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SUMMARY

Narrative Intelligence is the ability to craft, tell, understand, and respond appro-

priately to narratives. It has been proposed as a vital component of machines aiming

to understand human activities or to communicate effectively with humans. How-

ever, most existing systems purported to demonstrate Narrative Intelligence rely on

manually authored knowledge structures that require extensive expert labor. These

systems are constrained to operate in a few domains where knowledge has been pro-

vided.

This dissertation investigates the learning of knowledge structures to support Nar-

rative Intelligence in any domain. I propose and build a system that, from an corpus

of simple exemplar stories, learns complex knowledge structures that subsequently en-

able the creation, telling, and understanding of narratives. The knowledge represen-

tation balances the complexity of learning and the richness of narrative applications,

so that we can (1) learn the knowledge robustly in the presence of noise, (2) generate

a large variety of highly coherent stories, (3) tell them in recognizably different narra-

tion styles and (4) understand stories efficiently. The accuracy and effectiveness of the

system have been verified by a series of user studies and computational experiments.

As a result, the system is able to demonstrate Narrative Intelligence in any domain

where we can collect a small number of exemplar stories. This dissertation is the first

step toward scaling computational narrative intelligence to meet the challenges of the

real world.

x



CHAPTER I

INTRODUCTION

Our dreams and stories may contain implicit aspects of our lives even

without our awareness.

— Daniel J. Siegel

The long history of narratives in human civilizations can be at least traced back

to early myths found in diverse geographical regions, which are believed to define

collective identities and justify social institutions [95, 104]. Indeed, narratives in

various forms play multiple important functions in human cultures, both for the

cognition of individuals and the collective cognition of a society. As a result, Narrative

Intelligence (NI), or the ability to create, understand and respond to narratives,

is believed to be crucial for human intelligence, and by extension, crucial for the

simulation of human intelligence [20, 40, 57, 113, 203].

In the past few decades, attempts to computationally simulate Narrative Intelli-

gence has been limited by the reliance on manually authored knowledge, whose cost

of authoring limits the scalability of computational systems. In this dissertation, I

investigate the problem of learning knowledge in support of Narrative Intelligence

tasks. My approach learns narrative knowledge from a corpus of simple stories and

applies the learned knowledge to accomplish story generation, storytelling, and story

understanding.

This introductory chapter defines Narrative Intelligence and motivates the prob-

lem of learning knowledge in support of NI tasks.

1



1.1 Narratives and Narratology

Before discussing Narrative Intelligence, it is necessary to first define the notion of a

narrative. Prince [141] contrasted several definitions of narrative. Here I take a broad

definition:

Definition 1 (Narrative). A narrative is two or more conceptually and temporally

related events, which are presented through a particular medium to its audience.

In this definition, narratives include “novels and romances, novellas and short sto-

ries, history, biography and autobiography, epics, myths, folktales, legends and bal-

lads, news reports, spontaneous accounts in ordinary conversation, and so on” [141].

A narrative may be told orally, written in text, performed on stage, presented as audio

and video clips, or communicated through other media. Throughout this dissertation,

I use the word “story” interchangeably with the word “narrative”.

The prototype theory of categorization [157] argues that a concept is defined not

by clear-cut rules but by prototypical examples. In this sense, prototypical examples

of narrative would include Homer’s Iliad, Shakespeare’s Hamlet, and CBS’s The Big

Bang Theory. We could list features for prototypical narratives, such as involving the

same human or anthropomorphic characters, consisting of a beginning, a middle and

an ending, containing events related by causal relations, etc. Having these features

would make a narrative more prototypical and more easily recognizable as a narrative,

but in my definition these features are not strictly necessary.

In the study of narratives, the structuralist school has proposed models for break-

ing down a narrative into multiple levels. In particular, Mieke Bal [5] proposed a

three-tier model, the three tiers being denoted as the fabula, the sjuzhet1, and the

media in this dissertation. The fabula includes every event that actually happened

to and around characters in the narrative, which may happen simultaneously. The

1Alternative spellings include sjužet, syuzhet, suzhet, suzet, sujet, etc.
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sjuzhet includes the events that appear in the narrative. That is, the sjuzhet is a

subset of the events in the fabula, which have been rearranged into a linear sequence.

The ordering of events in the sjuzhet may differ from their ordering in the fabula.

Finally, the sjuzhet is realized in the media tier as oral narration, text, video, etc.

Bal’s model is not meant to be a cognitive account about how humans create

or process narratives, but is used to an analytical tool to delineate the complexity

of a narrative and show different layers of construction. I will return to the three

tiers when defining Narrative Intelligence. For more details on narratives and tiered

narrative structures, see Section 2.1.

1.2 Narrative Intelligence

Cognitive research shows that narratives play important roles in human cognition and

communication. Narratives help us communicate complex situations and understand

intentions of other people [21, 135]. Storytelling can persuade and impart values [74],

create emotional bonding between teller and listener [45], help the construction of self

identities [167], and facilitate language learning among children [83].

Given the important role of narratives in human culture and human communica-

tion, many AI researchers and cognitive scientists (e.g. [20, 40, 57, 113, 203]) believe

that Narrative Intelligence2 or the ability to craft, tell, understand and respond ap-

propriately to narratives, is crucial for human intelligence, and by extension, crucial

for the simulation of human intelligence. Thus, research into Narrative Intelligence

should bear significance in the quest for human-level AI and AIs capable of commu-

nicating with humans.

Definition 2 (Narrative Intelligence). Narrative Intelligence is the ability to craft,

tell, understand and respond appropriately to narratives.

2The term Narrative Intelligence is said to have been coined at MIT in 1990 by Marc Davis and
Michael Travers [41]

3



Recent years have seen the emergence of real-world applications of Narrative In-

telligence. As consumers often consume digital content, such as video games and

virtual training scenarios, faster than the content can be produced, automated nar-

rative generation and rendering techniques may help to satiate the appetite for new

content. We may, for example, generate new plotlines for games to adapt to player

preferences and improve replayability [97]. Similarly, we can create new training

scenarios catering to different individual needs [123] and automatically produce cine-

matographic rendering of 3D scenes [151]. Interactive narratives have been deployed

in a number of science, archaeology, and theatrical museums (e.g. [159, 170, 194]). A

storytelling robot receptionist was installed at Carnegie Mellon University [70]. Story

understanding systems have been used to retrieve cyberbulling stories similar to a

user’s story [102], to retrieve local viewpoints for news events [107], and to retrieve

previous baseball games to be used as commentary [93].

In order to understand the complex information-processing ability that is Narra-

tive Intelligence, it is helpful to study NI as several interrelated components. I propose

NI contains a generative aspect and a comprehension aspect. Borrowing from Bal’s

three-tiered model discussed in Section 1.1, we can further break down both aspects

into several components. First, generative Narrative Intelligence can be broken down

into the following major components:

[G1] The ability to create a number of events that actually happen in the narrative

world, so as to achieve certain aesthetic or communicative goals, such as

coherence, suspense or persuasion.

[G2] The ability to create the sjuzhet based on the fabula, so as to achieve certain

aesthetic or communicative goals. Common techniques used to create the

sjuzhets include, but are not limited to, selecting events from the fabula,

rearranging selected events, and projecting the events to a particular point

of view (e.g. a personal perspective from a story character).

4



[G3] The ability to describe or perform the sjuzhet in an acceptable format, such

as texts, movies, comic strips, or theatrical performances, to the audience, so

as to achieve certain aesthetic or communicative goals. This process creates

the media.

In other words, the first three components constitute the process of creating the

fabula, transforming the fabula to the sjuzhet, and transforming the sjuzhet to the

media. The comprehension aspect of Narrative Intelligence can be similarly broken

down to include:

[U1] The ability to infer what events are described by the media. This ability

infers the sjuzhet from the media, and is the reverse process of G3.

[U2] The ability to infer what events have happened from the events being de-

scribed. This ability infers the fabula from the sjuzhet, and is the reverse

process of G2.

[U3] The ability to understand the aesthetic and communicative purposes of the

narrative and produce appropriate affective responses. Possible responses

include common affects, such as happiness or disgust, and narrative-specific

affects, such as identification with characters or suspense (cf. [47, 112, 126]).

Thus, narrative comprehension involves backward inference. By reading the text or

watching the movie, we are supposed to infer the sjuzhet from the media, and the

fabula from the sjuzhet, and interpret their implications. Such backward inference will

inevitably encounter uncertainty, so we must allow it to make reasonable mistakes.

Despite being listed separately, the generative and comprehensive aspects of Nar-

rative Intelligence do not work in isolation for the following reasons. First, the two

aspects share knowledge structures and operations on the knowledge structures. Sec-

ond, narrative creation requires the help of narrative understanding. Sharples [163]

5



propose a cognitive theory that creative writing alternates between an engagement

stage of intensive writing and a reflection stage where the results are reevaluated.

That is, a good story writer probably needs good comprehension skills, so that she

can continuously evaluate her own work, predict the audience’s affective responses,

and revise accordingly. Similar models are proposed by Flower and Hayes [58] and

Gervás and León [68]. Finally, story understanding also requires generative abili-

ties, as understanding often requires drawing connections between elements presented

separately. The ISSAC story understanding system [120], for example, is capable of

creating novel analogies in order to understand novel concepts in science fictions.

I do not claim that the above component-based characterization of Narrative In-

telligence accurately captures how the human brain creates, understands or responds

to narratives. The main purpose of this description is computational. It provides one

possible division of labor for the complex processes underlying narrative creation and

comprehension. It may help AI researchers create modular computational systems,

or focus on one ability without losing sight of other challenges. Several computational

NI systems [4, 33, 119] adopted the division from Bal’s three-tier model in order to

create a pipelined process. In this dissertation, I implement components G1, G2, G3,

and U2 (See Section 1.4).

1.3 Knowledge Intensity of Narrative Intelligence

How can we build computational systems that can demonstrate Narrative Intelligence

as characterized above? Evidence from both cognitive science and artificial intelli-

gence systems suggests that in order to achieve Narrative Intelligence, we need a great

amount of knowledge about the world and people described in the narratives.

Cognitive studies suggest that in achieving Narrative Intelligence, humans make

use of extensive knowledge (e.g. [16, 202]) , which often needs to be acquired and

developed over an extended period of time (e.g. [2, 193]). Hudson and Shapiro [81]

6



listed four types of knowledge needed for narrative intelligence: (a) content knowl-

edge, or knowledge about events, event sequences, characters and social interactions,

(b) structural knowledge, or knowledge about the order and manner in which a story

is narrated, (c) microlinguistic knowledge, or syntactic knowledge for the understand-

ing and production of textual narrative representation, and (d) contextual knowledge

about pragmatic functions that stories serve for tellers and listeners. The categoriza-

tion of knowledge by Hudson and Shapiro is consistent with different components of

Narrative Intelligence defined earlier. The first three types of knowledge roughly cor-

respond to the creation and understanding of fabula, sjuzhet, and media respectively.

The last type of knowledge corresponds to the ability to understand storytellers’

intentions and audience’s responses (U3).

Existing computational NI systems are also heavily reliant on knowledge. From

the knowledge perspective, there are mainly two approaches toward computational

Narrative Intelligence: case-based reasoning (CBR) systems and planners. The case-

based reasoning approach (e.g. [38, 200, 190, 67]) builds Narrative Intelligence on

known stories. A new story can be understood in the context of old stories, and

snippets of known stories can be combined to create new stories. As one of the

earliest research into narrative understanding, Schank and Abelson [161] proposed

scripts, or the knowledge of typical events organized in typical temporal and causal

relations, as central to the understanding of narratives. Most CBR systems adopt

some variants of script. A second type of narrative intelligence systems (e.g. [115,

92, 154] employ knowledge of individual actions with preconditions and effects. By

matching preconditions with effects, a story planner can combine actions in any

causally consistent way to generate stories it has not known before. Notably, some

hybrid systems [136, 153, 97] utilize both script-like knowledge and knowledge about

individual actions (See Section 2.2 for a more complete review of computational NI

systems).
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Regardless of the exact representation of knowledge, existing NI systems mostly

rely on human experts to manually author the knowledge content, which is usually an

expensive process. Although learning is a major component in the 4-phase CBR cy-

cle, most existing CBR systems require complex knowledge that are difficult to learn,

so the learning phase is usually ignored. Consequently, most computational systems

purported to demonstrate Narrative Intelligence are restricted to micro-worlds where

background knowledge has been provided a priori. These systems can generate and

understand narratives well in a few domains, but their Narrative Intelligence dimin-

ishes once the domain of application changes. This knowledge bottleneck has been

widely recognized. Nevertheless, the problem of automatically acquiring necessary

knowledge to support NI has not been thoroughly investigated.

1.4 Open Narrative Intelligence

In order to tackle the knowledge bottleneck that has troubled computational NI sys-

tems, Open Narrative Intelligence systems have begun to attract research interest

(e.g. [177, 166, 114]). Open NI Systems are not restricted to a predefined set of

domains because they are capable of learning knowledge necessary for Narrative In-

telligence in unknown domains.

In this dissertation, I aim to systematically tackle the knowledge bottleneck issue

by developing an Open NI system that supports story generation, telling, and under-

standing. More specifically, it attempts to answer the following research questions:

� How can a computational system acquire structured knowledge in support of

narrative intelligence?

� What is a good computational representation for such knowledge?

� How can the learned knowledge be utilized efficiently in story creation, story-

telling, and story understanding?
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The answer to these questions is summarized as the thesis statement of this Ph.D.

dissertation:

A computational system can acquire knowledge in the form of plot graphs,

which accurately describe common situations in the real world, to sup-

port Narrative Intelligence in a broad range of domains. The learned

plot graphs can support the generation of a large variety of coherent nar-

ratives, the telling of narratives in distinct narrator styles, and efficient

comprehension of narratives.

This dissertation will demonstrate a system that, from an input corpus of simple

exemplar stories, learn complex knowledge structures that subsequently enable the

creation, telling, and understanding of stories. The proposed knowledge representa-

tion aims to strike a balance between the complexity of learning and the richness of

narrative applications, so that we can accomplish the following goals:

� Learn the knowledge robustly in the presence of noise.

� By utilizing the learned knowledge, generate a large variety of coherent fabula

that can reasonably happen in the real world. This corresponds to the first

generative NI component, G1.

� By utilizing the learned knowledge, select events from the fabula to generate

sjuzhet, which corresponds to the NI component G2.

� By utilizing the learned knowledge, tell the sjuzhet with natural language, pro-

ducing interesting stories. This corresponds to the NI component G3.

� By utilizing the learned knowledge, efficiently infer fabula from a given sjuzhet.

This corresponds to the comprehensive NI component U2. and interesting sto-

ries based on the learned representation.
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The realization of NI capabilities G1, G2, G3, and U2 shows that the learned

knowledge representation can effectively and efficiently support computational Nar-

rative Intelligence, in both story generation and story understanding. To the best of

my knowledge, this is the first computational system capable of learning knowledge

to support both aspects of NI. I implement all story generation capabilities but not

all story understanding capabilities. The capability U2 is selected because inferring

fabula from sjuzhet is the most relevant to the plot graph representation, which for

the most part represents story structures in terms of events and their interrelation-

ships. Implementing U2 hence helps us to examine if story understanding can be

efficiently performed on this representation.

As a result, my system will be able to demonstrate NI in any domains where a small

number of exemplar stories can be collected. The collection process is easy because

writing the stories does not require training in computer science. One inexpensive

way (but not the only way), as I demonstrate, is to crowdsource the exemplar stories

from Amazon Mechanical Turk.

In addition to long-term scientific contributions, the development of the Scheher-

azade system brings about immediate benefits in terms of real-world applications.

The system’s capability to learn socio-cultural conventions can be employed for build-

ing virtual training scenarios that familiarize users with foreign cultures or guide

children with autism to adhere to social conventions. It could be expensive to hire

experts to author materials to cover many social situations in a foreign culture, such

as interviewing for a job in Japan or greeting the locals in Samoa. In comparison, the

Scheherazade system only requires a small number of exemplar stories written by

English-speaking non-experts who have some experience with the foreign culture and

that particular social situation. It was shown that crowdsourced data can help the

creation of intelligent systems help people with autism to learn about social situa-

tions [14]. Moreover, the Scheherazade system can provide background stories and

10



diverse narration styles to support believable virtual characters who talk about their

daily activities in the virtual world. Believable virtual characters find applications

in games, virtual training environments and healthcare. Section 6.3 contains a more

detailed discussion on the applications of Scheherazade.

1.4.1 Necessity of Script-Like Knowledge

As discussed earlier, current Narrative Intelligence systems make use of two major

forms of knowledge: scripts and action templates, which brings up the question which

knowledge representation should we learn. While both types of knowledge are useful,

I choose to learn script-like knowledge for the reasons explained below.

Despite the flexibility of action templates, I argue that action templates by them-

selves are not sufficient for the task of generating and understanding complex narra-

tives. There are two major reasons: First, reasoning about everything from first prin-

ciples is computationally slow. Even simple daily situations such as buying medicine

from a pharmacy store can involve complex reasoning: the pharmacist performs

information-seeking actions to check if the customer has the necessary prescription;

the customer requests the receipt as a contingency plan in case the medicine needs to

be returned; both parties may need to reason about the intentions of the other. Al-

though each problem can be solved computationally (e.g. with techniques discussed

in [52, 96, 152]), solving them every time is not as efficient as executing a known script.

Second, in many social situations, we need to respect social conventions, which may

not have resulted from clear rational reasoning at the present time. For example,

the choice of handshaking versus bowing as greetings may have important historic

reasons (such as hygiene conditions), but those reasons may not be present at our

time. Thus, respecting social conventions requires us to follow existing scripts.

My approach makes use of a script-like representation called a plot graph. A plot

graph representation contains vertices and edges. Vertices represent events that can
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occur in the given situations. Some events are optional, indicating that their occur-

rence is not required for the legality of the event sequence. There are two types of

edges in a plot graph. A unidirectional precedence relation signifies that one event

strictly occurs before another event. The precedence relations form a partial-order

model, which allows for variations in legal event sequences for the situation. Prece-

dence relations coincide with causal and temporal precedence information, which are

important for narrative comprehension (cf. [56, 72, 187]). A bidirectional mutual ex-

clusion relation between two events signifies that the two events cannot occur together

in any story. Mutual exclusion relations provide support for situational variations and

alternatives.

An example plot graph portraying a pharmacy situation is shown in Figure 1.

The unidirectional precedence relations are shown as arrows, and the bidirectional

mutual exclusion relations are shown as dashed lines. The graph also includes an

optional event ”Customer takes change”. A formal definition of this representation

can be found in Section 3.1.

1.4.2 The Scheherazade System

This section provides an overview of the Scheherazade system3, and lays out the

organization of this dissertation.

The Scheherazade system learns the structure of events in a given situation

from crowdsourced exemplar stories describing that situation. The systems acquires

a number of simple exemplar stories for a particular social or procedural situation

from Amazon Mechanical Turk (AMT).

After a corpus of stories are acquired, the learning of the plot graph proceeds in

four steps. First, we cluster sentences with similar semantic meaning from exemplar

stories, each cluster becoming one event in the plot graph. In order to reduce the

3Different from the story annotation scheme by David Elson [50] with the same name.
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Pharmacist asks 
for prescription

Customer 
produces 

prescription

Customer orders 
drugs

Customer can’t 
produce 

prescription
Pharmacist 

checks 
prescription

Pharmacist 
refuses to sell

Pharmacist 
delivers drugs

Customer 
swipes a card

Customer pays 
cash

Customer 
leaves

Customer takes 
the receipt

Customer takes 
change

Legend

Event

Mutual exclusion

Optional event

Precedence relation

Figure 1: A sample plot graph for the pharmacy situation.
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difficulty in natural language processing, we have asked crowd workers from AMT

to use simple language, i.e., using one sentence with a single verb to describe one

event, avoiding pronouns, etc. In the second step, we identify precedence relations

between the events. The third step learns mutual exclusion relations using mutual

information. The final step identifies certain events as optional. Chapter 3 describes

the learning of plot graph and the evaluation of learned graphs.

Story generation in Scheherazade is the process of generating a linear sequence

of events while respecting the constraints posed by the precedence relations, mutual

exclusion relations, and event optionality. This linear sequence contains all events

that are presumed to have happened in the virtual world, which can be seen as a

linearized fabula. Scheherazade further selects a subset of fabula events in order

to create an interesting sjuzhet, and transform the sjuzhet into a textual description.

Chapter 4 details the generation of stories from the learned representation and their

evaluation.

Chapter 5 tackles the problem of efficient story understanding. When we infer

fabula from sjuzhet, it may be computationally expensive to estimate the probability

of a certain event happening in the fabula. Although the general problem is shown

to be NP-hard, I present methods to reduce its computational cost for commonly

encountered plot graphs. Finally, Chapter 6 summarizes and concludes this disserta-

tion.
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CHAPTER II

RELATED WORK

What scientists do when they look at the line of bubbles on the screen is

work out the story of the particle that made them: what sort of particle it

must have been, and what caused it to move in that way, and how long it

was likely to continue.

— Philip Pullman

This chapter starts by reviewing theories of narrative and narrative structures

to build a theoretical background and introduce vocabulary for subsequent discus-

sions. After that, I review traditional Narrative Intelligence systems based on man-

ually coded knowledge, as well as existing work for learning script-like information.

Combining the strengths of those work, Open Narrative Intelligence systems learn

knowledge in order to support Narrative Intelligence. These systems are discussed

and compared in the last section.

2.1 Narratives and Narrative Structures

On the definition of narratives, there are two major schools of thoughts. In classic

narrative theory (e.g. [61, 171]), a narrative is defined as the opposite of drama. A

narrative is communicated by a narrator whereas a drama presents the actions and

scenes directly. This school of thought emphasizes this mediacy as the most important

feature of narrative.

Despite the apparent differences, from an information-processing perspective the

understanding of an oral narrative, a theatrical drama, and a motion picture likely

share some common processes. For example, there is likely a process to reconstruct a
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timeline of events, as events may have been presented out of order and simultaneous

events have been fit into a linear sequence. There is likely a process that infers events

that have happened but not presented in order to understand the events that are

presented. Although the drama and the motion picture seem more direct than the

oral narrative, they are not identical to the real world. The theatrical stage, for

example, may represent an apartment, a garden, or even a battlefield. The audience

usually have to understand certain stage and cinematographic conventions in order

to understand dramas or movies (cf. [11, 109]).

AI Researchers looking for an information-processing account of narratives turn to

the structuralist school (e.g. [164, 182, 185]), which defines narratives around events

that make change to a fictional world and relate to one another. Structuralists treat

oral narratives, novels, dramas, and movies all as legitimate narratives. Nevertheless,

it can be difficult to establish a detailed consensus definition for narrative, as struc-

turalists’ definitions differ in basic features such as the minimum number of events

required and if causal relationships are necessary in additional to temporal relation-

ships. E. M. Forster [59] famously claimed that ”the king died and then the queen

died” is a story, whereas ”the king died, and then the queen died of grief” qualifies as

a plot for it introduces a causal relationship. To Forster, a story needs at least two

events, and the plot presented to the audience should contain causal relationships

(see Section 2.1.1 for the difference between story and plot). Genette [64] argued that

a single event ”the king died” can qualify as a minimal story. Tomashevsky [185]

believed causality is necessary for stories. In contrast, Schmid [162] considers the dif-

ficulty of unambiguously determining if causal relations exist in a story or any forms

of text, and argues temporal relations should be sufficient for the definition of stories.

The interested reader is referred to Schmid [162] and Prince [141] for further details

on this subject.

Aiming at achieving Narrative Intelligence computationally, I attempt to avoid
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this debate by taking a broad and practical definition:

Definition 1 (Narrative). A narrative is the telling of two or more conceptually

and temporally related events, which are presented through a particular medium to an

audience.

Further clarification is required for this definition. The medium of a story can

take many forms, such as text, comic, audio or video. By this definition, narratives

include “novels and romances, novellas and short stories, history, biography and au-

tobiography, epics, myths, folktales, legends and ballads, news reports, spontaneous

accounts in ordinary conversation, and so on” [141]. The telling of a narrative re-

quires a narrator and one or more narratees, which may be made explicit or implicit.

A narrative may also be told to oneself, either spoken out loud or silently. I exclude

a story with one event to distinguish a story from an event description. After all,

a story with only one event is uncommon in most daily scenarios. This dissertation

treats the words story and narrative as synonyms.

The prototype theory of categorization [157] argues that a concept is defined not

by clear-cut rules but by prototypical examples. In this sense, prototypical examples

of narrative would include Homer’s Iliad, Shakespeare’s Hamlet, and CBS’s The Big

Bang Theory. We could list features for prototypical narratives, such as involving the

same human or anthropomorphic characters, consisting of a beginning, a middle and

an ending, containing events related by causal relations, etc. Having these features

would make a narrative more prototypical and more easily recognizable as a narrative,

but in my definition these features are not strictly necessary.

2.1.1 Tiered Models of Narratives

In the structuralist tradition, we can further break down a narrative into a tiered

generative model of narrative. The model is not meant to be an accurate and plausible

cognitive model about how stories are actually generated by human writers, but a tool
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for analytical purposes. Structuralists such as Tomashevsky [185] and Bal [5] used this

model as a way to analyze narratives and reader’s understanding of narratives. Such

models also enable Artificial Intelligence programs to generate stories in a pipelined

fashion (e.g. [4, 33, 150]).

The idea that a narrative can be analyzed in terms of two tiers, a fabula and a

sjuzhet, can be traced back to theorists earlier than Tomashevsky. However, Toma-

shevsky [184, 185] probably provided the earliest clear statement of their differences

and purposes. The fabula refers to the events that happen in the narrative-depicted

world. The sjuzhet refers to the description of events from which a reader learns

about the fabula. As various artistic techniques are used to produce the sjuzhet, such

as describing events out of order (e.g. flashbacks), describing events from different

perspectives, or omitting events, the reader must reconstruct the fabula from the

sjuzhet in order to understand the narrative [63]. In English, the fabula is referred

to as the story and the sjuzhet is often referred to the plot or discourse, which is

not dissimilar to the dichotomy by Forster [59] described earlier. French theorists

Todorov [182] and Genette [64] describe similar dichotomy as histoire and discours

or histoire and récit respectively.

The concept of sjuzhet in the above two-tier model may be still considered am-

biguous. Bal [5] proposed a three-tier model that further differentiates between the

text in which the events are presented (which she called the text) and the events

being presented in the text (which she called the story). As narrative analysis is not

limited to the textual form, in this dissertation, I denote the three layers as fabula,

sjuzhet, and media.

Schmid [162] recently proposes a four-tier model. Schmid notes that the real world

contains infinite amount of details. Thus, there must be a process where the author

selects what constitute an event that is eligible to be included in the fabula. This

selection process is different from sjuzhet composition. Concepts of events must be
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abstracted from artificially segmented perceptual inputs of the human senses.1

This dissertation follows the three-tier model proposed by Bal [5]. Thus, I consider

a narrative to contain three tiers, as defined below:

Definition 3 (Fabula). A fabula is the complete set of events that include but are not

limited to all events presented in the narrative, that happen to and around all story

characters within a continuous time period, and that are temporally partially ordered

as multiple events can happen simultaneously.

Definition 4 (Sjuzhet). A sjuzhet is a linear sequence of events that are selected

from the fabula to constitute the narrative, possibly in a different ordering from the

fabula and with possible repetition of events. One event may be repeated from multiple

viewpoints, such as viewpoints of an omniscient narrator or different story characters.

Definition 5 (Media). The media is the form of representation in which the sjuzhet

is actualized and presented to the audience, including but not limited to oral narration,

audio recordings, video footages, theatrical performances, text, multimedia hypertext,

and so on.

An example story that illustrates the differences between the three tiers of fabula,

sjuzhet, and media is shown in Figure 2. Many different literary techniques may be

used to transform a fabula into a sjuzhet, including but not limited to: linearization,

which turns partial-ordered events into a single sequence that is suitable to telling;

reorganization, which orders the events differently from the order in which they ac-

tually occur (e.g. flashbacks); compression and expansion, which selects more or less

events from the fabula, creating a slower or faster pace; focalization, which tells events

from different points of view.

This dissertation follows this three-tier model and proposes methods to generate

fabula, sjuzhet, and text respectively. For the purpose of this dissertation, the task

1Other complex models have been proposed. See, for example, Branigan’s 8-tier model [16],
whose structure is vastly different from those reviewed.
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Fabula

Alice and Bob entered a 
movie theater

Alice and Bob sat down 
in the auditorium

...

Alice and Bob watched 
the movie

Alice and Bob kissed

The movie ended

Alice and Bob stood up

...

The next day, Bob 
thought about the 

movie date during class

The teacher asked Bob a 
question

Alice and Bob entered a 
movie theater together

Alice and Bob watched 
the movie

Alice and Bob kissed

Sjuzhet

Bob thought about the 
movie date last night 

during his class.

The teacher asked Bob a 
question

Media(Text)

Bob just couldn’t stop thinking 
about last night. What a wonderful 
night! Alice and he went to watch a 
movie together. At the end of the 
movie, they kissed. Deeply.

“Can this gentleman answer my 
question?” Bob’s thought was 
suddenly interrupted by Mr. Smith.

Figure 2: An example story contrasting the fabula, sjuzhet, and textual media

of event segmentation and abstraction, as described by Schmid [162], is performed by

human crowd workers from Amazon Mechanical Turk and is not modeled directly by

AI.

Although the three-tier model was not proposed as a model of how human writers

actually write stories, some reasoning about the fabula, sjuzhet, and media is likely to

have happened during writing. For example, to write a detective novel, one probably

has to first think of a criminal plot, which is the fabula. The detective usually explains

this plot, which is realized as the sjuzhet and the text. For computational systems

that aim to generate narratives, this three-tier model provides a useful division of

labor and a modular system design. The next section reviews those systems.
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2.2 Computational Narrative Intelligence

In this section, I review traditional story generation systems that rely on manually

coded knowledge. In line with the definition of Narrative Intelligence in Chapter 1,

I categorize generative systems into fabula generation, sjuzhet generation, and text

generation. Story understanding systems are categorized into systems that make

factual inferences and systems that predict or simulate human readers’ responses to

narratives.

2.2.1 Fabula Generation

As defined previously, fabula refers to the events that actually happen in the world,

not the events presented to the audience. Thus, strictly speaking, one cannot really

present a fabula. However, many computational systems do not explicitly reason

about or make changes to sjuzhet structures, and can be thought of as employing a

simple means of presenting a linear sjuzhet that includes everything in the generated

fabula or directly adopting the sjuzhet existing in a retrieved story case. To highlight

the fact that these systems do not reason directly about the sjuzhet, I call these fabula

generation systems.

There are two major approaches for fabula generation and Narrative Intelligence in

general: case-based reasoning and planning. These systems utilize different knowledge

structures and different operations on these structures. Some recent systems make

use of both case-based reasoning and planning.

Computational case-based reasoning (CBR) [87] is motivated by the observation

that humans use past experiences to guide decision making. Hence, Narrative In-

telligence can be built on top of a collection of known stories or story snippets. A

new story can be understood in the context of old stories, and known story segments

can be combined to create new stories. The notion of script was proposed as one

of the earliest research into narrative understanding. Minstrel [190] is an elaborate
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CBR story generation system that reuses known stories and adapts them using rules

(called TRAMs) that recognizes story snippets similar to a query and transform the

snippet to satisfy the query. The story structure is constructed by filling in templates.

Minstrel utilizes three types of knowledge, including known stories, recipes to achieve

story themes and dramatic effects, and methods for adapting stories. All three types

of knowledge are manually authored.2

Another inspiration of the case-based approach comes from the narratologist

studies that found many narratives contain combinations of similar building block.

Propp [142] found that the majority of Russian folklores can be explained by the

combination of 31 high-level narrative functions, which are semantic units that serve

similar purposes in the narrative, such as the hero receiving an interdiction and the

hero subsequently disobeying the interdiction. Studies of North American Indian

and Eskimo folktales yielded similar results [35, 46]. In the book Plotto published in

1928, the prolific novelist William Cook summarized popular plots as numerous in-

terconnected recipes. Gervás et al. [67] proposed a case-based reasoning system that

retrieves and combines Propp’s functions into stories. Characters in the functions can

be replaced for coherence and similar functions can be substituted.

The Riu system [129] generates steam-of-consciousness stories. The system repre-

sents cases as a temporal sequence of actions organized as a semantic network, where

each action is associated with a textual template. The retrieval of cases is performed

by matching identical text and structural analogy computed by the Structural Map-

ping Engine [54]. Similarly, Riedl and León [149] transform a story analogically from

one domain to another and uses planning to fix incoherence.

The complete CBR cycle contains four phases: Retrieve, Reuse, Revise, and Re-

tain. The Retrieve phase locates an existing case, which is modified to solve a new

2A recent reconstruction of Minstrel [181] can be downloaded from http://minstrel.soe.ucsc.

edu
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problem in the Reuse phase. The Revise phase checks the newly formed solution

against reality. The Retain phase keeps good solutions for future use. Interestingly,

most CBR systems for story generation do not have full-fledged Revise and Retain

phases. This is probably because it is difficult to validate fictional stories, so it may

be undesirable to keep unvalidated stories. The complexity of knowledge used by

such systems also makes learning difficult.

If we have a very large source of story cases and organize them effectively in

memory, the CBR approach could theoretically work well in many domains. However,

due to the lack of the Retain phase, and the cost of manually authoring cases, CBR

systems can suffer from the knowledge bottleneck. Due to the lack of cases, we may

not find a case that is close enough to the story we wish to generate or understand.

When the target story and the retrieved case differ too much, substantial adaptations

are required, and too many changes to the case risk making it incoherent. The lack

of the Revise phase makes it difficult to detect incoherence, aggregating the problem.

As an example, Peŕez y Peŕez and Sharples [137] pointed out Minstrel may replace a

girlfriend with a horse because both can be kissed by a knight.

A second type of Narrative Intelligence systems are the story planners. Story

planners utilize a world model consisting of a number of action templates. An action

template contains a number of precondition propositions, which must be true for this

action to happen, and a number of effect propositions, which will become true after

this action happens. An action template may be lifted, i.e. containing variables to be

instantiated. For example, the eat(?person, ?food) action contains two variables

?person and ?food that can bind to different entities like Adam, Betty, noodle or

pizza. In order to achieve a given goal state, a planner instantiates lifted actions

and links individual actions into a complete sequence, where the preconditions of all

actions are satisfied by effects of earlier actions and the initial state.

Causal structures in a plan enable complex reasoning about story structures and
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aesthetics, so a large number of story planning systems have followed this line of

research. The planner could be used to achieved goals of individual story characters,

or author goals about how the story should end. Talespin [115] is the first applica-

tion of planners in story generation and plans the actions for individual characters

in the hope that some interesting stories will emerge. Riedl and Young’s Intentional

Partial-Order Causal-Link Planner (IPOCL) [154] considers both character intentions

and author goals. Each character intention creates an intentional frame, and each

intentional frame contains actions that achieves that intention and is motivated by

another action. This allows IPOCL to create both coherent characters and satisfy

authorial intent. The Virtual Storyteller [179] system split each character into two

planners with different mindsets. The first one is an in-story character who is not

aware of anything outside direct perception, and the second is is an out-of-story actor

who is intentionally aiming for achieving story goals. Porteous et al. [139] explicitly

considered time during story planning. Ware and Young [196] extended IPOCL to

handle possible intentional conflicts in multiagent narratives, but the algorithm does

not automatically create or avoid conflicts. Brenner [17] proposed narrative genera-

tion with multiagent planning and limited look ahead. Si et al. [165] used partially

observable Markov processes, which might be considered as planning under uncer-

tainty, to model characters in interactive narratives. As an exception to the rule,

Cavazza et al. [24] presented a Hierarchical Task Network (HTN) planner to create

character behaviors. A HTN planner possesses the knowledge of how each higher-

level action can decompose into a sequence of lower-level actions. This knowledge is

probably more similar to scripts than to action templates.

By breaking stories into small building blocks, the planning approach is capable

of generating novel stories while maintaining the story coherence, which is usually

defined as characteristics of story plans (e.g. actions being justified by proper in-

tentions [154] or not having dead ends [97]). However, there are two reasons why

24



action templates cannot completely replace script knowledge. First, scripts provide

condensed knowledge that can be slow to compute directly from action templates.

For example, reasoning about characters’ intentions can be very expensive, as every

character may be reasoning recursively about other characters’ reasoning. Second,

scripts do not capture social conventions that are not completely results of logical

deductions. Therefore, social conventions need to be encoded as scripts.

As action templates and scripts have different strengths, some recent systems uti-

lize both types of knowledge representation. The Universe system [92] uses decompo-

sitions of high-level actions into low-level actions as well as actions’ preconditions and

effects to guarantee the coherence of the generated story. The planning mechanism in

Universe appears to lack backtracking and is a precursor to the modern Decomposi-

tional Partial-Order Causal-Link Planner (DPOCL) [205]. Mexica [136] models cre-

ating writing according to the model of two alternating modes by Sharples [163]. The

engagement mode uses case-based reasoning to project the next major action for char-

acters, whereas the reflection mode uses planning to fill in missing details. Flaiclough

and Cunningham [53] used case-based planning with Propp functions to generate sto-

ries in a multi-player game. Riedl and Sugandh [153] proposed a system similar to

multi-case based planning, which links multiple small story vignettes with planning

in order to maintain coherence. Li and Riedl [97] adapt human-authored plotlines in

games, which are represented as decompositional partial-order plans. They extend

the DPOCL algorithm to remove certain undesirable causal structures, such as ac-

tions that do not contribute to the main storyline (i.e. dead ends). The Doraemon

gadget generator [99] creates high-tech or magical gadgets that achieve impossible

deeds in fictions by analogically modifying the behaviors of common objects which

are represented as partial-order plans. The ability to create highly imaginative gad-

gets illustrates the power of hybrid systems.
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Like CBR systems, story planners are also significantly restricted by the avail-

ability of manually authored knowledge. Hybrid systems build their strengths from

the utilization of both scripts and action templates, but the need to author both

types of knowledge aggravates the problem of knowledge bottleneck. Due to the sub-

stantial time and financial cost of authoring knowledge, the knowledge available to

those systems usually can describe only a few domains. As a result, these NI systems

can only operate in these domains. Some of those systems, such as PAM or ISSAC,

can produce results almost rivaling human intelligence in a known domain, but they

cannot operate outside such domains at all.

The proposed dissertation aims to address this knowledge bottleneck by devel-

oping methods to acquire structured knowledge in support of Narrative Intelligence

in arbitrary domains. Complex representations are usually powerful but difficult to

learn. By adopting the plot graph representation, my approach aims to strike a

balance between the complexity of representation and the ease of learning.

2.2.2 Sjuzhet Generation

A few computational systems have focused on sjuzhet techniques. Bae and Young [4]

explored the use of sjuzhet techniques, including flashbacks and foreshadowing, based

on causal structures in plans. They detected significant events that directly con-

tribute to goal states, and initiating events that are on causal chains leading to the

significant events. An initiating event that is not causally linked to any other event is

called separable, as the removal of this event will not affect the rest of the narrative

other than the corresponding significant event. This initiating event is then omitted

from the narrative, and presented after the significant event using flashback. Fore-

shadowing could be used to allude to the Initiating Event without completely giving

the event away.

Cheong and Young [34] created suspenseful sjuzhet based on a given fabula. They
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first detected a core set of events, or kernels, without which the story could not be

understood. The rest of events are called satellites. Drawing from Trabasso and

Sperry [187], events that have a large number of incoming and outgoing causal links

and are close to the goal state are recognized as kernels. They followed the proposal of

Gerrig and Bernardo [65] and argued that overall suspense increases as the number of

plans in which the protagonist achieves her goals decrease, and the number of plans in

which the protagonist fails increase. Therefore, the potential suspense of each event

is computed from how many of its effects can threaten the protagonist’s goal and

how much it can support the protagonist’s goal. A suspenseful story is created by

adding events outside the kernel set with high potential suspense to the kernel events.

O’Neill and Riedl [128] provided another interpretation of Gerrig and Bernardo [65]

for the detection of suspense, which is reviewed in Section 2.2.4.

Another interesting problem in sjuzhet generation is focalization (cf. [3, 206]),

which refers to the technique of storytelling from multiple viewpoints, such as view-

points of an omniscient narrator or any story characters. In addition to the omniscient

foci, storytelling could be told from an external foci, where we know the external be-

haviors but not the mental activities of a character, or an internal foci, where we know

both the external behaviors and the mental activities of a character. Bae et al. [3]

propose a framework for generating different internal focalization using different li-

braries of actions templates. Porteous et al. [138] use a planning approach where

stories under different viewpoints are turned into constraints for planning.

The Curveship system [119] has an elaborate Teller module that supports sjuzhet

techniques including reordering the events, changing the frequency, speed, and focal-

ization of narration. The fabula events may be ordered in chronological order, reverse

chronological order, or in a zigzag form that interleaves the present and the past. It

also support flashback, flashforward, categorical and random ordering of events. The
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system contains an advanced system of text templates for realizing textual descrip-

tions for events.

Most of the sjuzhet generation systems are based on planners, possibly due to the

rich set of information that causal structures of plans can provide. In Section 4.3, I

will discuss the detection of how typical an event is to a learned plot graph, and how

to use the typicality values to create sjuzhets. The task is similar to the detection

and use of kernel and satellite events in [34].

2.2.3 Story Text Generation

There are also research effort on creating the media layer of narratives. The AU-

THOR system [22] translates a symbolic plan generated by a story planner into a

textual story with several major steps: (1) segmenting the story into sentences and

paragraphs, (2) scanning from the beginning to end to determine articles, pronouns,

and contextual references, (3) making lexical choices to avoid repetition, and (4) ag-

gregating and reordering clauses to create complex and compound sentences. After

that, the intermediate product goes through a surface realizer to produce the final

story text.

Based on the Big Five model of personality [188, 124], Mairesse and Walker cre-

ated the Personage model [111] that maps the Big Five dimensions (Extraversion,

Emotional Stability, Agreeableness, Conscientiousness, Openness to Experience) to

a wide variety of language features including semantic content, syntactic structure,

sentimental polarity, vocabulary, and pragmatic markers such as “kind of” and “you

know”. The computational implementation transforms a symbolic discourse plan

with precise semantic meaning into text according to the mapping in order to portray

different personality. Although the Personage model covers broad ground, the con-

tent of the discourse plan could limit the generated text. For example, if the system
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Table 1: Examples of questions answered by SAM to illustrate its capability of story
understanding, produced by SAM after reading a story about John went to a restau-
rant and received a burnt hamburger. Adapted from [37].

Q: Did John sit down in the restaurant?

A: Probably.

Q: What did the waiter serve John?

A: The witer served John a hamburger.

Q: Why didn’t John eat the hamburger?

A: Because the hamburger was overdone.

Q: Did John pay the check?

A: No. John was angry because the hamburger was overdone and
so he left the restaurant.

is not aware of possible paraphrases, it may not find the best paraphrase that char-

acterize a given personality. Rishes et al. [155] used Personage to create different

tellings of stories generated from a semantic representation consisting of events and

character intentions [50]. The generated linguistic styles differ mostly in pragmatics

rather than content.

Instead of generating from symbolic representations with precise semantic mean-

ing, I generate story text by selecting from existing sentences that are similar but

not strictly synonymous to describe an event (i.e. sentences may differ in content).

I consider parameters directly related to word choices: degree of details, fictionality,

and sentiments. Section 4.4 contains a detailed description.

2.2.4 Story Understanding

The comprehension aspect of Narrative Intelligence, as defined in Chapter 1, includes

the ability to (1) infer facts (from text to sjuzhet, and sjuzhet to fabula) and (2)

understand purposes of narratives and respond to narratives affectively. Story un-

derstanding systems can be categorized according to which of the two abilities they

achieve.

The first generation of story understanding systems mainly focus on the factual
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inference problem. Schank and Abelson [161] proposed that scripts, containing the

knowledge of typical events organized in typical temporal and causal relations, are

central to the understanding of narratives. Following their lead, a number of systems

aim to understand stories by matching stories with known scripts consisting of slots to

be filled. SAM [38] applies known scripts to match a given story, so that it can fill in

empty slots in the script, resolve coreference, and predict events.3 PAM [200] extends

SAM to make use of plans and causal relations between events to infer characters’

intentions. PAM considers the relationships between different characters’ intentions,

such as conflicts and coordination. Both SAM and PAM use question and answering

to demonstrate their story understanding capabilities. Table 1 shows some questions

and answers given by SAM in [37]. Recognizing the difficulty of manually authoring

scripts that are sufficiently numerous and detailed to handle the complexity of real-

world stories, the AQUA system [145] aims to learn from stories to improve scripts.

Section 2.5 contains a more detailed review of AQUA.

The ISSAC story understanding system [120] is notable for it transcends the

boundary between story generation and story understanding. Utilizing a vast set

of knowledge, ISSAC is capable of understanding novel concepts in science fiction by

creating analogies. In today’s terms, these analogies are conceptual blends [189], such

as the blending of robotic manufacturing machines with human intelligence to create

a robot commonly seen in science fictions.

Several other work aim to model the human readers’ cognitive process and to pro-

duce similar responses. Niehaus [122] and Cardona-Rivera et al. [156] build situation

models for narrative comprehension. These models determine salience of the events

in human readers’ memory, as they read a narrative sequentially.

3In a candid historical account, Wendy Lehnert notes that due to the limited amount of knowledge
that SAM possesses, its input has to be “reverse-engineered to stay inside the limitation of SAM’s
available scripts” [94], although it was only meant to be a prototype.
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O’Neill and Riedl [128] designed the Dramatis system for simulating how hu-

mans detect suspense in stories. They offer another interpretation of Gerrig and

Bernardo [65] that is different from Cheong and Young’s [34]. O’Neill and Riedl ar-

gue generating all possible plans to see if the number of successful and failed plans

increase or decrease is computationally impractical and cognitively implausible. In-

stead, they model the audience as searching for the most likely plan in which the

protagonist avoids a negative outcome, where likelihood is correlated with ease of

cognitive retrieval. Thus, a plan that refers to actions that have been activated or

primed previously is considered more likely. When the audience find it difficult to

think of an avoidance plan, suspense ensures.

The EA NLU system developed by Tomai [183] is mainly concerned with the

communicative purposes of narratives. The system can perform three understanding

tasks: (1) what is a proper moral decision in the situation described by a narrative,

(2) who is to blame for a negative outcome, and (3) what is the moral of a story.

EA NLU is based on ResearchCyc [39], which expresses over 5 million facts in higher

order logical propositions, but narrative-specific extensions still have to be made at

times. Tomai defines a set of narrative functions that readers expect from a story.

The natural language processing leverages this knowledge to abduct the meaning of

simple sentences.

In addition to the above symbolic approaches for story understanding, recent years

have seen the emergence of machine learning approaches toward limited semantic un-

derstanding of narratives, such as extraction of characters, events, and emotional

trajectories. Bamman et al. [6, 7] learn simple character types from novels. Valls-

Vargas et al. [192] detect heros, villains, and other characters by comparing extracted

characters’ actions against a predefined character interaction matrix. Following the

narrative analysis by Labov and Waletzky [90, 91], who classified several types of nar-

rative clauses, Ouyang and McKeown [132] and Swanson et al. [178] detect the major
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actions in narratives. Mohammad [117] visualize the emotional trajectories of nov-

els using the number of emotional words. Elsner [49] computes similarities between

novels using character mentions and character emotions. While being able to cap-

ture some structural information, Elsner notes the technique is not yet sophisticated

enough to produce role-based narrative summaries.

2.3 Detecting Lexical Sentiments

In Section 4.4, the Scheherazade system recombines crowdsourced sentences into

a natural language presentation of a story. In order to generate stories with positive

or negative sentiments, I detect the sentiment of sentences by aggregating sentiments

of individual words. In the current section, I briefly review relevant work in the

detection of sentiments and emotions in natural language text. Sentiment analysis

has gathered significant research interests over the past few decades (e.g. [133, 169].

This review only concerns work that detect sentiments and emotions of individual

words.

Work in this area start with having linguistic experts annotating the emotions

associated with English words (e.g. [172]). Similar to the situation of narrative knowl-

edge, expert annotations for a large number of words are accurate but expensive to

acquire. Thus, there is generally a trade-off between the amount of annotation and

their accuracy, leading to a spectrum of dictionaries with varying degrees of coverage

and accuracy.

Expert annotations are usually the most accurate type of emotional dictionaries

but usually are limited to a small number of words and positive/negative polarity.

The General Inquirer lexicon [172] contains 11788 words where 1915 are labeled as

positive and 2291 are labeled as negative. It also contains additional sentiments cate-

gories include hostile, strong, weak, etc. Cerini et al. [25] developed the Micro-WNOp
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corpus4 containing 1105 WordNet synsets annotated with their positivity and neg-

ativity with real numbers in the [0,1] interval. As an extension of WordNet [116],

where word senses are organized as synsets, WordNet-Affect [173, 174] systemati-

cally selected words and labeled if the word describes emotion, mood, cognitive state,

emotional response and other aspects of affects. When a word is labeled as an emo-

tional word, it is further classified into positive, negative, ambiguous and neutral.

WordNet-Affect contains 1637 words and 918 synsets that are labeled as emotional.

The emerging technique of crowdsourcing also provides an cost-effective way to

annotate words’ emotions. Approaches such as the NRC Emotion Lexicon [118] and

SentiSense [43] can cover more words and more emotional categories with reduced

cost, but may not come with the same accuracy, compared to expert annotation. For

example, the NRC lexicon contains crowdsourced binary annotations of 8 emotion

categories for 24,200 word senses, about 14 times more than the number of emotion

words in WordNet-Affect. Both the NRC annotations and SentiSense contain binary

labels instead of real numbers.

Finally, there are automatic approaches that determines sentiments or emotions

of words based on their relations or associations with known words. Turney and

Littman [191] measure the association between words using pointwise mutual infor-

mation (PMI) and latent semantic analysis (LSA). First, an appropriate size of word

neighborhood is selected, which could be a document, a paragraph, a sentence, or a

fixed window of words. All words in the neighborhood are considered to be related.

We can compute the PMI based on the probabilities of two words appearing in the

same neighborhood. The semantic orientation, or valence of a word, is computed as

its association with a given set of positive words (W+) minus its association with a

4Available at http://www.unipv.it/wnop
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given set of negative words (W−).

SO-PMI(word) =
∑

w+∈W+

PMI(word, w+)−
∑

w−∈W−

PMI(word, w−) (1)

A second measure computes a singular value (SVD) decomposition of a td-idf (Term

Frequency Inverse Document Frequency) matrix where rows represent words and

columns represent neighborhoods. A low rank approximation of the matrix can then

be obtained. The similarity between two words (LSA-Sim) is computed as the co-

sine of the angles between two word vectors in the U matrix of the SVD low rank

approximation.

SO-LSA(word) =
∑

w+∈W+

LSA-Sim(word, w+)−
∑

w−∈W−

LSA-Sim(word, w−) (2)

Lu et al. [108] compute context-sensitive sentiment of words from user reviews.

They point out the word “unpredictable”, as an example, is usually negative in the

domain of electronic appliances, but may carry positive sentiment in movie reviews.

They consider multiple criteria, such as ratings on user reviews, linguistic features,

and general-purpose sentiment values, and framed the problem as a linear integer

programming problem. However, the NP-hardness of integer programming suggests

this approach may not scale well to very large corpus.

SentiWordNet [51] is another automatic approach that propagates known senti-

ments of a few words to other words along inter-synset relations in WordNet. Senti-

WordNet 3.0 has very broad coverage, providing sentiment labels for 117,659 synsets,

about 5 times as large as the NRC lexicon. Each synset is labeled with its positivity,

negativity, and objectivity as a point on the 3-dimensional simplex. That is, the three

dimensions must sum to 1. However, our experiments indicate SentiWordNet con-

tains substantial amount of inaccuracy, hindering accurate detection of sentiments.

To overcome this issues, Section 4.4 describes a corpus-based smoothing technique,

called Smooth SentiWordNet, to alleviate the inaccuracy of SentiWordNet.
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Compared to Turney and Littman, my corpus-based method takes the distance

between words into account. The PMI and LSA methods consider all words in the

same neighborhood to have an equal degree of relatedness. I use Gaussian kernel

functions to assign less influence to words farther away. Given that sentiments may

change depending on the context, I used a corpus containing only fictions, so my

approach may be considered to be a narrative-specific expansion of the SentiWordNet

lexicon. Mohammad [117] computes emotions associated with fictional characters

using 5-grams from the Google N-Gram dataset. In comparison, I used 100-word

neighborhood windows to capture longer-distance influences.

2.4 Automatically Acquiring Script-Like Knowledge

The learning of discourse structure and relationships between events has been studied

for a long time. Several annotated corpora [23, 140, 144] have been created and often

used in supervised approaches. As annotated corpora are difficult to create and

can overfit to specific domains, in recent years there has been increasing interest in

learning script-like knowledge directly with little or no supervision. In this section, I

review unsupervised approaches for learning script-like knowledge.

2.4.1 Learning from General-Purpose Corpora

The earliest work on automatically extracting script-like knowledge that I am aware

of is by Fujiki et al. [62], who worked with Japanese news corpora. They proposed

three principles: (1) an action is a triplet of subject, verb, and object; (2) shared

subjects and objects indicate relations between actions; (3) the significant relations

can be identified by their frequency. Fujiki et al. used the first paragraph of news

articles because they are likely to be in chronological order. Although they extracted

only a small number of actions (41 pairs from 11 years of newspaper articles), the

three principles are adopted by many later work.

Brody [19] proposed a similar approach for learning actions (which Brody referred
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to as clauses) and relations between actions. Instead of using a thesaurus like Fujiki

et al., Brody identified similar subjects, verbs and objects by clustering them based on

co-occurrence, which can be considered as distributional similarity. Further, Brody

proposed filtering valid relations between actions using the technique of hypothesis

testing.

Chambers and Jurafsky [26, 27] aim at learning Schankian scripts with events and

temporal partial orderings. Extending Brody’s work, they identified co-occurrence of

events based on pointwise mutual information and overlapping participants. Schema

learned are used for the task of understanding by extracting the slot-fillers in these

schema [28].

Talukdar et al. [180] learned clauses such as actedIn(actor, film) and wonPrize(film,

award) and their relative orderings. The orderings are based on their position in the

documents. As propositions in documents are not always in chronological order,

they focus on macro-level propositions, which are less likely to be described in a

non-chronological order.

Several work [69, 71] aimed at mining causal relations instead of entire scripts.

Girju [69] used supervised learning to identify linguistic rules that indicate causal

relations between noun phrases. The rules are based on WordNet categories that the

noun phrases belong to and the choice of the verb. Gordon et al. [71] describe an

approach to mining causal relations from millions of personal webblog stories. They

note the challenges associated with extracting causal, commonsense information from

such a corpus and also note that increasing the size of the corpus from one million to

ten million produced statistically insignificant improvements. Gordon et al. further

suggest that causal information in stories from these sources is best left implicit, and

that the ability to select between causal relations does not constitute a full solution

to open-domain commonsense causal reasoning.

Learning from general-purpose corpora has the advantage of large data sets, but
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there are also several challenges that are often encountered by learning from general-

purpose corpora, which deserve some consideration. These challenges include

1. The content of general-purpose corpora may not align with the purpose of learn-

ing. These corpora may not contain the information needed, but also contain a

plethora of irrelevant information. Depending on the nature of the corpora, they

may be biased towards some topics and disregard other topics. For example, a

corpus of news articles will contain plenty information about politics and the

economy, but little about knights and goblins. Aiming at adult readers with suf-

ficient background knowledge, news articles may not contain typical procedures

for dining at a restaurant, but may contain a large number of rare incidents

at restaurants. Kasch and Oates [85] attempted to tackle this challenge by re-

trieving documents relevant to a given topic from the Internet. Words highly

correlated with the given topic are found by Latent Semantic Analysis and used

to retrieve relevant documents.

2. Documents are not always written in chronological order, creating obstacles

for the identification of temporal sequences. News articles usually start with a

summary, and lay out the details later. They may also refer to earlier events

at any time. Flashbacks and foreshadowing are common literary devices. To

alleviate this problem, Fujiki et al. [62] only used the first paragraph of news

reports. Talukdar et al. [180] focused on macro-level propositions.

3. Finally, the complex natural language in general-purpose corpora is difficult

for current technologies to process. Although some aspects of language, such

as part-of-speech, can be computationally recognized with extremely high ac-

curacy, many important tasks such as semantic role labeling and coreference

resolution remain challenging at this time.

A possible method to circumvent or alleviate these issues is to create specialized
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corpora with crowdsourcing. In this dissertation, the specialized corpora is created

by asking crowd workers to write stories segmented into chronological sequences of

events and use simple language. Such a corpus contains the information we need and

relatively little irrlevant information. Learning from such specialized corpora could

provide bootstrapping for learning from more complex and noisy corpora. Incremental

learning has been shown to be beneficial in both cognitive science [48, 88] and deep

learning research [10].

My approach adopted some statistical methods proposed by earlier work, such as

the use of hypothesis testing for identifying temporal relations. This work has two

specific contributions: (1) The learned knowledge is put to the test of applications

of story generation and understanding, where previous work did not test the learned

knowledge with extensive applications. (2) This work identifies mutual exclusion

relations, which none of the above work recognizes. Mutual exclusion relations allows

us to incorporate multiple possibilities in one situation, thereby creating a compact

representation. For the purpose of storytelling, mutual exclusions play an important

role in maintaining story coherence. Empirical evaluation of the importance of mutual

exclusion relations can be found in Section 4.2.

2.4.2 Crowdsourcing Knowledge

Crowdsourcing has also been used as an effective method of knowledge acquisition.

The MakeBelieve system [106] extracts commonsense rules about action sequences

from the OpenMind knowledge base [168], which was built purely by crowdsourcing.

However, the knowledge focuses on declarative facts about non-fictional topics, which

limits their applicability to storytelling.

Regneri et al. [147] acquire scripts from crowdsourced bullet-list style instructions

entered by anonymous individuals and then manually converted to a canonical form.

They used an algorithm for aligning multiple sequences, yielding a total ordering
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of events. In contrast, my approach builds a partial order of events with different

branches (as indicated by mutual exclusion relations). One partial order can describe

multiple total orders, allowing the story generation and understanding process to

dynamically adapt ordering of events depending on input or environmental changes.

Weltman et al. [198] designed a user interface aimed to collect highly detailed

step-by-step description of pictorial stories as well as causal interpretation. However,

their initial user study indicates the process to be complex and time-consuming. After

two hours of training, two of the ten participants could not finish the task, and four

other participants “agreed to do the bare minimum”. Though detailed knowledge

can support powerful NI, it is arguable that this knowledge representation errs on the

side of being too difficult to acquire.

2.5 Open Narrative Intelligence

If we can supplement Narrative Intelligence systems with the ability to learn knowl-

edge, we obtain Open Narrative Intelligence systems. These systems tackle the knowl-

edge bottleneck that has troubled traditional approaches for decades and extend

Narrative Intelligence into previously unknown domains and situations. This section

reviews these systems.

As a precursor to today’s Open NI systems, AQUA was proposed [145] to al-

leviate the knowledge bottleneck faced by story understanding systems like SAM.

At a time when machine learning was still in its infancy, Ram points out that it is

inherently difficult to encode sufficient knowledge for story understanding in the real

world. Instead of answering questions raised by users, AQUA is capable of raising

questions whose answer can improve its scripts. AQUA first tries to apply a script to

understand a story. When the script contains gaps or the story contradicts the script,

AQUA creates a question and stores it in memory, which may be resolved when new

information comes in. AQUA can thus learn new knowledge from stories to improve
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the scripts it possesses. Taking a symbolic approach, AQUA is still heavily reliant on

manually coded knowledge to raise appropriate questions.

SayAnything [177] is a textual case-based reasoning system that is capable of

taking turns to write a story together with a user, each writing one sentence at a

time, without human-authored domain knowledge except some training data. Trained

on a human-annotated corpus, the system mines more than 1.6 millions stories with

an average length of 26.24 sentences from Weblog entries released by spinn3r.com.

After a user inputs a sentence, the n most similar sentences are retrieved using the

PL2 scoring function in the Terrier Information Retrieval Toolkit [131]. A neural

network was trained to rank the n sentences and the best is selected. During the

training process, the entity grid feature for local coherence [9] is shown to be the best

feature for training the neural network. The retrieved sentence is adapted to make

well-formed and coherent sentences and make pronouns agree between sentences.

The coherence of the generated story is maintained by both the sentence-retrieval

mechanism and the human input.

Another textual case-based reasoning approach has been presented by Sina et

al. [166], who modify crowdsourced semi-structured stories to create alibi for virtual

suspects for the purpose of training police officers. Each crowd worker is instructed

to write a three-part story, including an introduction of who, when, and where, the

body of the story, and the author’s overall opinion of the entire experience (e.g. of

a restaurant she visited). Asking the crowd to provide semi-structured data is an

effective strategy also used by my approach. The retrieval of cases depend on a

manually designed feature vector. Some features, such as number of children, appear

specific to the domain of application. Manually authored domain knowledge also has

been used in the adaptation, such as replacing daughters with nieces.

In a work similar to this dissertation, McIntyre and Lapata [114] learned schema,

or linear sequences of events that share the same entity from fairy tale texts. Each
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sentence is considered to be one event. Sentences with the same verb and similar

arguments can be merged into one event, where similarity is computed with the

Wu and Palmer’s similarity measure [204] based on WordNet. The user specifies

required entities in a story, and schema associated with these entities are merged into

a single plot graph, where each path through the graph constitutes a story. A genetic

algorithm is used to optimize for the entity grid coherence measure [9], similar to the

SayAnything system.

My plot graph used in this dissertation assumes a partial order between events,

and different alternatives are explicitly represented using mutual exclusion relations.

McIntyre and Lapata’s plot graph contain implied mutual exclusion relations between

different paths in the graph. With their representation, we may generate a story

containing parts of two schema only if the two sequences share an event. The increased

separation is useful for learning from text corpus containing very different texts that

are likely to be incompatible. In comparison, Scheherazade learns from specialized

corpora containing texts that describe similar situations and are mostly compatible,

allowing a greater degree of recombination.

The Restaurant Game [130] uses human playing traces in a virtual restaurant to

learn a probabilistic model of restaurant activity. As the Restaurant Game is an

existing virtual game, there is an a priori known set of actions that can occur in

restaurants (e.g., sit down, order, etc.). Nevertheless, building a virtual environment

manually for each possible domain in order to gather knowledge about the domain

is very labor-intensive and unrealistic. One advantage of the approach developed in

this dissertation is that it does not require any 3D virtual environment.

Although the above systems aim to reduce the need for manually authored knowl-

edge, arguably none really eliminates the need completely. Manually authored and
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designed domain-specific knowledge appears in the form of training annotations, fea-

ture design, 3D virtual worlds, etc. Neither does the system presented in this disser-

tation eliminate such needs. In order to crowdsource stories pertaining to a particular

social situation, a human-readable description of the situation must be written, which

requires at least some knowledge about the social situation.

Lastly, it is worth mentioning some large-scale efforts for data annotation that

aim to support Narrative Intelligence. Elson [50] developed an annotation scheme for

stories. Analogies and similarities can be identified from annotated stories, which was

shown to be a better measure of similarity compared to semantic similarities based on

logic propositions. Finlayson [55] learned Propp’s narrative functions from a corpora

of fully annotated Russian folklore by merging story paths in a Markovian model.

The system successfully identifies major narrative functions, but also misses many

transitions between the events. The system has not been used to generate stories or

understand unannotated stories.

To my best knowledge, this work is the first system that learns structured knowl-

edge for any domains that can support story generation, storytelling and story un-

derstanding.
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CHAPTER III

LEARNING DOMAIN MODELS

Listen to great storytellers; slowly, you will learn about voice, timing,

tension, structure, climax—all the things you need to tell stories that will

capture the imagination of your audience.

— Carmen Agra Deedy

Narrative Intelligence is highly knowledge intensive. Most existing computational

NI systems rely on manually coded knowledge and are restricted to operate in a

few domains where knowledge is available. The Scheherazade system is capable of

learning knowledge needed for computational NI from crowdsourced exemplar stories.

In this chapter I present the crowdsourcing procedures and learning algorithms.

Before any learning can take place, we collect some exemplar stories from human

workers on Amazon Mechanical Turk (AMT). Collecting stories from human writers

has the following advantages: First, these stories provide access to distributed memory

of real-world experiences and cultural conventions as consensus among members of

a society. Thus, they allow us to learn about social and cultural norms in addition

to procedural knowledge. Second, it taps collective creativity that can often produce

more diverse stories than an individual writer [110]. Third, we can be confident that

the corpus contains highly specialized information about a specific situation. Four, we

can guide the human writers to present the information in a form easy for computers

to process.

This chapter provides a detailed procedure for learning domain models, or plot

graphs, that describe how events typically unfold in social or procedural situations.

I first introduce the formal representation of plot graphs in Section 3.1. After that,
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I describe how to acquire corpora of exemplar stories in Section 3.2. Subsequently,

Section 3.3 explains how we identify primitive events in a social situation by clustering

sentences with similar meaning. Section 3.6, 3.7, and 3.8 explain the learning of plot

graph structures, including (1) precedence relations, (2) mutual exclusion relations

and (3) optional and conditional events. The learn plot graphs are evaluated in

Section 3.4 and 3.9.

3.1 The Plot Graph Representation

A plot graph describes how social and procedural situations unfold as sequences of

events. In other words, a plot graph indicates what events can happen in a situation,

and constrains the way in which the events can happen. In a perfect model, only event

sequences that are legal according to the plot graph can happen in the situation. In

learning the plot graph, we aim to accurately model real-world situations as reflected

in the exemplar stories and filter out noises contained in the exemplar stories.

Definition 6 (Plot Graph). A plot graph G is a tuple 〈E,P,Mx, Eo, Ec〉. E is the

set of events. T ⊆ E × E is a set of precedence relations between events. Mutual

exclusions relations between the events belong to the set Mx ⊆ E × E. Finally,

Eo ⊂ E is a set of optional events and Ec ⊂ E is a set of events that are conditioned

on the optional events.

In the graphic representation, an event is represented as a vertex in the graph, a

precedence relation is represented as a directed edge, and a mutual exclusion relation

is a bidirectional edge. The precedence relations and the events form a directed acyclic

graph (DAG).

The precedence relations and mutual exclusion relations put constraints on how

a situation may unfold. A precedence relation from event ei ∈ E to event ej ∈ E

indicates that event ei always happens before event ej in all legal event sequences

according to plot graph G. A mutual exclusion relation between event ei and event
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ej indicates that events ei and ej never happen in the same legal event sequences

according to plot graph G.

Some graph notations and terminologies will become useful later in this chapter

and are worth introducing here. We use the notation (ei, ej) ∈ T to denote the fact

that there is a precedence relation from event ei ∈ E to ej ∈ E. We use the notation

(ei, ej) ∈Mx to denote the fact that there is a bidirectional mutual exclusion relation

between event ei ∈ E to ej ∈ E, so (ei, ej) ∈ Mx ⇔ (ej, ei) ∈ Mx. We further define

the following:

Definition 7 (Parent). If and only if there is a precedence relation from event ei ∈ E

to event ej ∈ E (i.e. (ei, ej) ∈ T ), event ei is called a parent of event ej.

Definition 8 (Child). If and only if event ei is a parent of event ej, event ej is called

a child of event ei.

Definition 9 (Predecessor). The predecessor relation is defined as the transitive clo-

sure of the parent relation. That is, if ei ∈ E is a parent of event ej ∈ E, ei is a

predecessor of event ej. If ek ∈ E is a parent of event ei and ei is a predecessor of

event ej, ek is also a predecessor of event ej.

Definition 10 (Successor). Similar to the predecessor relation, the successor relation

is defined as the transitive closure of the child relation.

Definition 11 (Path). A path in a plot graph from event ei to event ej is defined as a

sequence of events 〈e1, e2, ..., ep〉 such that every pair of adjacent events are connected

by a precedence relation, i.e. ∀q ∈ [1, n− 1], (eq, eq+1) ∈ T and e1 = ei and ep = ej.

On a historic note, The partial-order DAG representation has been employed in

interactive narrative systems like Weyhrauch’s Tea for Three [199], and Nelson and

Mateas’s Anchorhead [121] to represent plots. Both systems use the directed edges to

denote necessary preconditions, which means a parent must happen before its children
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are allowed to happen. Nelson and Mateas introduce an additional AND/OR label

that covers all parents for one event. If several parents are OR-ed together, only one

is needed before the child can happen. If they are AND-ed, all are required. In this

dissertation, I introduce the mutual exclusion relation, which serves a similar function

as the AND/OR label but is more expressive.

The main purpose of this representation is to bridge the learning process with

applications of Narrative Intelligence. This representation does not model causal

relations commonly used by story planners (e.g. [99]) because computationally iden-

tifying these relations remain difficult. Compared to simpler representation such as

used by Chambers and Jurafsky [26], I represent mutual exclusion relations, which

are important for maintaining story coherence during generation.

3.2 Collecting the Exemplar Stories

We first present the protocols for collecting exemplar stories from human workers

on Amazon Mechanical Turk. Each human worker is given a short description of a

social or procedure situation, such as “John and Sally went on a date at a movie

theater”, and are asked to write a story containing 10-20 sentences describing the

entire sequence of events. A compensation from $0.60 to $1 was paid out for each

accepted story.

For humans, writing stories is a natural form of communication. Telling stories

is found to be an effective means for human experts to share tacit knowledge [77],

which could be difficult to articulate otherwise. This is in contrast to, for example,

letting workers write production rules or manipulate probabilistic graphical models

and semantic networks. Turning knowledge engineering into story writing simplifies

the task and helps to increase the number of potential participants and lower the cost

of acquiring the corpus (i.e. the cost of hiring crowd workers to create the corpus).

This allows us to easily crowdsource exemplar stories. Although the AI techniques in
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this dissertation are not tied to a specific story collection procedure, crowdsourcing

provides a practical and cost-effective means for collection.

Understanding free-form natural language is still largely an open problem. Thus,

we reduce the difficulty of natural language processing by asking the writers to use

simple language. Specifically, we require the AMT crowd workers to:

� Segment the narrative into events such that each sentence contains a single

activity.

� Make sure to include a complete sequence of events from the beginning to the

end.

� Use proper names for all the characters in the task. This allows us to avoid

co-reference resolution altogether. We provide a cast of characters for common

roles, e.g., for the task of going to a fast-food restaurant, we provide named

characters in the role of the restaurant patron, the waiter, and so on. Currently,

these roles must be hand-specified, although future work could extract those

from commonsense knowledge bases.

� Use simple natural language such as using one verb per sentence, avoiding con-

ditionals, complex, and compound sentences. Direct speech, such as “John said

’pass me the salt’ ”, usually contains more than one verbs and is advised against.

� Use the past tense. Some verbs in the present tense, such as ”purchase”, can

sometimes be misclassified as nouns by the syntactic parser. The past tense

alleviates this problem.

We do not expect every human writer to follow these instructions precisely. Mi-

nor issues, such as a few misspellings or erroneous use of pronouns, are manually

corrected. If the story contains too many violations of the requirements, it is rejected

and no compensation is paid. A crowsourced correction is possible, as much research
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Table 2: Two crowdsourced exemplar narratives in the bank robbery situation

Story 1 Story 2

John walked into the bank. Sally stood behind a counter.

John went up to the counter. John entered the bank.

John pulled out his gun. Sally saw John.

John asked Sally for the money. John approached Sally.

Sally started to cry. Sally said hello.

The police arrived. John handed Sally a note.

The police handcuffed John. John showed Sally a gun.

The police took John away. Sally read the note.

Sally opened the cash register.

Sally put money into a bag.

Sally triggered the silent alarm.

Sally handed John the bag.

John thanked Sally.

John exited the bank.

on crowdsourcing (e.g. [82, 127, 197]) have focus on this problem. However, an auto-

mated correction is out of the scope of this dissertation. At this time, lexical errors

in the crowdsourced corpora are manually corrected. Due to the existence of idiosyn-

cratic events, this correction does not completely eliminates noise in the data sets.

See Section 3.3 for how the Scheherazade system handles noise in the learning the

primitive events.

Experience indicates about 60-80 stories are sufficient for learning a plot graph

for a situation with 40-50 events. Each story can be acquired for 60 cents to 1 dollar,

so the total cost for one plot graph is around $36 to $80.

We refer to each segmented activity as a step. Table 2 shows two sample crowd-

sourced examplar stories for the situation of bank robbery. We can observe that each
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story mentions only some events that may happen in this situation, and they often de-

scribe the same activity using different language. In addition, the stories can describe

different variations of the same situation. For example, In Story 1, John was captured

before he could get the money, but in Story 2 he managed to leave the bank. These

difficulties are handled by the next few steps of the learning process, starting with

learning primitive events, each of which may be described using different language.

3.3 Learning Primitive Events

The event learning process discovers the primitive units of event to be included in the

plot graph. This process learns salient concepts used by a community to represent

and reason about common situations. This phase of learning is based on a simple as-

sumption: salient concepts are mentioned more frequently than non-salient concepts.

Therefore, if multiple sentences describe the same underlying event, the event is likely

to be important for the situation. A clustering algorithm is used to seek clusters of

sentences semantically similar to each other. These clusters then become events in

the plot graph.

This clustering process faces two challenges. First, the algorithm must cope with

small data sets with complex structures. As each crowdsourced story has a monetary

cost, it is desirable to limit the number of stories that must be crowdsourced. In this

dissertation, 60-80 stories are usually acquired for one social or procedural situation.

Each social situation contains 30-60 event clusters. Many clusters contains only 4-5

sentences, which means the clustering algorithm must be sensitive to small clusters.

Second, the algorithm must work under a substantial amount of noise. The crowd

workers are not trained before the data collection, so they tend to include in their

stories non-salient, idiosyncratic events, as well as non-events such as descriptions of

the environments. The clustering algorithm hence must be able to filter out these

sentences as noises. Please refer to Table 3 in Section 3.4 for statistics of the data
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sets acquired through crowdsourcing.

To cater to this highly challenging task, I adapted the OPTICS [1] clustering

algorithm to extract clusters from small data sets. This method derives similarity

between sentences by comparing syntactic dependency graphs, and benefits from the

noise resistance of the OPTICS algorithm. This method is compared with a prob-

abilistic method for detecting mixtures of Dirichlet distributions. Empirical results

indicate that though the probabilistic method provides a principled mathematical

formulation, the OPTICS-based method works better for most data sets.

In Section 3.3.1, I describe how I compute the similarity between any two sentences

with their syntactic dependency graphs. In Section 3.3.2, I describe the OPTICS

clustering algorithm and a new method for extracting clusters from the reachability

plot it produces. In Section 3.3.3, I describe the clustering method for learning

mixtures of Dirichlet distributions.

3.3.1 Sentence Similarity from Syntactic Structures

The similarity between two sentences is computed as a weighted sum of their gram-

matical similarity, based on their syntactic structures and similarities between the

words, and temporal similarity, or how similar the two sentences are based on the

relative location in the story.

I first compute the syntactic structural similarity between two sentences following

Lintean and Rus [105]. The similarity between two sentences is computed as the

aggregated similarities between the syntactic dependencies, which are further aggre-

gated from similarities between words.

The Stanford parser [86] is used to extract the syntactical structure of a sentence

as a directed graph (by collapsing and propagating dependencies in the basic tree

structure). Each edge on the graph describes a syntactical dependency involving two

words. The word at the tail of the directed edge (i.e. the word that the edge originates
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John

handed

Sally

a

note

iob
j

d
et

Figure 3: Parsing result of the sentence ”John handed Sally a note.” produced by
the Stanford Parser. The grammatical relations between the words are noun subject
(nsubj), direct object (dobj), indirect object (iobj) and determinant (det) respectively.
The arrows point from governors to dependents.

from) is called the governor and the word at the head of the directed edge is called the

dependent. A syntactic graph has one root word that has no incoming edges. Each

dependency belongs to a syntactic type, such as ”nsubj” or ”dobj”. Figure 3 shows

a sample parsing result. For more information on Stanford Typed Dependencies, the

interested reader is referred to [44].

When two syntactical dependencies are of different types, their similarity is zero.

When the two dependencies belong to the same type, I compute the average of the

word similarity between the governors and that between the dependents. The simi-

larity between two words can be computed based on WordNet [116]. Empirically, we

found the Resnik’s word similarity function [148] to be the most effective.

Resnik [148] uses only the is-a relations in WordNet. The similarity between

two synsets/concepts in WordNet is computed by locating their common ancestor

with the most information content, or the least probability. Between a synset s

and its hypernym h, we have P (s) ≤ P (h). The probabilities were found from the

Brown Corpus [60]. Using the information content, as argued by Resnik, is better

than simply counting edges (e.g. [204]) because different edges are not of the same

semantic distance. The Resnik similarity is non-negative but does not have an upper
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bound. I normalize the similarities to between 0 and 1 for each data set separately.

My algorithm also caters to phrases consisting of two nouns, such as “movie

theaters”, which frequently appear in the data sets. Noun compound phrases are

indicated by a syntactic dependency of the type nn, or noun compound modifier.

When such a dependency is detected, the algorithm checks if the noun compound

exists as a phrase in WordNet. If it does, the noun compound is merged into one

word for the purpose of similarity calculation. Treating the two words as one phrase

allows the system to compute similarities at a finer granularity.

The dependencies are weighed by their distance from the root word of the sentence.

Words and phrases that describe unimportant details tend to be far away from the

root word. The depth of a dependency is computed as the number of edges from the

dependency’s dependent word to the sentence’s root word. Thus, the minimum depth

of a dependency is 1. An exponentially diminishing function of depth is used as the

weight. Formally, the similarity between two syntactic dependency of the same type

is

SyntSim(di, dj) = w(di, dj) s(di, dj) (3)

where the function s(·, ·) computes the average of Resnik similarities between the

governors, gov(·), and the dependents, dep(·), of the two dependencies:

s(di, dj) =
ResnikSim(gov(di), gov(dj)) + ResnikSim(dep(di), dep(dj))

2
(4)

and w(di, dj) is the weight of this pair of dependencies:

w(di, dj) = exp (−0.2(depth(di) + depth(dj)− 2)) (5)

After computing the similarities between all possible pairs of syntactical depen-

dencies from the two sentences, I find the maximum matching between the depen-

dencies using the Hungarian algorithm [89]. Suppose sentence A and sentence B

are described with a set of syntactic dependencies DA = {a1, a2, ..., an} and DB =
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{b1, b2, ..., bm}. A matching M ⊂ DA × DB pairs one element in A with at most

one element in B. The Hungarian algorithm finds the maximum matching M∗ =

argmax
M

∑
(ai,bj)∈M SyntSim(ai, bj). The similarity between the two sentences is then

computed as a weighted average
∑

(ai,bj)∈M∗ SyntSim(ai, bj)/
∑

(ai,bj)∈M∗ w(ai, bj).

The second component of sentence similarity is temporal similarity. We rely on

event location—a step’s location as the percentage of the way through a narrative—

to disambiguate syntactically similar steps that happen at different times. This is

especially useful when a situation is highly linear with little variation. For example,

when going to a movie theater, one will “wait in line” to buy tickets and then may

“wait in line” to buy popcorn. These two activities may share many syntactical

similarities, but will differ in their locations in the narrative. I use a weighted sum

of the two components of the syntactic similarity and the temporal similarity, as the

overall similarity between the two sentences.

TotalSim(di, dj) = SyntSim(di, dj) + λTempSim(di, dj) (6)

The parameter λ typically ranges from 0.3 to 0.15.

3.3.2 OPTICS for Small Data Sets

OPTICS1 [1] is one of the most popular density-based clustering algorithms with

the advantage of being resistant to noise and being able to detect clusters of different

shapes and densities. The algorithm maps data points onto a sequence of reachability

values where dents and valleys indicate clusters. In this section, I introduce the OP-

TICS algorithm and propose a new heuristic for extracting clusters from reachability

plots that work well on small data sets.

The underlying intuition of OPTICS is that a cluster is formed when a number

of points are close to one another. The algorithm takes as input a distance matrix

1In the tradition of having good acronyms for clustering algorithms, OPTICS stands for Ordering
Points To Identify the Clustering Structure.
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Figure 4: A reachability plot produced by OPTICS, where valleys represent clusters.
Reproduced from [1]. The parameter MinPts = Cm − 1

that contains the distance between any two data points. It has two paramters: the

minimum number of points in a cluster, denoted as Cm, and the maximum distance

between two points that we will consider, denoted as ε. OPTICS allows ε to be set to

infinity, which means we will consider two points however far apart they are. OPTICS

computes a core distance for each data point, which is the radius of the circle that

contains the nearby Cm−1 number of points. A smaller core distance means the data

point is closer to a cluster.

OPTICS defines the reachability distance between two points o and p as

reachability-distance(o, p) = max(core-distance(p), distance(o, p)) (7)

OPTICS can start its processing from any data point. It keeps a priority queue of

all unprocessed data points, ordered from low to high reachability distance. As a

new data point is processed, the reachability of all other points in the queue are

updated as the reachability to the current point. OPTICS always process the data

points with the smallest reachability in the queue. Therefore, when OPTICS finishes

processing all data points in one cluster, which have low reachability to each other,
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Figure 5: Clusters extracted from a reachability plot for the gas pumping situation.
The recognized clusters are shown in various colors, and sentences not belonging to
any clusters are shown in black.

it will encounter a data point with high reachability since this new point is far away

from the current cluster. This data point could signal a new cluster or could be noise,

depending on whether it is followed by other points of low reachability. When we

visualize the reachability distances as a bar chart, we obtain a so-called reachability

plot. One such reachability plot is shown as Figure 4. Regions with low reachability

are clusters separated by regions of high reachability.

The next task is to extract clusters from the reachability plot. The original OP-

TICS paper [1] provides a method for extracting clusters from reachability plots.

However, the small size of data sets we have tend to produce rather crooked reacha-

bility plots on which the technique do not work well as in more smooth plots.

In order to extract clusters from reachability plots, I first use the method by

Sander et al. [160] to convert a reachability plot into a hierachy of clusters. I then

collect all leaf nodes. Each leaf node contains a number of data points. A leaf node

is considered to contain a valid cluster if (1) there is a sufficient drop in reachability

between the highest point and the lowest point in the node and (2) there is a relatively
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flat region in the node. I then extract all regions that are relatively flat from a valid

leaf node as a cluster. An example of extracted clusters is shown in Figure 5.

3.3.3 Mixtures of Dirichlet Distributions

In the second method, we represent each sentence as a bag of n-grams. I use the

n-gram data produced by Lin et al. [103], where each n-gram is represented as a

1000-dimension vector. I normalize the original data so that each vector sums to

1. A cluster is represented as a Dirichlet distribution that all the n-grams of all the

sentences in the cluster are drawn from. Formally, we parameterize each cluster with

a vector θj, j ∈ [1, N ]. We have a number of sentences si, i ∈ [1,M ], each consisting

of n-grams xi1, . . . , x
i
h. Both θj and xih are of dimension D. We maximize the overall

likelihood function:

Λ(xxx;θθθ) =
M∏
i=1

N∑
j=1

pj

K∏
h=1

P (xih | θj) (8)

where

P (xih | θj) =
Γ
(∑D

r=1 θj,r

)
∏D

r=1 Γ(θj,r)

D∏
r=1

(xih,r)
θj,r−1 (9)

is the probability density function of the Dirichlet distribution.

This is a classic formulation where the entire data set is a mixture of distributions.

The clustering problem is equivalent to finding the probabilistic model that assigns

maximum probability to the observed sentences (in other words, finding the maximum

likelihood estimate). This can be solved by the expectation-maximization algorithm.

To simplify the problem we introduce a set of auxiliary variables zi,j ∈ {0, 1}, i ∈

[1,M ], j ∈ [1, N ]. zi,j = 1 denotes that the sentence si is assigned to the jth cluster.

In the E-step, with θ fixed, we want to find the optimal assignment for z:

ẑ̂ẑz = argmax
zzz

P (xxx,zzz | θθθ) = argmax
z

M∏
i=1

(
pj

K∏
k=1

P (xik|θj)

)δ(zi,j=1)

= argmax
z

M∑
i=1

δ(zi,j = 1)

(
log(pj) +

K∑
k=1

log(P (xik|θj))

) (10)
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where the delta function δ(zi,j = 1) equals 1 when zi,j = 1 and equals 0 otherwise.

Noting that sentences from different stories are independent, and their assignment

does not affect each other given θ is fixed, we can consider the assignments of z for

each story separately. Observing that two sentences in one stories rarely describe the

same event, we further enforce the constraint that no sentences in one story are put

into the same cluster. That is, each cluster contains one or zero sentences from each

story: ∑
i

zi,j ≤ 1, ∀j (11)

We also enforce the constraint that every sentence is assigned to exactly one cluster:

∑
j

zi,j = 1,∀i (12)

This is solved as a 0-1 integer linear programming problem for each story.

In the M-step, the assignment of z is fixed, and we compute ppp and θθθ that maximizes

the data likelihood. ppp is computed with Laplace smoothing:

p̂j =

∑N
i=1 δ(ẑi,j = 1) + 1

N +M
(13)

The the maximum likelihood estimator for θθθ can be sovled for individual θj

θ̂j = argmax
θj

P (xxx,zzz | θθθ) = argmax
θj

M∏
i=1

(
K∏
k=1

P (xik|θj)

)δ(ẑi,j=1)

= argmax
θj

M∑
i=1

δ(ẑi,j = 1)

(
K∑
k=1

log(P (xik|θj))

) (14)

However, the maximization does not have a closed-form solution and must be solved

numerically [80].

We need to select D, the number of dimensions for xxx and θθθ, so that many clusters

can be sufficiently differentiated, and each θj can be reliably estimated from limited

data. I experimentally determined D = 150, so that the 1000-dimension vectors

provided by Lin et al. [103] have been reduced to 150 dimensions using principal
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component analysis. Each sentence was broken into the fewest number of n-grams

using an A* algorithm.

In order to deal with noisy sentences, I use a large number of clusters (M typically

set to about 130), and discard from the final results any clusters with less than the

minimum number of sentences (i.e. Cm). This approach was shown to be effective.

I also experimented with adding Markov transitions between the learned clusters to

the probabilistic model. However, experiments indicate that that doing so actually

decreases performance.

3.4 Evaluating the Learned Events

Corpora of exemplar stories have been collected for the following situations:

� Going to a fast food restaurant.

� Taking a date to a movie theater.

� Robbing a bank.

� Pumping gas into a car

� Making coffee

� Going through airport procedures before boarding an airplane

� Buying medicines at a pharmacy

� A wife catching her husband having an affair

� A wedding proposal

Table 3 shows the attributes of these crowdsourced corpora for each situation,

including the number of stories crowdsourced, the average number of sentences in

each crowdsourced story, the number of unique verbs and nouns in the entire corpus,
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Figure 6: The size of gold standard clusters in the gas pumping situation, as percent-
age in the entire corpus.

and the number of events in a manually created gold standard. For each corpus,

I manually created a gold standard set of clusters against which the automatically

discovered clusters are evaluated against. It is worth noting that most data sets

contain a large number of clusters (40-60) with only a few sentences in each cluster.

Figure 6 shows the size of gold standard clusters in the gas pumping situation as their

percentage in the entire data set. Only three clusters contain more than 42 sentences,

or 5% of the entire corpus. On the other hand, 12 clusters contain less than 1% of

sentences. Further, data sets typically contain a large percentage (about 20% to 40%)

of noisy sentences that do not belong to any cluster. The compound effects of small

clusters and the presence of substantial noise make the task of event learning difficult.

We compare the two learning techniques on all situations. Table 4 presents the

results of event learning on our two crowdsourced corpora, using the MUC6 cluster

scoring scheme [195] to match actual cluster results against the gold standard. The

purity of a cluster measures intra-cluster homogeneity. Higher purity indicates higher

cluster quality. For each automatically generated cluster Ci, we find a gold standard

cluster Gj such that the maximum number of sentences in Ci belongs to Gj. The
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overall purity aggregates the overlap between Ci and Gj for all clusters. Given a set

of gold standard clusters G = {G1, G2, ..., Gn}, and a set of automatically generated

cluster C = {C1, C2, ..., Cm}, we define

purity(G,C) =
1

N

m∑
i=1

max
j
|Ci ∩Gj| (15)

where N is the total number of sentences.

We can observe that the best precision values for most data sets are in the range of

high 70s to 80s. Two data sets, coffee making and wedding proposal, are more difficult

than the rest, with precision in the 60s. The recall values are lower than precision, but

it is arguable that precision is more important than recall in this task. Most purity

values are in the 70s or higher, except three data sets: coffee making, gas pumping,

and wedding proposal. The results indicate some data sets are more difficult than

others. The two most difficult data sets, coffee making and wedding proposal, have

the most noise sentences, and the second and the third least stories, which contributed

to their difficulty. Performance can probably be improved by collecting more stories

for the two data sets.

The first method, based on OPTICS and similarities computed from syntactic

structures, consistently outperforms the second method, which models clusters as

Dirichlet mixtures. This can be attributed to the several reasons: (1) the first method

utilizes syntactic structures, which are more informative than n-grams, (2) the sim-

ple sentence structures resulted from crowdsourced stories helped us in computing

grammatical similarities between them, and (3) OPTICS provides a robust method

for dealing with noise sentences that do not belong to any clusters.

3.5 Improving Learned Events with Crowdsourcing

Although the event learning process achieves acceptably high accuracy rates, the

errors at this stage can be amplified in later stages of learning, resulting in low-

quality plot graphs. One possible solution is to make use of crowdsourcing again to
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improve the clustering accuracy.

The following is one possible procedure for crowdsourcing the clustering of sen-

tences. After the algorithm decides on a set of clusters of sentences, the clusters are

shown to a number of crowd workers who are tasked to inspect the cluster members

and pick out sentences that are dissimilar to other sentences in the same cluster.

Under sufficient agreement, a particular sentence can be removed from its cluster.

The removed sentences are put into a trash can. In the next step, we ask the crowd

workers (possibly different workers) to pick out one sentence as a summary of this

cluster. Finally, workers are asked to restore sentences in the trash back into the

clusters wherever possible, with the help of the cluster summaries.

Preliminary results in the bank robbery domain show such a procedure may im-

prove the purity of clusters to 89.8%, approximating agreement between humans.

However, determining the best method for crowdsourcing clustering is out of the

scope of this dissertation.

3.6 Learning precedence relations

Once we have discovered events that can happen in a given situation, the next stage

is to identify the structure of the plot graph that most accurately explains the set of

crowdsourced exemplar stories. The process begins with the identification of prece-

dence relations, which creates a partial ordering among the events. A partial order

does not require every event to be ordered with respect to every other event. Some

events may be unordered with respect to each other. When a story is generated, a

total order of the events consistent with the specified partial order can be selected

dynamically. Hence, a partial order allows sequences of events to change according

to the need of story generation or understanding and is less rigid compared to a total

order. The assumption of partial order is different from approaches that learns total

orders, such as Regneri et al. [147].
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Chambers and Jurafsky [26, 27] also tried to infer temporal relations in the models

them learn. They train their models on the Timebank corpus [144], which uses

temporal signal words. Since our corpora are highly specialized to our task, the

precedence relations can be inferred directly from the sentence orders in the exemplar

stories.

I present two methods for learning the precedence relations. The first method

applies a global threshold to the confidence of all possible precedence relations, and

then attempts to restore precedence relations that might have been left out by a

conservative threshold. The second method keeps as many precedence relations as

possible, while maintaining the acyclicity of the graph. In practice, I find both meth-

ods have their merits. The first method helps to show the major relations in the

graph, allowing us to identify important graph structures. Graphs learned by the

first method can produce a greater variety of stories. The second method eliminates

cycles while preserving more precedence constraints. It produces more linear stories

with less variety, which helps to reduce errors in generated stories.

The precedence learning process selects valid precedence relations among all pos-

sible relations. I present two different methods for learning precedence relations, and

both relies on the notion of the confidence of each relations, as defined below.

For every pair of events (ei, ej), there are three possible ordering: ei is ordered

before ej; ei is ordered after ej; or the order between ei and ej is not important for the

situation. The three cases are denoted using the following mathematical notations:

ei ≺ ej, ei � ej, and ei ‖ ej. The reader may have noticed that the notation ei � ej

is equivalent to ej ≺ ei. When ei is ordered before ej, there may still be other events

ordered between ei and ej. We can choose to accept or reject the two hypotheses

ei ≺ ej and ei � ej — only one of the two can be accepted. If both are rejected, we

accept ei ‖ ej.

We count the amount of evidence for and against the two hypotheses. Let sl be
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a sentence in the event cluster ei, and sm a sentence in the event cluster ej. If sl and

sm both appear in the same exemplar story, and sl is ordered before sm, we count

one observation in support of ei ≺ ej. Conversely, if sl and sm appear in the same

exemplar story and sm appears before sl, we count one observation in support of

ei � ej.

The confidence of ei ≺ ej is computed by a one-tailed hypothesis testing based on

the binomial distribution as

confidence(i, j) =

kij−1∑
i=1

(
nij
i

)
1

2nij
(16)

where nij is the total number of observations we have, and kij is the observations

that support ei ≺ ej. Similarly, the confidence of ei � ej is computed based on the

number of observations that support ei � ej.

3.6.1 Method 1: Smart Thresholding

The first method accepts all hypotheses ei ≺ ej whose confidence exceeds a threshold

Tp ∈ [0.5, 1). The threshold Tp applies to the entire graph and allow us to generate an

initial estimate of the graph structure through simple counts. In practice, we find that

the graph quality is sensitive to the selection of these parameters. Selecting a set of

parameters that always work for the entire graph is often impossible as different parts

of the graph may respond well to different parameters. Thus, it is desirable for graph

estimation to be robust against parameter selection, and to locally relax the global

thresholds for some relations. We achieve this goal by using a high threshold for Tp,

which filters out many potential precedences, and then restoring missing relations

back to minimize a measure of graph error, effectively relaxing the global threshold

locally.

Since a plot graph encodes event ordering, we introduce an error measure based

on the expected number of interstitial events between any pair of events. The error

is the difference between two distance measures, DG(ei, ej) and DN(ei, ej). DG(ei, ej)
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is the number of events on the shortest path from ei to ej on the graph (ei excluded).

In contrast, DN(ei, ej) is the normative distance from ei to ej averaged over the entire

corpus of exemplar stories.

Formally, we find the shortest path from ei to ej and denote it as spi,j. Recall

a path is a sequence of events 〈ei, e1, e2..., ej〉 starting from event ei, ending in event

ej, and every adjacent pair is connected by a precedence relation. Similarly, we find

the shortest path from ej to ei and denote it as spji. If ei is ordered with respect to

ej, one of spij and spji exists. If ei is parallel to ej, neither spij nor spji exists. The

graph distance between ei and ej is thus defined as

DG(ei, ej) =


|spij|−1, if ∃spij

−|spji|+1, if ∃spji

0, otherwise

(17)

Since the shortest path contains at least two events ei and ej, DG(ei, ej) ≥ 1 if there is

at least one path from ei to ej. DG(ei, ej) = 0 if ei and ej are unordered with respect

to each other on the graph. DG(ei, ej) ≤ 1 if there is at least one path from ej to ei.

Having defined the graphical distance DG(ei, ej), we formally define the normative

distance DN(ei, ej) between two events ei and ej, as the average distance between the

two events over all exemplar stories. An exemplar story Nk is a sequence of sentences

〈sk1, sk2, ...〉. Let the notation sk1 ∈ ei denote that sentence sk1 belongs to the event

cluster ei. The definition of DN relies on the definition of dN, simply the number of

interstitial sentences between any two sentences in the same narrative. That is, for

any ska, s
k
b ∈ Nk,

dN(ska, s
k
b ) = b− a (18)

Next, we define the set Sij as the set of pairs of sentences that appear in the same

exemplar story and belong to ei and ej respectively:

Sij = {(ska, skb )|ska ∈ ei ∧ sk
′

b ∈ ej} (19)
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Now DN(ei, ej) is just the average of dN(·) over the set Sij:

DN(ei, ej) =
1

|Sij|
∑

(ska,s
k
b )∈Sij

dN(ska, s
k
b ) (20)

As the distance on the plot graph should approximate the average distance be-

tween the corresponding sentences in the exemplar stories, we aim to minimize the

mean squared graph error (MSGE), which is defined as the average squared distance

between the graph distance DG from the ground truth DN:

MSGE =
1

|P |
∑

ei,ej∈P

(DG(ei, ej)−DN(ei, ej))
2 (21)

where P is the set of all ordered event pairs (ei, ej) such that ej is reachable from ei

or ei and ej are parallel on the graph (i.e. DG(ei, ej) ≥ 0):

P = {(ei, ej)|DG(ei, ej) ≥ 0} (22)

We note that for some data sets, removing any outlier sentences that do not belong

to any clusters from the stories before counting the interstitial sentences tends to

produce better results.

We utilize the MSGE error measure to improve the graph based on the belief

that DN represents the normative distance we expect between events in any narrative

accepted by the plot graph. That is, typical event sequences in the space of narratives

described by the plot graph should have DG(ei, ej) ≈ DN(ei, ej) for all events. A

particularly large deviation from the norm may indicate that some edges with low

confidence could be included in the graph to make it closer to user inputs and reduce

the overall error.

We implement a greedy, iterative improvement procedure that reduces mean

square graph error in a plot graph (Algorithm 1). For each pair of events (ei, ej)

such that ej is reachable from ei or the two events ei and ej are parallel, we compute

a set of potential predecessor events U :

U = {ek|ek ∈ successors(ei),DG(ei, ek) = DN(ei, ej)− 1}
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a
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(a) Before
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b
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(b) After

Figure 7: Restoring low-confidence precedence relations: (a) The precedence relation
(shown as dashed arrow) from b to c has a confidence below the global threshold and
is initially rejected. (b) Adding the precedence back to the graph creates the desired
separation between a and c.

where successors(ei) is the set of all direct and indirect successors of ei. In other words,

if any ek ∈ U becomes the immediate predecessor of ej, DG(ei, ej) = DG(ei, ek) + 1

will be equal to DN(ei, ej). Starting from the pairs of events (ei, ej) with the largest

deviation from the norm, computed as DN(ei, ej) − DG(ei, ej), we check if adding

an edge ei → ej will create any cycles or increases the graph error MSGE. If not,

the edge ei → ej is added to the graph. This intuition is illustrated in Figure 7

where the edge (dashed arrow) from event b to event c was originally rejected due to

insufficient confidence; adding the edge to the graph creates the desired separation

between events a and c.

Adding an edge may increase overall graph error. However, in some domains,

adding all edges that do not create cycles, regardless if adding them increases MSGE,

tends to produce graphs correspond better to human intuition. This is due to factors

not captured by the MSGE heuristic. If we skip that MSGE test, we obtain an

aggressive version of graph improvement.
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Algorithm 1 Plot graph improvement

procedure ImproveGraph(G = 〈E,P,Mx, Eo, Ec〉)
P ← all event pairs (ei, ej) such that ej ∈ successor(ei) or that ei and ej are

unordered, i.e. DG(ei, ej) ≥ 0.
P ← Sort P in decreasing order of DN(ei, ej)−DG(ei, ej).
for each (ei, ej) in P do

U ← successors ek of ei such that DG(ei, ek) = DN(ei, ej)− 1
for each ek in U do

if edge 〈ei, ek〉 /∈ T then . add new edge
Build a new graph G′ = 〈E, T ∪ 〈ei, ek〉,Mx, Eo, Ec〉
if G′ does not contain cycles, and MSGE(G′) < MSGE(G) then

G← G′ . Aggressive version skips the MSGE test
end if

end if
end for

end for
end procedure

We find a relatively high Tp (≈ 0.7) combined with the graph improvement step

leads to robust graph estimation. A conservative Tp initially discards many edges in

favor of a lower-diameter graph with many unordered events. After that, the improve-

ment algorithm opportunistically restores the relations of different levels of evidence

as long as graph error can be reduced. This effectively relaxes the threshold locally.

Rare events are automatically excluded from the graphs because their relations to all

other events do not meet our probability and confidence thresholds.

3.6.2 Method 2: Integer Quadratically Constrained Programming

Even with the graph improvement step, which relaxes the global threshold somewhat,

sometimes it can be difficult to find a good value for the parameter Tp. This issue is

further complicated by the requirement that the plot graph must be acyclic. To solve

these two issues, I propose the second method for learning precedence relations using

integer programming.

To avoid looping infinitely back to the same event, any plot graph must be a

directed acyclic graph (DAG). By setting Tp > 0.5, we can make sure to reject one of
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ei ≺ ej and ej ≺ ei, hence eliminating cycles of two events. There are no self cycles

because no event can precede itself. However, the graph may still contain cycles that

involve three or more events.

Cycles can always be eliminated by increasing the global threshold. Cheng et al. [32]

discussed two simple methods to find the minimum threshold to eliminate all cycles

from the graph. Nevertheless, increasing the global threshold affects the entire graph

and may discard good precedence relations that are not involved in any cycles. Thus,

it is difficult to learn an acyclic graph by only adjusting the global threshold.

In order to eliminate cycles in the plot graph and preserve as many precedence

relations as possible, I formulate the learning problem as an integer quadratically

constrained program (IQCP). IQCP is an NP-hard problem, but very efficient off-

the-shelve solvers, such as the Gurobi solver [75], are available. The general case of

cycle elimination (i.e. minimum feedback edge set) is also NP-hard and APX-hard

(i.e. difficult to approximate) [84]. Thus, formulating precedence learning as IQCP

is appropriate.

The formulation of the IQCP problem is based on the insight that vertices in a

DAG can be arranged into a number of layers where all directed edges go from a

higher layer to a lower layer. An illustrative example is shown in Figure 8, which

shows a directed graph containing 9 vertices organized into 5 layers. All edges go

from a higher layer (denoted with a smaller number on the vertices) to a lower layer

(denoted with a greater number on the vertices) except the red edge at the bottom

right, which creates a cycle. Eliminating edges going from lower layers to higher

layers guarantees that the graph is acyclic.

Consequently, we can formulate the IQCP problem as follows. We attach a level

variable li, which can take any positive integer value, to each vertice ei. We also

attach a binary variable xij ∈ {0, 1} for any precedence hypothesis ei ≺ ej. xij = 1

if and only if we accept the hypothesis. We want to preserve as many precedence
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333

44
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Figure 8: Organizing vertices in a directed graph into multiple layers. All edges go
from a higher layer (denoted by a smaller number) to a lower layer (denoted with a
greater number) except the cycle-creating red edge at the bottom right.

relations as possible and prioritize hypothesis of higher confidence, so we maximize

the following sum of logarithm.

xxx = argmax
xxx

∑
i

∑
j

(log(conf(i, j))− log(Tp)) xij (23)

The reason that we subtract log(Tp) is the following: log(x) is negative when 0 <

x < 1, so a direct sum of logs will be 0 or negative. However, we know Tp is a lower

bound on the confidences of hypotheses that we accept. By subtracting log(Tp), we

ensure log(conf(i, j)) − log(Tp) > 0, for all hypotheses we may accept. It is worth

noting that adding a constant C to log(x) shifts the function upwards and does not

change the shape of the function. We typically set Tp to 0.5, so any precedences with

50% or lower confidence are rejected, but a higher global threshold may also be used.

In order to ensure the plot graph is acyclic, we need to respect the constraint:

lj − xij li ≥ 1,∀i,∀j (24)

In plain English, if we accept the hypothesis ei ≺ ej, xij = 1, then the level variable lj

must be greater than the level variable li, so that the directed edge goes from a lower

level to a higher level. If we reject the hypothesis ei ≺ ej, the variable xij will be set
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to 0, and the constraint is always satisfied since lj is a positive integer. It is clear

that the objective function is linear but the constraints are quadratic with respect to

the variables xxx and lll.

3.6.3 Practical Concerns In Learning Precedence Relations

It is worthwhile to compare the two methods for learning plot graphs. The smart

thresholding method first filters all precedence hypotheses with a hard global thresh-

old and then tries to compensate for it. The IQCP method typically uses a lower

hard threshold and removes precedence relations relatively lower confidence whose

inclusion will creates cycles. Therefore, the IQCP method takes a “softer” and more

flexible approach which retains more precedence relations. This is advantageous when

data are sparse. However, when data are sufficient, the IQCP method may appear

too lenient and keeping incorrect precedence relations that are only slightly above the

lower threshold. This may be compensated by a higher hard threshold.

In general, we face the classic trade-off between overfitting and underfitting, or bias

and variance, when choosing the correct filtering threshold. A low global threshold or

an aggressive precedence restoration algorithm, can accept more precedence relations,

and may potentially leads to overfitting. On the other hand, if a high threshold is

adopted, we may learn too few precedence relations and the model can underfit.

An overfit model possessing many precedence constraints will produce very limited

variations in story generation, whereas an underfit model will produce variations that

are too wild to make sense. As with most machine learning algorithms, it is generally

difficult to presciently determine the correct trade-off that works on all data sets and

all situations.

Since IQCP is NP-hard, it may not scale well to very large problems. However,

it works well for the size of the problems I deal with. As I showed in Table 3, all

situations have less than 60 gold standard events. Counting one level variable l for
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each event and one acceptance variable x for each potential edge, there are at most

3660 variables, which are well within the capability of modern solvers and hardware.

On an Intel i5 (Haswell architecture) processor with 16 GB RAM, the Gurobi solver

[75] takes less than 1 second to solve the IQCP problems for every situation I have.

3.7 Learning Mutual Exclusion Relations

After identifying precedence relations, we further identify mutual exclusion relations

between the events. Mutual exclusion relations are a generalization of the AND/OR

labels introduced by Nelson and Mateas [121]. Many social and procedural situations

contain several possible outcomes or alternative ways to perform an activity. For

example, a bank robber may escape or be caught by police. A restaurant patron

may choose to dine-in or order to-go meals. Due to the presence of alternative or

branching event sequences, different exemplar stories may describe different events,

and the plot graph may contain several paths that are incompatible. In order to

separate incompatible events and create coherent legal event sequences, the learning

process identifies mutual exclusion relations.

In the plot graph representation, a bidirectional mutual exclusion relation between

two events indicates that the two events cannot both happen in a single story. Mu-

tual exclusion relations pose constraints on valid sequences of events, which help to

maintain story coherence during story generation.

Mutual exclusion relations are identified based on the mutual information between

events, a measure of their interdependence. Suppose Ei ∈ {0, 1} is a random variable

indicating if event ei exists in an input narrative. The mutual information between

two events ei and ej is:

MI(Ei, Ej) =
∑

Ei∈{0,1}

∑
Ej∈{0,1}

p(Ei, Ej) log
p(Ei, Ej)

p(Ei)p(Ej)
(25)

where p(·) denotes the probability of the random variables. For example, p(Ei = 1)

is the probability that event ei happens in a narrative, estimated as the ratio of input
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narratives containing ei to the total number of narratives in the corpus. p(Ei =

1, Ej = 1) is the probability that ei and ej happen in the same narrative, etc. We

can also write the mutual information as:

MI(Ei, Ej) = C(0, 0) + C(0, 1) + C(1, 0) + C(1, 1) (26)

where

C(a, b) = p(Ei = a,Ej = b) log
p(Ei = a,Ej = b)

p(Ei = a)p(Ei = b)
(27)

The partial sum C(0, 1)+C(1, 0) expresses the tendency for the two random variables

to take on different values, or the tendency that the presence of one event predicts the

absence of the other event. We recognize two events to be mutually exclusive when

C(1, 0)+C(0, 1) > 0, which suggests mutual exclusion, and MI(Ei, Ej) is greater than

a threshold Tm, which suggests strong interdependence between the two variables.

3.8 Learning Optional and Conditional Events

To explain the underlying rationale for having optional and conditional events, we

must jump forward a little in content to explain one of the several rules in story

generation (the topic is addressed in Chapter 4). The one rule that is relevant here

is that we assume that precedence constraints are equivalent to necessary conditions.

That is, if event a temporally precedes event b, event b can only happen after event

a has happened because event a establishes a necessary condition for event b.

Optional events are introduced to make sure every event in the plot graph has a

chance of appearing in at least one legal event sequence that may be generated from

the graph. Given two events a and b, there are several possible configurations:

1. Events a and b are temporally ordered but not mutually exclusive.

2. Events a and b are not temporally ordered but mutually exclusive.

3. Events a and b are both temporally ordered and mutually exclusive.
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Figure 9: Identifying optional events: (a) Event a is optional and b is conditional.
(b) Event a is not optional due to the mutual exclusion relation between a and b.

The first two cases can be easily handled, but the third case creates a paradox.

Without loss of generality, let us assume event a is ordered before event b, or (a, b) ∈

E. Due to this precedence relation, event b cannot happen until event a has happened,

but after event a has happened, event b will be excluded by the mutual exclusion

relation and still cannot happen.

To make sure event b can happen in some legal event sequences, we must relax our

assumption of necessity Instead of requiring event a to be a precondition for event

b, we do not consider event a to be a precondition for any event. That is, event a

becomes optional in the plot graph. If event a occurs in a narrative, event b will be

excluded, but if event a does not occur, then event b can happen and is still necessary

for its successor events. Event b becomes conditioned event a.

We need to be careful not to make events unnecessarily optional. One interesting

scenario is illustrated in Figure 9. On the left, we recognize event a to be optional

and event b to be conditioned on event a. On the right, however, event a is mutually

exclusive to another event c that is mutually exclusive to event a and is a predecessor

for event b. When event c happens, event a will be excluded from the plot graph,

and event b may be included in an event sequence. Thus, in this scenario, we do not

recognize event a to be optional or event b to be conditional.

Now let me introduce the notion of a clear path. Recall that a path from event ei

to event ej in a plot graph is a sequence of events 〈ei, e1, e2, . . . , ej〉, where adjacent
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Figure 10: Identifying optional events with clear paths. Although event a is mutually
exclusive to event c, a predecessor of event b, there is no clear path from event c to
event b. Therefore, we must recognize event a as optional and event b as conditional.

events are connected by a precedence relation. The path is clear if no two events on

the path are mutually exclusive to each other. Moreover, the path is also clear if two

events ep and eq (p < q) on the path are mutually exclusive to each other, but ep has

been recognized as optional.

In general, when we have two events a and b, in order to recognize event a as

optional and event b as conditional, all of the following conditions must be satisfied:

� Event a precedes event b, or (a, b) ∈ T

� Event a is mutually exclusive to event b, or (a, b) ∈Mx

� There does not exist event c such that event c is mutually exclusive to event a,

and there is a clear path going from event c to event b, and a is not included in

this path. Or formally,

6∃ c ∈ E s.t. (a, c) ∈Mx ∧ ∃ClearPath(c, b) ∧ a 6∈ ClearPath(c, b) (28)

It should be noted that this set of conditions are sufficient, but not necessary, to make

sure every event can happen in at least some event sequences.

To see why we need the notion of a clear path, let us consider the scenario in

Figure 10. We notice that event f is not optional because event f provides an
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alternative path to event e. We also notice that event a is mutually exclusive to

event c, a predecessor of event b. However, the path from event c to event b is not

clear because it goes through the pair of events d and e. When event c happens, event

e cannot happen, so there is effectively no path from event c to event b. Thus, we

must recognize event a as optional and event b as conditional.

A polynomial-time algorithm for detecting optional and conditional events can be

built using the adjacency matrix representation of graphs. The adjacency matrix M

is constructed as follows:

Mij =


1 if there is precedence relation from vertex i to vertex j

0 if there is no precedence relations from vertex i to vertex j

(29)

Let M2 = M ×M , and M3 = M ×M ×M , and so on. It is easy to show that if

and only if there is a path from vertex i to vertex j that contains one intermediate

vertex between i and j, M2
ij > 0. Otherwise, M2

ij = 0. This is because if there is

another vertex k such that Mik = 1 and Mkj = 1, then M2
ij =

∑
k′Mik′Mk′j > 0.

More generally, we can show Mn
ij > 0 if and only if there is a path from vertex i to

vertex j that contains n− 1 intermediate vertices.

The fact that the plot graph is acyclic helps us reduce the computation needed

because the length of longest path in the graph cannot exceed the number of vertices,

n. Therefore, to find if there is a path between vertex i and vertex j, it suffices to

check the entry at row i and column j in the matrices M2,M3, . . . ,Mn−1. A path

exists if and only if the entry in any of these matrices is non-zero. We do not need to

compute matrices to the nth or higher powers, because a path containing more than

n − 2 intermediate vertices cannot exist in the acyclic graph. To make sure we find

clear paths only, for each mutual exclusion relation between vertices ei′ and ej′ , we

set the entries at (i′, j′) and (j′, i′) to zero after each matrix multiplication.

The algorithm for identifying optional and conditional events is shown as Al-

gorithm 2. The most time consuming step in the algorithm is the computation of
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Algorithm 2 Identifying optional and conditional events

procedure IdentifyOptional(G = 〈E,P,Mx, Eo, Ec〉)
M1 ← an n-by-n zero matrix
for each (ei, ej) ∈ T do

M1
ij ← 1

end for
for k ← 2 to n− 1 do

Mk ←M ×Mk−1

end for
P ← a empty list of pairs of events
for each (ei, ej) ∈Mx do

for k ← 1 to n− 1 do
if Mk

ij > 0 then
P ← P append (i, j)
break

else if Mk
ji > 0 then . acyclicity: Mk

ij and Mk
ji cannot both > 0

P ← P append (i, j)
break

end if
end for

end for
for each (i, j) ∈ P do

if 6∃ eq ∈ E, s.t. (eq, ei) ∈Mx and q 6= j and ClearPath(G, ei, eq, ej) then
O ← O ∪ ei
C ← C ∪ ej

end if
end for

end procedure
function ClearPath(G = 〈E,P,Mx, Eo, Ec〉, ei, eq, ej)

M1 ← an n-by-n zero matrix
for each (ea, eb) ∈ T, a 6= i, b 6= i do . the path cannot go through ei

if (ea, eb) 6∈Mx then
M1

ab ← 1
end if

end for
for k ← 2 to n− 1 do

Mk ←M ×Mk−1

for each (ea, eb) ∈Mx do
Mk

ab ← 0
end for

end for
return ∃k, s.t. Mk

qj > 0
end function
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n− 2 matrices M2,M3, . . . ,Mn−1. The simplest matrix multiplication algorithm has

time complexity of O(n3). The widely used Strassen algorithm [175] has reduced the

complexity to O(n2.807355), even though more complex and faster methods have been

invented (e.g. the Coppersmith-Winograd algorithm [36]). Since there are O(n2) pairs

of vertices in the graph, we need to run the algorithm no more than O(n2) times.

Hence, it only takes polynomial time to find all optional and conditional events.

3.9 Evaluating the Learned Graphs

Before applying learned plot graphs in tasks of Narrative Intelligence, it is desirable to

check if the graphs make sense to human judges. In this section, I perform a quantita-

tive evaluation on some of the learned plot graphs. The learned precedence relations

in the plot graphs are evaluated by crowd workers from AMT. The mutual exclusion

relations and optional events are not quantitatively evaluated, as their meaning can

become opaque when evaluated without a proper context. However, they will be

indirectly evaluated when we evaluate the generated stories in Section 4.2.

Figure 11 and Figure 12 show the plot graphs learned by the smart thresholding

and the IQCP method respectively (referred to as the ST graph and the IQCP graph

hereafter). These plot graphs are learned from the gold standard clusters under the

assumption that we can further crowdsource the clustering of sentences and achieve

near perfect clusters. The event labels are English interpretations of each event for

presentation purposes only, based on manual inspection of the sentences in each event.

For clarity, edges that do not affect the partial ordering are omitted from the figure.

Close inspections of the plot graphs show that the two graphs do not differ in

the sequence of major events. The ordering of the key events, such as “buy tickets”,

“find seats”, “watch movie”, and “go home”, are mostly correct in both graphs.

Most precedence relations seem to be reasonable, although a few can be added or

removed to make the graphs to capture the ideal “date at a movie theater” situation
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Sally enters car

John drives to 
Sally’s

Buy tickets

Buy popcorn 
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popcorn
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Legend

Normal event
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Talk
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Eat popcorn
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Put arms 
around

Hold hands
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Stand up
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Use 
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Kiss

Go home

Say goodbye

Park car

Figure 11: A plot graph for the movie date situation, created by smart thresholding.
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Figure 12: A plot graph for the movie date situation, created by the IQCP method.
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more accurately. In general, we tend to see ordered relations when we expect causal

necessity, and we see unordered events when ordering variations are supported by the

data.

Comparing the two graphs, The IQCP graph seems to be more reasonable. For ex-

ample, the IQCP graph positions the event “park car” correctly but the smart thresh-

olding method does not. The IQCP graph also correctly positions “enjoy movie” be-

tween “movie begins” and “movie ends”, and positions “buy drinks” correctly before

“find seats”. The ST graph correctly identifies that John and Sally could put their

arms around each other most of the time during the movie, and they can drink the

soda anytime, whereas the IQCP method restrains the two events “put arms around”

and “drink sodas” more narrowly. However, the IQCP graph correctly identifies John

and Sally can talk during most time of the movie, but the ST graph puts the “talk”

event after “stand up” and before “kiss”. The ST graph also contains fewer events

than the IQCP graph because events not temporally related to any other events are

not included in the graph.

In general, the smart thresholding method errs on the side of omitting precedences

with low probability, and the IQCP graph errs on the side of including too many

precedences, so the ordering of events may be overly constrained. In the movie date

situation, whereas the storyline is mostly linear without significant branches and

contingencies, the IQCP method appears to work better.

The mutual exclusions detected are correct, but some are missing. The mutual

exclusion between “John meets Sally at the theater” and “go home” is because when

the two people meet at the theater, they usually say goodbye at the theater and the

story ends. If John picked up Sally, however, human writers tend to describe how

John and Sally go home together. We miss some mutual exclusion relations, such as

the one between “John drives to Sally’s” and “pick Sally up” because they are two

different descriptions of the same event. The missing mutual exclusions exist in both
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graphs, as they use the same mechanism for detecting mutual exclusion relations.

3.9.1 Methodology

We evaluate the two graphs in the movie date situation empirically with human judges

recruited from Amazon Mechanical Turk. The learned precedence relations as well as

the absence of such relations are checked. From the ST graph, we randomly sampled

30 pairs of adjacent events, i.e. events in the automatically generated plot graph that

are ordered by a before relation without any interstitial events. We also randomly

sampled 29 pairs of parallel events, i.e. events for which the plot graph indicates no

necessary ordering relative to one another. From AMT, we recruited 144 workers.

Each worker was paid 0.12−0.20 to check seven pairs of events.

Each worker was instructed to consider each pair of events in the context of going

on a date to the move theater. Each pair of events (A, B) was presented to a worker

in a randomized order (50% of workers saw A before B and 50% of workers saw the

opposite) and workers were asked whether (a) it is more likely that A comes before B,

(b) it is more likely that B comes before A, or (c) that they are unable to tell which

should come first. In order to detect cheating or randomly clicking, two of the seven

pairs were designed as validation questions. These two pairs of events do not appear

anywhere in the plot graph, but were manually written and have obvious orderings.

If a worker provided a wrong answer on either of two pairs, all of his or her answers

were considered invalid and discarded. Each worker was allowed to participate in the

study only once.

3.9.2 Results

With the gold standard created by the crowd workers, we evaluate the two methods

for learning precedence relations. The results for the smart thresholding (ST) graph

and the IQCP graph are shown in Table 5 and Table 6 respectively. The differences

between the two tables, resulted from subtracting the ST results from the IQCP
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results, are summarized in Table 7.

The rows in those tables indicate subsets of the data. The first three rows show

the results from all sampled pairs, all sampled adjacent pairs, and all sampled parallel

pairs (the remaining rows are explained later). The columns measure accuracy—the

percentage of time human workers agree with our plot graphs—at different levels

of worker agreement. We measure human agreement on each pair of events as the

entropy of their answers. The entropy for the jth pair of events (aj, bj) is defined as:

entropy(Xj) = −
3∑
i=1

P (xji) lnP (xji) (30)

where xji ∈ {before(aj, bj), before(bj, aj), parallel(aj, bj)}. The probability distribu-

tion P (Xj) is observed directly from human responses for the pair (aj, bj). The

columns of Table 5 show statistics for event pairs with increasing entropy from left

to right (i.e. decreasing worker agreement). For example, the first column include

only pairs where workers unanimously agree (entropy = 0), which are 29% of all pairs

evaluated (row “All”), and of those 29%, workers agreed with the ordering in the ST

graph 76% of the time. Lowering the entropy threshold filters out pairs of events with

low agreement from consideration.

3.9.3 Discussion

We draw four sets of observations about our plot graph learning algorithm in the

movie situation:

� Overall accuracy. The smart thresholding method yields an overall accuracy

over 53%, whereas the IQCP method has a higher accuracy of 57%. Both are

well above the purely random baseline of 33%. When we examine only pairs

for which workers perfectly agree with each other our accuracy is as high as

76% for smart thresholding, and 88% for IQCP, although this only accounts for

about 29% of our total sampled pairs. We found that when humans could not
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reach consensus on a pair of events, they tend to also disagree with our system.

The IQCP method consistently outperforms the smart thresholding method in

overall accuracy.

� Adjacent events. Our system is very accurate when it comes to determining

when a before relation should exist between a pair of events. Workers agree

with our before relations at about 90% of the time when they can reach good

consensus (entropy < 0.6). This suggests our algorithm is a good model of the

ground truth. Accuracy decreases as workers begin to disagree but remains

high (≈0.7-0.8) in the worst case. The IQCP method shows slightly lower

performance in the conditions of entropy < 0.6 and entropy < 0.8, suggesting

it recognizes precedence relations more aggressively than the other method.

� Parallel events. For all parallel pairs, workers agreed with our system only

28-33% of the time. However, workers agreement is generally lower for parallel

events than adjacent events. Unanimous agreement can be reached on only 14-

17% of all pairs, in contrast to 37-40% for adjacent pairs. The lack of agreement

on many of these pairs suggests insufficient collective social expectation of the

orderings. The reason that individual worker may prefer one ordering to another

may be attributed to the way questions were asked (which ordering is more

likely). Even though one ordering is likely, the other ordering may be also

possible. Our results suggest that although we are missing before relations that

would eliminate parallel events our system may be correctly placing events as

parallel in the graph when there is very little agreement on ordering.

The IQCP method generally performs better on parallel events than the smart

thresholding method. As the IQCP method recognizes more precedences, it is

more selective in recognizing the lack of precedence relations, and thus produces

better results. However, the success of the IQCP method is also attributed to
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the fact that the movie date situation contains a mostly linear storyline, without

significant branches and contingencies.

� Removing events with sparse data. During the crowdsourcing process, I

observe that people start and end the exemplar stories at different points. Thus,

data about events at the beginning and the end are more sparse than rest of

the plot graph. It is reasonable to postulate that data sparsity has affected

the accuracy of learned precedences at the two ends of the graph. To test this

hypothesis, the last three rows of result tables show the results when we remove

all pairs involving events before “buy tickets” in the ST graph and three events

at the end: “go home”, “walk to car”, and “say goodbye” from the data. 43

pairs of events remain after these events are removed.

The removal significantly improves the accuracy for the detection of parallel

events, where improvements are seen in most conditions of human worker agree-

ments. Accuracy of parallel events improves by 3% to 13% in the ST graph,

and 6% to 35% in the IQCP graph. The overall accuracy improves when human

workers reach unanimous agreement by 3% to 4%. We do not see improvements

when human workers disagree with each other, but again it may be particularly

difficult, even for humans, to determine the correct relations between those

events.

The results suggest the data sparsity is a real concern for graph learning, and

there is room for the story acquisition procedure to address this issue. After the

removal of these events, the IQCP method outperforms the smart thresholding

method by an even higher margin, further suggesting the strength of the IQCP

method.

Overall, this evaluation demonstrates the system is capable of learning plot graphs

that is consistent with human intuition to an encouraging degree. When humans can
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reach an agreement, they usually agree with the system. Our results show our accu-

racy percentage reaches high 80s to low 90s when humans reach unanimous agreement

among themselves. Even when we include all pairs of sentences where humans have

little consensus among themselves, our accuracy is still around 60%, well above the

purely random baseline of 33%. When humans cannot agree with each other, they

tend not to agree with the system, but that is more or less expected. Scarcity of data,

especially at the beginning of the story, can negatively affect the result of learning.

3.10 Limitations and Future Work

Many story generation and story understanding systems (e.g. [99, 128, 154, 201])

have demonstrated the utility of causal relations between events for tasks of Narrative

Intelligence. However, in this dissertation, I do not discover causal relations from the

exemplar stories. One difficulty I face in discovering causal relations is people tend

to omit very obvious causes and effects when writing the exemplar stories, even when

instructed not to do so. For example, in preliminary experiments people tend to

mention either “finding a table” and “sitting down” at a restaurant, because the two

actions are immediately causally related and almost always follow each other. Since

we only observe second-hand information, the most obvious causal relations tend to

be missing in the data and become difficult to detect2.

Ideally, one can learn causal conditions so they can be used to create plan-like

structures as in aforementioned Narrative Intelligence systems. However, the human

notion of causality remains vague. Some theories [31, 125] postulate that causal re-

lations can be captured by simple statistics, such as in the comparison between the

probability of an event e given a cause c, P (e|c), and the probability of the same

event in the absence of a cause, P (e|¬c). Such causal relations may be learned by

controlled and unbiased experiments of counterfactuals [134]. On the other hand,

2In the final experiment, we used those two events as an example in our instructions to workers,
telling them not to omit events, but the effects were limited.
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other theorists [79] argue causality is perceived as the abnormal necessary condition.

For example, a train wreck has several necessary conditions, including that the train-

ing is traveling at high speed, that the rail is faulty, and that the train is heavy enough

to break out of the rail. Most people would consider the faulty rail as the cause of the

train wreck, as this condition deviates from what is believed as normal. This view

suggests learning a normality model, as done in this dissertation, may facilitate the

identification of causal relations.

The current model contains two types of relations: precedence and mutual exclu-

sion. Although the two types can capture a large number of situational variations, it

does distinguish between events that are happening simultaneously and events that

should happen sequentially with an indeterminate ordering. For example, the two

events “John and Amy lay in bed” and “John’s wife Sally opened the door” in the

extra-marital affairs situation happen simultaneously. The two events “John paid for

the food” and “The cashier passed John the food” in the fast food restaurant situ-

ation can happen in any order. The difference is that, in the latter case, the events

must happen in an particular order, but this order can be arbitrary. The reason my

approach cannot detect this difference is that I only observe exemplar stories that are

linear sequences. Simultaneous events and events with no specific orderings all have

to be linearized in the exemplar stories, and there is little observed information to

differentiate the two types of relationships. Additional annotations may be required

to learn simultaneity between events.

Clustering quality can further be improved by recruiting crowd workers to modify

the automatically identified clusters. The system also cannot identify events that

may happen in multiple locations and for more than once. These improvements are

left for future work.
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3.11 Summary

In this section, I have presented a formal definition of plot graphs, which extends

traditional plot graphs used in interactive narrative systems, and includes events in

a situation, precedence relations and mutual exclusions between events, and events

deemed to be optional and conditional. I have also presented a crowdsourcing proce-

dure for acquiring suitable exemplar stories and algorithms for learning each compo-

nents of the plot graph from those exemplars.

The learned plot graphs have been evaluated in two ways: whether the learned

events match manually created gold standards, and whether the learned precedence

relations (or the lack of them) match the intuition of crowd workers recruited from

Amazon Mechanical Turk. The evaluation shows the learning algorithms achieve

satisfactory performance. The precedence learning algorithm achieves an accuracy

percentage in high 80s and low 90s, when human judges can reach unanimous agree-

ment.

However, the utility of learned plot graphs can only be tested by applying them

in tasks of Narrative Intelligence. In the next two chapters, I will present methods

for generating and understanding stories based on the learned graphs.
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CHAPTER IV

GENERATING AND TELLING STORIES

No story comes from nowhere; new stories are born from old—it is the

new combinations that make them new.

— Salman Rushdie

The utility of learned plot graphs can only be demonstrated by their use in sup-

porting various Narrative Intelligence tasks. In this chapter, I demonstrate story

generation and storytelling based on learned plot graphs. The pipelined generation

process covers all three tiers in Bal’s model [5]: fabula, sjuzhet, and text (or media).

The story generation/telling pipeline starts with the generation of a linearized

fabula. As noted in the previous chapter, my representation does not distinguish

between simultaneous events and sequential events whose order is determined at run

time. Thus, we directly generate linearized fabulas whose events are linearly se-

quenced. This generation is described in Section 4.1. Afterwards, we select some

events from the fabula in order to create interesting stories in Section 4.3. Finally,

in Section 4.4, we tackle the problem of generating story text for a given sjuzhet by

reusing crowdsourced sentences in the learned plot graphs. The generated fabula and

story tests are evaluated by human judges recruited on Amazon Mechanical Turk.

The evaluations are described in Sections 4.2 and 4.5 respectively.

4.1 Fabula Generation

In this section, I describe how the Scheherazade system generates a linearized

fabula from a plot graph. By showing what events may happen in in a social or

procedural situation and how these events are involved in a number of precedence
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relations and mutual exclusion relations, a plot graph defines a space of linear event

sequences. Each sequence can be considered as a linearized fabula.

4.1.1 Legal Passages Through a Plot Graph

In a finite-state machine (FSM) defined by a directed graph, a valid sequence of states

is a walk through the graph that starts and ends in the correct states. A walk in a

directed graph is defined as a sequence of vertices where vertices adjacent in the walk

are also adjacent in the direct graph.

Unlike a finite-state machine, the directed edges or precedence relations in a plot

graph define a partial order, rather than transitions, between the events. Therefore,

in a plot graph, valid sequences of events are not walks. This difference is illustrated

in Figure 13. Figure 13(a) shows a finite-state machine where we can visit state

d from either state b or state c, so valid sequences include abd and acd. In a plot

graph with the same layout (Figure 13(c)), however, we can only visit event d after

both event b and c have been visited, creating two valid sequences abcd and acbd.

The partial-order graph compactly captures variations in the fabula caused by events

happening in different orders. To represent the two sequences in 13(c) as a FSM,

we would need to replicate the vertices b and c, as illustrated in Figure 13(b). In

contrast, we can easily represent the two sequences in Figure 13(a) as a partial plot

graph by simply adding a mutual exclusion relation, as illustrated in Figure 13(d).

The compactness of partial-order plot graph facilitates learning, as we do not need

to replicate the learned events in the graph. However, this representation does make

graph traversal more complex. In this section, I explain the procedures for traversing

plot graphs.

I call a valid sequence of event through the plot graph a passage. Since each

vertex in a plot graph represents an event, we refer to the action of visiting a vertex

as executing an event. To generate valid fabula is to generate passages through a plot
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(a) Two walks (abd, acd)
in a FSM
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b c

bc

d

(b) Two walks (abcd,
acbd) in a FSM
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d

(c) Two passages (abcd,
acbd)

a
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d

(d) Two passages (abd,
acd)

Figure 13: Contrasting passages in plot graphs with walks in finite-state machines.
The circles are vertices, and black solid arrows are directed edges. Red dashed lines
are mutual exclusion relations. The valid walks and passages are shown as dashed
blue arrows.
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graph.

A valid passage is defined by the following rules that determine when an event

can be executed.

1. Incoming precedence relations to an event are treated as necessary conditions

for the execution of that event. Therefore, an event e can be executed if and

only if (1) all of its parents meet any one of the four conditions:

� the event has no parents.

� the parent has been executed.

� the parent is optional.

� the parent has been removed from the graph by a mutual exclusion relation.

and (2) that none of e’s children has been executed, as explained below.

2. Optional events may be skipped and are not considered to be necessary condi-

tions of any events. However, once an optional event e has been skipped and

one of its children has been executed, event e cannot no longer be executed.

This is because executing event e after one of its children violates a precedence

relation. Those events are called expired events.

3. When an event e is executed, by the definition of mutual exclusion relations,

all events that are mutually exclusive to e are removed from the plot graph.

Removed events cannot be executed.

4. Event removals by mutual exclusions are recursive. If all parents of an event e

have been removed from the plot graph because of mutual exclusion relations,

event e must also be removed.

As noted previously, mutual exclusion relations may be inadvertently omitted

due to the application of a universal threshold Tm. This recursive deletion prop-

agates mutual exclusion from parents to children and compensates for omitted
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mutual exclusion relations. This recursive removal continues until no events in

the plot graph meet the criterion for removal.

The recursive deletion is equivalent to adding mutual exclusion relations in the

plot graph. We determine the events being deleted at run time instead of adding

the relations when learning the plot graphs. This is because it is not always

clear what mutual exclusion relation should be added to the plot graph, due

to problems such as race conditions. Section 5.3 describes these problems in

details.

5. If an event e has more than one parents, and some, but not all, of the parents

have been removed, event e will not be removed from the plot graph. In this

case, parents of the removed events become parents of event e in order to avoid

losing structural information.

6. When an optional or conditional event e is removed by a mutual exclusion

relation, its children will not be removed. Parents of event e will become direct

parents of event e’s children.

7. We stop executing events when no events may be executed, or when we reach

one ending event in the plot graph. An ending event is an event with no children.

The algorithms for maintaining the legality of passages are shown as Algorithm 3

and Algorithm 4. By implementing rule 1, the ExecutableEvents function finds

the set of all executable events at any time. The set of all executable events at any

time is termed the fringe. The passage generation algorithm (which I will explain

in the next section) executes one vertex estep at one time. After estep is added to

the passage, the UpdateGraph function is called to bring the graph up to date.

The ExcludeEvents function computes events that should be removed by mutual

exclusion relations and their transitive closure. These events are directly removed

from the graph and will no longer be considered. To preserve structural information,
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Algorithm 3 Graph Maintenance 1

function ExecutableEvents(G = 〈E,P,Mx, Eo, Ec〉, history, Eexpired)
fringe← ∅
for each event e ∈ E, e /∈ Eexpired do

if ∀(ep, e) ∈ P, ep ∈ history ∨ ep ∈ Eo then
fringe← fringe ∪ {e}

end if
end for

end function

function UpdateGraph(G = 〈E,P,Mx, Eo, Ec〉, history, estep)
Eexpired ← ExpiredEvents(G, estep, history)
Eexcluded ← ExcludedEvents(G, estep)
AddLinksAcross(G,Eexcluded)
E ← E \ (Eexcluded ∪ Eexpired)
return G

end function

procedure AddLinksAcross(G = 〈E,P,Mx, Eo, Ec〉, Ex)
for each event e ∈ Ex, if e /∈ Eo ∧ e /∈ Ec do

for each (e, ec) ∈ P do . Add links between all predecessors
for each (ep, e) ∈ P do . of e and successors of e

P = P ∪ {(ep, ec)}
end for

end for
end for

end procedure

according to the generation rule 5, parents of removed events are linked to the children

of removed events with precedence relations, as performed by the AddLinksAcross

function.

4.1.2 Generating Passages With a Search Algorithm

The fabula generation algorithm executes one event (or one vertex) at a time. During

this process, we add the executed events to the generated passage. Algorithm 5 shows

the fabula generation algorithm. In order to implement rule 2 and 6, the Gener-

ateFabula function first adds precedence relations from parents of optional events

to children of optional events, and precedence relations from parents of conditional

events to children of conditional events. This ensures the removal of any optional
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Algorithm 4 Graph Maintenance 2

function ExcludedEvents(G = 〈E,P,Mx, Eo, Ec〉, estep ∈ E)
Eexcl ← ∅
for each mutual exclusion 〈estep, ex〉 in Mx do

Eexcl ← Eexcl ∪ ex
end for
for each mutual exclusion 〈ex, estep〉 in Mx do

Eexcl ← Eexcl ∪ ex
end for

repeat
Eold ← Eexcl
for each event e ∈ E do

parents← direct parents(e)
if parents ⊂ Eexcl then . if all direct parents have been excluded

Eexcl ← Eexcl ∪ e . then exclude e as well
end if

end for
until Eexcl == Eold . repeats until convergence
return Eexcl

end function

function ExpiredEvents(G = 〈E,P,Mx, Eo, Ec〉, estep ⊆ E, history)
Eexpr ← ∅
for each temporal order 〈e, estep〉 in P do

if e /∈ history then . ei has not been executed, but
Eexpr ← Eexpr ∪ e . executing it now will violate a temporal order

end if
end for

end function

or conditional events by mutual exclusion relations will not recursively remove any

children. The function then generates n fabulas stochastically and selects the best

according to a given fitness function in EvaluateFitness.

The PassThruGraph function is responsible for generating one legal passage

through the plot graph. Selection from the fringe is performed by the function Pick-

Event. The selection could be deterministic or stochastic. When the heuristic is

stochastic, it selects events from a distribution over the fringe, which is the case shown

in Algorithm 5. Taken together, the stochastic heuristic can provide a local estimate

of which event might lead to a good fabula (however goodness is defined), whereas
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Algorithm 5 Fabula Generation

function GenerateFabula(G = 〈E,P,Mx, Eo, Ec〉)
AddLinksAcross(G,Eo)
AddLinksAcross(G,Ec)
fabula← ∅
best← −∞
for i = 1→ n do . Find the best of the n stories, only if

new-fabula←WalkGraph(G) . events are stochastically selected
value← EvaluateFitness(new-story)
if value > best then

fabula← new-fabula, best← value
end if

end for
return fabula

end function

function PassThruGraph(G = 〈E,P,Mx, Eo, Ec〉)
fabula← 〈〉
while not IsCompleteStory(G, fabula) do

fringe← ExecutableEvents(G, fabula)
e← PickEvent(fringe) . Select an event e according to a heuristic
fabula← fabula+ e . Append event e to the story
G← UpdateGraph(G, fabula)

end while
return fabula

end function

function IsCompleteStory(G = 〈E,P,Mx, Eo, Ec〉, history ⊆ E)
Eend ← ∅ . find ending events
for each event e in E do

if @es ∈ E, 〈e, es〉 ∈ T then
Eend ← Eend ∪ e . Events without successors are ending events

end if
end for
return (history ∩ Eend 6= ∅)

end function
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the fitness function (i.e. EvaluateFitness) provides a global evaluation of the en-

tire fabula. The stochastic method of generation is computationally less efficient, but

may be convenient if it is difficult to provide an estimate of story quality based on

only part of the fabula. On the other hand, if we employ a deterministic mechanism

for event selection, it suffices to generate one story. If the plot graph is completely

correct, every legal event sequence should be coherent, but other aesthetics measures,

such as novelty, may differ for different event sequences.

The generation algorithm produces over a million different legal passages through

the plot graph for the bank robbery situation (Figure 15). The authorial leverage

[30]—the ratio of possible narratives to authoring effort—of our system is high con-

sidering the input contains only 60 examplar stories. The quality of generated fabulas

is assessed in Section 4.2.

4.2 Evaluating the Generated Fabula

This section describes a large-scale evaluation of the coherence of fabula generated

from the bank robbery plot graph as shown in Figure 15. As all legal event sequences

should be coherent in a completely correct plot graph, this evaluation provides a mea-

sure for the quality of the learned plot graph (including precedence, mutual exclusion,

and optional events) in addition to the quality of the generation procedure.

4.2.1 Methodology

This evaluation focuses on the coherence of generated fabula. Although coherence

is arguably the most important measure, it is certainly not the only possible quality

measure for a story. In a traditional approach for story generation, a knowledge

engineer may carefully design the knowledge to guarantee the coherence of the story.

In a machine learning approach, however, I do not have much freedom to adjust the

learned representation. Thus, it is important to test if it is possible to create coherent

stories from the learned representation.
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Figure 14: The user interface that human judges used to edit fabula generated by the
system.
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Although the notion of coherence can be subjective, I attempt to measure it

quantitatively as the minimum number of edits that human judges need in order to

make a fabula coherent. Human judges read the fabulas as a list of sentences and

make changes to render the stories more coherent. Judges could delete or reorder

using a drag-and-drop interface. They can also write up to three new events to be

inserted into the story, but could not specify the location of insertion. To detect

random clicking and cheating, one obviously incorrect event was inserted in every

fabula. A judge’s response is only accepted if that event is correctly deleted. The

web interface used by the human judges is shown in Figure 14.

450 people were recruited on AMT and paid 20-30 cents as compensation. 60

participants edited the 60 stories from the crowdsourced corpus. 100 additional stories

were uniformly sampled from all possible fabulas that could be generated by the plot

graph. No fitness functions to filter the generated fabulas were used. 300 participants

edited generated fabulas such that three judges saw each fabula.

To establish a baseline, another 30 fabulas were generated by uniformly sampling

from all events in the plot graph. That is, no learned graph structures, including any

precedence relations, mutual exclusion relations or optionality of events were used.

Therefore, these 30 fabulas were most likely to be illegal according to the plot graph.

The length of the random fabulas were set to 23, which is approximately the average

length of fabulas generated from the plot graph. Each of the 30 fabulas were edited by

3 human workers, resulting in 90 edited fabulas. For all computer-generated fabulas,

the most frequent sentence of the underlying natural language cluster was selected to

describe each event in the text presented to the human workers.

The number of added events and deleted events from the original fabula presented

to the human worker can be easily obtained from data. However, obtaining the num-

ber of movements is a little more complex, as counting the number of mouse clicks

or drag-and-drops will inevitably include human operations that were performed by
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Figure 15: A plot graph for the bank robbery situation, created by the smart thresh-
olding method. Tp = 0.75, Tm = 0.05
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mistake and later undone. To avoid this problem, an algorithm is used to determine

the number of movements required to change the original event sequence to the edited

sequence submitted by a human worker. The algorithm computes the number of in-

verted pairwise orderings in the original event sequence associated with each event. It

then picks the event with most inverted pairwise orderings, places it in a position that

minimizes inverted orderings, and repeats until the two sequences become identical.

The number of movements performed by this algorithm is recorded.

4.2.2 Results

As each edit suggests a problem with the fabula, less edits indicate better quality. The

number of events added, deleted, or moved are shown in Table 8. Average numbers of

additions, deletions, and reorderings after normalizing for story length are also shown.

The Welsh t-test was used to determine if the difference between human-authored and

computer generated fabulas is statistically significant at p < 0.05. In the Computer

column, I denote whether the differences between the human-written fabulas and the

computer-generated fabulas are statistically significant. In the Random column, the

first symbol (i.e. before the comma) denotes statistical significance between the ran-

dom fabulas and the human-written stories, and the second symbol denotes statistical

significance between the random fabulas and the computer-generated fabulas.

I find pronounced differences between the random fabulas and other two condi-

tions. For most measures, the differences are strongly statistically significant with the

only exception in the number of added events after normalizing for story length. On

average 2.29 events were deleted from the random fabulas, which is three times the

number of deleted events in computer-generated fabulas. The number of movements

for the random fabulas is also roughly three times as the AI condition.

Compared to the random baseline, for most edit metrics, the human and the

AI conditions appear to be similar. No significant differences exist in number of
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Table 8: Statistics of edits made by human judges to the generated fabulas. * indicates
the difference between the two columns is statistically significant. § indicates the
difference between the two columns is not statistically significant.

Human Computer Random

Mean original length 12.78 23.14 * 23.00

Mean final length 11.82 21.89 * 20.71

Mean events added 0.33 0.49 § 0.80 *,*

Mean events added (normalized) 0.028 0.021 § 0.035 §,*

Mean events deleted 0.30 0.76 * 2.29 *,*

Mean events deleted (normalized) 0.02 0.03 § 0.10 *,*

Mean events deleted (2 events withheld) 0.28 0.27 § -

Mean events deleted (2 withheld, norm.) 0.02 0.01 § -

Mean events moved 0.57 4.88 * 14.67 *,*

Mean events moved (normalized) 0.04 0.21 * 0.64 *,*

added events between the two conditions. After normalizing for length, the computer

condition appears to have less added events than the human condition. The exception

is in the number of moved events, where the differences across all three conditions

are large and statistically significant. However, some reorderings could be consistent

with the plot graph, as discussed in the next section.

I find a small but statistically significant difference in the number of events deleted

between computer-generated fabulas and human-written fabulas. Although statisti-

cally significant, the mean difference between conditions is less than half of an event.

The significance vanishes when two events “wait in line” and “open door” are with-

held. The two events account for 64.5% of deletes, and occurred rarely in the corpus

(6 and 9 times out of 60), which explains why the system has less certainty about

their inclusion. After normalizing for length and withholding, the AI has less deletions

than human authors.

There is a clear and statistically significant difference in the length of the stories
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for the two conditions. The computer generated stories contains on average 23.14

sentences, which is almost twice as long as the human-written story. This is because

the learning algorithm of plot graphs merge events from many exemplar stories, so

the plot graph contains more events than any single exemplar stories. I will discuss

and address this issue in Section 4.3.

4.2.3 Discussion

With the help of the random baseline, I conclude that this novel method of measuring

story coherence can indeed capture differences in story coherence. The number of

movements appear to be the most sensitive measures. In comparison to deletion and

movements, the number of added events is less sensitive, although is still reflective of

the overall coherence. There are several possible reasons for this observation. First, it

could be due to the fact that the user interface allows easy drag-and-drop operations

for re-ordering and deletion, but no drag-and-drop for adding events. Second, only

three blanks were provided for addition, which restricted editing but also prevented

human workers from deviating from the typical story. Third, as the random fabulas

were fairly long with 23 events, the human workers could have found the events they

needed and did not need to add new events.

I conclude that the story generation algorithm does not omit essential events any

more often than human authors. I conclude that despite the existence of multiple

incompatible alternatives throughout the plot graph, the system was able to differen-

tiate between them and does not add events that contradict human intuition. This

result is attributed to the use of mutual exclusion relations to successfully separate

incompatible events.

There are several reasons why a judge may have reordered events. The fact that

these events are not deleted indicates that they contribute to the story but are not

ideally positioned. The precedence relations may be under- or over-constraining the
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events, leading to incoherent fabula. Alternatively, I also find some edits not to be

strictly necessary for story coherence, indicating judges may prefer one ordering to

another out of aesthetic concerns rather than strictly coherence reasons.

Overall, we find 32.3% of moves to be consistent with the plot graph, indicat-

ing that the reordering exists in another legal story and the occurrence of under-

constraining. The rest of the moves violate temporal constraints in the plot graph,

indicating events being over-constrained. However, the changes may be due to aes-

thetic rather than coherence reasons. For example, “pressing the alarm” is over-

constrained to occur in the second half of the story. Two moved events account for

a plurality of inconsistencies: “get in car” is uniformly moved from the end to the

beginning, but both positions seem reasonable; “Sally cries” is a rare event in the

corpus. Removing these two events reduces the inconsistencies to 44% of generated

stories.

Leslie Kaelbling (personal communication) proposed a hypothesis that if a story

is excessively incoherent, human judges may find it difficult to make changes at all.

However, our observations suggest the human judges tend to make more changes

than necessary. This may be explained by the special incentive provided by the

AMT, where the employer has total control over whether to pay a worker or not.

Thus, workers may be motivated to do a little more work than they consider to be

bare minimum, just in order to appeal to the employer.

In conclusion, the fabulas generated from learned plot graph is largely on par with

human-written stories in the aspect of added and removed events. The plot graph

likely contains some errors that over- or under-constraints the ordering of events, al-

though we should not interpret all reorderings as errors. To my knowledge, this is a

first study showing computer-generated stories may match human-written stories in

some ways and is thus very encouraging. Considering the fact that these stories were
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generated as random passages through the plot graph, this indicates the structures, in-

cluding the precedence relations, mutual exclusion relations, and optional/conditional

events, in learned plot graphs are of high accuracy and quality.

4.3 Sjuzhet Generation

In Section 4.2, we have seen that the generated fabula are usually longer than human-

written stories. The reason that humans do not include every event in their story is

probably that some events are too obvious or too mundane to be told. From the events

being told, a human reader is able to infer that those untold events have happened.

For example, if a storyteller says she found a seat in the movie theater, in the lack of

contradictory evidence, the audience would assume that she sat down. This inference

process is critical for story understanding [72, 207], and successful storytellers know

how to make use of this inference to their advantage. However, Scheherazade

learns scripts that include most events in the situation. By following the scripts, the

system tends to generates overly verbose stories.

Filtering out some of the less interesting events in the fabula is a commonly used

sjuzhet technique. Narratologists Barthes [8] and Chatman [29] both noted that

events in a narrative carry different importance. Barthes used the term nuclei to

describe important, plot-driving events, and the term catelyzers to describe unimpor-

tant events adding to the aesthetics of the story. Chatman used the term kernels and

satellites to refer to the same concepts. The ability to differentiate important events

from others has been considered as an integral part of Narrative Intelligence. For

example, a comprehensive questionnaire for measuring narrative abilities of children

developed by Heilmann et al. [78] includes the evaluation if the child includes critical

events and deemphasizes minor events. Cheong and Young [34] use the kernel/satellite

differentiation to manipulate sjuzhets and generate suspenseful stories.

In this work, I generate sjuzhets consisting of both kernel events and satellite
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events. Following Bathes and Chatman, I postulate that an effective storytelling

strategy is to tell a set of kernel events that establish the situation and major storyline,

plus a set of interesting satellite events. Kernel events set up the situation and form

a major causal chain in the story. They create a context without which the story

would become difficult to understand. Example of kernel events are “we went to a

restaurant”, “we ordered steaks” and “we finished the meal”. On the other hand, we

can create interesting satellite events as infrequent and atypical events in a situation,

such as “the waiter complained the tip was too little”. Therefore, the central issue in

sjuzhet generation becomes the computation of how typical an event is to a particular

situation. My strategy for generate interesting sjuzhet selects the k most typical and

k least typical events to produce a story of 2k length.

I introduce an algorithm called EventRank, which determines the typicality of

events in a plot graph, taking into consideration of the size of the event cluster, the

structure of temporal orderings, as well as mutual exclusion relations. The algorithm

is inspired by Personalized PageRank [76], which computes the importance of vertices

contained in a strongly connected directed graph structure, as explained in the next

two sections.

4.3.1 PageRank and Stationary Distributions of Digraphs

The PageRank algorithm [18] was developed to measure the importance of webpages

on the Internet, which is modeled as a directed graph with webpages and hyperlinks.

Imagine a random algorithm that visits one webpage at one time epoch and uni-

formly randomly follows hyperlinks on the current page. The webpages then form a

Markov chain, where the webpage visited in the current epoch depends only on the

page visited in the previous epoch. In a network of n webpages, the webpage visited

at time epoch t is a categorical distribution, parameterized by a n-dimensional vector

xxx(t). x
(t)
i is the probability that we visit page i at time t. By measure theory, we
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require that the sum of all entries of xxx(t) equal to 1 for all t.

N∑
i=1

x
(t)
i = 1,∀t (31)

The change in the page being visited over time can be captured by a transition matrix

A, whose entry Aij denotes the probability of transiting from webpage j to webpage

i. Again, the probability of transiting from webpage j to all webpages must be equal

to 1.
N∑
i=1

Aij = 1,∀j (32)

Given no prior preferences for any single outgoing link to others, we can assign equal

weight to each outgoing link.

Aij =


1/dj if there is a directed edge from vertex j to vertex i

0 if there is no directed edges from vertex j to vertex i

(33)

where dj is the out-degree of vertex j. It is obvious that the webpage being visited

at the next time epoch can be computed as multiplication by A.

xxx(t+1) = Axxx(t) (34)

If the graph represented by A is irreducible and aperiodic, it can be shown that

as t approaches infinity, the distribution of the current webpage will approach a

distribution xxx(∞), regardless of her starting position xxx(0).

xxx(∞) = lim
c→∞

Acxxx(0),∀xxx(0) (35)

xxx(∞) is called the equilibrium distribution of the Markov chain formed by the web-

pages. In an irreducible graph, we can find a path from any vertex to any other

vertex. In an aperiodic graph, we return to the same vertex at irregular intervals.

For a formal discussion of stationary distributions of Markov Chains, the reader is

referred to textbooks on Markov Chain Monte Carlo such as [158].
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Given A, xxx(∞) can be easily computed as the eigenvector of A corresponding to the

eigenvalue 1, which is also the biggest eigenvalue A. Thus, xxx(∞) is a property of the

network structure captured by transition matrix A and is independent of the initial

distribution xxx0. Intuitively, when we have randomly wandered in the network for

sufficient time, where we started off would have little bearing on our current position.

PageRank takes xxx
(∞)
i to be the importance of the ith webpage.

It is important to maintain the property of irreducibility and aperiodic. For exam-

ple, if the network graph is not strongly connected and contains several components,

we will not reach one component from the other. Thus, where we start becomes

important. If the graph is periodic, we will always return to the same webpage after

a period T , so where we start will also matter. To avoid these situations, PageRank

allows random jumps from any page to every other page with a small probability.

That is, we add another uniform matrix B to A.

Ã = λA+ (1− λ)B (36)

where

Bij =
1

n
(37)

and take the eigenvector of Ã, which is guaranteed to have a unique equilibrium

distribution. The constant λ is usually set to 0.85.

The Personalized PageRank [76] is a variant of PageRank that utilizes a simple

insight: The added matrix B (in Equation 37) does not have to be uniform. We

can bias the matrix and increase the importance of certain webpages, in order to

incorporate information other than the graph structure. The next section describes

how we can incorporate extra information of event frequency and mutual exclusion

relationships to determine the typicality of events in a situation.
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4.3.2 The EventRank Algorithm

The precedence relations and vertices in a plot graph form a directed acyclic graph,

which is not strongly connected. To satisify the requirement of strong connectivity,

precedence relations are added between each ending event (events with no outgoing

links) and each starting event (events with no incoming links). The transition matrix

A can then be constructed based on the precedence relations according to Equation 33.

In addition to the precedence relations, we want to consider two pieces of informa-

tion when computing the typicality of events in a situation. The first is the frequency

of events being mentioned in crowdsourced exemplar stories, since one story typi-

cally only mentions a subset of all events. Events that are mentioned more often are

probably more typical to a situation. Second, mutual exclusion represents alternative

branches in a plot graph, and they should have effects on typicality values. Specifi-

cally, we would like mutual exclusive events to weaken each other, and symmetrical

branches to have similar typicality values. The information is incorporated into the

PageRank algorithm by modifying the matrix B.

As we favor events that are mentioned more frequently in the exemplar stories,

when events i and j are not mutually exclusive, we let

Bij ∝ fi (38)

where fj is the frequency of event i being mentioned in the exemplar stories. If events

i and j are mutually exclusive, however, we penalize event i (and by symmetry, event

j) by letting

Bij ∝ fi − τoj (39)

where

oi =
∑
k/∈Xi

fk
card(Xi)

(40)

and Xi is the set of vertices mutually exclusive to vertex i, and card(Xi) is its car-

dinality. τ is a value in [0, 1), and I typically set it to between 0.3 and 0.5. The
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rationale behind the above formula is that if an event ei has fewer mutually exclusive

events, it is more likely to be included in a story and hence more powerful in weak-

ening other events. The power of weakening is evenly distributed among all events

mutually exclusive to ei.

Finally, we normalize B so that each column sum up to 1. We again compute

the stationary distribution xxx(∞) by finding the eigenvector with the eigenvalue 1 of

the matrix Ã = λA + (1 − λ)B. Figure 16 shows the bank robbery plot graph with

the typicality values of each event. λ is set to 0.7 and τ set to 0.5. The structure

of the graph is generated by the smart thresholding method. For the purpose of

visualization, the median of the typicality values has been normalized to 1.

We can make two observations from the diagram. First, structural features of

the graph are reflected by the typicality values. For example, vertices that multiple

paths converge onto, such as ”John approaches Sally”, and ”John leaves bank” are

considered to be typical. Second, comparable alternative events also receive simi-

lar typicality values. The vertices ”John pulls out gun” and ”John hands Sally a

note” denote two major situational variations and receive similar values. The two

alternative endings ”John drives away” and ”Police arrests John” also receive similar

values. Our observation suggests the EventRank algorithm does capture the struc-

tural information in plot graphs, including both the precedence relations and mutual

exclusion relations.

4.3.3 Generating Different Sjuzhets

Table 9 shows events in a fabula and the corresponding typicality values, generated

from the bank robbery plot graph. Employing the typicality values in the selection of

events, we can create different sjuzhets. For example, we can create a short summary

by picking some of the most typical events from a fabula. Shown in bold in Table 9,

the top five most typical events in the bank robbery situation are “John approaches
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John enters 
bank 2.55

John drives to 
bank 0.85

Sally screams 
0.40

John points gun 
at Sally 0.73

John 
approaches 
Sally 4.09

John hands Sally 
a note 1.04

Sally puts 
money in bag 

2.78

John shows 
gun 0.40

John pulls out 
gun 1.13

Sally is 
scared 1.61

John waits 
in line 1.57

John scans 
bank 0.74

Sally reads 
note 0.51

John opens 
bank door 0.93

The note 
demands money 

0.27

Sally opens cash 
drawer 0.69

John demands 
money 1.37

John covers 
face 0.48

John sees 
Sally 0.78

Sally greets 
John 1.89

John gives 
Sally bag 0.69

Sally collects 
money 2.03

Sally gives 
John bag 1.05

John takes 
bag 1.02

Sally gives John 
money 0.57

John collects 
money 1.23

Sally cries 
0.58

Police arrests 
John 1.76

John gets in 
car 1.36

John drives 
away 1.28

John leaves 
bank 2.74

Sally calls 
police 0.76

Sally presses 
alarm 1.23

Police arrives 
0.98

Legend

Normal event

Optional event

Conditional event

Precedence relation

Mutual exclusion

Figure 16: The typicality of events in the bank robbery situation. τ is set to 0.5.
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Table 9: Selecting events by typicality from a fabula to create sjuzhets. The five most
typical events are shown in bold, and the five least typical events are underlined.

Event Typicality

John drives to bank 0.85

John opens bank door 0.93

John enters bank 2.55

John scans bank 0.74

John waits in line 1.57

John sees Sally 0.78

John approaches Sally 4.09

Sally greets John 1.89

John pulls out gun 1.13

John points gun at Sally 0.73

Sally screams 0.4

Sally is scared 1.61

John demands money 1.37

John gives Sally bag 0.69

Sally collects money 2.03

Sally puts money in bag 2.78

John collects money 1.23

Sally presses alarm 1.23

John leaves bank 2.74

Sally cries 0.58

Police arrests John 1.76

Sally”, “Sally puts money in bag”, “John leaves bank”, “John enters bank”, “Sally

collects money”. Ordering the five events in the order they appear in the fabula, they

form a mostly intelligible summary of the bank robbery situation. The summary

does not mention John demanding money or collecting money, but those might be

inferred.

In the terminology of Chatman [29], the most typical events can be considered

as kernel events, and the least typical events as satellite events. Therefore, we may

make the sjuzhet more interesting sjuzhet by adding some of the least typical events
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to the most typical events. The most typical events, or the kernels, establish the

social situation, so the readers can understand the context. The least typical events,

or the satellites, make the story more interesting. The top 5 least typical events in

this fabula include: “Sally screams”, “Sally cries”, “John points gun at Sally”, “John

scans bank”, and “John drives to bank”, which are underlined in Table 9. Take the

summary as the baseline, adding the top 5 least events to the top 5 most typical events

reveals emotional states of Sally and arguably makes a more interesting sjuzhet.

4.4 Textual Realization

The final step of story generation is to describe the events in a selected medium. In

this dissertation, the medium of choice is text. This section discusses how to generate

the textual realization of distinct styles for a given sjuzhet by selecting sentences

from event clusters. There are several motivations for generating text with different

styles. First, a narrative may be told to achieve different communicative goals. For

example, if a storyteller wants to cheer up her audience, she may employ a positive

tone. In contrast, the telling of horror stories may benefit from a negative storytelling

style making more use of words inciting fear and suspense. Second, a narrative

can be told by different narrators in different styles. Consider the application of

virtual characters. Depending on the circumstances, mood and personality, a virtual

character may choose to speak very succinctly, or to be very talkative. The technique

of focalization utilizes multiple viewpoints in telling one narrative (see Section 2.2.2

for a review). Therefore, developing parameterized methods for telling stories in

different styles can provide practical benefits.

In this section, I first describe an approach for crowdsourcing interesting sentences.

After that, I discuss criteria for selecting textual description of individual events, fol-

lowed by an Viterbi-style algorithm that aligns adjacent sentences to improve textual

coherence.
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4.4.1 Textual Interestingness

We investigate two aspects of language that affect the interestingness of generated

stories. The first is the amount of details provided, and the second is the degree that

the story language resembles the language used in fictions.

We first model the amount of details as the probability of a sentence in English,

as Information Theory suggests a less likely sentence should contain more informa-

tion and therefore more details. We compute the probability of an English word as

its frequency in the Google N-Gram corpus. Due to the large size of the corpus,

these frequencies approximate word probabilities in general English. We compute the

probability of a sentence using the bag-of-word model where each word is indepen-

dently drawn from a multinomial distribution. Thus, the probability of sentence S

containing words w1, w2, . . . , wk each appearing x1, x2, . . . , xk times is

P (S) =

(∑k
i=1 xi

)
!∏k

i=1(xi! )

k∏
i=1

P (wi)
xi (41)

where P (wi) is the probability of the word wi. In this experiment, I used the average

frequency over the 10-year period of 1991 to 2000 in the “English 2012” corpus to

compute P (wi). Stop words are removed before computation.

We further consider the style of language is as how much it resembles fictional

novels. The language used in fictions has distinctive word choice as fictions tend to

accurately describe actions (e.g. “snatch” instead of “take”), emotions, and make less

use of formal words (e.g. “facility”, “presentation”). If a word appears more often in

fiction books than in all books, we can presume that its use may create a sense that

a story is being told in a literary manner. Therefore, the fictionality of a word w is

the ratio

fw = Pfic(w)/P (w) (42)

where P (w) is the probability of a word computed previously and Pfic(w) is the

probabilities of a world appearing in the “English Fiction 2012” corpus from the
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Table 10: Fictionality of example words computed from the Gooogle N-Gram corpus

Word POS Fictionality

goodbye NN 11.24

sugary JJ 10.04

hobbit NN 8.31

laughing NN 8.19

softly RB 7.02

feature NN 0.23

menu NN 0.23

presentation NN 0.23

restoration NN 0.23

produce VB 0.20

appropriate JJ 0.20

Google N-Gram corpus. See Table 10 for ficitionality for some example words. Words

with low fictionality, such as “feature” and “restoration”, tend to appear in technical

or business documents.

The fictionality of a sentence is aggregated from fictionality values of individual

words as an exponentiated average:

fic(S) =

∑
w∈W exp(αfw)

card(W )
(43)

where W is the set of words in sentence S, and card(W ) is its cardinality. α is a

scaling parameter. The exponential function puts more weights on more fictional

words so that a few highly fictional words are not canceled off by many words with

low fictionality.

Table 11 shows some results of our heuristics for determining the interestingness of

sentences. We observe that the most probable sentence (MostProb) usually provides

a concise summary for the event. The most fictional (MostFic) sentence usually

contains more subjective emotions and character intentions, as indicated by the words

“smirk”, “nervously” and so on. The least probable (LeastProb) sentence is usually

longer and contains more objective details.
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Table 11: Sentences selected from event clusters using the probability criterion, the
fictionality criterion, and their harmonic mean as the MID criterion.

Example event 1: John covers face

· MostProb: John put on a fake mustache.

· LeastProb: John kept his head down as he pulled open the outer
door and slipped his Obama mask over his face.

· MostFic: MF: John looked at his reflection in the glass of the door,
gave himself a little smirk and covered his face.

· MID: John kept his head down as he pulled open the outer door
and slipped his Obama mask over his face.

Example event 2: Sally puts money in bag

· MostProb: Sally put $1,000,000 in a bag.

· LeastProb: Sally put the money in the bag, and collected the money
from the 2 tellers next to her.

· MostFic: Sally quickly and nervously stuffed the money into the
bag.

· MID: Sally quickly and nervously stuffed the money into the bag.

Example event 3: John drives away

· MostProb: John drove away.

· LeastProb: John pulled out of the parking lot and accelerated,
thinking over which route would make it easier to evade any police
cars that might come along.

· MostFic: John sped away, hoping to get distance between him and
the cops.

· MID: John sped away, hoping to get distance between him and the
cops.

As a balance between the most fictional and the least probable, we combine the

two selection criteria and create the heuristic for the most interesting details (MID)

by using the harmonic mean. We first rank each sentence under the least probable

and the most fictional criteria: rLP and rMF. That is, the least probable sentence has

rLP = 1 and so on. The mean rank is:

rMID =
2 rLP rMF

rLP + rMF

(44)

The sentence with the lowest rMID is picked as the sentence with the most interesting
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details.

4.4.2 Smooth SentiWordNet

A story may be told in positive or negative tones in order to achieve different com-

munication goals, or to tell the story from the perspective of characters with different

mood. For instance, a positive tone may be used to cheer up the audience, whereas

a negative tone may be suitable for telling horror stories.

To detect sentiments of natural language, in this section I describe a corpus-based

technique for detecting the sentiment of English words and sentences. The technique

builds off SentiWordNet [51], which tags each synset (word sense) in WordNet [116]

with three values: positivity, negativity, and objectiveness, the three summing to

1. SentiWordNet was created by propagating known sentiments of a few seed words

along word relationships in WordNet to provide good coverage of words. While this

automatic approach creates good coverage, I also find that it produces many erroneous

values, resulting in unreliable sentiment judgments.

I propose an unsupervised, corpus-based technique to correct errors found in the

original library and expand its coverage beyond words appearing in WordNet. The

underlying intuition is that words in the same neighborhood, including adjacent words

and words in the same sentences and the same paragraph, should share similar sen-

timents, allowing us to automatically “smooth” any errors in the original sentiment

library. In addition, words closer should have a stronger influence than words farther

away.

A review of similar lexicon expansion techniques is provided in Section 2.3. In

comparison to existing techniques, my method makes use of full narrative text to

consider long-distance influences and considers the fact that word association tends

to diminish as we move farther away from a word. The use of a fiction-only corpus

produces a narrative-specific lexicon, as we know sentiments can change depending
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Table 12: Examples of fictional books obtained from Project Gutenberg

Gutenberg ID Book Title

11 Alice’s Adventures in Wonderland

12 Through the Looking-Glass

15 Moby Dick

16 Peter Pan

24 O Pioneers!

27 Far from the Madding Crowd

32 Herland

33 The Scarlet Letter

35 The Time Machine

36 The War of the Worlds

41 The Legend of Sleepy Hollow

42 The Strange Case of Dr. Jekyll and Mr. Hyde

44 The Song of the Lark

45 Anne of Green Gables

46 A Christmas Carol in Prose; Being a Ghost Story of Christmas

47 Anne of Avonlea

51 Anne of the Island

54 The Marvelous Land of Oz

55 The Wonderful Wizard of Oz

on the context [108].

We obtained 9108 English books from Project Gutenberg (http://www.gutenberg.

org) that are labeled as fiction. Some of the book titles are shown in Table 12. The

complete list of books can be downloaded at http://boyangli.co/SSWN/booklist.

txt. These books are tagged with parts of speech (POS) and lemmatized with the

Stanford POS Tagger [186]. Each pair of lemma and POS is considered a unique

word. For every occurrence of a target word we want to compute sentiment value for,

we consider a neighborhood of 100 words, i.e. 50 to the left and the right of the target

word. The target word is at position 0. The words to its immediate left and right

are at position -1 and 1, and so forth. Only nouns, verbs, adjectives and adverbs in
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complete sentences in a neighborhood can influence the target word. The index set

W includes their position. For a word wi at position i ∈ W , we place a Gaussian

kernel function gi centered at its position, which indicates the influence of word wi

on a word at position j:

gi(j) = exp

(
−(i− j)2

d

)
(45)

where the parameter d determines how fast the function diminishes with distance,

and is empirically set to 32. In the kth neighborhood, the sentiment skw0
of the target

word is computed as a weighted average of all kernel functions at position 0:

skw0
=

∑
i∈Wk

sswn
wi
gi(0)∑

i∈Wk
gi(0)

(46)

where sswnwi
is the sentiment retrieved from SentiWordNet, i.e. the difference between

the positive and negative sentiments for wi. The SentiWordNet value for any word

has no influence on itself, i.e. 0 /∈ Wk,∀k. The final sentiment value for the target

word sw0 is the average of all its occurrences in the corpus.

sw0 =

∑
i=1...K s

k
w0

K
(47)

We aggregate sentiments of individual words in sentence S, again using the exponen-

tial average:

fic(S) =

∑
w∈U sign (fw) exp (β|fw|)

card(U)
(48)

where card(U) is the cardinality of set U , which contains any noun, verb, adjective or

adverb in that sentence. β is a scaling parameter. The exponential function ensures

that words expressing strong sentiments are weighted more heavily than words with

weak sentiments.

Using this corpus-based technique, a new sentiment dictionary is constructed,

which I call Smooth SentiWordNet (SSWN). I selected a subset of English words that

are of interests to the storytelling task to be included in the dictionary. The exemplar

stories in two previously crowdsourced social situations—dating at the movie theater
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Table 13: Some most positive and most negative words in Smooth SentiWordNet

Word POS Sentiment

bone-chilling JJ -8.004

shriek NN -6.738

scop VB -6.734

wail VB -6.301

panic VB -5.679

sob NN -5.642

scream NN -5.316

nightmare NN -4.954

terror NN -4.261

panic NN -4.048

weep VB -3.840

enjoyable JJ 1.821

deal NN 1.974

beam VB 1.984

admire VB 2.005

immensely RB 2.028

sexy JJ 2.139

captivate VB 2.393

small-framed JJ 2.992

nacho NN 3.149

snack VB 3.277

tryed (sic.) JJ 4.621

and bank robbery—contain 1001 unique nouns, verbs, adverbs and adjectives. From

the corpus of fiction books, the aggregated influences of each adjectives and adverbs

on their neighbors are measured. Highly influential adjectives and adverbs were added

to the dictionary, producing a total of 7559 words. After computing the raw sentiment

values for these words, we normalize the values so that 1 percentile and 99 percentile

of the values fall in the range of [−1, 1], to account for outliers. Twenty-two most

positive and negative words in SSWN are shown in Table 13. For the two hundred

most positive and negative words, See Appendix A. The entire dictionary can be
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Table 14: Example sentences selected from event clusters with positive and negative
sentiments

Example event 1: Sally puts money in bag

· Positive: Sally continued to cooperate, putting the money into the
bag as ordered.

· Negative: Sally’s hands were trembling as she put the money in the
bag.

Example event 2: Sally cries

· Positive: Sally cried, somewhat relieved it may be over soon.

· Negative: Sally felt tears streaming down her face as she let out
sorrowful sobs.

Example event 3: Sally calls police

· Positive: Sally described John as best as she could to the police.

· Negative: Still shaken, Sally reached for the phone and in a pan-
icked manner called the police.

Example event 4: John opens bank door

· Positive: John took a deep breath and opened the bank door, letting
an elderly woman exit before he entered himself.

· Negative: John opened the bank door while his heart was beating
fast.

Example event 5: John pulls out gun

· Positive: John pulled out the gun, still smiling.

· Negative: John reached behind his back and withdrew his pistol.

downloaded at http://boyangli.co/SSWN/dictionary.txt.

We can observe that most of these words are put into the correct category. The

order of negative words are also fairly accurate, e.g. “wail” is more negative than

“sob” and “weep”. The positive words contain a few more misclassifications such as

“small-framed” and “beam” than negative words. Noises resulted from typos in the

original text (e.g. “tryed”) and errors in lemmatization (e.g. “captivate” was probably

lemmatized from “captivating”). Overall, the most positive and most negative words

seem qualitatively largely accurate.
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Table 14 shows some of the most positive and most negative sentences. We find the

results to reflect the valences of individual words. In example events 1-3, individual

words like trembling or relieve dominate the entire sentence, and we can correctly

identify positive and negative sentences. In example event 4, elderly and woman have

positive valences, which coincide with the semantic meaning of the sentence. However,

there are also cases where the aggregation of individual words valences deviates from

the semantic meaning of the sentence. In example 5, the positive value of smile is the

main reason for selecting the positive sentence, but smiling criminals may appear even

scarier than usual. Due to language phenomena such as sarcasm and readers’ personal

judgments, the aggregated sentiment for a sentence is not 100% accurate. I describe

a human study that quantitatively evaluates Smooth SentiWordNet in Section 4.5.3.

4.4.3 Connecting Sentences

For each event, we can find individual sentences ranked highest for any criterion or

combinations of criteria using the harmonic mean. However, this selection does not

consider the coherence between sentences and may results in incoherent texts due to

two major problems: (1) previously mentioned objects can suddenly disappear and

previously unmentioned objects can appear, and (2) a sentence can repeat actions in

the previous sentence.

To address these problems, we propose a Viterbi-style algorithm, which consid-

ers both selection criteria for individual sentences and the interconnection between

sentences. In a hidden Markov model, the Viterbi algorithm generates a sequence

of hidden variables that best explains a sequence of observed random variables. The

algorithm relies on two things specified in a hidden Markov model: One, the prob-

abilities of a hidden variable generating any observation. That is, the observation

indicates preference over the values of a hidden variable. Two, the probabilities of

any hidden variable transiting to the hidden variable in the next time slice. That is,
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Algorithm 6 A Viterbi-Style Algorithm for Generating Story Text

function GenerateText(event sequence 〈c1, c2, . . . , cn〉)
for each sentence sk ∈ {s1, s2, . . . , sm} in event cluster cn do

(seqk, score(seqk))← BestSeqEndingIn(sk, cn)
end for
return the highest scored sequence from seq1, seq2, . . . , seqm

end function

function BestSeqEndingIn(si, cj)
for each sentence sp ∈ {s1, s2, . . . , sm} in event cluster cj−1 do

(seqp, score(seqp))← BestSeqEndingIn(sp, cj−1) . stored previously
new seqp ← seqp + si
score(new seqq)← score(seqq) + score(sq, si) + score(si)

end for
best seq ← the highest scored sequence from new seq1, . . . , new seqm
return (best seq, score(best seq))

end function

we have preferences over pairs of values for adjacent variables.

Our problem is similar as we want to find the highest scored sentence sequence

based on preferences over sentences in each event cluster, as well as preferences on

how adjacent sentences connect. We do not consider connection between non-adjacent

sentences. Specifically, we score the connection between any two sentences si, sj as

score(si, sj) = log
shared nouns(i, j) + 1

shared verbs(i, j) + 1
(49)

where shared nouns(i, j) is the number of nouns shared by the two sentences, and

shared verbs(i, j) is the number of verbs shared by the two sentences. Similarly, we

score individual sentences as the reciprocal of their ranks according to any selection

criterion c:

score(si) =
1

rankc(si)
(50)

Our algorithm is shown as Algorithm 6. The BestSeqEndingIn function is

recursive, because in order to find the best sequence ending in a given sentence sji

from the jth event cluster cj, we need to consider the scores of best sequences ending

in every sentence from the previous cluster cj−1, in addition to the connection between
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every sentence from cluster cj−1 and sji . Due to the Markov property, we do not need

to consider previous clusters c1, . . . , cj−2. We can then iterate over every sentence from

cluster cj to find the best sequence ending in cluster cj. A dynamic programming

approach can be used to store every sequence ending in every sentence from every

cluster and their scores.

Computing the time and space complexity is straightforward. Suppose we have

a sequence of n clusters and m sentences in each cluster. We first need to compute

the score of each sentence, which takes O(mn) time. In addition, we need to consider

the connection between the m sentences in one cluster and the m sentences in the

next cluster, which takes O(m2) time. This computation is repeated for the n − 1

connections. Therefore, the total time complexity is O(mn)+O(m2(n−1)) = O(m2n).

At each iteration, we need to store the best sequence ending in each of the m sentences

in the current cluster. Each sequences contains at most n sentences, one from each

cluster. Therefore, the total space complexity is O(mn).

4.5 Evaluating the Generated Story Texts

In this section, I present user studies aimed to evaluate the stories generated using

different narrator styles and sentiments. The user study also evaluates the accuracy

of Smooth SentiWordNet.

4.5.1 Crowdsourcing Colorful Textual Descriptions

Before generating stories, I performed a second round of crowdsourcing as an attempt

to collect interesting event descriptions for each learned event cluster. In Section 3.2, I

presented the protocol for crowdsourcing exemplar stories from AMT. For the purpose

of learning plot graphs, crowd workers are instructed to write stories in simple and

bland language. Though simplified language facilitates plot graph learning by side-

stepping many hard natural language processing problems, it is not conducive to

generating vivid or sentimental speech. Therefore, I need to perform a second round
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Table 15: Statistics of the additionally crowdsourced stories to enhance the interest-
ingness of storytelling

Movie Date Bank Robbery

# Stories 20 10

# Sentences 470 210

# Words per sentence 14.53 13.7

# Verbs per sentence 2.36 2.6

of crowdsourcing to acquire sentences that would interest human readers.

Once again, I recruited crowd workers on Amazon Mechanical Turk. Each worker

was shown the events that constitute a complete story to help them understand the

story context. For the compensation of $1, they are asked to write detailed de-

scriptions for each of these events. They were cued, but not required, to describe

characters’ intentions, facial expressions and actions. All answers that describe the

correct events were accepted. No filtering based on subjective judgment of the inter-

estingness of the answers were performed. The crowdsourcing was performed for the

movie date situation and the bank robbery situation.

Some statistics of these newly crowdsourced stories are shown in Table 15. The

statistics show that the newly crowdsourced sentences are longer and use more verbs

than the sentences in the original corpora intended to simplify learning. Some of

these sentences are shown in Table 11 and Table 14. In Table 11, the least probable

and most fictional sentences are mostly from this data set, whereas the most probably

sentence typically comes from the original, simplified language exemplars.

4.5.2 Evaluating Generated Story Texts

With the newly crowdsouced colorful sentences added to the event clusters, I now

describe an human study that quantitatively evaluates whether the narration styles

I defined is consistent with human readers’ intuition.
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4.5.2.1 Methodology

A total of 52 undergraduate, masters, and doctoral students participated in our study.

Each participants read two groups of stories in both the movie date situation and the

bank robbery situation.

The two groups of stories were generated with the Viterbi-style algorithm with

different sentence selection criteria. The newly crowdsourced sentences were added to

the event clusters. As revealed in the previous study on story coherence (Section 4.2),

Scheherazade may generate stories with coherence issues such as incorrectly or-

dered events. In order to avoid the influence of story coherence, I manually edited the

event sequence to maintain its coherence. Discourse planning was not used to avoid

confounding factors. All stories used in this user study can be found in Appendix B.

The first group of stories includes stories generated from the the most interesting

details (MID) criterion, the most probable (MostProb) criterion, and a story where

we use the MID criterion but penalize long sentences. After reading the stories,

participants are asked to select the most interesting story, the most detailed story

and the most concise story. Our hypothesis is that human readers will select the MID

story as containing the most details and the most interesting, and the MostProb story

as the most concise. We set α to 12. The third story, where we use the MID criterion

but penalize long sentences, is used as a control condition. The least probable criterion

tends to favor long sentences. One hypothesis is that by penalizing long sentences,

we could describe similar amount of details in fewer words. The third story is added

to test this alternative hypothesis.

The second group of stories includes a story with the most positive sentiments, and

a story with the most negative sentiments. We set β to 16 and 2 for the movie data

and bank robbery situation respectively. After reading the second group, participants

are asked to select a positive and a negative story. We hypothesize human readers

will agree with the algorithm’s sentiment judgments.
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Table 16: Accuracy of the detected story-level textual interestingness, conciseness,
and sentiments. § denotes p < 0.0001. * denotes p < 0.0005.

Participant Agreement %

Test Movie Date Bank Robbery

Most Concise Story 90.38§ 75.00*

Most Detailed Story 97.92§ 100.00§

Most Interesting Story 88.46§ 80.77§

Positive/Negative Stories 86.54§ 92.31§

4.5.2.2 Results

Table 16 shows the percentage of human participants that agree with the algorithm.

All results are predominantly positive and consistent with my initial hypotheses. In

the movie date situation, the participants agreements are in upper 80s and 90s. In

the bank robbery situation, there is lower agreement on which story is most concise,

but unanimous agreement on which story is the most detailed.

The hypotheses are tested using a one-tailed hypothesis testing based on the multi-

nomial/binomial distribution. For the three stories in group 1, the null hypothesis

that human judges select the stories randomly suggests that the participants agree-

ment should be close to 1/3. The second group contains only two stories, so the

random baseline is 1/2. The statistical tests find we can reject the null hypotheses

at very high confidence levels of p < 0.0001 and p < 0.0005. The alternative hypoth-

esis that penalizing for length may maintain the level of interestingness has not been

supported.

4.5.2.3 Discussion

In conclusion, the heuristics I developed for creating diverse narrator styles were

shown to accurately capture the human intuition of interestingness, conciseness, and

positive versus negative sentiments. The learning of narrator styles from large data
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sets can be considered successful.

However, it is arguably easier to detect the sentiment of an entire story than to

detect the sentiment of individual sentences, because a few sentences labeled with

wrong sentiments, when mixed together with many correctly labeled sentences in a

long story, may be overlooked by the participants in the study. To further evaluate

the constructed sentiment lexicon, Smooth SentiWordNet (SSWN), I also conducted

a sentence-level study, as detailed in the next section.

4.5.3 Evaluating Smooth SentiWordNet

This user study aims to evaluate whether I can predict the sentiments of individual

sentences using the sentiment lexicon Smooth SentiWordNet.

4.5.3.1 Methodology

From 45 event clusters taken from both situations, we first compute the top 3 most

positive sentence and top 3 most negative sentences. Each participant saw a pair

of positive and negative sentence randomly selected from the top 3, and was asked

to choose the positive and negative sentence. A total of 52 undergraduate, masters,

and doctoral students participated in our study. They performed 4678 comparisons

of 265 unique pairs of sentences. SSWN labels a sentence as positive if it has higher

sentiment than the median sentence in a cluster, and negative if it is lower.

The participants’ responses created a gold standard for the sentences we selected.

Based on these labels, I compared SSWN with the original SentiWordNet lexicon

as well as the the sentiment detection technique by Socher et al. [169] from Stanford

University. To compare with SentiWordNet, the word sentiment values in Equation 48

were substituted with values directly taken from SentiWordNet. A positive or negative

label can then be produced for each sentence. I tuned β to maximize performance.

To compare with Socher et al.’s method, I input the sentences into their web demo

and took the overall label. The results are summarized in Table 17.
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Table 17: Accuracy of the detected sentence-level sentiment, with comparison to
SentiWordNet and the technique by Socher et al.. § denotes p < 0.0001.

Participant Agreement %

Test Smooth SWN SentiWordNet Socher et al.

Sentence Sentiments (Individual) 70.76 59.60§ 35.91§

Sentence Sentiments (Majority) 80.75 64.53§ 39.25§

4.5.3.2 Results

Results are shown as Table 17. Overall, 70.76% of participants’ decisions agree with

the results produced by SSWN. The majority opinion on each pairs of sentences

agree with our algorithm for 80.75% of the time. In addition, SSWN outperforms

SentiWordNet by a margin of 11.16% to 16.22%, and outperform Socher et al.’s

technique by 34.85% to 41.5%, but it is worth noting Socher et al.’s algorithm targets

movie reviews and has not been tuned on our data set. A Chi-Square test shows the

difference between the two conditions to be extremely statistically significant at the

level of 0.0001.

4.5.3.3 Discussion

Results of this experiment indicates that SSWN can predict the overall sentiment of

sentences much more accurately than the original SentiWordNet. The results strongly

suggest that the corpus-based technique used to create SSWN is able to correct er-

rors in SentiWordNet. The automatic method used by SentiWordNet propagates

sentiment values along relations between words in WordNet, whereas my technique

propagates sentiment values along neighborhoods in texts in a selected corpus. These

two techniques can complement each other in creating a lexicon of high pratical utility.
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4.6 Limitations and Future Work

While there are many sjuzhet creation techniques, in this dissertation I only consider

one of the most important techniques: the ability to omit certain events in order to

improve the interestingness of generated stories. I have not addressed the question

whether the ordering of events could be re-arranged to achieve certain aesthetic effects

such as suspense.

When creating an interesting sjuzhet, I consider how typical an event is to a

situation. Typical events are used to establish a situation. However, the proposed

EventRank algorithm does not consider if an event appears in many different sit-

uations. If an event is typical to many different situations, it may not be able to

correctly establish the intended situation. A probabilistic formulation may differen-

tiate P (event|situation) and P (situation|event). The evaluation of the EventRank

algorithm is future work.

I proposed an algorithm for textual coherence based on noun agreements and verb

differentiation. Text generation using more sophisticated coherence measures such as

that proposed by Barzilay and Lapata [9] is also left for future work.

4.7 Summary

In this section, I present algorithms for generating stories based on learned plot

graphs. The ability to generate stories and tell stories demonstrates the utility of the

learned plot graphs.

Following the pipelined three-tier narrative model, the Scheherazade system

sequentially generates fabulas, sjuzhets, and natural language texts of a story. I

first define several graph-walking rules for generating fabulas, and the EventRank

algorithm for evaluating the typicality of an event in a situation. After that, I pro-

pose heuristics for generating different storytelling styles by selecting sentences from

crowdsourced sentences and build a sentiment dictionary, Smooth SentiWordNet,

134



based on a large corpus of fiction books. Finally, I propose a Viterbi-style algorithm

for considering both individual sentences and connection between sentences to create

a coherence text.

I performed user studies to evaluate if the generated fabulas are coherent and if

the natural language texts can express different narration styles, including the inter-

estingness of the text, the degree that it resembles languages in fiction, and positive or

negative sentiments. The user studies show that (1) the fabulas generated are mostly

coherent, event matching human-written stories on some measures of coherence, and

(2) the sentence selection heuristics and the sentiment decisions made based on SSWN

strongly correlate with human intuition. These positive results demonstrate the high

quality of the learn knowledge representation and the versatile storytelling capabilities

of the Scheherazade system.

The field of computational story generation and storytelling has been associated

with the field of computational creativity (cf. [42, 66, 100]). Boden [13] has proposed a

classification of three types of creativity: combinational, exploratory, and transforma-

tional. If we consider the plot graph as defining a space for all legal event sequences,

Scheherazade explores sequences in this space and may be considered to be ex-

ploratory creativity. On the other hand, the plot graphs combines stories from differ-

ent exemplar stories. Scheherazade selects events from a plot graph, and describes

these events by selecting from crowdsourced sentences. Therefore, Scheherazade

may also be considered to possess combinational creativity.

The work in this chapter has made important contributions to generative Narra-

tive Intelligence. To the best of my knowledge, this is the first Narrative Intelligence

system that can generate all three tiers of narratives, including fabula, sjuzhet, and

natural language text, from automatically learned knowledge. The user studies high-

light the quality and variety of generated stories, suggesting that the learning algo-

rithm for plot graphs is effective. The system provides a framework that integrates
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both plot-level and language-level generation of stories and provides flexible controls

for the style of narration to be adjusted according to the needs of applications.
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CHAPTER V

UNDERSTANDING STORIES

The ninety percent of human experience that does not fit into established

narrative patterns falls into oblivion.

— Mason Cooley

In previous chapters, I demonstrate the utility of the learned knowledge represen-

tation (i.e. plot graphs) by implementing and evaluating techniques that generate

and tell stories based on the learned knowledge. In this chapter, I further demon-

strate that the Scheherazade system can understand stories based on plot graphs,

which capture patterns of common situations. In particular, I focus on the problem

of inferring the fabula from a given sjuzhet, defined as the capability U2 in narrative

intelligence in Section 1.2. As discussed earlier, when a human tells a story, only a

selected set of events that happened in the narrative world are told. The events being

told constitute the sjuzhet. As an audience trying to fully understand the story, an

AI system needs to infer the events that happened, which constitute the fabula.

I frame story understanding in terms of questions and answers. Answering ques-

tions has been a popular method for computational systems to demonstrate story

understanding (c.f. [38, 73]). The Scheherazade system answers questions regard-

ing events that have not been told to the system based on events that haven been told

to the system. I first formally define the story understanding problem, and then prove

its computational complexity to be NP-hard. After that, I present methods to reduce

the computational complexity and solve the problem efficiently. The performance

gains are evaluated against different sets of random graphs.
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5.1 The Story Understanding Problem

As explained in Section 2.1, the story being told by human storytellers is a sjuzhet,

not a fabula. Humans rarely tell every event that happened in the narrative world,

but only those are needed for an interesting story. Thus, a common type of narrative

understanding problem is to figure out what really happened in the narrative world

based on what has been told to the AI. This ability to infer events that happened

in the past and events that will happen in the future based on limited perception is

important for making sense of the world. Consider the following example questions:

� Sally loved John. John asked Sally to marry him. Did Sally say yes?

� John covered his face and entered a bank. Later, John ran away from the bank.

Did John demand money from the bank teller?

� John demanded money from the bank teller. The bank teller pressed the silent

alarm. Did John escape from the bank?

� In a restaurant, John ordered food. After a while, John paid and left. Did John

get food?

The above questions first posit that some events in the story domain have happened.

The system needs to determine the probability of some other events happening, and

should provide answers such as “the probability of John demanding money from the

bank teller is 98%”, or “It is very likely that John got food”. It is worth emphasizing

that these questions are about if an event happens in the fabula, not if the event is

included in the sjuzhet. The ability to answer those questions demonstrate that the

system possesses Narrative Intelligence about the domain.

Recall our definition for a plot graphG = 〈E,P,Mx, Eo, Ec〉, where E, T,Mx, Eo, Ec

are the sets of events, precedence relations, mutual exclusion relations, optional

events, and conditional events respectively. As explained in the previous chapter,
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a legal event sequence is constructed by walking the plot graph according to these

simple rules:

1. An event e is eligible to be added to the sequence (or simply, event e “happens”)

if it has not parents or all of its parents meet one of the conditions: (1) the

parent is optional (2) the parent has been deleted from the graph, or (3) the

parent has been added to the sequence.

2. When an event e is added to the sequence, all other events that are mutually

exclusive to e are removed from the plot graph.

3. Direct parents of removed events become direct parents of direct children of

removed events.

4. If all parents of an event have been removed from the plot graph, that event is

also removed and cannot be added to the sequence.

5. We stop adding events to the sequence when no events may be added, or when

we reach one ending event in the plot graph.

Let S(G) denote all legal event sequences that the graph G can generate based

on the above rules. Each sequence S ∈ S(G) is a sequence of events 〈e1, e2, . . . , ek〉

where e1, e2, . . . , ek ∈ E. When we have a set of events F ⊆ E, and the sequence S

contains all events in F , we write F ⊆ S.

As explained earlier, in this chapter, I focus on story understanding as the infer-

rence of probability of events that are not mentioned in a story, given the knowledge

that some other events in the situation have happened. I now define the Story Un-

derstanding Problem (SUP) formally:

Definition 12 (The Story Understanding Problem). Given a plot graph G = 〈E,

T,Mx, Eo, Ec〉, one set of events Erequired ⊆ E, and a query event equery, the Story
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Understanding Problem determines the probability of equery occurring in an event se-

quence s randomly drawn from SG that includes all events in Erequired.

The SUP is equivalent to finding the conditional probability P (equery ∈ S|Erequired ⊆

S, S ∈ S(G)). For simplicity, we write it as P (equery|Erequired, G).

Events in a plot graph can have complex interactions, and it is not straightforward

to compute this probability directly from the graph (it will become clearer when we

consider some of these interactions in Section 5.3). One method for solving this

problem is to generate all possible legal event sequences, and count the number of

sequences containing Erequired and equery. Let Sr(G) denote the set of legal event

sequences that contain Erequired, and Sq(G) denote the set of legal event sequences

that contain Erequired ∪ {equery}. It is obvious that Sr(G) and Sq(G) are subsets of

S(G). Assuming each event sequence is equally likely, we can compute the required

probability as the ratio of the set cardinalities.

P (equery|Erequired, G) =
card(Sq(G))

card(Sr(G))
(51)

where card(·) is the cardinality function. When there are no legal sequence containing

all events in Erequired, the conditional probability is undefined.

Equation 51 assumes each event sequence is equally likely in the real world, which

admittedly may not always hold. Suppose we can obtain preferences over the events

sequences as a weight function w(S) ≥ 0 for every event sequence S ∈ S(G), such

that P (S) ∝ w(S), the probability may be computed as

P (equery|Erequired, G) =

∑
S∈Sq(G) w(S)∑
S′∈Sr(G) w(S ′)

(52)

The weight function can take any form provided that w(s) ≥ 0,∀s ∈ S(G). Learning

probabilities of event sequences directly from crowdsourced corpora may be difficult

as the crowdsourced stories are sjuzhets rather than fabulas. This problem is out of

the scope of the current dissertation.
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As the next section shows, the SUP problem is NP-Hard, so it is unlikely that we

will find a polynomial time algorithm for the SUP problem. Generating all possible

sequences in SG is expensive, as the number of all possible sequences is exponential

to the number of all vertices in a graph in the worst case. However, it is still possible

to improve the performance of story understanding over the brute force method by

utilizing structures of the plot graphs. Such methods are developed in Section 5.3.

5.2 NP-Hardness of the Story Understanding Problem

In order to prove SUP is NP-hard, we first consider a simplified version of SUP.

Definition 13 (The Simplified Story Understanding Problem). Given a plot graph

G containing n events and one set of events Erequired ⊆ E, the Simplified Story Un-

derstanding Problem (SSUP) determines if there a legal event sequence that contains

all events in Erequired.

Instead of finding a conditional probability (i.e. a ratio of two probabilities), the

SSUP finds a true/false answer. When Erequired = ∅, the SSUP is trivially true.

The Simplifed Story Understanding Problem (SSUP) is a weaker form of the

SUP, since if we can determine in SUP that the probability of a legal event sequence

containing some required events is defined and non-zero, we can conclude there must

be at least one such event sequence for SSUP.

More specifically, we can perform a simple reduction from any SSUP to an SUP

as follows: Given a SSUP with Erequired 6= ∅, choose any event e ∈ Erequired. Let

E ′req = Erequired \ e. The new SUP determines the probability of e occurring in legal

event sequences containing all events in E ′req. The SSUP has an affirmative answer if

and only if the answer to the constructed SUP is defined and non-zero.

Consequently, if SSUP is NP-complete, it follows that solving the Story Under-

standing Problem is NP-hard. Now we show the NP-completeness of the Simplified
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Story Understanding Problem. The proof contains two steps: (1) SSUP is in NP and

(2) SSUP is NP-hard.

NP is the set of computational problems that can be verified in polynomial time.

When presented with any event sequence S = 〈e1, e2, . . . , ek〉, we can verify if S is

legal and contains all events in Erequired. We need to do the following:

1. Check if k ≤ n. If k > n, the sequence s must not be legal. The time complexity

is O(1).

2. Check if e1, e2, . . . , ek ∈ E. This time complexity of this step, using a simple

scanning algorithm, is O(kn).

3. Check if the sequence contains all events in Erequired, i.e. Erequired ⊂ s. Similar

to the previous step, the time complexity of this step is O(kn).

4. We construct another legal event sequence S ′ by adding events in S one at a

time, from the beginning to the end of S. When adding each event, we check

if the event being added is eligible according to the story generation rules. It

is obvious that each event can be checked in O(n) time, and the total time

complexity for this step is O(n2).

As k ≤ n, the totally time complexity of checking a solution is O(n2). Therefore, the

Simplified Story Understanding Problem is in NP.

We now show the 3-Satisfiability problem (3-SAT) can be reduced to the Simplified

Story Understanding Problem in polynomial time. As 3-SAT is NP-complete, if any

3-SAT problem can be reduced to a SSUP in polynomial time, then SSUP must be

at least as difficult as 3-SAT. Thus, SSUP is NP-hard. Since we have shown SSUP is

in NP, it must also be NP-complete.

Definition 14 (3-Satisfiability). Consider a boolean formula which can be written as

a number of conjunctive clauses, each containing exactly three boolean variables, such
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x1 x2 x3 x4 x5 x6 ¬x1 ¬x2 ¬x3 ¬x4 ¬x5 ¬x6

c1 c2 c3

Figure 17: Reducing a 3-Satisfiability problem f = (x1 ∨ x2 ∨ x3)∧ (x2 ∨¬x3 ∨ x4)∧
(¬x4 ∨ x5 ∨ ¬x6) to a plot graph.

as (x1 ∨ x2 ∨ x3)∧ (x2 ∨¬x3 ∨ x4)∧ (¬x4 ∨ x5 ∨¬x6). Is there an boolean assignment

that makes the formula true?

Given a 3-SAT boolean formula, we can construct the following plot graph: For

each boolean variable in the formula, we create two vertices on the graph corre-

sponding to the variable and its negate. Take the example of the formula f =

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x4 ∨ x5 ∨ ¬x6), we would create 12 vertices

for x1,¬x1, x2,¬x2, x3,¬x3, x4,¬x4, x5,¬x5, x6, and ¬x6. For a formula involving n

variables, we will have 2n vertices. We create a mutual exclusion relation between

each variable vertex and its negation, e.g. between the vertices x1 and ¬x1. Sub-

sequently, we create one vertex for one clause in the formula, and add a precedence

relation from each variable vertex to every clause that variable appears in. In this

example, we will create three clause vertices c1, c2 and c3. Figure 17 shows the plot

graph we constructed. For a boolean formula with n variables and m conjunctive

clauses, we have 2n variable vertices, n mutual exclusion relations between the vari-

able vertices, m clause vertices, and 3m precedence relations, so the construction

has time complexity O(n+m). The constructed SSUP problem asks if a legal event

sequence can contain all the clause variables. In our example, Erequired = {c1, c2, c3}.

We now establish correspondence between the 3-SAT problem and the constructed
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Simplified Story Understanding Problem: There is a valid variable assignment satis-

fying the boolean formula if and only if there is a legal event sequence in the plot

graph that includes all the clause vertices. That is,

The 3-SAT has a Yes answer⇔ The constructed SSUP has a Yes answer

First, we study the forward direction: for each valid variable assignment satisfying

f , we can find a legal event sequence including all the clause vertices. For f to be

true, each conjunctive clause must be true, and at least one of the three variables

in each clause must be true. For each variable xi that is true, we add the vertex

corresponding to xi to the event sequence. For each variable xi that is false, we

add the corresponding negated vertex ¬xi to the event sequence. Since the variable

vertices do not have parents, and we never add both xi and ¬xi, the additions are

always possible. After adding these variables, vertices corresponding to variables

taking false values will be removed from the plot graph. For each clause vertex, at

least one parent vertex will have been added to the sequence, so that clause vertex

will be kept in the plot graph, rather than deleted recursively. Thus, we can add all

clause vertices to the event sequence, and produce a legal event sequence satisfying

the SSUP.

Next, we study the reverse direction: for a legal event sequence including all

the clause vertices, we can find a valid variable assignment satisfying f . Since the

event sequence includes all clause vertices, it must also include at least one of its

three parents. Setting that variable to true will make that conjunctive clause to true.

Thus, we can find a variable assignment that make each conjunctive clause true, and

thereby satisfying the entire boolean formula.

Having established the equisatisfiability of 3-SAT and SSUP on the newly con-

structed plot graph, we conclude the SSUP is NP-complete and SUP is NP-hard.
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5.3 Simplifying Plot Graphs

One way to solve the Story Understanding Problem is to generate all possible stories,

or event sequences, allowed by the plot graph G, and count how many sequences

contain all events in the set Erequired (i.e. the cardinality of Sr(G)), and how many

sequences contain all events in Erequired as well as the event equery (i.e. the cardinality

of Sr(G)). The ratio of the two counts is the required probability P (equery|Erequired, G).

However, generating all stories in a plot graph is a very expensive operation. If the

plot graph is large, sequences containing the set Erequired may be only a small fraction

of all possible stories, so much of the computation is wasted. We would like to cut

the number of stories we generate and reduce the overall computational cost. That

is, we want to create a new plot graph Gsimplified from the original plot graph Goriginal

such that

P (equery|Erequired, Gsimplified) = P (equery|Erequired, Goriginal), (53)

and

card(S(Gsimplified)) < card(S(Goriginal)). (54)

Assuming P 6= NP, we will not be able to find a polynomial time algorithm for

the Story Understanding Problem. However, we can still simplify the plot graph

and reduce the amount of computation. If an event a ∈ Erequired is involved in

a mutual exclusion relation with another event b, in many cases we can remove b

from the plot graph as b will never happen in event sequences we care about. One

such example is shown in Figure 18. In this particular case, Erequired = {x}, so

vertex b, being mutually exclusive to x, is removed from the plot graph. Children

of b, including vertices d, e, and h, are also removed due to transitive closure. The

simplified graph avoids the generation of event sequences abdeh and abedh, thereby

saving computation.

When we remove unreachable vertices from the original plot graph Goriginal to
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Figure 18: An example of plot graph simplification due to mutual exclusion relations.
Erequired = {x}, as shown in red. We know vertex x must exist in the event sequence,
so we can remove vertex b. Children of b are also removed due to transitive closure.

create the simplified plot graph Gsimplified, we must make sure (1) Gsimplified can

generate every event sequence that contain Erequired from Goriginal, or more formally,

∀S ∈ S(Goriginal), Erequired ⊆ S → S ∈ S(Gsimplified) (55)

and (2) every event sequence thatGsimplified can generate is legal according toGoriginal,

i.e.

S(Gsimplified) ⊆ S(Goriginal) (56)

These two conditions guarantee Equation 53 is satisfied. We do not require every

event sequence in S(Gsimplified) to contain Erequired.

Several considerations exist when we perform static analysis of plot graphs based

on mutual exclusion relations. The first is what events can be removed given the

execution of some other events. The second is how we regularize the event sequences

in the graph where some events have been removed, so we do not create illegal event

sequences. In both issues, we also need to consider race conditions that cannot be

determined in static analysis. Some of these computations may take exponential time

in the worse case, but their running times for typical plot graphs are usually short. In

146



addition, the results of these computation can be stored together with the learned plot

graphs, so story understanding can be performed quickly when called upon. Details

of these computation will be discussed in the three subsections below.

5.3.1 Cause-for-Removals

The first task we need to do is to find out what events in the plot graph are capable

of deleting other events, taking transitive closure into consideration. We define the

notion of a Cause-for-Removal.

Definition 15 (Cause-for-Removal). Given a plot graph G = 〈E, T,Mx, O〉, a Cause-

for-Removal (CfR) for a vertex e ∈ E is a minimal set of vertices Ec ⊆ E such that

when all vertices in Ec are executed, e will be removed from the plot graph. As Ec is

minimal, there is no vertex d ∈ E such that the execution of events Ec \ d, i.e. all

events in Ec except d, will remove d from the plot graph.

This definition is straightforward. For example, if two vertices u and v are mu-

tually exclusive to each other, u is a CfR for v and v is a CfR for u. If we denote

the set of vertices mutually exclusive to u as Mx(u), the condition is equivalent to

v ∈Mx(u). Below are the scenarios that vertex u is a CfR for vertex v:

1. when u and v are directly involved in a mutual exclusion relation. That is,

v ∈Mx(u)

2. when u is mutually exclusive to all parents of v. If we denote the set of parent

vertices of vertex v as Pa(v), this condition can be written as Pa(v) ⊆Mx(u).

These two conditions seem obvious. Figure 19 shows some examples. In Figure 19(a),

vertex a is a CfR for both vertices b and c, and vertex d is a CfR for vertex c. In

Figure 19(b), we note vertex e is not a Cause-for-Removal of vertex f , because e

cannot remove both parents of f at the same time. In fact, the existence of e creates

a race condition. When e is executed before d, vertex b is deleted and a precedence
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from a to f is created. Due to this new precedence relation, the execution of d cannot

remove all parents of f . I will discuss more about race conditions in Section 5.3.2.1.

However, a small modification, shown in Figure 19(c), produces a completely

different result. Neither vertex e or d can delete all parents of vertex f , but we made

two key changes: Vertex b does not have any parents, so deleting b will not create a

new precedence relation. Vertex e is ordered before d, so that vertex c will be removed

after vertex b. If c is removed before b, it will create a new precedence from a to f ,

which prevents f from being removed. Note that if e is not ordered before d, a race

condition between e and d can occur.

Intuitively, in order to recursively remove a vertex v from the plot graph, we must

remove all of its parents and prevent any new precedence relations from its grandpar-

ents. When vertex v has grandparents, we must cut any ties with its grandparents

by executing a single event. Otherwise, new precedence relations will be created and

the removal of v is prevented.

We first consider CfRs containing only a single vertex. Based on the above in-

tuition, we can put these vertices into two categories. Category-A (Cat-A) vertices

remove a vertex and all of its predecessors. Category-B (Cat-B) vertices remove a

vertex but not all of its predecessors. In Figure 19(d), vertex d is a CfR for vertex

a. Since a does not have any predecessors, d is a Category-A vertex for a. Vertex

d removes f and its parent b, so d is a Cat-A vertex for f and b. Vertex h removes

g but not its parent c, so vertex h is a Cat-B vertex for g. The reader may have

noticed that the definition of Cat-A and Cat-B vertices depends on the vertices being

removed.

The division between Cat-A and Cat-B vertices is the most important insight

in detecting Cause-for-Removals. It is critical for combining multiple vertices into

a single CfR, as discussed below, and for detecting race conditions, as discussed in

Section 5.3.1.1.
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(a) The CfR of b is a and the
CfRs of c are {a} and {d}

a

b c de

f
...

...
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(e) The CfRs of h are {d, e}
and {g}.

Figure 19: Examples of causes for removal
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When we combine single-vertex CfRs to create a multi-vertex CfR by removing

all parents of a vertex, we need to note that in a multi-vertex CfR, there can be many

Cat-A vertices but only one Cat-B vertex, and this Cat-B vertex must execute after

all Cat-A vertices. Since Cat-A vertices remove a vertex and all of its predecessors,

we do not worry about cutting anything from its predecessors. On the other hand,

Cat-B vertices does cut a vertex off from its predecessors. So we must finish this

cutting with one single vertex. To form a valid Cause-for-Removal, the Cat-B vertex

must be preceded by all Cat-A vertices. If some Cat-A vertices are preceded by the

Cat-B vertex, the vertices cannot form a CfR. If some Cat-A vertices are parallel to

the Cat-B vertex, we have a race condition. I will discuss race conditions in Section

5.3.2.1.

We can now examine Figure 19(d) and 19(e). In Figure 19(d), when considering

CfRs for vertex i, we see it does not have direct mutually exclusive vertices. Hence,

the only way to remove i is to remove all of its parents. Parent vertices a and f can be

removed by Cat-A vertices, and parent vertex g can only be removed by h, a Cat-B

vertex. Since h is preceded by both d and e, we can take the union set {d, e, h}m

which forms a valid CfR for vertex i. In Figure 19(e), vertex f can be removed by

vertex g, which is a Cat-B vertex. In addition, its parent b can be removed by d, a

Cat-A vertex. Another parent c can be removed by vertex e, a Cat-B vertex. As d

precedes e, the union {d, e} is another valid CfR for f . Vertex f is the only parent

of vertex h, so CfRs of f are also CfRs of h.

5.3.1.1 Race Conditions

Race conditions happen during the simplification of plot graphs because although

we know which events are required in the event sequences, we do not know their

relative order. This lack of information may lead to some indeterminacy. A race

condition in the detection of Cause-for-Removals can happen between a group of
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Cat-A vertices and a Cat-B vertex, as well as between two Cat-B vertices. There are

no race conditions between Cat-A vertices because any two Cat-A vertices can work

together in any order to remove other vertices.

We first examine the competition between Cat-A and Cat-B vertices. With some

modification to Figure 19(d), we produce an example shown as Figure 20(a). Figure

20(a) removes the precedence relation from vertex e to vertex h in Figure 19(d). Thus,

the order of execution between e and h is left unspecified. If we execute the vertices

in the order 〈deh〉 or 〈edh〉, the vertex i will be removed as all of its parents have been

removed. However, if we executes the events in the order 〈dhe〉, a precedence relation

will be created between c and i immediately after executing h. The execution of vertex

e will not remove vertex i from the graph. In summary, the ordering of execution can

affect whether a vertex is removed or not. Figure 20(c) contains no race conditions.

Since h always executes before e, vertex i will never be removed. There is neither a

CfR nor a race condition.

Thus, a race condition can happen for a set of vertices U if the following conditions

are satisifed:

� U contains some Cat-A vertices and one Cat-B vertex

� The order of execution is unspecified between some Cat-A vertices and the

Cat-B vertex.

� If the Cat-B vertex is executed after all Cat-B vertices, some other vertices in

the graph will be removed. That is, when properly ordered, U is a CfR for some

vertices.

Race conditions can happen between Cat-B vertices. We have seen one such

example in Figure 19(b), which is reproduced as Figure 21(a). Vertex d is a CfR for

both vertices b and c, so it is CfR for their common child, f . Vertex e can only remove

the vertex b but not c, so it is not a CfR for f . However, if e is executed before d,
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a b c d e

f g h

i
...

...

(a) A race condition involving d, e and h.

b c d e

f h

i
...

...

(b) When h happens before e.

a b c d

h

e

f g

i

...

(c) No race conditions nor CfRs.

Figure 20: A race condition during the detection of Cause-for-Removals, resulting
in the indeterminacy whether a vertex can be removed. This race condition hap-
pens between Cat-A vertices and Cat-B vertices.Vertices that have been executed are
shaded.
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a

b c de

f
...

...

(a) Original

a

c de

f
...

...

(b) e executes first. f will be kept
when d subsequently executes

Figure 21: Another race condition during the detection of Cause-for-Removals, re-
sulting in the indeterminacy whether a vertex can be removed. This race condition
happens between two Cat-B vertices. Vertices that have been executed are shaded.

a new precedence relation will be created from a to f , preventing f to be removed

later. Note vertex d is a Cat-B vertex for vertices b and c, and vertex e is a Cat-B

vertex for vertex b.

Stating the above intuition formally, given a vertex v, and two Cat-B vertices a

and b that remove parents of v, the two vertices a and b are in a race condition if

� Neither a or b are in direct mutual exclusion with vertex v.

� One of a and b removes some parents of v but not all parents of v. Without

loss of generality, we assume a satisfies this condition.

� The other vertex, b, removes v by removing all parents of v.

� The order of a and b are unspecified. Suppose a ≺ b, and a cannot be skipped

in the graph (i.e. a 6∈ Eo ∪ Ec), b is not a valid Cause-for-Removal.

� a and b are not involved in the same mutual exclusion relation.

When a race condition exists in a plot graph, the correct simplification will depend

on the order of occurrence of competing vertices. The order of competing vertices

can determine whether the children of the removed vertex can still happen, and when
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they can happen. Instead of creating two different plot graphs, I do not remove the

vertex being contended in the race condition.

The algorithm for detecting CfR is sketched in Algorithm 7. The algorithm pro-

cesses vertices in the order of a topological sort of the graph (function TopoSort),

which guarantees we process parents before children. Clearly, CfRs of one vertex may

affect the CfR of its children, but not the other way around. The algorithm first

handles vertices without parents. These nodes cannot be removed by removing all

of their parents, and every vertex mutually exclusive to them is necessarily a Cat-A

vertex. If a vertex has some parents, we first try to find Cause-for-Removals that

remove all of its parents. After that, vertices that are directly mutually exclusive are

recorded as Cat-B CfRs.

The MergeParentsCfR attempts to find all CfRs that can remove the parents

of a given vertex v. It starts with CfRs of one parent, and checks if this CfR is com-

patible with other CfRs that removes other parents. If the two CfRs are compatible,

they are merged. If they form a race condition, the race condition is also noted. This

function may potentially perform a combination of all CfRs of all parents, and the

number of combinations is exponential to the number of parents in the worst case.

However, most CfRs are not compatible and most vertices in realistic plot graphs

do not have more than 4 or 5 parents. Thus, this algorithm terminates quickly in

practice.

The conditions for two CfRs to be compatible are stated as follows: for two CfRs

c1 and c2 that removes some parents of vertex v, they are compatible if all of the

following are true.

� Either c1 or c2 contains no Cat-B vertices, or they contain the same Cat-B

vertex.

� If a Cat-B vertex exists in either c1 or c2, it must be preceded by all other

vertices in both c1 and c2.
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� No two vertices in c1 and c2 are involved in the same mutual exclusion relation.

The conditions for two CfRs to be in a race condition are stated as follows: for

two CfRs c1 and c2 that removes some parents of vertex v, they are in a race condition

if all of the following are true.

� Either c1 or c2 contains a Cat-B vertex, or they contain the same Cat-B vertex.

� The Cat-B vertex is parallel to some other vertices in c1 or c2, but never precedes

any vertices in c1 or c2.

� When vertices c1 and c2 are executed in the correct order, they can remove v.

� No two vertices in c1 and c2 are involved in the same mutual exclusion relation.

Another possible speed-up comes from the simplification of Cause-for-Removals

by casting them to boolean formulae. Figure 22 shows two examples where the CfR

for vertex g can be simplified. In Figure 22(a), the vertex f has two CfRs: {c} and

{d}. The vertex e has one CfR: {d}. When we combine the CfRs of the parents

of vertex g, we obtain {d} and {c, d}. It is worth noting that a list of CfRs can

understood as a boolean formula, where the vertices in each CfR are conjunctive

because all must be executed to remove a vertex, and different CfRs are disjunctive

because any, if executed, may remove the vertex. With slight abuse of notation, we

can write the above list of CfR as (c∧d)∨(d). We can easily see that (c∧d)∨(d) = d.

This simplification process reduces the number of CfRs that need to participate in

the combination and accelerates computation. The simplification algorithm is shown

in Algorithm 8.

5.3.2 Implied Temporal Relations

The removal of a vertex from a plot graph removes a precondition for all its children

that remain in the plot graph. Such removals may lead to the generation of event
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Algorithm 7 Detecting Causes for Deletion

function DetectCfR(G = 〈E,P,Mx, Eo, Ec〉)
order ← TopoSort(G)
create a dictionary D that maps each vertex to a set of CauseForRemovals
for each v ∈ order do . Processing in topological order

if ParentsOf(v) = ∅ then
if ¬v ∈ Eo then

for each m = (u, v) ∈Mx do . skip optional events with no parents
create a new CfR c, c.CatA = {u}
add c to D(v)

end for
end if

else
pd← MergeParentsCfR(G, D, v) . A set of CfRs
add pd to D(v)
for each m = (u, v) ∈Mx do

if u has not been used in any CfR in D(v) then
create a new CfR c, c.CatB = u
add c to D(v)

end if
end for

end if
end for
return D

end function

function MergeParentsCfR(G, D, v)
parents← ParentsOf(G, v)
active← D(parents.head)
while active 6= ∅ do

parents← parents.tail
next← D(parents.head)
for each c ∈ active, each d ∈ next do

if Compatible(c, d) then
e← Merge(c, d)
next-active← next-active ∪ {e}

else if RaceCondition(c, d) then
create a new race condition rc, rc.focus ← v, rc.foes = {c, d}
add rc to the global list of race conditions

end if
end for
active← next-active

end while
return active

end function
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a b c

e f d

g ...

(a) The CfRs of g are {d} and
{c, d}, which is equivalent to {d}

Figure 22: Simplifying Cause-for-Removals

Algorithm 8 Simplifying CfR Boolean Formulas

function Simplify(CL = {{v1
1, v

1
2, . . . , v

1
k}, {v2

1, v
2
2, . . . , v

2
k} . . .})

for each clause ci = {v1
1, v

1
2, . . . , v

1
k} ∈ CL do

Remove duplicate elements in clause
if ∃ clause cj ∈ CL, i 6= j, cj ⊆ ci then

CL← CL \ {ci}
end if

end for
Remove duplicate clauses in CL
return CL

end function

sequences that are not legal in the original plot graph. To solve this problem, we

need to explicitly represent precedence relations that are implicit in the original plot

graph.

Let us consider the situation shown in Figure 23(a). Suppose Erequired = {x}, so

we can remove vertex b from the plot graph. The child of b, vertex e, will not be

removed from the plot graph as one of its parents, vertex c, still remains in the plot

graph.

If we simply remove b from the plot graph, we obtain an incorrect simplification

shown in Figure 23(c). In the original graph (Figure 23(a)), vertex e can only happen

after either (1) that both parents b and c happen or (2) that c and x happen, since

x removes b as a precondition for e. In the incorrect simplification in Figure 23(c),

vertex e can happen before vertex x.
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a

b c x

e
...

(a) Original

a

cx

e...

(b) Simplified

a

cx

e...

(c) Incorrect

Figure 23: An example plot graph where a temporal relation must be added to ensure
the correctness of the simplified graph. Erequired = {x}, shown in red. When vertex
x happens, vertex b will be removed, so vertex e will have one less precondition. To
ensure that e only happens after x, we must add an explicit temporal relation from
vertex x to vertex e. The naive simplification in (c) allows vertex e to happen before
vertex x.

The problem is that the original graph contains an implied precedence relation

from x to e because x removes one precondition for e. In general, an implied temporal

relation exists between a vertex e, and a group of vertices U = {u1, . . . , uk} when all

of the following conditions are satisfied:

� U is a Cause-for-Removal of at least one parent p of e, and p is not optional

or conditional. Conditional or optional events are not preconditions for any

vertices and can be removed without affecting its children.

� U is not a Cause-for-Removal of e. That is, ¬CfR(U, e).

� All vertices in U are unordered w.r.t. e, i.e. ∀ui ∈ U, ui ‖ e

To represent this implied precedence relation, when U only contains one single

vertex, we can explicitly add a precedence relation to the graph. This newly added

directed edge is shown as the dashed arrow in Figure 23(b). This added edge would

prevent the generation algorithm from generating an illegal sequence. It is impor-

tant to note a difference between this newly added precedence relation and explicit

precedence relations existing in the original plot graph: the newly added precedence
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relations cannot be used to determine transitive closure of deletion. If for some rea-

sons we need to delete vertex c, we must also delete e due to transitive closure; we

cannot treat x as a parent of e. To differentiate this newly added relation and the

traditional precedence relations that can be used to determine transitive closure of

deletion, we call this new type of relations temporal relations.

However, when U contains more than one vertex, we do not have a general method

to represent this implied precedence relation on the graph. Hence, we perform a

filtering step after generating all event sequences. This filtering removes all sequences

where e executes before any vertices in U .

5.3.2.1 Race Conditions

Race conditions can also happen in the detection of implied temporal relations. Figure

24 shows an example where we cannot decide if and where we need to add a temporal

relation. When either vertex c or vertex d executes, vertex b will be removed. Between

vertex c or vertex d, it is the earlier vertex that removes a precondition for vertex e.

As we discussed in Section 5.3.2, we must add a temporal relation to the graph, but

we do not know which vertex, c or d, is the earlier vertex. If vertex c executes before

vertex d, the new temporal relation should go from c to e, as shown in Figure 24(b).

If vertex d executes before vertex c, the new temporal relation must go from d to e,

yielding the simplified graph in Figure 24(c). If we do not add the temporal relation,

we may generate the sequence 〈aexy〉 or 〈aeyx〉, which are not allowed in the original

graph.

This indeterminacy of temporal relation ceases to exist when either c or d is

ordered before e and is not optional. Without loss of generality, Figure 24(d) shows

the case where vertex d is ordered before vertex e. In this case, c is free to happen

before or after d. This is because when b does not happen, d is guaranteed to happen

before e. Illegal sequences 〈aecd〉 and 〈aedc〉 are not possible. The indeterminacy also
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b cd
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...

(a) Original

a

cd

e...
...

(b) c executes first

a

cd

e...
...

(c) d executes first

a

b cd

e ...
...

(d) No indeterminacy

a

b cd

e
...

...

(e) A race condition caused by
optionality.

Figure 24: An example of race condition during mutual exclusion analysis concerning
the addition of temporal relations. Depending on the order of occurrence between
vertex c and vertex d and if they are optional, we may have to add temporal relations
in the simplified plot graphs. Vertices that have executed are shaded.
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does not exists when either c or d is ordered after e. If e precedes c, for example, we will

know that we must add a temporal relation from d to e, resolving the indeterminacy.

If both vertices c and d are ordered w.r.t. e, it is evident that no temporal relations

are needed and no race conditions exist.

However, the race condition comes back when the vertex (either c or d) preceding

e is made optional, as shown in Figure 24(e). Vertex d is ordered before vertex e

but is also optional. Since d is optional, it is not required to execute. We again

have two correct but incompatible cases: When c executes before d, it will remove b,

and we do not have to add any temporal relations. This may generate the sequence

〈adec〉. When we decide to skip d, b is kept in the graph and is removed by c, so a

temporal relation from c to e is needed. This may generate the sequence 〈ace〉. The

temporal relation is needed here to avoid the illegal sequence 〈aec〉. Therefore, the

race condition reappears.

Stating the above intuition, the conditions for having a race condition during the

detection of implied temporal relations are:

� Two CfRs, c1 and c2 can remove one parent p of vertex v, but neither c1 and c2

can remove v.

� The order of execution between c1 and c2 are not specified. That is, ∀a ∈ c1, 6∃

b ∈ c2, a ≺ b and ∀b ∈ c1, 6∃ a ∈ c2, a ≺ b.

� The order of execution between c1 and v are unspecified. That is, ∀a ∈ c1,¬a ≺

v ∧ ¬v ≺ a. The orders of execution between all vertices in c2 and v are also

unspecified. Without loss of generality, If the order between c1 and v is specified,

then all vertices in c1 must be optional or conditional.

� No vertices in c1 and c2 are involved in a mutual exclusion relation.
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a
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e
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(a) Original

a

b d

e
...

(b) when e is in
Erequired

Figure 25: An example of of implied co-occurrence in the static analysis of mutual
relations. In the original graph (a), vertex e can only execute when b executes. In
the simplified graph (b), we can execute e without b.

5.3.3 Implied Preconditions

A third concern in the static analysis of mutual exclusion relations is implied pre-

conditions that must also be made explicit after simplification. One example of this

situation is shown in Figure 25(a). Note in the graph vertex c and e are ordered by a

precedence relation and are mutually exclusive, but they are not identified as optional

or conditional. This is because the existence of vertex b provides a path to vertex e,

which gives e a chance to execute. In this plot graph, vertex e can only execute when

vertex b executes. When we know vertex e must execute, we can remove vertex c from

the plot graph, resulting in Figure 25(b). However, removing vertex c allows vertex e

to execute without vertex b. For example, we can generate the sequence 〈ade〉 where

d removes b.

The problem is that vertex b is an implied precondition in the original graph,

which is lost during our simplification. However, we do not have a graph construct

that would guarantee a precondition in plot graphs. To solve this issue, I perform an

extra filtering step that discards all sequences where the implied preconditions are

violated.

The conditions for the existence of an implied precondition between vertex a and
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b are:

� Vertex c is ordered before vertex b, and b and c are mutually exclusive.

� Vertices c and b are not recognized as optional and conditional because of vertex

a, which provides an alternative path to b.

5.3.4 Algorithm

In this section, I outline the overall algorithm for the static analysis of mutual ex-

clusion relations (shown as Algorithm 9). The function SimplifyGraph takes five

parameters: G,C,R, IT, IP,Erequired and Equery. G = 〈E,P,Mx, Eo, Ec is the origi-

nal plot graph. D is a dictionary that maps each vertex in E to a set of Cause-for-

Removals. R is a list of race conditions. Each race condition contains two sets of

vertices (R.set1 and R.set2) that compete for one vertex (R.focus). IT is a set of

implied temporal relations. Each temporal relation contains a set of vertices Eprior

and another vertex Elater, where vertices in Eprior is constrained to execute before

Elater. IP is a set of implied preconditions.

The algorithm contains many bookkeeping steps and requires some explanation.

The second line finds Edeferred. When a CfR contains a Cat-B vertex and one or

more Cat-A vertices, the Cat-B vertex must execute later. Therefore, if Erequired does

not contain all Cat-A vertices in the CfR, we must not remove vertices that can be

removed by the Cat-B vertex alone. Edeferred contains these Cat-B vertices.

Line 4 finds all vertices that may be removed from the plot graph, captured by

Epossible. Line 5 finds Eremaining. If one vertex is being contended in a race condition,

this vertex must not be removed from the plot graph. Eremaining contains these

vertices. Therefore, Epossible \Eremaining are the vertices to be removed from the plot

graph. Line 8, 9, and 10 handle the insertion of implied temporal relations.

The Count function generates all possible vertex sequences from the simplified

graph Gsimplified. Note that a valid sequence must begin with a valid source vertex
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Algorithm 9 The Algorithm for Mutual Exclusion Analysis

function SimplifyGraph(G,D,R, IT, IP,Erequired, Equery)
all-cfr ← all CfRs in D
Edeferred ← {cfr.CatB ∈ all-cfr | cfr.CatA 6⊆ Erequired}
Eactive ← Erequired \ Edeferred
Epossible ← vertices that can be removed by Eactive
Eremaining ← {r.focus | r ∈ R ∧ (r.set1 ⊆ Erequired ∨ r.set2 ⊆ Erequired)}
Eremoved ← Epossible \ Eremaining
Gsimplified ← RemoveEvents(G,Eremoved)

T ← {t ∈ IT | t.Eprior ⊆ Erequired}
Tadded ← {(t.Eprior(0), t.Elater) | t ∈ T, |t.Eprior| = 1}
Gsimplified.P ← Gsimplified.P ∪ Tadded
Esources ← source nodes in G
Eends ← end nodes in G
return Count(Gsimplified, Esources, Eends, IT, IP,Erequired, Equery)

end function

function Count(Gsimplified, Esources, Eends, IT, IP,Erequired, Equery)
seqs← all possible vertex sequences starting from Esources and ends in Eends or

ends when no more vertices may be executed
valid-seqs← vertex sequences where IT and IP constraints are respected
s1 ← number of sequences in valid-seqs containing Erequired
s2 ← number of sequences in valid-seqs containing Erequired and Equery
return s1/s2

end function

in the original graph G, and it must end with a valid end vertex in the original

graph G, or when no more vertices may be executed. The generation algorithm has

been shown as Algorithm 5. The generated sequences are further filtered with the

implied temporal relations and implied precondition constraints. Finally, we count

the sequences and compute the ratio.

5.4 Evaluation

I evaluate the effectiveness of the algorithm for plot graph simplification by test-

ing them against random plot graphs with random precedence relations and mutual

exclusion relations.
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5.4.1 Methodology

The algorithm for generating random plot graphs takes three parameters: the total

number of vertices, total number of precedence relations, and total number of mutual

exclusion relations. As the plot graph is a directed acyclic graph, the vertices are first

numbered from 1 to n. Precedence relations are uniformly drawn from all possible

precedence relations, which go from a vertex with a smaller number to a vertex with

a greater number. After the precedences are created, we omit precedences that are

implied by transitive closure (e.g. a ≺ b and b ≺ c implies a ≺ c.) Similarly, to gener-

ate the mutual exclusion relations, I uniformly drawn from all possible vertex pairs.

Finally, optional and conditional vertices are detected. For each set of parameters,

10,000 random plot graphs are generated.

In order to test the effectiveness of the analysis based on mutual exclusion rela-

tions, from each random plot graph, I pick one vertex involved in at least one mutual

exclusion relation as Erequired. Another vertex is uniformly drawn from all vertices as

Equery.

For each randomly generated plot graph, I record the total number of generated

sequences and the amount of computation time for the original graph and the sim-

plified graph respectively. For the original plot graph, all computation time is spent

on generating event sequences. For the simplified plot graph, the computation time

contains the time spent on graph simplification and generating the event sequences

for the simplified plot graph. The averages over 10,000 graphs are computed as the

sum from all simplified graphs divided by the sum from all original graphs.

5.4.2 Results

The acceleration obtained for random plot graphs generated by different sets of pa-

rameters are shown in Table 18. The sets of parameters were selected so that the

random graphs resemble the actual plot graphs we have learned. As the number of
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Table 18: Acceleration obtained by simplifying plot graphs based on mutual exclusion
relations

Configuration Savings
Error Rate

Vertices Precedences Mutual Exclusions Sequences Time

10 20 3 29.47% 27.03% 1.56%

10 25 3 30.19% 23.78% 0.63%

10 30 4 30.34% 22.74% 0.66%

12 25 4 31.04% 32.97% 2.86%

12 35 4 31.31% 31.34% 1.05%

14 40 4 31.84% 32.93% 1.75%

14 50 6 32.32% 33.34% 2.09%

16 60 6 32.85% 36.29% 2.61%

16 70 6 32.62% 32.34% 1.52%

16 70 8 33.06% 34.03% 2.54%

vertices grows, the number of precedence relations and mutual exclusion relations

are also increased to maintain a similar level of parallelism and mutually exclusive

alternatives in the plot graphs. The configurations are generally sorted in increasing

order of complexity.

The results indicate that the simplification of plot graphs based on mutual ex-

clusion relations can achieve substantial increase in performance. On average, the

knowledge of one event involved in a mutual exclusion relation can reduce the total

number of sequences generated by more than 30%. The average saving on computa-

tion time grows from a low of 22.74% to a high of 36.78% when the number of vertices

grows from 10 to 16. The error is greater than zero across all tests, indicating the

algorithm does not always simplify plot graphs correctly. However, the error rate

never exceeded 3%.
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5.4.3 Discussion

One important purpose of the graph simplification algorithm is to effectively perform

story understanding in large, complex plot graphs. As the number of legal vertex

sequences grows superlinearly with the number of vertices, it is important to reduce

the time of computation when the number of vertices becomes large.

Observing Table 18, we note the simplification algorithm scales well. As plot

graphs become more complex, the saving in number of generated vertex sequences

tends to increase, although the speed of increment is slow. The saving on the actual

computation time portrays a more optimistic picture. The saving on time increases

by 7% to 14% when the number of vertices increases from 10 to 16. This indicates

the simplification algorithm only incurs a small computation overhead, and the over-

head is dominated by the growth of vertices. Overall, this indicates the simplification

algorithm can effectively reduce the computation needed to answer the Story Under-

standing problem.

It must be acknowledged that the current simplification algorithm does not sim-

plify all plot graphs correctly. It is likely there are other forms of race conditions or

implied temporal relations that I have not discovered. However, the error rate does

not always increase as the plot graph grows more complex. Moreover, mistakes are

only made on less than 3% of all plot graphs. In other words, given a random plot

graph, we are at least 97% confident that the simplification algorithm will produce a

correct answer. Other approximation algorithms, such as Monte Carlo methods that

sample sequences from plot graphs, are left for future work.

5.5 Summary

In this chapter, I have investigated the Story Understanding Problem and its math-

ematical properties. Noting that the sjuzhet of a story often hides details in the

fabula from the audience, I examined the inference of unmentioned events based on

167



explicitly mentioned events in the story, by utilizing the plot graphs Scheherazade

has learned earlier.

I provided a mathematical definition for the Story Understanding Problem and

further showed that it is NP-hard. However, by utilizing properties of the plot graph

representation, it is possible to reduce the needed computation time by simplifying

the plot graph, if we know some events that exist in the story are also involved in some

mutual exclusion relations. Employing this information, we can remove vertices from

the plot graph, thereby reducing the amount of computation spent on generating all

possible event sequences. I have discussed and solved many issues in performing this

type of static analysis of plot graphs, including finding Cause-for-Removals, race con-

ditions, implied temporal relations and preconditions. Experimental results suggest

the simplification algorithm scales well when the plot graph grows more complex. On

average, simplifying plot graphs can reduce the total number of event sequences by

29.47% to 33.06%, and the total computation time by 27.03% to 36.29%.

In conclusion, the simplification algorithm demonstrates good scalability that al-

lows us to efficiently answer the Story Understand Problem. The ability to perform

story understanding based on automatically learned knowledge holds the promise of

scaling computational Narrative Intelligence to solving diverse and large real-world

problems.
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CHAPTER VI

FUTURE WORK AND CONCLUSIONS

If I’ve vividly laid out the narrative, the reader will come to his own con-

clusions.

— Rick Atkinson

In this concluding chapter, I summarize this dissertation and highlight its contri-

butions. I then discuss two major unsolved problems that lie ahead on the road to

strong computational Narrative Intelligence, and speculate about possible solutions.

6.1 Summary

Despite their differences, most existing computational Narrative Intelligence systems

rely on hand-crafted knowledge, which requires considerable amount of expert labor.

As a result, these systems are confined to a few domains where knowledge has been

provided. This knowledge bottleneck has been widely recognized, but its solution has

not been thoroughly investigated.

In this dissertation, I propose procedures and techniques for learning knowledge

to support narrative intelligence, including story generation, storytelling and story

understanding, in domains previously unknown to the system. The Scheherazade

system is capable of extending its own knowledge when it encounters unfamiliar story-

telling domains. I collect a number of simple exemplar stories in a given sociocultural

or procedural situation (e.g. a date at a movie theater, pumping gas into a car, etc.)

from workers on Amazon Mechanical Turk. The crowdsourcing approach allows us to

circumvent natural language challenges and directly tap the collective social norms

from the minds of members of a community.
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A situational model, called a plot graph, can be learned robustly from the crowd-

sourced stories. A plot graph describes how a situation typically unfolds in terms

of events, precedence relations, mutual exclusion relations, and optional/conditional

events. The plot graph representation has proven to be versatile in supporting tasks

of narrative intelligence. I have created a complete algorithmic pipeline for generating

the fabula (i.e. all events that happen in the narrative world), the sjuzhet (i.e. the

events actually being told) and the media (i.e. the final story in text). I also devel-

oped algorithms for efficiently inferring if an untold event has happened, given the

events being told to the AI. Evaluations demonstrate that the system can (1) learn

plot graphs accurately (Section 3.4 and 3.9), (2) generate stories that match human-

written stories in some measures of coherence, marking an important milestone for

computational Narrative Intelligence (Section 4.2), (3) tell the stories in distinctive

narration styles (Section 4.5), and (4) reduce the computation time by approximately

30% or more in story understanding (Section 5.4). Consequently, the system can

demonstrate narrative intelligence in any situation where a small number of exemplar

stories may be collected.

6.2 Contributions

In this dissertation, I made the following contributions:

� The system addresses the knowledge bottleneck that has troubled Narrative

Intelligence systems for decades. By learning from crowdsourced stories, the

system is able to demonstrate Narrative Intelligence in any situation where a

small number of stories can be collected. This is the first computational system

that employ learned knowledge to perform both story generation and story

understanding.

� I provide a novel knowledge representation, called a plot graph. This represen-

tation can be accurately learned using statistical methods and supports many
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Narrative Intelligence tasks, thereby effectively bridging learning and applica-

tion. This representation incorporates natural language processing into an NI

framework.

� In the evaluation of fabula coherence, I demonstrate for the first time that

computer-generated stories can match human-written stories in some aspects of

coherence. This is also the first time that a computational NI system is directly

compared to humans.

� The Scheherazade system learns diverse narration styles from large data sets,

which enables applications in storytelling virtual characters.

6.3 Potential Applications

In addition to long-term scientific contributions, the development of the Scheher-

azade system provides immediate benefits in supporting several potential applica-

tions, including virtual training environments and virtual characters.

The Scheherazade system was initially inspired by the need to develop an

intelligent and interactive training application for preparing children with autism for

navigating everyday social situations, as autistic children often experience difficulties

in understanding and following social conventions. During the development, it became

apparent that the manual authoring approach will not scale up to complexities of real-

world scenarios. Therefore, it is necessary for a computational system learning the

knowledge by itself. Inspired by Boujarwah et al. [14]’s initial work on crowdsourcing

scripts for the training environment, in this dissertation, I develop an entire procedural

pipeline from collecting exemplar stories to the automatic learning of the knowledge

and its applications.

The Scheherazade system’s capability to learn socio-cultural conventions is not

limited to the the mainstream culture where autistic children need to cope with, but

can also extend to foreign cultures. For example, training scenarios can be developed
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to prepare users for job interviews in Japan or respecting local customs in Samoa.

It could be expensive to hire experts on foreign cultures to manually author suffi-

cient knowledge in support of virtual training environments. If the culture is not well

studied, finding an expert on the subject could be a difficult task by itself. In com-

parison, Scheherazade only requires a small number of exemplar stories written by

English-speaking non-experts who have some experience with the foreign culture and

that particular social situation. No training in computer science or AI is required.

Moreover, the Scheherazade system enables the creation of diverse virtual char-

acters in games or virtual worlds that can tell stories. For entertainment purposes,

oftentimes we would like to create an illusion that virtual characters lead their own

lives and are not just part of a show that disappears when the player looks away.

Thus, we would like to give each character a background story or an alibi, which can

explain where they have been and what they have done while they are not with the

player [176]. Virtual characters should be able to tell these background stories and

recall details to substantiate their stories when asked to. Therefore, the knowledge of

common social situations, the ability to identify prototypical events, and the ability

to tell stories in diverse narration styles can help the creation of believable virtual

characters.

Virtual characters with background stories also have applications in the health-

care industry. For example, Bickmore et al. [12] found that the ability to tell autobi-

ographical stories increases the likelihood that human users will interact with virtual

characters over an extended period. This can be advantageous when we need to en-

courage users to keep interacting with some programs or electronic devices, such as

educational software or medical devices for self-monitoring.
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6.4 Future Work

The limitations of each individual components of the system have been discussed

throughout this dissertation. In this section, I will discuss two major future directions:

how to understand and generate creative stories, and how to further increase the

flexibility of the knowledge representation.

6.4.1 Creativity

It can be argued that the stories currently generated by Scheherazade are not

qualitatively creative, although the stories generated by the system can be differ-

ent from any input story. As the plot graphs capture typical behaviors in typical

situations, the stories generated by following the plot graphs are prototypical and

lack surprises. Therefore, an important future direction is to extend the creative

capabilities of Scheherazade.

It is possible to specifically crowdsource exemplar stories that break the norm. In

an earlier, unsuccessful attempt to crowdsource stories for the movie date situation,

for example, one creative story introduced a third character, a friend of John who

insisted in sitting with the couple and disrupted their date. In later attempts, the

crowdsourcing instructions were changed to be explicit that we only wanted stories

about the most typical or mundane stories in a situation. However, the statistical

nature of learning makes it difficult to learn from those creative stories. Among the

stories that are very dissimilar from other stores, some are coherent and interesting,

whereas others are actually nonsensical. From a pure statistical point of view, it is

difficult to separate those two cases.

As a consequence, a major challenge for learning from creative exemplar stories is

to understand creative stories. One possibility is to crowdsource the understanding.

The crowd workers may be asked to vote for stories that are both coherent and

creative, or repair nonsensical stories using a mechanism similar to the story repairing
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experiment in Section 4.2.

AI systems have attempted to understand creative stories. Ram [146] pointed

out that most, if not all, creative story variations are derived by combining and

modifying typical behaviors and scripts. My survey of the manga Doraemon provides

evidence the creative process of most science-fictional gadgets is based on modifying

and blending ordinary objects we encounter in our life [98, 101]. This process is

similar to conceptual blending [189, 15], a cognitive paradigm for human creativity.

Therefore, given enough plot graphs, it is plausible that a computational system can

make sense of a creative exemplar story by combining different plot graphs. For

example, if the system possesses a plot graph about a third wheel situation, it may

understand the aforementioned creative story as a conceptual blend of the third wheel

graph and the movie date graph. Those that the system cannot make sense of will be

regarded as nonsensical. The ISSAC system [120] understands creative story based on

a large amount of manually authored knowledge. It is an promising research direction

to build such a system based on purely learned knowledge.

6.4.2 Multiplicity of Plot Graph Levels

Being able to move between different levels of abstraction is a strength of human

cognition and provides benefits to Narrative Intelligence. A high-level representation

of a situation provides a concise and intelligible summary. A low-level representation

contains many details, such as movements of body parts and facial muscles, moment-

to-moment thought processes, and so on. A skillful story writer use different levels

of abstraction to zoom in the important details and fast-forward unimportant events,

creating variations in the tempo of the narrative. These techniques are known as

compression and expansion (See Section 2.1.1). One vivid example of the expansion

technique is the so-called “bullet time”. First showcased in the movie The Matrix,

bullet time shows bullet dodging actions in hyper slow motion in order to achieve

174



special artistic effects [143]. A high-level representation can capture commonalities

between many seemingly different scenarios, such as representing that the gas pump-

ing situation, the pharmacy situation, and the movie date situation all involve the

purchase of merchandise. A high-level understanding can facilitate the technique of

compression.

The current plot graph representation contains basically two levels: the events

and their natural language descriptions. In Section 4.3, I provided the EventRank

algorithm that identifies the most and the least prototypical events in the plot graph.

A higher-level representation, which sits on top of the event level, can thus be par-

tially simulated by extracting most prototypical events. However, the EventRank

algorithm does not identify a hierarchical relationship between the higher level and

the event level, which potentially harms the quality of story summaries it produces.

For example, in the bank robbery situation, it is currently impossible to create a

higher level “demand money” event that encompasses both the event “John demanded

money” and the event “John handed Sally a note”. This high-level event should be

assigned a higher weight than any of those two events and be recognized as a very

prototypical event.

Future work is also required to learn a lower level of representation that describes

body movements. With this level, the system will be able to create detailed descrip-

tions such as “John set his left foot into the bank’s lobby”. Understanding the body

movements associated with each action may also allow us to reason about unintended

consequences, such as John stepping on banana peels and falling.

6.5 Conclusions

Narrative Intelligence is a vital component of human intelligence. Computational

replication of Narrative intelligence has important implications for the development

of human-level AI and numerous commercial applications. Decades of research made
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it clear that computational NI systems that aim to scale beyond a few simple domains

must be able to learn the needed knowledge by itself. In recent years, we have wit-

nessed the emergence of several Open Narrative Intelligence systems [177, 166, 114].

The Scheherazade system presented in this dissertation is the first system that can

utilize the learned knowledge in both tasks of story generation and story understand-

ing, and the first system that can generate stories that approximate the coherence of

human-written stories. Its capabilities have been tested and proved in several user

studies and evaluations. As such, I conclude the thesis statement, first proposed in

Section 1.4 have been achieved. The Scheherazade system marks an important

milestone for scaling computational Narrative Intelligence to meet the challenges of

the real world. Its development helped us understand important problems and iden-

tify possible solutions in the scientific pursuit of an Artificial Intelligence capable of

crafting, telling, understanding, and responding appropriately to narratives.

176



APPENDIX A

SMOOTH SENTIWORDNET

This Appendiex shows the 100 most positive and 100 most negative words in Smooth

SentiWordNet. The negative words are shown on the left column and the positive

words are shown on the right column.

Lemma / POS Sentiment Lemma / POS Sentiment

bone-chilling/JJ -8.00399 silky/JJ 0.90291

shriek/NN -6.73801 kiss/VB 0.90774

scop/VB -6.7339 fulfil/VB 0.90887

wail/VB -6.30141 information/NN 0.91023

panic/VB -5.67925 purchase/VB 0.91234

sob/NN -5.64176 arrange/VB 0.91776

scream/NN -5.31574 cooperate/VB 0.92015

nightmare/NN -4.95367 fully/RB 0.92036

terror/NN -4.26091 wine/NN 0.92326

panic/NN -4.04759 better/JJ 0.93538

weep/VB -3.84039 satisfy/VB 0.9364

fright/NN -3.7388 view/NN 0.93922

sob/VB -3.56282 comfortable/JJ 0.93955

terrify/VB -3.51428 topic/NN 0.93957

anger/NN -3.4937 new/JJ 0.94163

victim/NN -3.28723 friend/NN 0.94739

scream/VB -3.28343 smile/VB 0.94977

screech/VB -3.22727 pretty/JJ 0.95263

sweaty/JJ -3.22524 dame/NN 0.96067

hysterically/RB -3.01847 politics/NN 0.9745
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flee/VB -2.83545 interact/VB 0.97931

hate/VB -2.80631 sport/NN 0.98264

bark/VB -2.72129 lady/NN 0.98368

collapse/VB -2.70325 present/VB 0.99649

dread/VB -2.63414 important/JJ 1

yell/VB -2.62926 menu/NN 1.00148

restroom/NN -2.61856 stoplight/NN 1.00301

frightened/JJ -2.56544 young/JJ 1.00905

stumble/VB -2.52733 favorite/JJ 1.01332

freeze/VB -2.51679 particularly/RB 1.01674

fear/NN -2.503 yes/NN 1.01886

thirst/NN -2.47606 best/RB 1.02546

thunder/NN -2.42492 best/JJ 1.02959

death/NN -2.23877 good/JJ 1.03473

dismay/NN -2.17959 expensive/JJ 1.03554

clutch/VB -2.09228 interest/NN 1.04276

violently/RB -2.07236 blond/JJ 1.05009

struggle/VB -2.02189 special/JJ 1.0502

scared/JJ -2.00743 comfy/JJ 1.05107

scurry/VB -1.95179 like/VB 1.06617

shocking/JJ -1.93507 restoration/NN 1.0752

darkness/NN -1.89049 bright/JJ 1.09547

sorrowful/JJ -1.83753 favor/NN 1.09927

cause/VB -1.68308 baseball/NN 1.10351

worst/JJ -1.66493 glory/NN 1.10587

alarm/NN -1.61991 appropriate/JJ 1.123

suspenseful/JJ -1.61467 nameplate/NN 1.12736

burst/NN -1.60499 credit/NN 1.13414

rush/VB -1.58249 ecstatic/JJ 1.13983

heat/NN -1.55584 love/NN 1.14522
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ordeal/NN -1.55112 mirror/VB 1.14923

frighten/VB -1.42775 satisfactory/JJ 1.14993

convict/VB -1.41959 music/NN 1.15872

darken/VB -1.41634 greet/VB 1.16503

twisted/JJ -1.35634 queue/VB 1.16565

wind/NN -1.33197 sweet/JJ 1.17272

nervous/JJ -1.32785 mutual/JJ 1.19994

tremble/VB -1.31654 character/NN 1.2009

rush/NN -1.30267 perfectly/RB 1.21689

sound/NN -1.26086 chat/VB 1.22213

sunglass/NN -1.22531 beverage/NN 1.22738

throat/NN -1.21807 thorough/JJ 1.22821

tear/NN -1.16682 impress/VB 1.23884

mortally/RB -1.14252 delicious/JJ 1.2429

slam/VB -1.13843 remarkable/JJ 1.24377

pound/VB -1.12395 tasty/JJ 1.2681

dash/VB -1.09977 initiate/VB 1.27167

llama/NN -1.07874 coyly/RB 1.29285

darkened/JJ -1.06664 epic/NN 1.3139

pretzel/NN -1.05842 interesting/JJ 1.31427

sad/JJ -1.05651 happy/JJ 1.34045

excruciating/JJ -1.03506 perfect/JJ 1.34832

ice-cold/JJ -1.02378 facility/NN 1.35465

rip/VB -1.01851 rehearsed/JJ 1.35902

whip/VB -1.0169 harmony/NN 1.39367

audible/JJ -1 goer/NN 1.39632

robbery/NN -0.98525 enthral/VB 1.40056

coarse/JJ -0.95885 wonderful/JJ 1.41497

pack/NN -0.95334 applaud/VB 1.46886

prison/NN -0.94258 enjoy/VB 1.47755
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distract/VB -0.91207 romantic/JJ 1.51518

tense/JJ -0.88605 blonde/JJ 1.51591

fall/VB -0.88226 classic/JJ 1.52007

level/VB -0.86619 presentation/NN 1.52359

escape/VB -0.86512 clunker/NN 1.62548

leg/NN -0.85497 flirtatious/JJ 1.66228

unburied/JJ -0.85305 richly/RB 1.6989

rob/VB -0.83481 delightful/JJ 1.78992

body/NN -0.82224 preview/NN 1.82059

devour/VB -0.79887 enjoyable/JJ 1.82074

loud/JJ -0.79637 deal/NN 1.97416

irremediable/JJ -0.77608 beam/VB 1.9844

ignition/NN -0.77341 admire/VB 2.00495

heart-rending/JJ -0.74582 immensely/RB 2.02764

fetid/JJ -0.74403 sexy/JJ 2.13925

shoot/VB -0.72868 captivate/VB 2.39255

nylon/NN -0.7126 small-framed/JJ 2.99211

mangled/JJ -0.70885 nacho/NN 3.14946

grievously/RB -0.70578 snack/VB 3.2766

dank/JJ -0.68328 tryed/JJ 4.62135
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APPENDIX B

GENERATED STORY TEXTS

This section shows the stories generated for the purpose of the user study discussed

in Section 4.5.2.

B.1 Stories in the Bank Robbery Situation

B.1.1 The Positive Story

John drove his grandmothers borrowed old clunker to the bank on Main St.

John took a deep breath and opened the bank door, letting an elderly woman exit

before he entered himself.

John did not want to be recognized.

John entered the Yes bank at 1 pm.

John gave a thorough look around the bank to see how many people were inside.

John spotted a young blond teller, Sally, behind the counter.

John stood behind the lady and toddler and politely waited his turn, noticing the

name plate on the counter... “ Sally’.

John walked carefully up to the counter and interacted with Sally.

Sally started feeling the hairs on the back of her neck stand up.

John pulled out the gun, still smiling.

John pointed his gun at Sally to push the point of the seriousness.

Upon seeing the gun, Sally yelled out in fear.

John wanted more money.

John presented Sally with a bag in which to put the money.

Sally continued to cooperate, putting the money into the bag as ordered.
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John pocketed the money.

Sally cried, somewhat relieved it may be over soon.

Sally described John as best as she could to the police.

John ran out of the bank and got in his grandmothers car.

John drove away, sure the police were behind him all the way back to his grandmothers

house in the country.

B.1.2 The Negative Story

John drove to the bank, with a nervous look on his face.

John opened the bank door while his heart was beating fast.

John put on sunglasses.

John walked into the bank with a handgun underneath his jacket.

John looked around the bank, scoping out security cameras or guards.

John noticed one of the tellers named Sally seemed bored and distracted.

John stood in line.

John approached Sally naturally as to not raise alarm.

Sally saw Obama standing in front of her and she felt her whole body tense up as her

worst nightmare seemed to be coming true.

John pulled out a gun.

John leveled the gun at Sally and kept it on her.

Sally let out a bone-chilling scream.

John barked his orders at Sally, demanding she put the money in the bag.

John forced the bag into Sallys hands.

Sallys hands were trembling as she put the money in the bag.

John then grabbed the bag of money out of Sallys nervous hands.

Sally felt tears streaming down her face as she let out sorrowful sobs.

Still shaken, Sally reached for the phone and in a panicked manner called the police.
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John quickly fled the bank and entered into his car.

John escaped in the car.

B.1.3 The Concise Story

John drove to the bank.

John opened the bank door.

John did not want to be recognized.

John went into the bank.

John looked around the bank.

John recognized Sally.

John stood in line.

John walked to Sally.

Sally was scared.

John took out a gun.

John pointed gun at Sally.

Sally screamed.

John demanded $ 1,000,000 from Sally.

John gave a bag to Sally.

Sally put money into the bag.

John took the money.

Sally cried.

Sally called the police.

John got in his car.

John drove away in the car.
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B.1.4 The Story with Most Interesting Details

John got into his car with his disguise, gun and note in his knapsack and headed

towards the Old Second in the next town over, repeating his rehearsed demands

silently over and over in his head.

John watched while a little old lady left the bank and walked to her car and then

slipped on his gloves, slipped his gun into his coat pocket, grabbed his mask and

strode determinedly to the lobby door and pulled it open.

John looked at his reflection in the glass of the door, gave himself a little smirk and

covered his face.

John took another deep breath as he wondered if this was really a good idea, and

entered the bank.

John looked around the bank, making sure his timing was right.

John spotted a young blond teller, Sally, behind the counter.

John stood behind the lady and toddler and politely waited his turn, noticing the

nameplate on the counter... “Sally”.

When it was his turn, John, wearing his Obama mask, approached the counter.

Sally saw Obama standing in front of her and she felt her whole body tense up as her

worst nightmare seemed to be coming true.

Once Sally began to run, John pulled out the gun and directed it at the bank guard.

John wore a stern stare as he pointed the gun at Sally.

Sally screamed hysterically which alerted other people in the bank.

John demanded Sally to give her all of the money she had in her drawer, and all the

money that was close that she could get to quickly.

John tossed the bag he had brought for the money at Sally.

Sally put the money in the bag, and collected the money from the 2 tellers next to

her.

John struggled to stuff the money in his satchel.
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Sally was quietly sobbing as John grabbed the bag full of money.

Sally called the cops.

John strode quickly from the bank and got into his car tossing the money bag on the

seat beside him.

The car drove away from the bank.

B.1.5 The Story with Most Interesting Details and Length Penalty

John calmly drove to the bank to avoid drawing attention to himself.

John opened the door.

John covered his face.

John walked into the front door of the bank.

John looked around, scanning the bank for anything nearby.

John spotted a young blond teller, Sandy, behind the counter.

John stood behind the lady and toddler and politely waited his turn, noticing the

nameplate on the counter... “Sally”.

Quietly and calmly John walked up to Sally’s window.

Sally saw the smile and got scared.

John reached behind his back and withdrew his pistol.

John wore a stern stare as he pointed the gun at Sally.

This caused Sally to let out an audible shriek.

John asked for all the money in the drawer.

John then handed Sally an empty sack.

Sally stuffed the money into John’s bag.

John pocketed the money.

Sally continued to sob hysterically as she sat down on her stool.

Sally called the cops.

John got into his red pickup truck and slammed the door.
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John sped away, hoping to get distance between him and the cops.

B.2 Stories in the Movie Date Situation

B.2.1 The Positive Story

John drove his red car to Sally’s house to pick her up for their movie date.

Sally, in her sexy yellow dress climbed into the sleek sports car.

John and Sally bought their movie tickets at “ The Dame”, a local theater that had

been restored to its former 1940s glory.

John and Sally showed their tickets to the attendant who smiled and waited for them

at the entrance to the theater.

Sally bought herself a small soda, while John got nachos and some sour patch kids.

John and Sally entered the theater and admired the big screen.

John and Sally bought delicious drinks.

John and Sally scoured the theater for the best seats in the house, and found a perfect

pair right in the center of the theater.

John and Sally sat down in the velvet covered seats, and took in the richly appointed

theater.

John and Sally chatted during the previews.

After the lengthy and irritating previews, the movie finally began.

Sally watched the opening scenes intently while she snacked on her popcorn.

John and Sally took a drink of their beverages to wash down the popcorn.

During the romantic parts of the movie, John pulled the classic “yawn and put arms

around” move.

John and Sally sat captivated by the movie.

During the movie, the drinks really went through John and he needed to excuse

himself.

John and Sally felt endlessly fulfilled by the movie and enjoyed it immensely.
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John gave Sally a soft hug during the movie, and Sally returned the favor.

John and Sally felt romantic holding hands throughout the movie.

The movie had a delightful and surprising ending.

John and Sally stood up from their seats during the ending credits.

John and Sally walked through the theater and then through the parking lot to get

to their car.

John and Sally left the theater and enjoyed the fresh night air.

John kissed Sally good night.

B.2.2 The Negative Story

With sweaty palms and heart racing, John drove to Sallys house for their first date.

Sally was glad to get out of the heat and get into the air conditioned car.

John and Sally arrived at the theater just before the movie was scheduled to start

and rushed to buy their tickets for the movie.

John and Sally quickly whipped out their tickets for the ticket checker.

John and Sally decided that they wanted some popcorn.

John and Sally entered the darkened theater and paused letting their eyes adjust to

the dimness.

John realized they had not bought drinks for themselves, which caused them both to

laugh before they went back to the snack bar.

Stumbling through the darkness of the theater, John and Sally eventually found their

seats.

John awkwardly grabbed Sallys coat and then they both sat down.

John made nervous small talk to Sally before the movie started.

The movie began with a loud sound of thunder.

The couple devoured the popcorn they ordered.

Because Johns throat became dry from the popcorn, John drank his soda.
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John tried to put his arms around Sally, but she dodged him.

John and Sally watched the film.

John and Sally walked to the restrooms.

John and Sally sat with big smiles on their faces as they watched the movie.

After a sad moment in the movie, John reached out and hugged Sally.

Sally held Johns sweaty hands throughout the movie.

Much to Johns dismay, the movie ended.

Sally stood up first, followed by John, and they both stretched quickly to revive their

bodies after a long time of sitting.

John and Sally slowly walked to the car and got inside, dreading the end of the date.

John drove the car out of the movie theater parking lot and turned toward Sallys

house.

At the front door of Sallys house, John leaned in and gave Sally a peck on the lips.

B.2.3 The Concise Story

John drove his car to Sallys house.

Sally got into Johns car.

John got the tickets.

John and Sally gave the tickets to the usher.

Sally paid for the snacks.

Sally and John went into the theater.

John bought drinks.

Sally found seats.

John and Sally sat.

John and Sally talked about the movie.

The movie began.

John shared his popcorn with Sally.
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Sally took a drink.

John puts his arm around Sally.

John and Sally watched the film.

John went to the bathroom.

John and Sally enjoyed the movie.

John hugged Sally during the movie.

John and Sally held hands during the movie.

The movie ended.

Sally got up.

John and Sally ran to their car.

John and Sally went outside the theater.

Sally kissed John.

B.2.4 The Story with Most Interesting Details

John drove his red car to Sally’s house to pick her up for their movie date.

Sally carefully entered the car with a smile.

John and Sally arrived at the theater just before the movie was scheduled to start

and rushed to buy their tickets for the movie.

The tattooed, male attendant gave John a smile and a wink as he whispered the

words “ what a catch,” while John showed the tickets at the entrance.

John bought a large tub of popcorn and two boxes of malted milk balls, Sally’s

favorite.

John and Sally entered the darkened theater and paused letting their eyes adjust to

the dimness.

John decided that he wanted to buy a beer, so he asked Sally if she wanted a glass

of red or white wine and John proceeded to buy them.

John and Sally found seats in the back.
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It was still a few minutes before show time so the theater was still empty, making it

easier for John and Sally to move down the row to their seats.

Having sat down, John asked Sally about her day and they enjoyed a bit of small talk

while waiting for the show to begin.

Just as Sally had finished relating the events of that day to John, the theater fully

darkened, the screen was unveiled, and the show began.

John and Sally shared popcorn during the movie, feeding each other and laughing.

John and Sally drank the ice-cold sodas, which went perfectly with the buttered

popcorn.

Finally working up the courage to do so, John extended his arm to embrace Sally. He

was relieved and ecstatic to feel her move closer to him in response.

Both feeling unsure of the others’ next move, they watched the movie in silence.

Sally stood up to use the restroom during the movie, smiling coyly at John before

that exit.

John and Sally sat with big smiles on their faces as they watched the movie.

John hugged Sally during the movie, and she returned the hug.

Sally held John’s sweaty hands throughout the movie.

The movie ended and John and Sally remained seated for a few minutes, waiting for

the crowd to leave the theater.

Sally stood up first, followed by John, and they both stretched quickly to revive their

bodies after a long time of sitting.

Still holding hands, John walked Sally back to his car through the maze of people all

scurrying out of the theater.

John and Sally carefully left the movie theater parking lot, not wanting to be hit by

another car.

John let go of Sally’s hand and opened the passenger side door of his car for her but

instead of entering the car, she stepped forward, embraced him, and gave him a large
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kiss.

B.2.5 The Story with Most Interesting Details and Length Penalty

John drove to Sally’s house, and nervously checked himself out in the rearview mirror

before ringing her doorbell.

Sally, waiting for John on the front porch, slid into the passenger seat with a smile.

John paid for Sally at the ticket booth.

John and Sally showed their tickets to the attendant who smiled and waited for them

at the entrance to the theater.

John and Sally were surprised how expensive the snacks were.

John and Sally entered the darkened theater and paused letting their eyes adjust to

the dimness.

Drinks in hand, John and Sally found two seats near the back row.

John and Sally sat in chairs.

John and Sally spoke curtly to each other about politics.

Once the movie began, John and Sally sat quietly.

John thought the popcorn was extra buttery.

John and Sally drank the sugary sodas.

John nervously put his arm around Sally and she snuggled into him.

John and Sally watched the movie silently.

Sally stood up to use the restroom during the movie, smiling coyly at John before

that exit.

John and Sally laughed and smiled at the movie plot.

John hugged Sally during the movie, and she returned the hug.

John and Sally also held hands throughout the movie, even though John’s hands were

sweaty.

John and Sally smiled as the movie ended and the lights came on.
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John and Sally slowly got up from their seats.

John and Sally walked to the car in the parking garage.

John held the door open for Sally as they exited the theater.

John and Sally very softly kissed.
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dicting partial orders: Ranking with abstention,” in Machine Learning and
Knowledge Discovery in Databases (Balcázar, J., Bonchi, F., Gionis, A.,
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