porting the 
implementation to the most recent version of ACT-R, 5.0, 
from its current use of ACT-R 4.0 and the perceptual-
motor extension, ACT-R/PM 1.0b5. 

DISCUSSION 
Given a system such the one we have described, we face 
two questions: what kind of results can be generated, and 
how should they be used? 

The exploration process can provide summaries of the 
navigational structure of an interface.  For example, for 
our sample application, if we treat the menu structure as a 
graph to be traversed, with a closed application as the 
starting node at depth 0, then we can produce summaries 
such as the following: 

Maximum depth: 4 

Mean depth: 2.45 

Maximum transitions: 6 

Mean transitions: 2.3 

For example, the main screen of the example application 
has six transitions (menu headers) and leads through a 
menu selection to a Print Setup dialog to a Print Options 
dialog at the deepest point.  From this kind of summary we 
might identify unusual outliers or unexpected averages 
when comparing screens within the application and 
between similar applications.  How depth and number of 
transitions affects usability is highly dependent on the type 
of application and the degree of expertise of the user.  
However, if an application is known to have good 
usability, its metrics can be compared to the metrics of 
other similar applications as a means of determining how 
these metrics relate to the usability of a certain class of 
applications. 

We can also generate a map of an application from which 
paths from the starting screen to specific target strings can 
be derived.  This path information can be exported so that 
other agents can be made aware of the layout of the 
application.  The user might ask of another computer 
agent where functionality associated with the specific 
string, “Play sounds,”  can be found in the application.  
The traversal of the map produces a path through the 
Properties menu.  Another possibility, not yet possible in 
our system, is suggested by research in automated 
evaluation of the visual layout of interfaces [14, 16].  In 
this case, layout evaluation would not be based on absolute 
metrics, but rather on relative comparisons for consistency. 

Our current work on the system falls into two areas.  First, 
we are improving the robustness and generality of the 
implementation; we believe that it will eventually be 
possible to apply the system to arbitrary applications to 
produce detailed analyses.  Second, we are examining 
relationships to the literature on automated interface 
generation.  Given the data produced by the navigation 
process, it should be possible to construct a structured 
representation of the temporal and spatial changes that can 
occur within an application in the graphical user interface, 
such as a grammar.  We believe that such a grammar 
could motivate the construction of more robust production 



rules that make fewer assumptions about the interface 
itself.  Such grammar-based production rules might also 
allow us to reduce the number of limitations because we 
would be able to better predict how a widget will modify 
the screen, allowing us to end our reliance on the 
distinction between transitional widgets and non-
transitional widgets. 

The behaviors displayed by the current system, and those 
of related systems [17, 18], suggest a direction of growing 
interest to cognitive modeling researchers: the evaluation 
of off-the-shelf interactive applications by modeling 
techniques.  A wide range of results have been produced by 
using cognitive models to evaluate different aspects of 
computer applications, on and off the desktop.  Tasks have 
included menu selection [2], dialing cellular telephones 
while driving [12], and flying aircraft [13], among many 
others.  In most cases, however, even for models that 
include perception and motor components [3, 7, 10], the 
models have access either to the internals of the 
application or to its interface.  This raises the question, in 
some cases, whether plausible assumptions are made about 
the transfer of information between the model and the 
environment, rather than respecting known constraints on 
human visual or motor processing [1].  The system 
described in this paper is the first we know of that 
performs an automatic evaluation (under the limitations 
discussed in the previous section) of an independently 
developed system strictly from the user's perspective on the 
interface. 
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