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Abstract. Intelligent agents designed to interact with humans need to
be able to understand human narratives. Past attempts at creating story
understanding systems are either computationally expensive or require a
vast amount of hand-authored information to function. To combat these
difficulties, we propose and evaluate a new story understanding system
using plot graphs, which can be learned from crowdsourced data. Our
system is able to generate story inferences much quicker than the baseline
alternative without significant loss of accuracy.
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1 Introduction

Human beings use stories to describe routine or exciting experiences, communi-
cate with each other, and make sense of the world. The ability to understand
stories told by others is an important part of human intelligence. If we want
digital agents to communicate effectively with human beings, they need to un-
derstand the narratives that humans communicate with.

Story understanding is difficult to model largely because of what humans
don’t say: for example, if somebody tells us, “I went to the grocery store and
then went back home,” most of us will recognize that the speaker also had to
park the car at the grocery store, enter the store, and purchase groceries at the
store, despite none of this being mentioned in the narrative. The ability to make
these inferences is critical in understanding human-authored stories.

Story understanding is hard to define but easy to evaluate if treated as a
question-answering problem: given a story with events e;...e,,, what is the prob-
ability that predicate p, is true? As an example, we can have a virtual agent
examine a human-authored story: “John entered the bank. John approached the
teller and pulled out a gun. John left the bank with ten thousand dollars. John
went to jail.” To test its understanding, we might ask it some questions about
the story:

(a) Did John ask the teller for the money?
(b) Was the teller afraid of John?
(c) Did the police arrest John?
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We can use the answers it supplies to assess its understanding capabilities.

Humans require a large amount of commonsense knowledge (knowledge about
the facts and procedures shared by a human population) in order to perform
accurate reasoning. Existing story understanding systems rely either on hand-
authored scripts or large commonsense knowledge bases to capture this kind
of information. Scripts are useful, structured tools for reasoning, but requir-
ing human authors to hand-engineer granular information for a virtual agent is
mentally taxing and time-consuming. Commonsense knowledge bases suffer the
same difficulty, have little procedural knowledge, and are also computationally
expensive to search through: knowledge bases can contain millions of facts which
must be iterated through whenever the agent is asked a question. We want a
story understanding system that is computationally efficient and does not rely
on hand-authored scripts.

To address these difficulties, we built off of research on Scheherazade [4], an
open story generation system, in order to build a system that can make common-
sense inferences (inferences requiring commonsense knowledge) about stories.
This work made two main contributions. First, we present an inference tech-
nique that is more efficient than the alternative brute-force inference technique.
Our technique accepts stories in natural language questions, unlike prior story
understanding systems that assume questions are posed in symbolic form. Sec-
ond, we compare our technique to the alternative brute-force inference technique
in terms of computational complexity, efficiency, and accuracy. We find that our
inference technique is significantly more efficient at the expense of some loss in
accuracy.

2 Background and Related Work

Efforts in story understanding date back to the mid-1970s with the Script Ap-
plier Mechanism (SAM) system [3], which provided a script-based framework
to produce inferences from natural-language stories. The Plan Applier Mech-
anism (PAM) [11] focused on goals and explanations in order to aid in the
understanding of never-before-seen stories. The AQUA system [9] introduced
meta-reasoning to question-answering. Mueller [8] applied commonsense knowl-
edge bases and templates to understand script-based news stories. Recent work
by Cardona-Rivera et al. [2] applied cognitive models and computational mod-
els to reason over computer-generated stories as opposed to human-authored
ones. These approaches require hand-built knowledge bases. Deep learning has
been used in order to answer questions with a new kind of learning model that
combines long short-term memory with inference operators [10].

Scheherazade [4, 5] is a story generation system that learns to tell novel stories
from example stories crowdsourced from the general public. This alleviates the
limitation of many story generation systems’ reliance on knowledge engineering.
Of particular interest to us is the knowledge representation used by Scheherazade
to generate stories: the plot graph. The plot graph data structure describes all of
the possible sequences of events that could occur in a specific scenario (includ-
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ing sequences not contained in the training corpus): for example, a plot graph
constructed from crowdsourced bank robbery stories can be used to generate
its own stories about bank robberies. While the plot graph’s original purposes
were to aide in story generation, the plot graph is itself a knowledge represen-
tation which encapsulates narrative information about scenario-specific stories.
We thus posit that plot graphs can be used to demonstrate story understanding.

To draw inferences using a plot graph, the naive approach would be to adopt
a sampling or brute-force approach. Given events A and B, what is the proba-
bility that event C happened? The system would either have to sample stories
generated using Scheherazade’s story generation algorithm and calculate relative
frequencies (while sacrificing accuracy) or compute all stories and search through
each of them. In the worst case this would result in searching n/ stories, where
n is the number of nodes in the plot graph. We present an inference algorithm
that can intelligently use the structure of the plot graph to draw inferences from
input stories.

3 Plot Graphs

A plot graph is a compact representation of the space of possible stories that
can describe a certain scenario. Plot graphs are mainly composed of three kinds
of elements [4]:

— Event nodes: These are the vertices of the graph. Each of these nodes repre-
sents exactly one event (e.g. “John drove to the store” or “John opened the
door”). Each node contains a set of sentences that semantically describe the
event, which are learned from the crowdsourced exemplar stories.

— Temporal orderings: These are unidirectional edges of the graph. They are a
kind of partial ordering that indicate a necessary order for events in a story:
if event A is ordered before event B, B may not occur until A has occurred
in the story (symbolically, we notate this as A < B)

— Mutual exclusions: These are bidirectional edges of the graph. They indicate
situations where two events cannot take place in the same story (symbol-
ically, we notate this as A ) B). Practically speaking, mutual exclusions
result in story branches.

Additionally, plot nodes can be optional—they do not need to occur in a story—
or conditional—they only occur if a linked optional event does not occur first.
When A < B, we call A a parent of B and B a child of A. The transitive enclosure
of the parent relation is the ancestor relation and the transitive closure of the
child relation is the descendant relation.

A story generated from a plot graph is a sequence of events that obeys all of
the constraints given by the temporal orderings and mutual exclusions. In Fig.
1, legal stories for the left plot graph are:

— C1, C2, €3, C4
— (1, C3, C2, C4
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Fig. 1: Two plot graphs. Solid, directional arrows correspond to temporal orderings and
dashed lines correspond to mutual exclusions.

The mutual exclusion in the right plot graph constrains the space of legal stories:

— (1, C2, C4
~ (1, C3, C4

Fig. 2 is an example of a plot graph showing the procedure for going to a fast-food
restaurant.

4 Inference Drawing with Plot Graphs

The purpose of our system is to answer questions of the form: given a story in
natural language and a relevant plot graph, what other events (called inferences)
could also have occurred in the story, and how likely are each of these inferences?
In other words, it fills in gaps in human-authored stories with events left out
and lists probabilities of each of its results. This gap filling demonstrates story
understanding because the story could contain as few as two events and check
for a third in the set of generated inferences. Additionally, and unlike prior story
understanding systems, we start from natural language inputs.

The next sections describe the three components of the inference algorithm:
(1) Matching input sentences with event nodes in the graph; (2) finding all
candidate inferences to be drawn based on the matches; and (3) determining the
confidence in each of those inferences.

4.1 Plot Event Matching

Our system first attempts to find matches between input sentences and event
nodes in the plot graph. Each event node is composed of multiple sentences, so
we select one representative sentence from each node to compare with the input
sentences. Given sentence X and sentence Y, our system needs a numerical rep-
resentation for the semantic similarity between the two. Our system employs the
Stanford Parser [6] to find specific parts of speech to compare. Specifically, our
system uses the parser to find the nouns and verbs of the sentence. It then uses
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Fig. 2: The plot graph describing a trip to a fast-food restaurant. Ovals and boxes are
events (the white boxes are optional and the gray boxes are conditional). Solid lines
are temporal relations and dashed lines are mutual exclusions.

a Word2Vec [7] model trained on the Google News corpus to produce word em-
beddings (vector representations) of the selected tokens. From there, summation
vectors are created from these Word2Vec vectors:

ny

NounVectorx = Z Nounx; (1)
i=1
nao

VerbVectorx = Z Verbx, (2)
i=1

where Nounyx is the set of noun Word2Vec vectors from sentence X and n; is
the number of nouns in X, and Verbx is the set of verb Word2Vec vectors from
sentence X and ns is the number of verbs in X. With cumulative noun and verb
vectors from both sentences, we can compute NounSim and VerbSim as the
cosine similarity between X and Y, resulting in numbers in the range [—1.0, 1.0].

For our purposes, different parts of speech are more important to the meaning
of the sentence than others. In a sentence describing an event, the verbs are the
most important tokens to analyze, so we assign numerical weights « and [ to
NounSim and VerbSim such that a4+ g = 1:

Sim = ax NounSim + 5 x VerbSim (3)
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We have assigned o = 0.4 and 8 = 0.6 to give slightly stronger weight to verb
similarity.

By comparing two sentences this way, we are left with a single scalar value.
However, every sentence will match to every other sentence with some similarity.
By comparing the scalar against an empirically determined threshold, the system
is able to filter out false matches. For our purposes, a threshold value of v = 0.6
performs adequately. If one input sentence matches (with similarity above -y)
with multiple event nodes in the plot graph, we select the top match. Multiple
event nodes may have an equal highest match to an input sentence, in which
case the following steps are performed with each top match.

4.2 Locating Candidate Inferences

At this stage, our system has a list of event nodes, F, that were matched with
sentences from the input story. The system then begins searching for candidate
inferences in the plot graph.

For every pair of events a and b contained in F, our system records all other
events in the graph that can occur after a and before b. This list, I, represents
possible inferences that can be drawn from information contained in a and b.
Our system must then assign a confidence measure to these inferences. Given a
single inference I,p,, our system employs the following heuristics to determine
how likely that inference is correct given a and b:

1. If I, is an ancestor of b, then I, is guaranteed to have occurred unless
I, is mutually excluded with another possible parent of b. If the latter is
the case, the probability is inversely proportional to the number of parents
mutually exclusive with Iy, .

2. Otherwise, if there are no temporal orderings between a and I,p,, Iop, has
a very high chance of occurring, since it can be inserted anywhere into the
story without consequence, unless a mutual exclusion prevents it.

3. Otherwise, if a is a parent of I,,, the likelihood of I, being selected is
inversely proportional to the distance between a and I,,, since additional
mutual exclusion constraints reduce the probability of an event being se-
lected.

Finding nodes’ ancestors and successors is performed with breadth-first search
on the graph of temporal links.

In case multiple heuristics apply for the inference, the one highest on the
list is selected. Depending on which heuristic is selected for I,p,, the inference
is given confidence according to a confidence category (since assigning specific
numerical values is difficult with such limited information). These confidence
categories are given numerical intervals ahead of time; for example, an inference
that falls under the conditions of heuristic 3 might be determined to have a
”Near 50% confidence”. The complete list is given in Table 1.
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Table 1: List of confidence categories and their confidence intervals.

Confidence Category|Confidence Interval
100% confidence [1.00, 1.00]

High confidence [0.7, 1.00]

Near 50% confidence  {[0.3, 0.7)

Low confidence [0.0, 0.3)

4.3 Arriving at an Answer

The above approach produces sets of “local” inferences, but does not consider the
larger scope of the story. An inference drawn from two events in the input story
might be disproven by evidence given by another set of matches. For example,
upon hearing that “John loves Sally” and “John treated Sally to dinner”, a
reasonable inference might be that “John and Sally are married,” but if we learn
that “John took Sally to the vet”, our original inference should be discarded. To
remove globally inconsistent references, we must also compute all “impossible”
inferences from each match and compare those with candidate inferences from
other pairs. We can accomplish this by looking at the mutual exclusions of every
event match.
We first consolidate all of the inference sets I,;; into one larger set:

Teandidate = U I; (4)

where [I; is the ith event pair and I.qndidate is the resulting superset. If two
equivalent inferences get merged in the set union, the higher confidence mea-
sure is kept. We then can consolidate all of the learned “impossible” events by
performing set union:

Iimpossible = U MutExc; (5)

where MutFExc; is the set of mutually exclusive events with event E; in the
matched event set. Finally, the set of legal inferences is given as the set subtrac-
tion of the impossible inferences from the candidate inferences:

Ifinal = leandidate — Iimpossible (6)

To determine the probability of event e, one merely has to look up the confidence
interval of the event in It;pnq.

5 Evaluation

The motivation for using plot graphs was to harness the power of crowdsourced
knowledge engineering for use in story understanding. Without our inference
technique, the only known way to produce inferences with plot graphs is to
perform an exhaustive search. This brute-force story understanding method is
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computationally inefficient (considering that the number of possible stories from
a single plot graph is, in the worst case, proportional to n!, where n is the number
of event nodes in the graph) but completely captures the information of the plot
graph. For the purposes of this evaluation, we treat the results of this method as
ground-truth. We thus evaluate our system’s inference algorithm’s complexity
and accuracy against the brute-force baseline. We do not include the similarity
matching in the evaluation to control for variance in human-written sentences.

For these evaluations, we test on two crowdsourced plot graphs: one graph
describing a restaurant scenario (shown in Figure 2) and one truncated graph
describing a bank robbery. Both plot graphs were generated using the data and
algorithms from [4]. It can produce 21,016 unique trajectories (stories). The bank
robbery plot graph had six event nodes and all related links manually removed
from it to produce a simplified version for tractability purposes in evaluation.
It was found to be intractable to generate all stories for the unmodified bank
robbery plot graph, which had 34 nodes and could produce over 30 million unique
stories. The modified plot graph can produce 127,116 unique trajectories.

In this section, we first provide a description of the brute-force method, follow
with an analysis of the computational complexities of our inference method and
the brute-force baseline, and conclude with analysis on the inference method’s
accuracy with respect to the brute-force baseline.

5.1 Brute-Force Baseline
This method provides an exhaustive answer to the following question:

Given events ej...e,, what is the probability of event e;, with e; ¢
{e1...en }, also having occurred?

The answer is determined by generating all possible stories in the plot graph
containing ej...e, and counting the frequency of e; in-between e; and e, (since
we are not concerned with what occurs before or after the story). We can break
down this method as follows:

1. Generate all possible stories from the plot graph.

2. Find the set of all stories, F,,, that contain each event e;...e,.

3. Count the number of stories within F,, that contain e; in-between them and
then divide by ||E,|| to obtain a relative frequency.

5.2 Complexity Analysis

Both the brute-force method’s and the inference method’s complexity depend
on four factors:

1. The set of events in the plot graph, N, with size n

2. The set of temporal links in the plot graph, L, with size [

3. The set of mutual exclusions in the plot graph, M, with size m
4. The set of events in the input story, S, with size s

Below we describe how computational complexity of the method is affected
by these steps.
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Brute-Force Runtime Complexity The majority of the complexity of this
algorithm comes from generating all possible stories from the plot graph. The
complexity is directly proportional to the number of stories to be generated. The
worst-case number of stories represented by a plot graph is O(nl!), since legal
stories are permutations of each event in the plot graph. The mutual exclusions
and temporal orderings place additional constraints on this worse-case scenario.

It is difficult to compute an average-case complexity with [ temporal links,
since the exact configuration of links affects the graph structure differently; sub-
sets of nodes can be arranged in sequence reducing the number of story permu-
tations, or in trees increasing the number of story permutations. Determining
the number of legal stories is equivalent to finding the number of topological
sortings of a partial order graph (which, in itself, is equivalent to counting the
number of linear extensions of a partial-ordered set), which has been shown to
be a fP-complete problem [1]. The effect of the number and placement of edges
is unknown, but we denote it as f(n,l).

Analyzing the effect of mutual exclusions is an easier problem. A single mu-
tual exclusion causes branching in the plot graph. If we treat this as partitioning
the graph, we can approximate the number of stories and thus the complexity
of generating all stories as:

Complexity = O(f(n,l) * (n —m)!) (7)

which is at best §P-complete and at worst factorial. The remainder of the al-
gorithm’s runtime is eclipsed by the generation step; subsequent steps of the
brute-force baseline technique pertain mostly to scanning over the set of all
possible stories.

Inference Algorithm’s Complexity To reiterate, the main steps in our sys-
tem’s inference algorithm are as follows: (1) match input events with event nodes
in the graph, (2) find all candidate inferences to be drawn based on the matches,
(3) determine the confidence in each of those inferences, and (4) provide global
analysis of the local inferences. We address each of these complexities separately.

The first step is of O(n * s) complexity, where s is the number of input
sentences, since s story events are compared against every node in the plot graph.
The second step requires lookup in the table of mutual exclusions, resulting
in complexity @(m). The complexity required for the third step depends on
which heuristics are applied, but we can provide an upper bound. The most
difficult heuristic to apply is Heuristic 3, wherein our system must attempt to
find the shortest distance between two nodes guaranteed to be connected by
temporal edges. Since this is accomplished with breadth-first search, this step
has worst-case time complexity O(I+n). The final step, which involves set union
and difference, depends on the number of event nodes and number of inference
sets (which, in turn, depends on s), resulting in an upper-bound complexity of
O(nxs).

Composing the individual complexities of these steps together, we get a final
complexity of:
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Complexity = O(n*s+m+1) (8)

Thus, our inference algorithm runs in linear time versus the brute-force baseline’s
g P-complete or factorial time.

Runtime Comparison In terms of runtime, there is a noticeable improvement
over the brute-force method. In practice, when run on a standard desktop/laptop
machine with an Intel Core 15-4200H CPU and 8.00GB RAM, our system re-
quires only around 1% of the time required by the brute-force method on aver-
age, resulting in a 60x—100x increase in performance. This performance increase
occurs in both plot graphs tested. This is important for conversational virtual
agents where a user might expect a relatively quick response to a question that
seems to the user to be trivial but it in fact computationally expensive.

If the brute-force method is allowed to perform the story generation step in
advance and save data to disk, this improvement is less pronounced: our system
performs only 0.5x—8x faster on average for the restaurant plot graph and 7x—
20x faster for the bank robbery plot graph, but this still confirms our intuition
that the brute-force’s complexity grows rapidly with respect to the number of
event nodes in the plot graph. When we consider that brute-force computation
on large plot-graphs is likely to be intractable, this result is promising.

5.3 Accuracy Analysis

We randomly sampled 2000 legal stories from the fast-food and simplified bank
robbery plot graphs and randomly removed events from each of them. We pit
the brute-force baseline versus our system’s inference algorithm to see how well
each of them was able to correctly infer the removed events. We treat the brute-
force method as the ground truth since it exhaustively iterates over all possible
stories contained by the plot graph. Accuracy is determined by the coalignment
between both method’s results. Specifically, the brute-force method will return
a value between 0 and 1 which indicates the relative frequency of each removed
event: this value is compared against the numerical interval associated with our
system’s inferences’ confidence categories. Accuracy is computed as the percent-
age of times our inference technique agrees with the brute-force technique as to
which confidence interval an event belongs to over the 2000 trials.

Table 2 displays the results from the accuracy evaluation. With four likeli-
hood classes, a random baseline would achieve 25%. When evaluating the brute-
force method, we had cached the complete list of stories in advance, so the

Table 2: Results of evaluation with two plot graphs.

Plot Graph |Graph Size|Accuracy|# of Brute-Force|# of Heuristic

(# Nodes) String Matches |[String Matches
Restaurant |19 0.7395 |430,931,917 54,060,547

Bank Robbery|28 0.6980 [5,705,264,000 285,024,000
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number of computations only pertains to those done with string matching. The
number of brute-force computations thus describes the number of string match-
ing operations. The number of computations in the inference method relates to
the number of heuristics called. Specifically, since each of the implementations of
the heuristics relies on finding nodes in the graph, the number of computations in
the inference method is equal to the number of nodes examined in breadth-first
search.

The accuracy decreases slightly when the size of the graph increases, but
this is expected since the complexity of the graph increases vastly with inser-
tion of event nodes. This accuracy can be improved by developing more intelli-
gent heuristics. Importantly, our inference method outperforms the brute-force
method in speed by a factor of ten with only a 30% tradeoff in accuracy.

6 Conclusions

Story understanding systems have previously relied on hand-built knowledge-
bases or models, making their utility constrained by the ability of human authors
to hard-code scripts or commonsense knowledge bases. Plot graphs learned from
crowdsourcing provides a means of acquiring commonsense procedural knowledge
for story understanding. Plot graphs compactly encode a space of possible stories
about a given situation, but exhaustively searching this space in order to make
question-answering inferences can be intractable. Our heuristic technique makes
question-answering inferences from plot graphs without the extensive computa-
tion, reducing the runtime by a scale of 10x-100x for only a 30% tradeoff in
total accuracy. We take the additional step of performing question-answering
about stories that are provided in natural language as a means of bringing story
understanding closer to real world applications such as virtual agents and chat
bots. Our story understanding system is the first of its kind to rely on crowd-
sourced story knowledge instead of human-authored knowledge-bases, increasing
the potential for understanding of a large range of story scenarios in real time.
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