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Abstract—Designers structure a game to provide a desired
range of player behaviors: the play space of a game. Any
given game is one instance from a design space of alternatives.
Navigating a design space to achieve a designer’s goals requires
knowledge of how design choices shape the play space in a game.
We present algorithms to automatically measure play patterns
using statistical models that predict how design choices alter
player behavior. We present Monte-Carlo Tree Search as a way
to sample behaviors from a play space, action metrics to automate
play space measurement, and predictive modeling techniques to
model design spaces. We demonstrate these techniques in two
simplified, perfect information, adversarial game domains based
on Scrabble and Hearthstone showing their use for automated
design space modeling.

Index Terms—Game design, Procedural content generation

I. INTRODUCTION

AME designers create games to give players a desired

interactive experience. Crafting interactive experiences is
challenging: designers intend for players to behave in certain
ways, but are only able to make choices about the mechanics
and content in a game [1]. Designers typically address this
challenge through a process of observing people play a game
and iteratively adjusting the game’s design to produce desired
player behaviors [2], [3]. Through this process designers see
what behaviors a game affords as well as how changes to the
design shape that behavior in different ways. Conceptually, this
decomposes into seeing about the range of possible behaviors
within a design—the play space—and seeing how design
variants shape that behavior—the design space.

The process of exploring and modeling the space of play and
design space is challenging, but essential to successful game
design. How can machines enhance this process? Machine
assistance can benefit human designers by: automating mun-
dane aspects of design, improving the efficiency of varying a
design, uncovering strengths and flaws in a design, or even
providing knowledge about how a design works. Ultimately,
these techniques may even enable machines to automatically
develop and refine games on their own or leverage the scale
of computation to explore broad swaths of games that humans
cannot readily conceptualize. Enabling these applications re-
quires us to operationalize the process of measuring a space of
play and modeling a design space. Here we define the space
of play of a game as the range of behaviors players take in a
game, represented extensionally by a set of example sequences
of behavior (termed playtraces). We define the design space of
a game as the range of possible variants on the configuration of
game elements, represented by parameterized game elements.
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Computationally measuring a space of play requires (1) a
source of example behaviors (called playtraces) and (2) ways
to aggregate example behaviors into summarizing metrics. We
term the problem of producing examples of player behavior
in a given game the behavior sampling problem. Ideally a
behavior sampling algorithm should apply to many game
designs, allowing its reuse across domains. As players learn to
play (most) games over time, we can expect player capabilities
to vary and thus the algorithm should also model player
capabilities. For this work we studied two simplified versions
of existing two-player, adversarial, turn-based games, made
into perfect information games: one based on the word game
Scrabble and another based on the card game Hearthstone.
While these games exercise many capabilities, we specifically
focused on modeling the ability to plan ahead. We use Monte-
Carlo Tree Search (MCTS—a stochastic planning algorithm)
as a general behavior sampling algorithm, adjusting the re-
sources used by the algorithm to model differences in player
planning capabilities.

Once example behaviors are gathered we require a method
for gameplay analysis: summarizing the instances of behavior
from a space of play into aggregate metrics. But what aspects
of play should be aggregated? We contend that the actions
taken in a game are a key part of understanding the space of
play in a game. This contrasts with traditional game analysis
metrics that primarily concern the content players reach in
a game—for example, the levels of the game completed or
enemies defeated. We argue player capabilities are often best
represented directly by the choices made by players. For
example, the strategic choices made to beat a boss in a Zelda
game can be more informative for changing the game than
knowing how much damage was inflicted to the bosses in
the game. Further, in competitive games the actions taken by
players are the core element of design used to balance the
game. We present four levels of granularity for aggregating
player actions into metrics, and use these to analyze our case
study games to reveal their design strengths and flaws.

With the ability to measure a play space (summarized
by action metrics) a machine can compare alternative game
designs. This enables the systematic evaluation of a wide
space of game designs. Generating and evaluating many design
variants of a game enables a machine to build models of
how changes to a game alter the space of play. Searching
this design space allows a machine to optimize a game’s
design toward desired metrics on the space of play. Further,
comparing variants of a game’s design enables the machine to
build predictive models of expected metrics for the play space
of a game based on the choice of game design configuration.
To this end, we show an approach to optimize the design
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of an adversarial card game, and predict how card design
configurations alter its play space.

In this work we make four contributions toward enabling
machines to acquire game design knowledge:

1) Present Monte-Carlo Tree Search as a general behavior
sampling algorithm to simulate player behavior and
model differences in player planning capabilities.

2) Define four types of metrics to analyze the actions in a
space of play.

3) Demonstrate automatically measuring the space of play
in two turn-based, adversarial games.

4) Demonstrate building predictive models of how design
choices alter the play space in our Hearthstone-like
game.

Below we first review related work on the problems of behav-
ior sampling, gameplay analysis, and learning design knowl-
edge. We then present the simplified versions of Scrabble and
Hearthstone we studied. We report on two experiments on
these games: (1) analysis of the play space of these two games
and (2) learning about the design space of the Hearthstone-like
game. We conclude by discussing limitations of the current
work and future research directions.

II. RELATED WORK

Here we review related work on behavior sampling, game-
play analysis, and learning design knowledge.

A. Behavior Sampling

There are three primary ways to solve behavior sampling:
(1) human playtesting, (2) model-checking, and (3) player sim-
ulation. Each approach provides different information about a
game’s play space. Playtesting gathers observations of people
playing a game, ensuring that the gathered information repre-
sents how humans interact with a game [3], [4]. Playtesting
has two primary limitations: (1) it may not be representative
and (2) it is not exhaustive. First, playtesters may not act like
the final player population and it can be difficult or impossible
to foresee this difference. Second, humans rarely test all ways
to play a game to probe the bounds of the play space.

Model checking methods offer a way to exhaustively ex-
plore what actions are possible in a game [5]-[9]. Model
checking methods can determine what is (im)possible in a
game, but come with two limitations: (1) representing the
likelihood of behavior and (2) scaling to complex games. First,
checking a model entails (intelligently) exploring all ways a
game can unfold, but this process does not readily provide
information on which ways of playing are more or less likely.
Second, exploring all game playtraces means model checking
cannot readily scale to games with large state spaces or
complex mechanics. Large games create an explosion of states
to explore, which can only partially be mitigated by abstracted
representations of game states. Games with stochastic events
are also difficult to handle using standard deterministic model
checking methods.

Simulation methods construct a computational agent to play
a game instead of a human player. Unlike model checking,
simulated agents can model which actions players are likely to

take and do not need to exhaustively explore a play space. This
comes with the obvious limitations that agents may not accu-
rately reflect all players (as in human playtesting), but with the
advantage of being faster and cheaper than humans. Agents
can be trained to reproduce many aspects of human-like
play including reaction time [10], memory and planning [11],
movement behavior [12], and action choices in many gen-
res [13]-[16]. Simulated players offer two advantages for our
work: (1) controllable variability and (2) balancing exploration
and exploitation of the play space. First, simulated agents
readily incorporate parameters to vary their computational
resources, enabling them to model how highly skilled play-
ers may pursue entirely different strategies to novices [17].
Second, agents can use randomized techniques and take prob-
abilistic expectations to search the most important parts of the
space of play, balancing exploring different playstyles with
providing more information on expected playstyles.

In this work we use a stochastic planning technique with
demonstrated success in general game playing: Monte Carlo
Tree Search (MCTS) [18]. Unlike prior work on MCTS
playing games to win, we use MCTS as a tool to sample
the space of play. Varying the MCTS agent’s computational
resources affords us a proxy for varying player skills, capturing
how the space of play differs for different players.

B. Gameplay Analysis

Gameplay analysis aggregates playtraces from a play space
into metrics summarizing that space. Playtraces may be viewed
as a sequence of states or a sequence of actions, provid-
ing complementary information on where players go in a
game (states) and what players do in a game (actions). State
analysis summarizes the content players consume and how
they progress through a game [4], [19], [20]. By contrast,
action analysis summarizes the choices players make and
the strategies and mechanics players do (not) use [17]. We
contend that action analysis helps understand the play space
of games in general and adversarial games in specific: strategic
choices reflect important parts of the decision-making process
in games. As such, we present action metrics at four levels of
granularity for evaluating the actions in a game’s play space,
enabling analysis of the strategic space of games.

C. Design Knowledge

Design knowledge comes in many forms: recognizing pat-
terns in the content in games, summarizing and predicting
patterns of player behavior, or patterns for how design features
produce patterns of player behavior. Knowledge of patterns
of game content is learned by abstracting structures in game
content across many instances in a given game, with early
work using human analysis to compile these patterns [21].
Computationally modeling game level structures from corpora
of levels enables systems to generate, repair, and critique
existing levels and can allow designers to explore a space
of level designs [22], [23]. Knowledge of patterns of player
behavior (often studied in player modeling [24]) is learned
by observing player behavior in games to predict expected
player actions or subjective ratings of different game content.
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Fig. 1. MCTS algorithm steps [31]

For example, player models for platformer games enable
systems to generate levels tailored to player preferences [25]
or playstyles [26]. Unlike knowledge of content structure
or player behavior, we use the term design knowledge for
patterns of how design changes alter player behavior.! Design
knowledge is learned by abstracting across instances of game
designs and their accompanying player behaviors to model
how changes to a design will change player behavior.

Design knowledge enables systems to predict how changes
to a game will alter player behavior without requiring the
system to directly observe a game with that design. This allows
the system to gather general, reusable knowledge that can
serve many purposes and contexts, rather than producing a
single, optimal design for a pre-defined criteria as in search-
based procedural content generation [28], [29]. In this work
we demonstrate learning design knowledge in a two-player,
turn-based, adversarial card game. We generate a wide space
of design variants, sample from and summarize the play space
in each, and learn predictive models for how design features
change action metrics summarizing these games. We use this
design knowledge to generate games that optimize specific
design qualities and to provide models to people that describe
the design space of this card game domain.”

III. BEHAVIOR SAMPLING

Here we describe our general approach to behavior sampling
using Monte-Carlo Tree Search and the two game domains
used in the subsequent studies. Both domains were simplified
to be perfect information; we leave games of hidden informa-
tion to future work.

A. MCTS Agents

Monte-Carlo Tree Search (MCTS) is a general game-
playing technique with broad success in discrete, turn-
based, and non-deterministic game domains [32]. MCTS is
a sampling-based anytime planning method that can use addi-
tional computational resources to more fully explore a space
of possibilities, allowing control over the balance between
computational time and exploration of the full play space

'Work in both content and player modeling sometimes matches this
definition (see [26], [27]), though these efforts typically aim to understand
players or generate content, rather than analyzing design choices.

2Qur optimization approach conceptually aligns with methods that approach
content generation through the lens of exhaustive generation followed by
careful selection, though we approximate exhaustive generation through
sampling due to our need to generate gameplay behaviors [30].
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Fig. 2. A digital recreation of the word game Scrabble.

(Figure 1). We chose MCTS as a behavior sampling algorithm
for it’s proven high-level performance, domain generality, and
variable computational bounds. For simplicity, we altered the
study domains to be perfect information (allowing players to
see one another’s hands) to facilitate use of MCTS. We use
the UCB1 algorithm [33] to ensure the agents fully consider
options for a given move before planning further, later moves.

For an even comparison across game domains we used
MCTS agents to play both study games, altering the number of
rollouts used as a proxy for human ability to plan ahead [11].
Rollouts are the number of times the algorithm considers move
choices. An agent with more rollouts can more fully explore
the value of possible actions in the game and better plan future
actions (Chapter 5, p. 60 in [34]).

Considering differences based on player planning ability
enables analysis of many design questions: Does the game
reward stronger players with greater rewards or higher win
rates? Do players with different skill have different play styles?
Does the game enable a smooth progression of skill as players
learn over time? In adversarial games, varying the rollouts
used by two MCTS agents can compare how gameplay looks
when two agents having varying levels of skill, as well as
compare the effects of relative differences in skill between two
agents; e.g., comparing high-level play between two strong
agents or comparing games between a weak and strong agent.
This improves over human testing as it affords designers the
ability to readily compare games between players with many
skill combinations.

B. Scrabble

Scrabble® is an adversarial game where players take turns
placing tiles onto a game board to create words (Figure 2). We
implemented the standard version of Scrabble, which includes
bonus spaces to double or triple letter tile values on the board.
Normally games end only when one player runs out of tiles,

3The Scrabble domain and analysis was done by Brent Harrison in joint
work on applying MCTS to behavior sampling [35].
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Fig. 3. Cardonomicon, a minion-based card game.

with the winner as the player with a higher score. We changed
the game to end with the winner as the first player to reach
150 points. This simplification improves search performance
in the domain and does not adversely affect the ability to ask
design questions, as seen in the study evaluations.

Moves in Scrabble are often represented as placing tiles on
the board. This representation, however, requires the MCTS
agent (or game) to validate whether the tiles form legal words.
Instead, in our implementation the agent represents moves on
a turn as the word formed on that turn, using a dictionary to
choose valid words. Thus, the space of possible moves on a
given turn is all possible words that can be made on that turn.

C. Cardonomicon

We built Cardonomicon using the core elements of adver-
sarial card games like Magic: The Gathering and Hearthstone
(Figure 3). From a design perspective, Magic and Hearthstone
are difficult to balance due to the difficulty of predicting the
strategies players will develop to play the game. The design is
highly sensitive to interactions among mechanics: each card
must be balanced with respect to all other available cards;
e.g., a single overly powerful card can make all other cards
irrelevant. Further, the random order of card draws and non-
deterministic effects of actions introduce a large space of
non-deterministic outcomes to sample over. While Magic and
Heartstone have hidden information, for simplicity Cardo-
nomicon is perfect information. In addition, we fix the decks
used by players, rather than allowing deck construction—this
drastically reduces the search space for behavior sampling
while preserving properties that make this a domain of interest.

In Cardonomicon, two players start with an identical deck
of 20 cards representing minion creatures (see Appendix A,
Table V for card definitions). Gameplay consists of drawing
cards, spending mana to place cards on the game board, and
using cards to attack one another and the opposing player’s
hero. Cards are parameterized by health, attack power, and
mana cost. Players start with a single hero card on the board
with 20 health and O attack; a player loses when their hero’s
health is reduced to or below 0. Each turn, players may play
any combination of cards for which they can pay the mana
costs. A player’s mana starts from 1 on the player’s first turn
and increases by 1 each turn up to a cap of 10. Playing cards
puts them on the board, making them available to attack any

opposing card once per turn. When a card attacks, the opposing
card’s health is reduced by the attacker’s attack; attacking
cards receive counter damage. We designed a set of cards to
allow the player to play one of multiple cards on each turn
(with differing parameterizations), assuming they have drawn
a playable card.

In Cardonomicon the MCTS agent represents possible
moves as either playing a card or using a card to attack
another card on the opponent’s board. One turn may involve
multiple moves in a row. The agent has one move for every
card that can be played in the agent’s hand and one move
for every pair of their card attacking a target opponent card.
Only cards that may attack are represented and no attacks on
the agent’s own cards are permitted as this has no purpose in
the Cardonomicon domain. One additional move to end the
turn is always available. Thus, MCTS agents reason at each
turn about whether to play a card, use a card to attack the
opponent, or end their turn.

IV. MEASURING A SPACE OF PLAY

In this section we present metrics at four levels of granular-
ity to summarize a play space in terms of player action choices.
We apply these metrics to Scrabble and Cardonomicon to show
how these metrics can reveal design strengths and flaws in the
two domains, respectively. The two case studies demonstrate
measuring the strategic play in a game and using this in human
design analysis.

A. Action Metrics

Decision-making in games is based on many contexts of
varying levels of abstraction. These contexts span the utility
of an action in itself, to responding to other player actions, to
considering the long-term implications of a choice later in a
game. We divide analyses of player actions into action metrics
at four levels of abstraction:

o Summaries are high-level design metrics that aggregate
playtrace features of interest. For example, the typical
(median) length of the game or probability of the first-
turn player winning in Scrabble.

o Atoms are metrics specific to individual actions in a game.
For example, the frequency of playing a letter in Scrabble,
potentially conditioned on a context like the turn number
in the game.

o Chains are gameplay patterns within or between players.
Combos are regularities in actions taken by a single
player: e.g., in Magic, tending to play a given pair of
cards on the same turn (potentially due to positive syn-
ergies between the cards). Counters are action-reaction
patterns in actions taken between a pair of players: e.g.,
in Scrabble, when one player spells “con” the opponent
may often add to form “icon.”*

o Action spaces are sets of actions taken (or available)
to a player, potentially over the course of a game. For
example, in Scrabble, the number of valid words available

338
1

4Our definitions for ‘atom’ and ‘chain’ are distinct to those proposed by
Dan Cook [36], but share the notion of distinguishing between single actions
as atoms and patterned sequences of actions as chains.
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to be played over the turns of a game or in Magic, the
number of unique minions a player can play on each turn.

These categories are not intended to encompass all ways to
analyze a play space, but instead organize levels of analysis
that share common techniques in terms of aggregating descrip-
tive statistics and visualizing those results. These metrics only
require sets of play traces as input and can equally apply to
traces from humans or simulated agents. By only referencing
actions taken in a game all of these metrics can be subdivided
by features of game players: here we consider player skill,
though other features may be of interest (e.g., player gender
or age [37]). Action metrics allow designers to survey common
patterns of play in a game. The metrics on their own do
not enable a designer to infer the causes for these patterns
or understand the detailed course of action that yields the
metrics. These and other aspects of inference for a design
require alternative analytic techniques outside the scope of this
work. Below we clarify these definitions and give examples
for Scrabble and Cardonomicon.

1) Summaries: Summaries overview gameplay features to
provide high-level information to guide further analysis and
framing to interpret more granular analyses. Summaries are
typically single numbers that aggregate features of a game:
average game length, number of users of the game, revenue
earned per (paying) user, etc. Example summaries in Scrabble
and Cardonomicon include: typical game length, probability
of the first-turn (or more skilled) player winning, and number
of actions taken during the game. Other summaries include:
game play duration, typical turn duration over the course of
the game, number of actions taken in turns in a game (overall
and split over the course of the game), probability of winning
for players of different skill levels, average time alive during
a match in multiplayer games, total narrative choices made,
average length of narrative story paths followed, and so on.

2) Atoms: Atoms summarize the use of individual actions
in a game, providing information on which game mechanics
are (not) being used and are (not) available to be used.
Analyzing atoms can inform game balancing decisions around
whether specific actions are over- or under-used in the game.
Actions come in many forms: e.g., words to make in Scrabble
or cards to play in Cardonomicon. Other examples include:
plot choice frequency in interactive fiction, ability use rates
in a role-playing game, item use or purchase rates in games
with inventories, avatar/character choice rates in games with
multiple avatars. Action analysis can consider both the actions
taken by agents as well as the actions available to agents to
use. Understanding action use provides information on how
readily actions can be used and whether those actions are (per-
ceived to be) effective in the game. Comparing action choices
made by players with different capabilities can demonstrate to
what extent a game can be learned by agents, where a lack of
ability to learn to play may be a design flaw.

3) Chains: Chains summarize recurrent sequences of ac-
tions in playtraces. Combos are sequences of actions a single
player commonly uses together. Combos are common in games
with multiple actions per player turn or real-time action. In
Cardonomicon combos include playing cards successively or
using sets of cards to attack; Scrabble has no combos as

players take a single move each turn. Other combos include:
attack sequences in a fighting game, sets of equipment used
together, cards placed in a deck, monsters or party members
associated with a team, path snippets followed on a multiplayer
competitive game map, or build orders in a strategy game.
Counters are sequences of actions that occur when two (or
more) players respond in similar ways to actions from other
players. Counters are common in games with alternating turns
or simultaneous turns. In Cardonomicon counters can occur
when one player plays a card on the board and their opponent
attacks it using a specific other card; in Scrabble counters
occur when one player forms a word and their opponent builds
a longer word from that base. Other counters include: units de-
ployed to counter an opponent in a strategy game, spell attacks
chosen against buffs in role-playing games, attack/block/throw
choices against an opponent attack in fighting games, or
positional choices in chess against opponent moves. Analyzing
chains can reveal emergent strategy within a game, including
chains of actions that may exercise a skill [36] or ways players
have discovered to thwart their opponents [38]. Understanding
which combos or counters are common can inform decisions
to alter the restrictions placed on using an action or alterations
to how effective an action is. Segmenting analysis of chains
by player skill can reveal how player strategies evolve with
greater proficiency in the game and reveal balance concerns if
specific actions disappear from chains used in high-level play.

4) Action Spaces: Action spaces summarize atom use over
time or game states. In Scrabble, action spaces include the
number of distinct tiles played or the number of distinct
words available to complete across turns in a game. In Car-
donomicon, action spaces include the number of distinct cards
available to play or average number of cards able to attack
across turns. Other action spaces include: frequency of item
purchase by location or vendor in a game, location visits in
a map of a tactical or strategy or platformer game, ability
use rates over the course of a MOBA game, or unit build
rates or economy income over the duration of a strategy game.
Analyzing actions spaces can reveal how a game progresses
from the perspective of player choices. This analysis can
identify cases where a game is too restrictive or overwhelming
with too many options, informing decisions about the pacing
and growth of game complexity over time [17]. Considering
differences in actions spaces between low- and high-skill
players can reveal cases where skill allows better use of the
game actions or where low-skill players fail to use actions
commonly used by high-skill players.

B. Experiment Design

Our studies use MCTS agent pairs of varying computational
bounds as a proxy for varying player skill to handle behavior
sampling. We varied agent reasoning to consider roughly one
to two moves ahead in the game. Two moves ahead is an
upper bound potentially relevant to human play; research in
reasoning on recursive structures suggests people are able
to reason to roughly two levels of embedding. Models of
deductive reasoning on logic puzzles support this claim [11].
The MCTS selection policy (UCB1) we used forces trying
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all moves available after making a given move once before
repeating a move: thus all rollouts will first explore options for
a single move before exploring two-move sequences. Random
moves are chosen during rollouts.

To set computational bounds we approximated the average
number of choices available to an agent over the entire game
and used this number to estimate the number of rollouts an
agent would need to consider one or two moves ahead in the
game. For equity we modeled agents with fixed computational
resources in a turn, meaning they consider an equal number
of choices per turn, regardless of the number of potential
available choices on that turn. To examine a range of agent
capabilities we initially created three agent computational
bounds (number of rollouts allowed):

o A weak agent able to explore all moves on a given turn,
but lacking resources to explore to two moves ahead.

o A strong agent able to fully explore moves on the current
and next (opponent’s) turns. This allows modeling the
impact of opponent action choices on the focal agent.

e A moderate agent with rollouts halfway between these
two.

Initial testing revealed little difference between the latter two
agents, possibly due to marginal returns for greater compu-
tational resources in our study domains due to their large
branching factor. We thus halved the number of rollouts of
the two stronger agents, making the moderate agent weaker
than before, and thus having less benefit from the amount
of search it could perform. This created a spectrum of agent
capabilities that clearly illustrates the influence of differences
in player skill.

For each game domain we ran a pair of agents where each
agent was set at one of the three levels. We simulated 100
games for each pair to get aggregate statistics on agent perfor-
mance. In Scrabble, we approximated the number of rollouts
for a single level deep by looking at the median number of
possible words an agent could complete on the board in a
single turn, summarizing over all turns in the game: 50. Thus,
the weak agent used 50 moves. Initially the strong agent was
allowed 2500 rollouts (502 for two moves ahead) and the
moderate agent 1250 rollouts. After halving, this resulted in a
moderate agent with 650 rollouts ((1250 — 50)/2 + 50 = 650)
and a strong agent with 1250 rollouts. In Cardonomicon,
we approximated the number of choices of playing cards as
choosing 2 cards to play each move out of a hand of 6 cards
((5) = 15 moves). We modeled attack choices assuming the
player (and opponent) have approximately 3 cards on the board
and one hero card, yielding 3 source card choices for 4 targets
(3* = 81 moves) Together this yields a total of approximately
100 moves considered for the weak agent, 10000 for the
strong, and 5000 for the moderate. After halving this resulted
in 100, 2500, and 5000 rollouts for the weak, moderate, and
strong agents, respectively.

Note that an alternative strategy to sampling up to two levels
deep would be to have agents explicitly model a selection
policy with pure exploration up to one or two levels. In this
case, search bounds would vary over the course of the game.
We chose to use a fixed number of rollouts to capture the

notion of agents of fixed ‘capability’ in terms of resources to
devote to the problem.

C. Results

For the two game domain cases we examined the four skill-
based design metrics above: summaries, atoms, chains, and
action spaces. In the Scrabble domain these metrics highlight
how the game is balanced and illustrate how player skill
differences manifest as differences in skill-based metrics. In
the Cardonomicon domain these metrics reveal imbalances
in the design of the simplified game. Together, these studies
illustrate that skill-based design metrics can inform designers
about the strategic space of play in a game.

1) Scrabble Metrics: The Scrabble domain shows how
skill-based metrics reveal balance and player skill differences
despite changing the game to end at 150 points. The study
shows these changes did not upset the game balance and
demonstrate that Scrabble rewards high skill play.

a) Summaries: For Scrabble we examined summaries of
win rates and the length of a game in turns. We expected
stronger players will consistently defeat lower-skilled oppo-
nents; however, it is unclear how skill would affect game
length. Stronger agents consistently beat weaker agents, with
a 91% win rate for a strong vs weak agent and 64% win rate
for a strong vs moderate agent. First turn players, however
have no clear advantage, with 58%, 55% or 49% win rates
for evenly matched weak, moderate, or strong agents. Thus,
Scrabble is balanced such that agents can exhibit greater skill,
but do not have an inherent first turn advantage.

Strong agents have shorter games: games last 26 turns on
average for evenly matched weak agents and 22 turns for
strong agents. This is likely because skilled opponents make
moves worth more points, reaching the 150 point ending
criteria sooner: stronger agents typically play longer words,
corroborating this conclusion (see below). An alternative ex-
planation for the shorter games is that stronger agents make
better use of bonus tiles on the board, increasing individual
word scores, and reaching the 150 point end sooner. However,
agents of different strengths did not differ in their use of bonus
tiles. Thus, the main cause of score differences between agents
was the length of words played.

b) Atoms: In Scrabble we studied the atom of word use,
finding weaker agents play shorter words while stronger agents
play a wider variety of words (Figure 4). This provides further
evidence of variable expressions of agent skill in Scrabble.

c) Chains: In Scrabble counters are the words played
by the opponent after a word has been played by the other
player. We used frequent itemset mining on the words played
in two turns in a row to produce common counters. Among the
top itemsets of words created across two turns, most counters
either add to the previously played word, or build a two or
three-letter word off of the word that was previously played.
For example, one of the top counters to a player playing the
word “con” on a turn was to add an “i” to the beginning of it
to make the word “icon.” This is not unexpected as building
off words that were previously played will typically result in
a higher point total since the player is playing a longer word
than the opponent.
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Fig. 4. Word length frequency in Scrabble by skill.
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Fig. 5. Median number of words that could be played per turn based on skill.

d) Action Spaces: In Scrabble the action space can be
characterized by the number of possible words that can be
played and were actually played. Figure 5 shows the median
number of possible words that could have been played on
a given turn based on skill. The space of possible actions
shrinks over the course of the game, likely because valid word
placements become fewer later in the game. The figure also
shows that stronger agents have more possible actions on a
given turn than weaker agents.

Figure 6 shows use of the action space over the game in
terms of distinct words played across all games. The space of
words played shrinks faster for stronger agents than weaker
agents, likely because stronger agents identify moves worth
more points and avoid the rest of the action space.

2) Cardonomicon Metrics: The Cardonomicon domain
shows how action metrics can identify design flaws. Recall
that Cardonomicon is highly constrained in terms of the types
of cards that are available to use and the types of decks that
players can use. These major alterations we introduced to
the typical structure of a card game negatively impacted the
balance of the game.

Unique Words Played in Scrabble

Agent skill
— Weak
Moderate

X Strong

AR

ed
%

Unique Words PI
3
8

20
Turn Number

Fig. 6. Number of unique words played per turn based on skill.

a) Summaries: A core design flaw in Cardonomicon is
the player going second has a large win rate disadvantage: a
strong agent only has a 41% win rate against a weak agent,
with 23%, 32%, and 32% win rates for evenly matched weak,
moderate, or strong agents. While agent skill influences player
win rates in Cardonomicon, the game gives a strong disad-
vantage to the player taking the second turn. This is expected
due to the simplification of mechanics from Hearthstone: in
Cardonomicon cards are able to attack and receive damage in
retaliation, but the second player has no advantage in being
able to play more cards on their first turn. As such, the second
player will always deploy cards after the first player, but lacks
a mechanism to catch up to the player who acts first.

Stronger agents have (slightly) longer games when matched
to evenly skilled opponents: median 16, 17, and 18 turns
for the weak, moderate, and strong agents, respectively. We
attribute this trend to stronger agents being able to better
counter one another while retaining enough cards to play until
the end of the game.

b) Atoms: In Cardonomicon we studied the atoms of
playing cards or using cards to attack. Stronger agents play
more cards, but show no large differences in their use of spe-
cific cards. This likely indicates the deck size in Cardonomicon
is too small: agents will play all of their available cards faster
than they draw new cards and thus have no opportunities to
favor playing specific cards against others. Stronger agents
also use cards to attack more. Three cards showed dispropor-
tionately greater use by stronger agents compared to weaker
agents: these three cards all had large amounts of health but
low attack for their cost. Strong agents use these cards to
destroy multiple weaker cards by intelligently trading off card
attacks and retaliations. That is, stronger agents recognized
the value in using a card with low attack (but high health)
to remove several cards with lower attack and health over
multiple turns. This confirms Cardonomicon allows for a
limited form of strategic variety and supports the notion that
MCTS rollouts can help detect these potential strategic variants
dependent on player skill.

¢) Chains: In Cardonomicon chains are primarily com-
bos: sequences of actions taken by a single player in a turn of
the game. As expected from the atom analysis, there were no
significant combos in terms of playing or attacking cards. This
is likely due to the lack of any strong synergy among cards
in Cardonomicon: no pairs were particularly outstanding as
no pairs have synergistic effects. This highlights another way
to detect design flaws through these metrics: the absence of
chains indicates no strong synergies exist in the design for
players to use in combos.

d) Action Spaces: Stronger Cardonomicon agents have
a larger space of cards they may play (not shown) and use
to attack (Figure 7). Specifically, stronger agents have more
options to play cards late in the game, while having fewer
mid-game attack options with more late-game attack options.
These results match intuition: in the early game both weak
and strong players have a similar range of options constrained
primarily by the amount of mana players have. By mid-game
stronger players will have fewer attack options as they retain
cards they may play for the late game. Playing these cards in
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Fig. 7. Average number of possible attacks per turn based on skill.

the late game leads to more options to attack. Aligning with
these analyses of the number of possible plays, more skilled
players both play and attack with a larger number of cards
on average. Thus, skilled players also actually use this larger
set of options. Overall, these results demonstrate that more
skilled players in Cardonomicon will open more plays in the
mid-game by intelligently retaining cards before using these
cards in the late game; in sum, these players are more efficient
in their use of mana.

V. MODELING A DESIGN SPACE

In this section we first introduce predictive models of how
changes to a design will change the play space of the design.
We then apply this to Cardonomicon, showing how a system
can predict changes to game length, playing cards to the board,
and attacking with cards based on changes to a card’s design.

A. Predictive Design Models

Here we characterize design spaces using predictive statisti-
cal models that relate choices of design parameters to metrics
summarizing the play space of the game. For example, the
statistical model would indicate that card health is positively
correlated with card use rates. Predictive modeling offers a
number of benefits: informing choices of design iteration,
aggregating play patterns shared by design variants, and ex-
posing unexplored design opportunities. A designer (human or
machine) can use these models to pick a design change to best
accomplish their design goals. By building these models for
many design variants a machine can provide an overview of
the design space. For humans this aggregation can be valuable
when it is difficult or impossible to track all the effects a
design had on player behavior over a long period of game
development. For machines this accumulation of knowledge
contrasts with other approaches to computational design where
an algorithm iteratively optimizes a single design, discarding
any learned information after a design is found to optimize the
(current) objective [28], [29]. By accumulating this informa-
tion a machine can also expose what aspects of a design are
poorly explored (missing input parameters) and what aspects
of the space of play are poorly understood (highly uncertain).

In the following sections we discuss two applications of
predictive design modeling: (1) optimizing a design for an
arbitrary outcome and (2) modeling how card parameters
alter the space of play. The optimization case highlights how
predictive models allow manual exploration of how design
choices alter aspects of the space of play. The modeling case

TABLE I
DESIGNS OPTIMIZING DESIRED PLAY SPACE FEATURES.
card configuration optimal
design goal health | cost | attack value
least turns 7 1 7 15
most turns 7 4 1 17
most attacks 7 1 1 1.44
most attack options 7 1 1 18.56
most plays 4 1 1 0.57
most play options 4 4 7 4.01

highlights how design knowledge can be summarized into
interpretable models that reflect human design intuition.

B. Experiment Design

For our experiment we altered a single Cardonomicon
card—*"“Stonetusk Boar”, which defaulted to 1 attack, 1 health,
and 1 cost—to model how a minimal design change shapes
the play space in the game. Card variants differed in attack,
health, and cost parameters, taking values of 1, 4, or 7 for
each parameter. These variants cover the range of reasonable
card configurations, yielding 3 attack values x 3 health values
x 3 cost values = 27 design variants.

Behavior sampling of each design variant paired agents
of differing strength with balanced first turn assignment.
Agent combinations covered all agent pairings with different
strength: weak vs moderate, weak vs strong, and moderate
vs strong. We ran 100 simulations for each for each card
variant, agent configuration, and first turn agent combination
to account for non-deterministic game mechanics. Together
this required: 27 card configurations x 3 agent configurations
x 2 first turn players x 100 simulations = 16200 playouts.
Below we analyze the play spaces of these design variants for
two applications: (1) finding an optimal game design in this
design space and (2) learning design knowledge of how design
parameters shape player behavior.

C. Design Optimization Results

Design optimization entails finding a game configuration
with an optimal value for a desired play behavior. Having
evaluated the play spaces of many design variants, finding an
optimal design in the design space is simply a database query
for the design with the optimal play space feature(s) [30]. To
account for random variations in gameplay we averaged play
space features across all playouts for a given card configu-
ration. Using this approach we found designs that optimize
games for a number of features of design interest, reporting
the optimal value possible for the design goal and the features
that achieve that value (Table I).

As examples, we found the designs and optimal values for
the summary metric of game length and the atom metrics of
playing or attacking with the focal card (“Stonetusk Boar™).
A single card can have a modest effect on the game, adding
2 turns, or roughly 13% to the game’s length. As expected,
giving the card lower attack and higher health prolongs a
game, while higher attack reduces game length, particularly
when the card has high health and thus remains a threat for
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longer. Low attack and high health allows more opportunities
to attack with a card; low cost allows a card to be played
more often and also attack. Together these results show how
to explore a design space with play space metrics.

D. Design Modeling Results

We model how choices of card parameters alter the rates of
outcome events that are count data, using Poisson regression or
negative binomial regression.> We consider the same summary
metric and atom metrics as above (all of these metrics are
counts of events: game turns or uses of a card). As a concrete
example, the system predicted that increasing card health from
1 to 7 would increase the rate of attacking with the card by
218%, aligning with the intuition that cards with more health
can be used to attack more.

To build these models the system first checks for overdis-
persion, choosing a Poisson model when overdispersion was
not detected and the negative binomial model otherwise.’
The system then fits the corresponding model, producing
incidence ratios that represent how a feature change alters
the proportionate rate of the corresponding event.” Poisson
and negative binomial regression are techniques that extend
multivariate linear regression to predictions involving count
data. The simpler Poisson model makes assumptions about the
relative variability in the data, when there is more variability
than assumed the data is overdispersed. In these cases the
more general negative binomial model can be used (at the
cost of greater model complexity). All ratios report increases
compared to a default card configuration with 1 attack, health,
and cost. For example, the value of 0.97 for ‘attack = 4’
in Table II indicates that a card having an attack of 4
associates with games being 0.97 the length of games where
the card has an attack value of 1. Each coefficient also has
a corresponding test of statistical significance: we only report
features with significant (p < 0.05) effects, indicated in bold
in the tables. Below we review a single key model for each
metric considered.

1) Summary Metric: Of the three card parameters, attack
and cost changed game length, while health did not (Table II).
Cards cannot protect the player and thus card health is only
useful for cards remaining on the board rather than extending
game length. Intuitively, increasing attack power allows agents
to more quickly defeat one another, while increasing cost slows
down how quickly the card can be played and put to use, in
turn lengthening the game.

2) Atom Metric: Card Use: In games like Cardonomicon
the features of a card govern (human) choices to use different
cards. Cards are often discussed in cost-benefit terms: weigh-
ing costs (e.g., mana cost) against benefits (e.g., card attack
power or health) of playing the card. Modeling how changes to
card parameters alter the choices to play or attack with a card
helps designers understand how to alter a design to increase

SWe used R’s glm function for both:
https://stat.ethz.ch/R-manual/R-devel/library/stats/htm1/00Index.html

Checks used the dispersion test provided by R’s AER package:
https://cran.r-project.org/web/packages/AER/index.html

7We exponentiate the learned coefficients from the model to produce
incidence ratios as these are more readily interpretable.

TABLE II
EFFECT OF CARD PARAMETERS ON GAME LENGTH

Game length vs card parameters
feature coefficient
attack = 4 0.97
attack = 7 0.94
health = 4 1.00
health = 7 1.00
cost = 4 1.04
cost =7 1.04
TABLE III
EFFECT OF CARD PARAMETERS ON CARD ATTACK OR PLAY RATES
Atom frequency vs card parameters
feature play coef | attack coef
attack = 4 0.92 0.81
attack = 7 0.94 0.74
health = 4 1.04 1.55
health = 7 1.00 2.18
cost = 4 0.83 0.61
cost =7 0.48 0.27

or decrease how often different card choices are made in the
game. As such, we had the system model how changes to
card parameters altered the frequency of attacking with cards
or playing cards to the board (a pre-requisite for attacking).
Greater card costs significantly reduced frequency of play
(‘play coef’ incidence ratio < 1.0), and subsequently reduce
attack rates as well (‘attack coef’ incidence ratio < 1.0)
(Table III). Thus, the system learned that more expensive cards
are played less and consequently attack less. Greater health
values increased attack rates: higher health allows cards to
survive longer and consequently attack more. Greater card
attack reduced attack rates: opponents with greater attack
power eliminate one’s own cards sooner, preventing attacks.
3) Atom Metric: Card Options: Card use is not the sole
indicator of the influence of design parameters on play:
variations in how often a card is an option for use can indicate
how card parameters influence player behavior to use or hold
on to cards. Card options are the cards an agent has the choice
to use, either to attack an opponent or to play to the board.
Unlike card actions (examined above), card options measure
the strategic possibilities an agent has at hand. As before
we had the system model how card parameters altered the
frequency of having the option to attack with or play cards.
Contrary to card play actions (Table III), increased card
cost reduced card play options (Table IV). Greater cost values
increased the frequency of play options, reflecting that cost
prevents a card from being played. Both greater card attack

TABLE IV
EFFECT OF CARD PARAMETERS ON CARD ATTACK AND PLAY OPTIONS

Atom option frequency vs card parameters

feature play coef attack coef
attack = 4 0.94 0.71
attack = 7 0.91 0.53
health = 4 0.98 1.84
health = 7 0.95 2.49

cost = 4 1.45 0.71

cost =7 1.08 0.31
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and greater card health led to small reductions in the rate of
card play options. Thus, the system learned that increasing
card benefits (attack and health) makes the card become more
attractive to play, leading to fewer turns where the card is
retained as an option. Card attack options showed similar
trends to card attack actions. Greater card health increased
attack rates, implying cards have strategic value: when a card
has more health it is not only useful for the act of attacking,
but also as an option for attacking later. Greater cost reduces
the rate at which a card is available to attack as the greater
cost gates use of the card.

VI. CONCLUSION

We addressed automated design space modeling by using
MCTS for behavior sampling, providing action metrics for
play space gameplay analysis, and count regression models for
design modeling. Below we discuss limitations of this work
and future research avenues.

We studied a single set of techniques for behavior sampling,
play space learning, and design modeling. Future work can
investigate more sophisticated algorithms for each of these
problems. Our behavior sampling algorithms are low-fidelity
models of human-like play, intended to abstract and simplify
human players as caricatures of typical players [24]. Behav-
ior sampling may consider modeling human capabilities for
memory, perception, or propensity for actions that are not
utility maximizing (i.e., not ‘rational’ in the economic sense).
These models offer the ability to capture broader ranges of
player differences to better characterize how a game does (not)
demand different human capabilities.

Our play space models intentionally focused on considering
player actions alone, limiting our scope to a narrow set
of design questions that are readily evaluated using player
behavior: topics like game balance, pacing, or (a limited
form of) strategic depth [39]. In most scenarios designers
instead consider a wide range of player behaviors and re-
sponses to judge the success of a game. Play space models
may combine action and state metrics to allow designers to
compare both the decision and outcomes spaces of play. Other
aspects of design have been ignored by the purely behavioral
modeling choices here: for example player interpretation of
game meaning or the messages conveyed by a game [40];
out-of-game communication between players (e.g., in games
like Diplomacy); or subjective experiences like frustration,
boredom, or curiosity. Developing techniques to connect these
more subjective aspects of game experiences to game design
features will be challenging, but is crucial to expanding these
methods to a wider range of game design practices.

Our design models illustrate how predictive modeling can
summarize a complex design space into simpler models that
are more easily interpreted. We anticipate model improvements
that improve the predictive powers of the models used or yield
outputs that are more readily interpretable by humans. We only
apply design models to optimizing low-level, continuously
varying parameters of a design. Yet many aspects of a design
are discontinuous: rule changes like card abilities, turn-taking
structure, or victory/failure conditions. These types of spaces

will require different models both for design optimization and
modeling the space of design decisions. Future work can also
explore ways to model higher-level design features (like game
pacing or balance) and explore how to generalize and transfer
design knowledge between game domains. Developing ways
to aggregate and reuse design models has great potential to
enhance the scope and capabilities of computational design
systems.

Extensions of these algorithms may also explore other game
design challenges and game domains. Our game domains are
highly simplified in terms of player-player interactions: games
like Hearthstone involve extensive reasoning on counters and
chains. Scaling to this behavioral complexity will require effi-
cient models to simulate behavior in wide decision spaces [41],
potentially coupled with techniques like deep reinforcement
learning to facilitate agents acquiring sufficiently advanced
play skills [18]. Research in these areas will broaden the scope
of design space modeling, extending this early work to more
complex cases.

The models we developed have been applied to discrete,
turn-based, perfect information, and adversarial games, leav-
ing open many avenues for extensions and generalizations.
This leaves open a wealth of alternative games and design
problems to develop new techniques for. Extensions to new
game domains include real-time games, continuous space
games, hidden information games, or collaborative games. We
anticipate scaling challenges to emerge across these domains,
primarily stemming from the need to increase the amount of
behavior samples generated when game action spaces increase
in branching factor. Alternative game design domains include
games based on social interaction or diplomacy among players
(e.g., Diplomacy or Cosmic Encounters), games centered on
conveying a message (Dys4ia) or inducing player contempla-
tion and reflection (Gone Home), or games that mix digital and
physical elements (Pokemon Go). Each of these new design
domains will require extensions including more sophisticated
simulations of player behavior and experience, and more gen-
eral models of game design features. We believe the potential
to accumulate and reuse design models across game design
systems can accelerate the progress of these design tools,
unlocking new opportunities for human and automated game
design and development.
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TABLE V
CARDS USED IN Cardonomicon EXPERIMENTS.

Card Name Cost  Attack
Stonetusk Boar
Dire Wolf Alpha
Defias Ringleader
Kobold Geomancer
Tronfur Grizzly
SI Agent
Fen Creeper
Southsea Captain
Abusive Sergeant
Angry Chicken
Blood Imp
Super OP
Aldor Peacekeeper
Arcane Golem
Dalaran Mage
Dark Cultist
Scarlet Crusader
Ancient Brewmaster
Chillwind Yeti
Boulderfist Ogre

Health
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Fig. 8. Average game length based on card configuration.

APPENDIX A
Cardonomicon CARDS

Table V shows configurations of the cards used (1 each) in
the decks of the Cardonomicon agents. Card settings were
based on correspondingly named games from Hearthstone.
The 1 attack, 1 health, 1 cost “Stonetusk Boar” card was the
single card varied in the design learning experiment.

APPENDIX B
SUPPLEMENTARY DESIGN EVALUATION FIGURES

These figures visually support the learned design models
above.

A. Summary Metric

The effects of card parameters on game length are readily
discernible when examining the average game length in each
of the card parameter configurations. Figure 8 shows the
average game length for different parameter configurations.
Columns divide configurations hierarchically: first splitting by

Card attack rate by configuration
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Fig. 9. Average number of times the card variant is used to attack given a
card parameter configuration.

attack, then by health. Rows divide configurations by card
costs. Red lines indicate values averaging over health values
(the average length for a cost and health configuration). The
decreasing average lengths for attacks (red lines) indicates that
as attack increases, game length decreases. The higher average
lengths for costs (rows) indicates that as cost increases, game
length increases.

B. Atom Metrics

1) Card Attack Rates: Figure 9 shows the average number
of times the card variant was used to attack over games for
different parameter configurations. Columns divide configura-
tions hierarchically: first splitting by cost, second by health,
and third by attack. Rows divide configurations by the game
lengths, grouping games by length terciles (below 14 turns,
between 14 and 16 turns, and more than 16 turns). Red lines
indicate average card attack rate across attack configurations
(marginalizing to game length, health, and cost combinations).
High cost cards (far right triple of columns) reduce the fre-
quency of card attack rates to near zero except in long games
(bottom row). Increasing health (red lines) also increases card
attack rates. These results visually corroborate the model
learned by the system for human designer consumption.

2) Card Play Rates: Figure 10 is similar to Figure 9, only
now displaying the average number of times the “Stonetusk
Boar” card was played (rather than used to attack). Longer
games allow more opportunities for play, seen by comparing
the average play rates across the three game lengths (rows),
especially in the highest cost scenario (far right column). Cost
clearly reduces play frequency, seen by comparing the three
sets of columns (cost is the outmost grouping of columns).
Conversely, neither attack nor health appear to have a direc-
tional effect, seen by inconsistent relationships among play
rates for different attacks (colors) or healths (red lines).

3) Card Attack Options: Figure 11 provides a visual
overview of the card action option outcomes in a similar
manner to Figure 9. The similarity to Figure 9 supports the
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Card play rate by configuration
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Fig. 10. Average number of times a card is played for a given card
configuration.
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Fig. 11. Average number of options for card attacks by card configuration.

conclusion that card parameters have similar effects on attack
actions and attack options.

4) Card Play Options: Figure 12 is similar to Figure 10,
only now displaying the average number of times the card
variant was an option to play, rather than being played. Longer
games allow more play options, seen by comparing the average
play rates across the three game lengths (rows), especially
in the highest cost scenario (far right column). Cost clearly
reduces play frequency, seen by comparing the three sets of
columns (cost is the outmost grouping of columns). Con-
versely, neither attack nor health appear to have a directional
effect, seen by inconsistent relationships among play rates for
different attacks (colors) or healths (red lines).
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