
1

Personalized Interactive Narratives via Sequential
Recommendation of Plot Points

Hong Yu and Mark O. Riedl

Abstract—In story-based games or other interactive systems, a
drama manager is an omniscient agent that acts to bring about
a particular sequence of plot points for the player to experience.
Traditionally, the drama manager’s narrative evaluation criteria
are solely derived from a human designer. We present a drama
manager that learns a model of the player’s storytelling prefer-
ences and automatically recommends a narrative experience that
is predicted to optimize the player’s experience while conforming
to the human designer’s storytelling intentions. Our drama
manager is also capable of manipulating the space of narrative
trajectories such that the player is more likely to make choices
that result in the recommended experience. Our drama man-
ager uses a novel algorithm, called Prefix-Based Collaborative
Filtering (PBCF), that solves the sequential recommendation
problem to find a sequence of plot points that maximizes the
player’s rating of his or her experience. We evaluate our drama
manager in an interactive storytelling environment based on
choose your own adventure novels. Our experiments show that
our algorithms can improve the player’s experience over the
designer’s storytelling intentions alone and can deliver more
personalized experiences than other interactive narrative systems
while preserving players’ agency.

Index Terms—Interactive story generation, player modeling,
drama manager, prefix-based collaborative filtering

I. INTRODUCTION

An interactive narrative is a form of digital entertainment in
which users create or influence a dramatic storyline through
actions, typically by assuming the role of a character in a
fictional virtual world. The primary goal of an interactive
narrative is to make players feel like they are part of a coherent
unfolding story while also affording them the opportunity to
act in a way that can change the direction or outcome of the
story. There are many ways to achieve interactive narrative. A
common technique that does not require artificial intelligence
is to construct a branching story graph, a directed acyclic
graph in which nodes contain narrative content (e.g., plot
points) and arcs denote alternative choices of action that the
player can choose. Branching story graphs are found in the
choose your own adventure series of novels [1], and also used
to great effect in hypermedia and interactive systems [2].

Other approaches to interactive narrative employ a Drama
Manager (DM), an omniscient background agent that monitors
the fictional world and determines what will happen next in
the player’s story experience. The goal of a drama manager is
to coordinate and/or instruct virtual characters in response to
player actions, thus achieving a coherent narrative experience
while preserving the player’s agency in the world [3], [4]. In
other words, a drama manager attempts to enhance the player’s
experience in the virtual world by manipulating the player’s
progression through a space of story content. To achieve this

goal, a drama manager must generate and evaluate possible
future narrative sequences that the player could experience.

In the prevailing approaches to drama management, a
human game designer provides a global set of goals and
heuristics that determines what a “good” story should be. This
high-level designer specification is often the only measure
of quality of the player’s interactive experience. In short,
the Drama Manager is a surrogate for the human designer.
The drama manager uses this information to increase the
chances that the player will encounter a sequence of plot points
that will be rated highly according to this designer-specified
definition of good experience [4]–[10].

We believe that different players have different preferences
over the game stories they would like to experience and
that a drama manager should take the players’ preferences
into consideration when determining how the narrative should
unfold. To that end, we argue that a drama manager must also
be a surrogate for the game players. We aim to create a drama
manager that can deliver personalized stories that satisfy both
the designer’s intentions and player preferences. Personalized
drama management requires two challenges to be met:

1) The drama manager must learn a player model that can
be used to predict players’ preferences over possible
future narrative sequences.

2) The drama manager must manipulate the space of nar-
rative trajectories such that the player is more likely to
make choices that result in a preferred experience.

Player modeling in games can be treated as a content rec-
ommendation problem [11]. We convert the player modeling
problem into a collaborative filtering (CF) problem. Collabo-
rative filtering has been successfully applied in recommender
systems to model user preference over movies, books, music,
and other products [12]. CF algorithms attempt to learn users’
preference patterns from ratings feedback and predict new
user’s ratings from previous user’s ratings which share similar
preference patterns. A drama manager agent must continuously
ask the question “what plot point should happen next given
designer constraints and player preferences?” In this work, we
extend CF algorithms to recommend sequences of plot points
for the purpose of generating personalized story experiences.
Unlike the traditional use of CF for one-shot recommendations
of complete story artifacts (e.g., books, movies), we describe
a new type of recommendation problem called sequential
recommendation in which each subsequent recommendation
is dependent on the entire sequence of prior recommendations
for a particular story experience.

A drama manager utilizing a player model can optimize
an individual player’s narrative experience by selecting the

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

2

branches through a branching story graph that are predicted
to earn the highest ratings. However, this comes at the expense
of player agency—the ability for the player to determine his or
her own narrative future. Unfortunately, players are necessarily
not aware of the future narrative consequences of their choices.
We present an approach to personalized drama management
whereby the drama manager manipulates the branching story
graph such that the player is more likely to make a choice that
coincides with the optimal trajectory through the branching
story graph. Given multiple user options that lead to the same
plot points, our drama manager uses collaborative filtering to
predict which option a player is likely to choose and only
presents a subset of options such that the player is more likely
to follow the branch that the DM desires.

This article presents two novel contributions to the area of
personalized drama management. First, we introduce a novel
solution to the sequential recommendation problem called
Prefix-Based Collaborative Filtering (PBCF), which learns a
player’s preferences over fragments of stories and chooses
successive plot points to generate a story experience that
optimizes the player’s enjoyment. A DM built with the PBCF
algorithm is capable of learning a robust player model to
generate personalized stories that are built directly from play-
ers’ structured feedback, i.e. ratings, without rigid player type
presumptions. Furthermore, our PBCF based drama manager
can learn the player’s preference incrementally; as the player
leaves more feedback, the drama manager will build a better
player model based on all previous ratings and predict the
successive plot point with increasing accuracy. An evaluation
of the PBCF algorithm has been performed on a controlled
testbed domain based on Choose-Your-Own-Adventure book
serials using human players and simulated players. Second,
we present a drama manager that can manipulate players
into making optimal narrative choices without reducing player
agency. A preliminary study on human players shows that our
drama manager can significantly alter the narrative trajectories
of players.

II. RELATED WORK

Drama manager agents have been widely used to guide
the players through an expected story experience set by de-
signers. Two approaches to drama management—search-based
drama management [4], [5], [13] and declarative optimization-
based drama management [6], [14]—transform the problem
of selecting the next best plot point into a search problem
where the DM searches for possible future histories of plot
points based on an evaluation function set by the designer. The
Façade interactive drama [9] uses a reactive plot point selection
technique to determine the next set of behaviors for two virtual
characters. Riedl et al. [7] use a partial-order planner to re-
plan a story when the player performs actions that change
the virtual world in ways that prevent story progression as
expected. Similarly, Porteous and Cavazza [15] use a planner
with designer-provided constraints to control virtual characters
and push a story forward. A DM by Magerko et al. [8]
predicts player actions and attempts to prevent story failures
by directing virtual characters to perform actions or change

goals. These drama management techniques all respond to
player actions to move the story forward in a way partially
or completely conceived by a human designer. That is, the
DM is a surrogate for the human designer.

Player modeling has been widely applied to adapt computer
games [16]. But relatively little work has been done to use
player models to determine how a story should unfold in
a game or virtual environment. The PaSSAGE system [17]
automatically learns a model of the player’s preference through
observations of the player in the virtual world, and uses the
model to dynamically select the branches of a CYOA style
story graph. PaSSAGE uses Robin’s Laws five game player
schemes: Fighters, Power Gamers, Tacticians, Storytellers, and
Method Actors. A player is modeled as a vector where each
dimension is the strength of one of the types. As the player
performs actions, dimensions are increased or decreased in ac-
cordance to rules. Peinado and Gervás [18] use the same player
types. Seif El-Nasr [19] uses a four-dimension player model:
heroism, violence, self-interestedness, and cowardice. These
player modeling techniques assume players can be classified
according to several discrete play styles and that, even with
continuous characteristic vector combining the discrete player
styles, optimal story choices can be made by a DM. These
systems further assume that role playing game player classifi-
cations (or ad-hoc types) are applicable to story plot choices
and that plot points can be selected in isolation from each other
based on a comparison between their attributes and the player
model. In this paper, we propose a collaborative filtering based
player modeling approach that learns player model dimensions
from player feedback—ratings—and further solves sequential
plot point recommendation/selection problems.

Roberts, et al. [6], [14] develop a drama manager algorithm,
Targeted Trajectory Distribution Markov Decision Process
(TTD-MDP), to solve non-Markov Decision Processes by
wrapping all the previous MDP states into one node of a
trajectory tree. Their objective is to produce probabilistic
policies for the trajectory tree that minimize divergence from
a target distribution of trajectories. They apply their process
to declarative optimization-based drama management by mod-
eling stories as state space trajectories. TTD-MDPs require
a target distribution across trajectories/stories. Further, as a
reinforcement learning technique, it must simulate a player.
While the simulated player may utilize a player model, that
model would need to first be acquired. Our approach learns
the player model and does not require a target distribution over
trajectories.

III. BRANCHING STORIES

We make the assumption that stories can be decomposed
into a sequence of plot points, chunks of story content encap-
sulating character interactions, dialogue, or other noteworthy
events. To recommend a story that is expected to maximize
players’ enjoyment in an interactive story-based game or
virtual world, a drama manager needs to choose a subset of
plot points and order them in an optimal sequence, which
is an NP-hard problem given all possible plot points. To
make the problem tractable, temporal and semantic constraints

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

3

1 2 3 4

56

9

8

a b d

c e g

hf

Fig. 1. A branching story graph illustrating a example of a simple story
library.

are imposed among these plot points to reduce the size
of the space of possible interactive story experiences [4],
[5]. When constraints are known, a branching story graph
can be derived automatically or manually that specifies the
possible successors to each plot point. Figure 1 shows a simple
branching story graph; each node is a plot point (numbered)
and arcs denote choices (lower-case letters) that players can
make after each plot point. A path through the graph starting
from the root node and terminating at any leaf node is a
possible complete story experience for the player. Figure 1
contains five possible complete stories: ({1,2,3,4}, {1,2,3,5,8},
{1,2,3,5,9}, {1,2,6,5,8}, and {1,2,6,5,9}). The branching story
graph provides the DM a set of options for the next plot point
at each node.

Although the concept of a branching story graph is sim-
ple, many other plot point representations used by AI-driven
interactive narrative systems are reducible to the branching
story graph [2]. This is due to the fact that a drama manager
must generate possible future narrative experiences in order to
select the best next plot point. In this work, we assume there
exists a pre-authored branching story graph, which is stored in
our story library. The branching story graph may have been
authored by hand or by some other intelligent process (c.f.,
[2], [4]–[6]) or through collaborative editing techniques such
as crowdsourcing [20]. This assumption allows us to focus
on the DM decision-making process and the development and
validation of our player modeling technique.

In the following two sections, we will introduce our prefix-
based CF algorithm to recommend the next best plot point
based on a player model’s prediction of the enjoyment of the
subsequent narrative experience and our evaluation results. In
Section VI and VII, we will describe our algorithm to guide
players to the recommended plot points and our preliminary
experiment results.

IV. PREFIX-BASED COLLABORATIVE FILTERING

We aim to bring a personalized story experience to players
with different preferences. To recommend stories the players
enjoy, we use collaborative filtering to build a player model
that captures players’ preferences and is capable of extracting
and predicting the preferences of individual players over future
narrative experiences. In this work, we extend CF algorithms
to choose the best next plot points in the branching story graph.

To deal with the sequential nature of recommending a
story plot-point by plot-point, we cannot simply adopt a CF
algorithm and make one-shot recommendations of the best
next plot point. In other words, drama management is a non-
Markovian problem—at each step the DM’s selection of best
next plot point is based on all previous plot points encountered

A

B

1

1, 2

DC 1, 2, 31, 2, 6

GF 1, 2, 3, 4 1, 2, 3, 5E 1, 2, 6, 5

H I

1, 2, 6, 5, 9

J K

1, 2, 6, 5, 8 1, 2, 3, 5, 8 1, 2, 3, 5, 9

Fig. 2. The corresponding prefix tree of the branching story graph in Figure 1.
The branching story graph is usually a graph while the prefix tree is a tree
or forest.

by the player. For example, in Figure 1 if the player is currently
at node 3, the DM’s next selection, node 4 or node 5, should
depend on the player’s preference on {1, 2, 3, 4}, {1, 2, 3, 5,
8}, {1, 2, 3, 5, 9}, instead of preference on the individual node
4 or node 5. The preference on {1, 2, 3, 4}, {1, 2, 3, 5, 8},
{1, 2, 3, 5, 9} is likewise correlated with players’ preference
on previously experienced paths {1}, {1, 2}, {1, 2, 3}, etc.

In addition, we would like to avoid making any strong
assumptions about the dimensions—the player types—of the
player model. Previous approaches to personalization of in-
teractive stories [17], [18], [21] require a designer to pre-
determine the meaningful player types, even though there is no
comprehensive theory that these pre-defined player types can
cover all different players or can be generalized to different
types of games, nor any clear evidence of links between player
type models and preferences for story content. We believe
the player types should be discovered directly from players’
preferences and CF algorithms enable us to easily extract the
player types by observations of players’ structured feedback,
i.e. ratings.

A. Prefix Tree Representation

The first step to addressing the sequential recommendation
problem is to transform the branching story graph into a prefix
tree as in Figure 2, where every node (upper-case letters)
is a prefix of a possible complete story (i.e., a path from
initial node to terminal node in a branching story graph). The
children of a node in the prefix tree are the prefixes that can
directly follow the parent prefix. Comparing Figures 1 and 2,
one can see that each node in the prefix tree incorporates all
the previous plot points in the path from the initial plot point to
the current plot point.1 With the prefix tree, the drama manager
does not need to worry about history when recommending the
next node. In our system, only the prefix tree is stored in the
story library.

1All plot points from an original branching story graphs and all prefixes in
a prefix tree are assigned unique identifiers, enabling the system to translate
back and forth between representations as necessary.

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

4

In our approach, stories are presented to the players plot
point by plot point and we collect players’ ratings for the
“story-so-far”, the portion of the story that they have observed
leading up to the current point in time. Notice that it is easier
and more accurate for the players to rate the story-so-far than
the new plot point only since the history of interaction up
to that point matters in stories; any one plot point does not
make sense without previous ones. The story-so-far exactly
corresponds to the nodes in the prefix tree. By converting
a branching story graph to a prefix tree we do not need
to solve the credit assignment problem as in reinforcement
learning—how much of a final rating each previous plot point
is responsible for [22].

Compared to other algorithms which also roll history into
state nodes such as TTD-MDP [6], [14], our prefix-based
collaborative filtering algorithm focuses on optimizing the path
for different players based on the player model. Furthermore,
unlike TTD-MDP which tries to convert the problem into a
Markovian problem, the prefix selection problem in the paper
is still non-Markovian. For example, if the DM is at node
D in Figure 2, the selection of the next node (F or G in
Figure 2 should be related to the player’s ratings on previous
three prefix nodes (A, B, and D). A player who leaves positive
feedback on node B and negative feedback on node D should
be different from another one who leaves negative feedback
on both node B and D. Through the prefix-based CF algorithm
we describe in the next sections, the DM can model players’
preference based on all previous prefix ratings and make a
recommendation to the best of its knowledge.

B. Player Modeling

With the prefix tree, a prefix-based collaborative filtering
algorithm can now be considered to build the player preference
model. In prefix-based collaborative filtering, all the players’
ratings for the story prefixes are collected in a single matrix
which we call a prefix-rating matrix. An n by m prefix-
rating matrix contains the ratings for n prefixes from m
players. Each column of the matrix represents the ratings of
the corresponding player for all the prefixes. Each row of the
matrix represents ratings for the corresponding prefix from all
the players. Figure 3 shows a simple illustration of the prefix-
rating matrix. The matrix is usually very sparse, i.e. containing
a lot of missing ratings which are labeled as ∗ in the figure,
because we do not expect any given player to have read and
rated all the prefixes in the library. Note that a single prefix-
rating table contains entries for prefixes in all prefix trees in
the forest making up the story library.

If we can predict all the missing ratings in the prefix-rating
matrix for a player, it will be straightforward to recommend
the best next prefix during story recommendation process—to
pick the prefix that will lead to the highest rated stories. In
our approach, the prefix-rating matrix is treated as the product-
rating matrix as in traditional collaborative filtering [12], [23].
CF algorithms can be applied to train and compute the missing
ratings in the prefix-rating matrix.

Our CF algorithms make no presumptions on the player
types. Instead the algorithms will cluster the ratings of the

Prefix User 1 User 2 User 3 …

A (1) * * 2 …

B (1, 2) 1 * 2 ….

C (1, 2, 6) * * * …

D (1, 2, 3) 4 3 * …

… … … … …

Fig. 3. An illustration of the prefix-rating matrix. A, B, C and D represent the
prefixes in Figure 2. The larger the digital number, the higher the preference.
The stars represent those missing ratings.

players and learn “patterns” from each cluster of ratings.
These “patterns” also represent player types, although, as
with many Machine Learning techniques, it is difficult for
us to interpret these player types. These player types are
soft clusters in the sense that a particular player can have a
degree of membership in each player type. The learned player
types are more capable of describing all types of players for
particular games, compared to the pre-defined types. Next we
will introduce the CF algorithms used in the paper, followed
by the description of two phases of our plot point sequence
selection process: model learning and story recommendation.

C. Collaborative Filtering Algorithms

We have experimented with two collaborative filtering al-
gorithms: probabilistic Principle Component Analysis (pPCA)
[24] and Non-negative Matrix Factorization (NMF) [25], [26].
We will briefly introduce the two algorithms and their applica-
tion to our model learning and story recommendation process.

The probabilistic PCA algorithm assumes that a n dimen-
sional vector r can be factorized as follows:

r = Wx+ µ+ ϵ (1)

where x is a n′ dimensional vector in the hidden or reduced
dimension space (usually n′ < n) and x ∼ N(0, I). W is a n
by n′ matrix. µ is the mean vector which permits r to have
nonzero mean. ϵ ∼ N(0, σ2I) is the Gaussian noise.

Let the vector r be one column of the prefix-rating matrix.
pPCA projects the corresponding player’s prefix-rating vector
into a hidden space or a reduced dimension space x just as
in traditional principle component analysis. The hidden space
vector x models the corresponding player’s preference type.
Note that from Equation 1 we can get:

r|x ∼ N(Wx+ µ, σ2I) (2)

Thus the basic assumption of pPCA algorithm is that the
player’s prefix rating vector (the column of the prefix-rating
matrix) obeys a multi-dimensional Gaussian distribution. In
other words, the ratings for each prefix from a single player
take a univariate Gaussian distribution. Furthermore, pPCA as-
sumes that the expectations of different players’ rating vectors
are linear combinations of wi, the columns of the matrix W ,
which in our case represent player types. The player model
in pPCA is captured by W , µ and σ. Thus, for each player
with prefix-rating vector ri, these parameters help us find the
hidden vector xi, the individual player’s preference properties;

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

5

once the hidden vector is known, the player’s ratings for all
prefixes without ratings by this individual can be computed
according to the multi-dimensional Gaussian distribution.

The NMF algorithm aims to factorize an n by m matrix R
as follows:

R = W ∗H (3)

where W ∈ Rn∗n′
and H ∈ Rn′∗m are two non-negative

matrices (usually n′ < n). The non-negative property means
that all the entries in the matrix are greater than or equal to
zero.

In our case, R is set to be the prefix-rating matrix (n prefixes
and m players). The player model in NMF is simply the matrix
W . The columns of the matrix W , wj j = 1, ...n′, are bases
that represent different types of players. hi, the ith column of
H , corresponds to the ith player’s preference properties.

In practice, it will be difficult to interpret the player types
that correspond to wj or hi. However, known player types
can be introduced as prior knowledge to the model learning
process to improve the training accuracy. For example, in
NMF, if we have prior knowledge about some preference
types (e.g., fighter, tactician), i.e., we know their ratings for all
the prefixes (e.g., fighter’s rating vector wf , tactician’s rating
vector wt), then the matrix W can be seeded with the rating
vectors (wf , wt) as fixed columns. Simulated experiments
in Section V-F show that such prior knowledge can indeed
increase player modeling accuracy when they are known to
accurately distinguish players with regard to stories. More
details about how the CF algorithms are applied in our system
are explained in the following sections.

D. Model Learning Algorithms

Due to the large amount of missing values in the prefix-
rating matrix R, the EM algorithm [27] is used to learn the
parameters for pPCA algorithm (W , µ and σ) and NMF
algorithm (W).

1) Model Learning with pPCA: In the E-step of the pPCA
model learning algorithm, we use a Gaussian Process to
compute the missing ratings in R given the parameters W ,
µ and σ [28]. Let Σ = WWT +σ2I be the covariance matrix
for the rating vector r, which is one column of R. Denote the
sub-vector of r which contains all missing ratings as rh and
the sub-vector of r which contains all known ratings as ro.
Then the distribution p(rh|ro) and the expectation of rh can
be computed using the Gaussian Process:

E(rh|ro,µ,Σ) = µh +Σho(Σoo)
−1(ro − µo) (4)

where µh is the sub-vector of µ containing elements at the
positions corresponding to the missing ratings and µo is the
sub-vector containing elements at the positions corresponding
to the known ratings. Σho means the sub-matrix of Σ, of which
the rows are indexed by the position of missing ratings while
the columns are indexed by known ratings in r. The notation
system follows the tradition in [23].

In the M-step of the pPCA, the parameters W , µ and σ
are computed through maximizing the expected likelihood
function E(rh, ro|W,µ, σ) over distribution p(rh|ro), which
is computed in the E-step using Gaussian Process. After a

1: Initialize W , µ and σ randomly for pPCA, or W and H for NMF
2: while not converging or termination criterion not reached do
3: Compute the rating matrix R through Equation 4 for pPCA, or

Equation 3 for NMF {E-step}
4: Set the corresponding elements in R to the known ratings in R0

5: Compute W , µ and σ through Equation 6-8 for pPCA, or W and H
through Equation 9 and Equation 10 for NMF {M-step}

6: end while

Fig. 4. The model learning algorithm.

few equation manipulations, the expected likelihood function
will be:

E(rh, ro|W,µ, σ) ∼ log|Σ|+ tr(CΣ−1) (5)

where C = 1
mE(

∑
m
i=1(ri −µ)(ri −µ)T) and m is the total

number of training players. The parameters can be computed
by minimizing Equation 5. The minimization results are as
follows:

µ =
1

m

∑
i

ri (6)

σ2 =
tr(C)−

∑
n′

i=1λi

n− n′ (7)

W = U ′S (8)

where the λi is the ith biggest eigenvalue of C, U ′ contains
the n′ eigenvectors corresponding to λi and S is a diagonal
matrix with the ith value equaling to (λi − σ2).

2) Model Learning with NMF: For the NMF algorithm, the
E-step to compute the prefix-rating matrix R is simple given
the W and H: R = WH . Then the known elements of R are
set to be the corresponding input player ratings.

Given a fully observed R in the M-step, the objective is to
minimize the distance ||R −WH||2 as in [25] to get W and
H , where || ◦ || is the Frobenius norm. The update rules are
as follows:

Hij ← Hij
(WTR)ij

(WTWH)ij
(9)

Wij ←Wij
(RHT)ij

(WHHT)ij
(10)

3) Summary of Model Learning: Regardless of algorithm,
the complete model learning process is as follows. First we
build the story library with the prefix tree. Second, we collect
data to populate the prefix-rating matrix R0. Finally, we use
the algorithm in Figure 4 to learn the player model, i.e., to
predict missing rating values for all players.

E. Story Recommendation Algorithms

Story recommendation occurs once we have learned the
model parameters using pPCA or NMF and subsequently
wish to select a path through the branching story graph for
an individual player. The story recommendation phase begins
with collecting some initial ratings to seed r0 for a new player.
Next, we predict the missing ratings for the player. When using
pPCA, this is accomplished simply by applying Equation 4.
For NMF algorithm, the prediction algorithm in Fig. 5 is used.

After we compute the vector r with no missing ratings, a
valid next prefix that can lead to the highest rated full-length

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

6

1: Initialize h for NMF
2: while Not converging or termination criterion not reaching do
3: Compute r using Equation 3 (with h)
4: Set the corresponding elements in r to the known ratings in r0

5: Compute new h using Equation 9
6: end while

Fig. 5. The rating prediction algorithm for NMF.

story will be selected. For example if the story has proceeded
to node B in Figure 2, the selection of node C or D depends
on the predicted ratings of node H , I , J and K. If node I gets
the highest predicted rating, then node C in the graph will be
selected. If node K wins, node D will be selected.

V. EVALUATION OF PREFIX-BASED COLLABORATIVE
FILTERING

In this section, we temporarily set aside the question of
guiding players to the recommended story plot points and
focus on evaluation of the quality of the stories recommended
by our prefix-based CF algorithm. We have built a simplified
storytelling system in which the drama manager fully controls
the story progression using the PBCF algorithm. Although the
player agency is completely removed, the simplified story-
telling system facilitates us to examine our PBCF algorithm
under controlled conditions. Three human studies have been
performed to evaluate the player enjoyment of the recommend-
ed personalized stories.

The first experiment we conducted trained a player model
on human ratings of stories. We evaluate pPCA and NMF
implementations for the accuracy of models of human rating
behavior learned. The second experiment uses the player
model trained in the first experiment to evaluate the story rec-
ommendation algorithm against a baseline. Finally, we ablate
our system to assess whether the plot point recommendation
problem can be solved with a more classical non-sequential
recommendation approach. We also performed experiments
on simulated players to further evaluate the performance of
different story/prefix recommendation algorithms.

A. Story Library

The story library we used for our experiments was built
by transcribing the stories from four Choose-Your-Own-
Adventure (CYOA) books: The Abominable Snowman, Jour-
ney Under the Sea, Space and Beyond, and The Lost Jewels of
Nabooti, all of which contain adventure stories for teenagers in
the US [1]. The stories from one book constitute a branching
story graph. At the end of every page in the book, there is a
multi-choice question. Depending on which choice the reader
chooses, he or she will be delivered to different pages of the
book to continue down different branches of the story. Figure 6
shows a branching story graph from one of the books.

One of the reasons that we transcribed stories from Choose-
Your-Own-Adventure books is to control for story quality, as
opposed to authoring stories ourselves. In the current system,
every story was pruned and transcribed to contain exactly six
plot points. We did this only for implementation purpose,

55

5

4

1

14

13

8

10

7

4543

3132

15 20

9

9591

8077

6258

110

81 82

111

106

103

101

78

76

60

109

9896

33

64

46

21

102

104

23

59

47

34

22

100

57

73

75 67

69

76

65

50

55

68

49

48

38

112

107

26

11437

8786

24 27

99

8385

16

2928

19

113

7270

6351

11640

92

97

90

52 54

4239

Page #

Fig. 6. Illustration of the branching story graph of stories in The Abominable
Snowman. Each node in the graph represents a page in the book (a plot point).
Every story starts from the root node and ends on one of the leaves.

although our algorithm generalizes to longer and variable-
length stories. We further removed branches that are shorter
than six plot points due to the sudden demise of the player’s
character. The four branching story graphs were transformed
into a forest of four prefix trees,2 which was stored in the
story library. In total, our story library is capable of generating
154 possible stories (on average 1000 words per story) and
contains 326 prefixes. That is, there are 154 paths through the
four branching story graphs from the four Choose-Your-Own-
Adventure books and thus 154 leaf nodes in the prefix forest in
the library. The constraints between plot points greatly reduce
the number of valid stories in the story library; the number
of prefixes will grow linearly with the number of full-length
stories.

B. User Interface

We built a simple storytelling system to examine our prefix-
based CF algorithm. Our system implements the CF model
learning and story recommendation algorithms described ear-
lier. We have disabled the ability for players to make choices
in order to assess the story recommendation capabilities of
our system. The drama manager recommends plot points and
directly presents them to the players. It is thus capable of
guiding a player through a particular path from initial plot
point to a terminal plot point that is believed to be most
enjoyed by the player.

Figure 7 shows a screenshot of the simple storytelling
system we built for experiments with human participants. The
system presents the stories to the player one plot point at a
time, where each plot point is a paragraph of a story (Figure 7
shows two plot points). After each plot point, the system

2Due to the source of our data set, the trees in our prefix forest are disjoint,
although this does not always need to be the case.

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

7

Fig. 7. A screenshot of our simplified storytelling system. A plot point is a
paragraph of the story in the figure.

asks the player for their preference rating on the story-so-
far (corresponding to a prefix node in the prefix tree). The
ratings are integers ranging from 1 to 5 where a larger number
indicates a higher preference. A new plot point will appear
after the player clicks the Next button. The next plot point is
determined by the story recommendation algorithm, which is
either PBCF or random selection of a successor.

By temporarily limiting player interaction to providing
ratings of the story-so-far we aim to control the experimental
variable of player agency to further facilitate validation of our
player model. An interactive storytelling system that gives
players the appearance of full agency will be described in
Section VI.

C. Experiment 1: Training the Player Model on Human Play-
ers

In this experiment, we examine the ability of our system to
learn a player model utilizing human-generated prefix ratings.
To learn a model, we need a sparse prefix-rating matrix.
To generate the matrix, we implemented a version of our
storytelling system that randomly walks the branching story
graph. It starts at a randomly selected root node and then
selects randomly from possible successor plot points. For each
plot point presented, the system asks the player for a rating
of the story-so-far.

We recruited 31 players (18 male and 13 female) for the
experiment. 26 of the players are college graduate students
and the other 5 players are research scientists and staff at
our University. Five out of the 31 players were familiar
with the choose your own adventure series of books prior to
participating in the study. Participants who were not familiar
with choose your own adventure books were given a sample
adventure story to familiarize them. The experiment took about
half an hour for each player.

We obtained a 326 by 31 prefix-rating matrix R with ∼ 86%
ratings missing. The prefix-rating matrix R was randomly split

TABLE I
THE AVERAGE RMSE FOR NMF AND PPCA ALGORITHMS WITH

DIFFERENT PARAMETERS.

Algorithms RMSE
NMF dim3 1.2423
NMF dim4 1.1781
NMF dim5 1.1371
NMF dim6 0.9901
NMF dim7 1.1108
NMF dim8 1.1354
NMF dim9 1.2464

pPCA 1.2016

into training part Rt which contains 90% of the ratings, and
validation part Rv which contains the remaining 10% of the
ratings. The Rt and the Rv are still of the same dimensions
as the original R and they both contained missing values.

We trained the NMF and pPCA algorithms on the training
set Rt with different parameters. The resulting models were
then used to predict the ratings in the validation matrix. To
evaluate the accuracy of each algorithm, we measured the Root
Mean Square Error (RMSE), which is computed as follows:

RMSE =

√
1

|O|
∑
i,j∈O

((Rv)ij − (Rv′)ij)2 (11)

where Rv′
is the predicted validation matrix, O is the set of

entries indices that are not missing in the validation matrix Rv

and |O| is the number of entries that are not missing in Rv .
The random splitting process is repeated ten times and the

average RMSEs on the validation sets are reported in Table I.
The dimi in the table means that from NMF the matrix W in
Equation 3 has i columns. The RMSEs in the table suggest
that there are probably six types of players in the current
training set when it comes to story preferences. Although we
cannot easily interpret and label the player types, by learning
to cluster participants into these player types the system is
able to predict prefix ratings to within one point of actual
participant ratings on the story-so-far on average.

D. Experiment 2: Evaluation of Recommended Stories

We wish to confirm the hypothesis that the PBCF algo-
rithm can improve overall ratings of story experiences by
increasing the likelihood that players see stories that are
more aligned with their preferences than by chance alone.
Because of constraints between plot points, we know that all
possible paths in a branching story graph from root to leaf
nodes were intentionally designed, even random walks produce
good stories from the designer’s perspective. Our hypothesis
builds on the assumption that individual players may have
preferences across the possible story experiences allowable by
the designer’s branching story graph.

22 graduate students (17 male and 5 female) were recruited
to evaluate our PBCF algorithm. None of the participants were
involved in earlier experiments. We use the best player model
from Experiment 1 (i.e., NMF with 6 dimensions). To compare
the model performance on new players versus existing players

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

8

TABLE II
THE AVERAGE RATINGS FOR THE RANDOM AND PERSONALIZED

FULL-LENGTH STORIES. THE ACCURACIES ARE THE PERCENT OF PAIRS IN
WHICH THE AVERAGE RATING OF THE PERSONALIZED STORIES IS HIGHER

THAN THE AVERAGE RATING OF THE RANDOM STORIES.

Random Personalized Accuracy p-value
All 2.9449 3.8899 0.828 < 0.0001

Returning 3.032 4.035 0.863 < 0.0224
New 2.8993 3.8138 0.809 < 0.0001

on which the player model was trained, we also invited 11
players from experiment 1 back to participate in this study.

The story recommendation study consists of four stages. In
the first stage the DM presents five randomly generated stories,
generated in the same way as the first training experiment.
This provides some initial ratings from the participant. In
the second stage, five personalized stories are recommended
according to our PBCF algorithm. These personalized stories
are also presented to the participant plot point by plot point
and the players’ story-so-far ratings are collected after every
plot point. As in Sharma et al. [13], the DM presents another
five personalized stories in the third stage, followed by five
random stories in the last stage in order to eliminate any bias
introduced by the order in which the stories are presented to
the participants. In total, every participant is required to read
20 stories (10 total random stories and 10 total personalized
stories).

Table II shows the results for the new players and returning
players. The first line exhibits the statistical results on all the
33 testing players. The second and the third lines give the
results of the 11 returning players and the 22 new players,
respectively. The first column “Random” and the second
column “Personalized” show the average ratings of all the
random and all the personalized stories respectively. For every
player in the story recommendation phase, we also compare
the pair of average story ratings from the first step and the
second step, and the pair of average story ratings from the
third and the fourth step. The “Accuracy” column shows the
percent of pairs in which the average rating of the personalized
stories is larger than the average rating of the random stories,
indicating the DM correctly chooses preferred stories. The
last column shows the significance of the difference between
random and personalized averages using a one-tailed t-test.

One reason we would like to collect players’ ratings during
story recommendation phase is to create a more accurate
player model as described in Section IV-E. Another advantage
is that both the random stories and personalized stories will be
presented in the same format so that the players’ preference
judgement will not be affected by the system interface. In
fact, the players were not told which stories were random and
which stories were personalized before the experiment and
most of them did not notice the difference afterwards. The
last reason is that we need to compare their ratings between
random stories and personalized stories so that we can evaluate
the story recommendation algorithm.

TABLE III
THE EXPERIMENT RESULTS OF THE COMPARISON EXPERIMENT WITHOUT

CONSIDERING HISTORY.

Random Personalized Accuracy p-value
All 2.4214 2.5500 0.464 0.5621

E. Experiment 3: Sequential versus Non-Sequential Plot Point
Recommendation

Throughout the paper, we assume that the order in which
one experiences plot points affects players’ story ratings.
However, it is possible that the only thing that matters is the
most recently encountered plot point. We test this assumption
by attempting to learn a player model that recommends plot
points without considering sequence.

The comparison experiment is designed in which the DM
recommends the successive plot points based on the players’
ratings over plot points. This study was also composed of
model training phase and story recommendation phase. In the
model learning phase, 19 players participated in the study.
Each player read 30 independent plot points without story
context. To control for participant perception of a temporal
connection between plot points, plot points were randomly
selected and any two consecutive plot points were always
chosen from different CYOA books. We additionally altered
the user interface so that only one plot point is visible at a time.
Participants were told to rate single plot points irrespective
of prior plot points. Instead of the prefix-rating matrix, we
collected a plot point rating matrix in the model learning
phase. The player model was built by training the NMF
algorithm (with six dimensions) on the plot point rating matrix.

In the story recommendation phase, we invited another 14
participants for the study. The game interface is similar to that
used in prior experiments, but only showing one plot point on
the screen at a time. Every player read 20 stories in exactly
the same sequence as in previous experiments (5 random, 5
personalized, 5 personalized and 5 random). And after each
plot point, the participant was required to give a preference
rating for the plot point. Based on the NMF model learned
from the plot point rating matrix, the DM chose the next plot
point that could follow the current plot point to guide the
players through the branching story graph.

Note that the players’ ratings are still dependent on the
story-so-far since it is impossible for them to forget previous
plot points. As a result, in this experiment, the drama manager
tries to predict players’ preference on story prefixes using the
player model built based on players’ preference for plot points.
Table III shows the results of the comparison between the
system’s attempt to generate personalized stories and random
choices. There is no significant difference between the average
rating of personalized stories and random stories, suggesting
that history matters when recommending plot points.

F. Experiment 4: Evaluation of Story Recommendation with
Simulated Players

In addition to studies with human participants, we also con-
ducted experiments on simulated computer players in order to

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

9

get a more complete picture of PBCF algorithm performance.
Simulated players are more consistent over time, allowing us
to make observations about our algorithms on a controllable
data set. With simulated players we can generate larger data
sets to examine algorithm learning rates and experiment with
different algorithm designs without requiring hundreds of
human participants. Note that we are not requiring that the
simulated players play in the same way or have the similar
preference as human players. Instead, as long as the simulated
players are consistent on their behaviors, they can be used to
test the capability of our system to capture players’ preference
and build player models.

The simulated players are built based on the Robin’s Laws
player schemes and used in related works (cf., [17], [18]).
Every simulated player is created with a five-dimensional
characteristic vector. Each entry of the vector (ranging from
0 to 1) specifies the corresponding characteristic of the sim-
ulated player. For example, the vector [0, 0.7, 0, 0, 0.9] means
the simulated player is a combination of Power Gamer and
Method Actor and tends to enjoy Method Actor a little more.

Story prefixes are labeled according to beliefs about how
they match Robin’s Laws player schemes. Note that the prefix
labels are not required to be accurate descriptions of the
story prefix content since we do not aim to imitate human
preference.

Furthermore, we assume that a simulated player will prefer
a story prefix that most closely matches the player’s type.
For example, a simulated player with characteristic vector
p = [0.8, 0, 0, 0, 0] will prefer for a story prefix i with
label si = [1, 0, 0, 0, 0] over a story prefix j with label
sj = [0, 1, 0, 0, 0]. Consequently, we assume that the rating
r of a simulated player p for a prefix s is proportional to
cosine distance between the vector p and s: r ∼ pT s

|p||s| . The
ratings are computed by scaling the cosine distances to the
range between 1 and 5. In addition, we add random noise
with standard Gaussian distribution (mean 0 and variance
1) to all the ratings in order to simulate the variability in
the human player behaviors that it could be inaccurate to
quantitate preference into digital labels.

In the model learning phase, 120 simulated players were
created with characteristic vectors randomly chosen from {[1,
0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0,
0, 1]}. Each simulated player then “read” 10 random stories
and generated a preference rating after every plot point, similar
to what we asked of human participants. A 326 by 120 prefix-
rating matrix was generated in this way and used to train the
player model.

In order to test the generalization ability of our PBCF
algorithm, a new group of 1000 simulated players was created
in the story recommendation phase. Each simulated player
was given a random characteristic vector, of which the five
entries were floating point values ranging from 0 to 1. The
story recommendation phase follows the same four steps
as the human story recommendation experiments. For the
purpose of comparison to other algorithms, the DM generated
personalized stories using the following algorithms:

• BaselineP: using pPCA to learn the player models based
only on simulated players’ ratings for full-length stories

TABLE IV
THE EXPERIMENT RESULTS FOR THE SIMULATED PLAYERS USING

SEVERAL VARIATIONS OF THE DM ALGORITHM.

Algorithm Random Personalized Accuracy
BaselineP 2.2190 2.5305 0.668
BaselineN 2.1752 2.4582 0.643

Vector 2.2010 2.8335 0.617
pPCA 2.2350 2.9607 0.798

NMFwoP 2.2362 3.3950 0.894
NMFwP 2.2013 4.0027 0.949

instead of prefixes, then directly recommend the full-
length stories instead of choosing branches through rec-
ommending prefixes. The BaselineP algorithm behaves
similar to a traditional movie recommendation system
where full-length movies are recommended based on
others’ ratings on the full-length movies.

• BaselineN: The same as BaselineP except using NMF as
the CF algorithm.

• Vector: A vector based player modeling algorithm that is
similar to the model learning technique used by Thue
et al. [17]. Each player is simulated as a vector which
initially is [0, 0, 0, 0, 0]. For every plot point encountered,
the DM updates the characteristic vector based on the
features of the current story prefix including the new plot
point. Then the DM generates successive plot points by
recommending the following prefix based on the updated
player vector, or chooses randomly when there is no clear
preference.

• pPCA: The prefix-based CF algorithm using pPCA; same
as with the human players.

• NMFwoP: The prefix-based CF algorithm using NMF
without prior knowledge; same as with the human partic-
ipant story recommendation experiment in Section V-D.

• NMFwP: The prefix based algorithm using NMF with
Robin’s Laws player schemes as prior knowledge. In the
case of simulated players, we can compute the accurate
rating vector wj for each known player type j, where
j = 1, ..., 5 correspond to the five player types in the
model learning phase. These vectors wj are included in
the matrix W in Equation 3 as fixed columns during the
model learning process. This condition represents the near
ideal circumstance where the designer has strong genre
knowledge about how players respond to stories and can
author plot point sequences accordingly.

The experiment results for these algorithms on the 1000
simulated players are shown in Table IV. The results are all
statistically significant at p-values approaching zero (using
one-tailed t-tests on random and personalized averages) due
to the large number of simulated testing players.

We explored the learning rate of different player modeling
algorithms. In previous experiments, each player read 5 stories
(random or generated) in each of the four steps of the story
recommendation phase. We alter this number and compare
the story recommendation accuracy for different algorithms.
Figure 8 shows the average accuracies of 1000 simulated
players as the number of stories read in every step changes.
As shown in the figure, the NMF algorithms can achieve

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

10

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Random/Customized Stories

A
c
c
u
ra

c
y

pPCA

NMFwoP

NMFwP

Vector

BaselineP

BaselineN

Fig. 8. The accuracies of the six algorithms as the number of stories read
in every step changes.

20 40 60 80 100 120 140 160

0.8

1

1.2

1.4

1.6

1.8

2

Number of Users in Training Phase

R
M

S
E

NMFwP

NMFwoP

pPCA

Fig. 9. The average RMSEs of the three prefix based algorithms with different
number of simulated players for training.

accuracies higher than 70% even when a new simulated player
reads only one story.

The influence of the training set size on the player model
learning process was also tested. Figure 9 shows the average
RMSEs of the three prefix based algorithms with different
number of simulated players for training. Each RMSE value
in the figure is an average computed from 10 random splits of
the training data. As seen from the figure, the training RMSEs
decrease as the training set size grows. Due to the Gaussian
noise in the rating data, the RMSE values for the NMFwP
algorithm become stable after the number of training players
goes above 100 even if it has the perfect prior knowledge of
the player models.

G. Discussion

The experiments on the human players using our prefix-
based collaborative filtering algorithm achieve high story rec-
ommendation accuracies on the current Choose-Your-Own-
Adventure data set. In the study, the new players rate DM-
generated stories higher than random stories for over 80 per-
cent of the time. Because of the expertly designed branching
story graphs, even random stories are quality experiences;

respecting player preferences increases the enjoyment. We
achieve this accuracy rate after new players have only read
and rated 5 sample stories. An accuracy of about 86% is
achieved when the testing players’ data are already part of the
trained model. For all the participants including the returning
players and the new players, the average ratings for the
personalized stories are higher than the random stories, and
the p-values are approaching zero for the results. The results
show that our prefix based player modeling algorithms can
capture the players’ preferences and generate new stories with
high accuracy.

We wondered if our assumptions about drama management
should best be characterized as a sequential recommendation
problem. When we prevented our algorithms from taking
history into consideration and asked humans to rate plot points
independently of each other, PBCF accuracy dropped to 56%,
which is similar to random selections and the average rating
of generated stories is similar to the average rating of random
stories. This proves our assumption that a player model built
on plot point preference cannot be used directly to predict
players’ preference for prefixes or full length stories. Thus the
experiment proves the importance of history of experience in
story recommendation, the theory based on which we build
our prefix-based CF algorithm.

In the experiments with simulated players, the NMF al-
gorithm usually performs better than the pPCA algorithm.
One reason for it might be our linear model assumption
for the simulated players. The linear characteristic model for
simulated players coincides with the basic assumption of the
NMF algorithm, which also assumes that players (columns
of the matrix R in Equation 3) are linear combinations of
a set of bases (columns of the matrix W in Equation 3).
Although NMF is a natural fit for the simulated players, it
is also superior to pPCA for human data in terms of RMSEs
in our experiments.

Figure 8 illustrates that the prefix based algorithms are capa-
ble of extracting player preference much faster than traditional
CF algorithms that create the player model directly from full-
length stories (baseline algorithms BaselineP and BaselineN).
This result demonstrates that the players’ preference for story
prefixes does correlate with players’ preference for full-length
stories. Compared to the experiments on human players with-
out history in Section V-E, we can conclude that the player
models built based on prefix ratings are better at describing
the players’ preference over full-length stories than the plot
point based player model. Another reason the prefix based
algorithms work better than traditional CF is that the prefix
based algorithms can obtain more preference information (the
ratings on all the prefixes) from the players in both the
model learning and story recommendation phases. Figure 8
also shows that the Vector approach learns the player model
much slower than our algorithms and is thus less accurate on
average. This is because the Vector approach cannot acquire
any information from the training data and must build its
model of the player as the story unfolds.

One of the potential limitations to our approach is the need
to train the player model on human players, requiring them to
rate the story-so-far after every plot point. We acknowledge

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

11

that this may disrupt immersion, resulting in inaccuracy in our
player model. However, it is unlikely that a player will rate a
non-preferred prefix higher than a preferred prefix just because
the system has required too many rating interactions. That is,
our data should be consistent. Once the prefix-rating matrix is
sufficiently populated, our synthetic player studies suggest that
PBCF requires as few as one story worth of ratings to achieve
70% prediction accuracy. Training is a necessary requirement
if the player wishes a drama manager to work on one’s behalf
to increase the quality of one’s narrative experience. After an
initial, short training phase, we do not require the player to
further rate the story-so-far, although by doing so the system
can increase its prediction accuracy and thus ability to improve
the player’s experience. Thus, there is a trade-off between
player willingness to provide data and quality of experience.

PBCF is scalable to large numbers of players and branching
stories. The total number of prefixes in the story library is
theoretically exponential in the number of plot points. But in
practice we can effectively add constraints between plot points
to limit the size of the prefix database. Notice that in our
system, the number of total prefixes grows linearly with the
number of total stories given a limit of maximum number of
plot points in each story because of the constraints imposed
by the branching story graph representation. Although there
are only 154 full-length stories and 326 prefixes in the story
library, the well-known scalability of collaborative filtering
algorithms suggests that our algorithms can be extended to
handle larger scale problems as long as we have enough rating
data. In traditional recommendation systems, CF algorithms
can easily process products-user matrix with dimension of
hundreds of thousands and achieve high recommendation
accuracies [12].

An analysis of the corpus of four choose your own adventure
books reveals that 153 out of 154 of the possible trajectories
through the branching story graphs (leaf nodes in the prefix
tree) yield a mean rating of 2.5 or higher. Only one trajectories
has a mean rating of 2.0, but the trajectory was only rated
by two participants. The ratings of the set of possible full
narratives appear to be normally distributed around a mean of
3.5. While some possible trajectories are better than others, the
corpus analysis reveals that the books contain relatively good
stories. That PBCF is able to improve players’ experiences
over random is noteworthy. That is, a personalized drama
manager based on PBCF can take a well-authored branching
story graph that would result in good narrative experiences
without intervention and improve the subjective and individu-
alized quality of experience.

VI. PERSONALIZED DRAMA MANAGER

In this section, we describe our approach to guiding players
to the recommended plot points while giving the players the
appearance of full agency. The challenge to be addressed is
that players necessarily do not know how their choices at any
given plot point will impact their future story experience. Thus,
we hypothesize that players choose options based on a variety
of local cues—those that sound most interesting, that agree
with personal motivations, or that sound most likely to lead

b2

2

3 6

b1 b3 c1 c2 c3

Fig. 10. Illustration of a portion of Figure 1. Multiple options point to the
same plot point.

to favorable outcomes. Therefore, tension arises between the
player and the drama manager when the player’s choices do
not coincide with the DM’s desired narrative trajectory—the
branch predicted to optimize the player’s experience.

To address this challenge a drama manager must manipulate
the branching story graph such that players are more likely to
make choices in their own best interests without removing the
player’s ability to select any designer-specified branch. Our
approach is to extend the branching story graph representation
such that multiple options are allowed to point to the same
child plot point. The extended representation can be seen in
Figure 10, which is an enlargement of a single branch from
Figure 1 such that b1, b2, b3, c1, c2 and c3 are options that can
be presented to the player. The goal of the drama manager is to
pick a subset of the options to present to the player such that at
least one option leads to each child (ensuring true agency) and
also increases the likelihood that the player will pick the option
that transitions to the desired child plot point. For example,
suppose the drama manager—using PBCF—predicts that the
player’s optimal narrative trajectory is through plot point 6
and further predicts that the player’s preferences over options
to be b1 > c1 > b2 > c2 > b3 > c3, such that the player
is predicted to transition to plot point 3 instead. To intervene,
the DM can present options c1 and b3 to the player, while
suppressing the other options.

To guide a player to a recommended plot point without
eliminating player agency, our approach is as follows. First,
the drama manager uses PBCF to predict the best trajectory
through the branching story graph for a given player, as
detailed in Section IV. Second, the drama manager uses
collaborative filtering to predict the player’s preferences for
options available to him or her at any given plot point. When
the player is predicted to choose a branch that differs from the
PBCF recommendation, the drama manager selects options
to present or suppress. The player can still make a choice
contrary to that recommended by PBCF, in which case the
drama manager will attempt to guide the player down the next
best narrative trajectory.

A. Player Modeling

We assume that players have different preferences for
options. In order to predict players’ option preference, we
use collaborative filtering (CF) to learn players’ preference

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

12

1: For each new player, collect an initial prefix rating vector rp and an
option rating vector ro, both of which contain missing values.

2: Present a root plot point to the player.
3: while the current plot point is not a leaf node in the branching story graph

do
4: Predict the missing ratings in rp using the algorithm in Section IV-E,

and the missing ratings in ro using the algorithm in Section VI-A.
5: Select one of the child plot point in the branching story tree that leads

to the highest rated leaf node in the prefix tree.
6: Given the desired child plot point, present two highest rated options

that point to the desired plot point, and present one lowest rated option
that points to every other child plot point.

7: Collect the player’s ratings and include them into rp and ro.
8: Collect the player’s option selection. Present the corresponding child

plot point to the player.
9: end while

Fig. 11. The complete drama management algorithm.

patterns for all the options in the branching story graph. As in
the case of prefix preference learning in Section IV-B, we ask
players to rate all the options presented after each plot point
in the training phase, and construct an option-rating matrix.
The option-rating matrix will be similar to the sparse prefix-
rating matrix in Figure 3. Each row of the option-rating matrix
contains one player’s preference ratings for all the options
while each column contains ratings for one option from all
the players. The option-rating matrix also contains a lot of
missing ratings. To train the player model on the option-rating
matrix we use NMF and pPCA (as in Section IV-C) as well
as K-Nearest Neighbor and K-mean algorithms. The learned
player model retains the extracted rating patterns for players
of different option preference types and will be used to predict
future players’ preference ratings over the options.

B. Drama Manager Algorithm

Our drama manager requires a player model for story/prefix
preferences as described in Section IV and the player model
for option preferences as described above. The drama manager
algorithm is shown in Figure 11.

The interactive narrative experience begins with a root plot
point. For each plot point presented to the player, the drama
manager uses the prefix rating prediction to pick the child
plot point that will lead to the highest rated descendant leaf
node in the prefix tree. Given a player model for option
preferences, the manipulation of options presented to the
player is straightforward. The drama manager presents to the
player the two options that lead to the desired child plot
point that are predicted to be highest rated by the player.
For each non-desired child plot point, the drama manager also
presents the option predicted to be rated lowest by the player.
This option presentation scheme maximizes the likelihood that
the player will pick the option leading to the desired child
plot point, given the player model. It does not guarantee that
options leading to the desired plot point will be higher rated
than options leading to other plot points, nor that the player
will pick the option leading to the desired plot point.

Note that it is not strictly necessary to collect option and
prefix ratings as in step 7 of Figure 11; we do it in our system
for the purpose of collecting as much data as possible to build
more accurate player models. With every new rating, the DM

will get better understanding of the current player’s preference
over the story prefixes and options.

VII. PRELIMINARY EVALUATION OF DRAMA MANAGER

We have performed a set of preliminary human study to
evaluate our algorithm’s ability to guide players to a selected
plot point. Instead of directly presenting the recommended
plot points to the players as in Section V, we will give the
players the appearance of full agency and let them choose the
options. We test the hypothesis that the drama manager can
significantly affect the branches chosen by interactive players.

A. Story Library

We transcribed the Choose-Your-Own-Adventure book, The
Abominable Snowman, into our story library representation. As
before, we modified the graph such that all possible narrative
trajectories contain exactly six plot points. There are 28 leaf
nodes and 19 branching points in the branching story graph.
Figure 12 shows the branching story graph we used in our
study.

For experimentation, we selected one branching point (plot
point 2) from the graph. The text for plot point 0 and plot point
2 is shown in Figure 13, which is summarized as follows: the
player must decide whether to continue to search for the Yeti
or go elsewhere to photograph tigers. Plot point 2 has two
children plot points. We authored a total of seven options for
this plot point:

• Carlos could be in danger. You decide to go ahead with
the expedition for Yeti.

• You continue the expedition for Yeti since you could be
the first person in the world to get Yeti photos.

• You have been preparing for the expedition for such a
long time that you decide to continue to search for Yeti.

• It is wise to play it safe. You decide to postpone the
expedition.

• You go for tigers since you can make a good fortune by
selling photos of tigers in the Terai region.

• You go for tigers since many friends of yours strongly
recommended photography in Terai region.

• Mr. Runal is an expedition expert. You follow his advice
to go on the expedition for the tigers.

The first three options lead down one branch in which the
player continues to search for the Yeti, and the last four lead
down another branch in which the player searches for Tigers.
Each option emphasizes a different motivation (friendship,
fame, consistency, safety, money, following others, and safety)
that a player might value. We did this as our first step
to evaluate the algorithm. Other theories from the area of
psychology can also be used to author the options [29]–[32].
Our algorithm can be applied directly to handle more options
created on other theories. In fact, more options will increase
the likelihood that some options leading to the desired plot
point will be preferred by the player.

B. Experiment 1: Training the Option Preference Model

The human study is divided into a training phase and a
testing phase. In the training phase, we recruited 39 players

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

13

0

19

2

42

1

5

4 7

3 41

6

8 9 15

12 13 14 10 11 16 17 18

20 24 27 30

21 25 28 31 32

22 23 26 29

38

33 34 35 36 37 39 40

55

56

57 58

43 44

49 53 45 47

50 51 52 54 46 48

Fig. 12. The branching story graph for the choose-your-own-adventure book: The Abominable Snowman. The highlighted node (plot point 2) is the one we
experimented on.

Carlos and you make a good climbing team. You two decided to find Yeti,
sometimes called the Abominable Snowman... Two days ago Carlos left by
helicopter to look over the terrain near Mt. Everest, one of the best-known
mountains in the Himalayas. The helicopter returned without him since Carlos
decided to stay up at the Everest base camp to check out a report that a Yeti
had been seen. He had a radio transmitter but the weather turned bad and
radio communication was interrupted... You have an appointment to speak
with Mr. Runal, the Director of Expeditions and Mountain Research for the
Nepalese government and an authority on the Yeti. You want to ask for his
opinion at first... “Recently, a large expedition set out without telling us that
they were going after the Yeti,” says Runal. “They used guns and traps, and
tried to kill one of them. The Yeti are angry. I must advise against you into
the Yeti territory—I could arrange a trip for you into the Terai region. You
could photograph and study the tigers. Later, perhaps, you could conduct the
expedition you are leading.”

Fig. 13. Plot point 0 and 2 from The Abominable Snowman

from Amazon Mechanical Turk. Each player read 5 full-length
stories, presented plot-point by plot-point. After each plot
point, the players rated the story-so-far and all the options
on a scale of 1 to 5 before they could select one of the
options to continue. Figure 14 shows a screenshot of our online
interactive storytelling testbed. At the experimental branch
with seven options but two children, four options (two for each
child plot point) were randomly picked and presented to the
player. Participants were asked to explore the graph as much
as possible. If they encountered a plot point they had seen
previously, their previous ratings for story-so-far and options
were automatically filled out from their previous response. No
participants chose to change their ratings upon encountering a
plot point a second time.

To analyze our system, we randomly selected 80% of the
players and collected their ratings into an option-rating matrix.
We compute a player model by training CF algorithms on
the option-rating matrix. The player model is used to predict
players’ preference over the options for the remaining 20%
of subjects. The option preference is then used to predict
players’ selections at the experimental branching point which
we selected in previous section. We repeated this process 50
times. Table V shows the results of the average prediction
accuracy of option selection at the experimental branching
plot point. We implemented four algorithms to predict players’
option preference: pPCA and NMF (with dimension 4) as

Fig. 14. A screenshot of the interactive storytelling system. A plot point
is a paragraph of the story in the figure. Compared to Figure 7, multiple
options are presented after every plot point. The story will unfold depending
on players’ selections of options.

described in Section IV-C, K-Nearest Neighbor algorithm
(with K equaling to 2), K-mean algorithm (with k equaling
to 3). As we can see from the table, pPCA achieves the best
prediction accuracy.

C. Experiment 2: Testing the Drama Manager

In the testing phase, we recruited additionally 27 player-
s from Amazon Mechanical Turk. The participants played
through five stories. For an individual participant’s first four
trials, he or she was forced to explore the left side of the
Figure 12 (the subtree with plot point 1 as its root). From

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

14

TABLE V
THE PREDICTION ACCURACY OF OPTION SELECTION AT THE

EXPERIMENTAL BRANCHING PLOT POINT.

Algorithm Accuracy
pPCA 0.8242
NMF 0.7626
KNN 0.7394

KMean 0.7367

TABLE VI
THE EFFECT OF PERSONALIZED DRAMA MANAGEMENT ON BRANCHES

FOLLOWED.

Algorithm % Yeti % tigers p-value
Without intervention 0.722 0.278 –

DM Intervention (target: Yeti) 0.95 0.05 <0.0025
DM Intervention (target: tiger) 0.33 0.66 <0.005

that point on, the protocol was the same as for the training
phase: participants choose any option they desired. On the fifth
trial, the participant is forced to go through the experimental
point (plot point 2) and could choose any option from plot
point 2 and on. On the fifth trial at the experimental plot
point the drama manager would present three of the seven
options: two of them pointing to the intended child plot point
and one pointing to the other child plot point based on the DM
prediction. Table VI shows the percentage of participants who
followed each branch succeeding the experimental plot point
with and without drama manager intervention. The first row
of the table shows how often participants chose one branch
versus the other during the training phase. The subsequent
rows show the percentage choosing each branch when the
DM was configured to guide players toward the Yeti or tigers,
respectively.

Without intervention, players overwhelmingly prefer to
continue to search for the Yeti (72.2%). When the drama
manager is configured to direct players toward the Yeti branch,
the probability that players will choose an option leading
to that branch increases to 95%. When the drama manager
is configured to direct players toward the other branch, the
probability that players do so increases from 27.8% to 66%.
All changes due to drama manager intervention are statistically
significant.

D. Discussion

Player agency is a critical aspect of interactive narrative. The
studies demonstrating the effectiveness of PBCF necessarily
removed player agency in order to focus on the accuracy of
story recommendations without the uncontrolled variable of
player choices. Our drama manager maintains the appearance
of player agency by carefully selecting options to present to
the player based on predictions of his or her preferences over
all options.

While our preliminary study did not address the question
of whether the drama manager could guide the player down
branches predicted by PBCF to be preferred by the player, we
were able to show that the drama manager can significantly
influence the trajectories of players, regardless of how the

target branch is chosen. Future work will be to assess PBCF
and the drama manager working fully together.

We did not ask players whether the drama manager reduced
player perception of agency. However, since players are pre-
sented with options for all possible branches—no branches are
outright denied to players—we believe that the appearance of
player agency will be upheld.

VIII. CONCLUSIONS

Personalized drama management aims to personalize in-
dividual players’ experiences in virtual worlds and games
while having those experiences conform to a human designer’s
intent. We present two novel contributions to this end. First,
the prefix-based collaborative filtering algorithm solves the
sequential recommendation problem to predict the trajectories
through a branching story graph of plot points that will
be most preferred by an individual player. Our experiments
demonstrate that we can learn a player model and use it to
enhance players’ experiences above that of an unguided walk
through a branching story graph.

Second, we present a drama manager that can guide players
along different trajectories through a branching story graph
by predicting the choices at each branching point players will
make and then manipulating which options will be presented
to the player. Our preliminary study suggests that our drama
manager can significantly affect the paths through the story
that players take without reducing player agency.

Branching story graphs are simple, yet effective means for
human designers to explicitly assert their authorial intent for
what interactive narrative experiences are acceptable. We note
that many drama management approaches that do not allow for
personalization use different narrative content representations,
but that these systems generate structures that are equivalent
to branching story graphs. In the future we envision our drama
manager operating in conjunction with more sophisticated
interactive narrative systems and story generators.

We believe that Drama Managers should take player pref-
erences into consideration when managing the unfolding nar-
rative in a virtual world or game, thus balancing the play-
er’s interests against that of the human designer. The PBCF
algorithm is a step toward incorporating players’ individual
differences into the gaming experience for the purpose of
delivering more enjoyable experiences on an individual level.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the U.S. Defense
Advanced Research Projects Agency (DARPA) for this re-
search.

REFERENCES

[1] [Online]. Available: http://en.wikipedia.org/wiki/Choose Your Own
Adventure

[2] M. Riedl and R. M. Young, “From linear story generation to branching
story graphs,” IEEE Journal of Computer Graphics and Animation,
vol. 26, no. 3, pp. 23–31, 2006.

[3] J. Bates, “Virtual reality, art, and entertainment,” Presence: The Journal
of Tele-operators and Virtual Environments, vol. 1, no. 1, pp. 133–138,
1992.

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

15

[4] P. W. Weyhrauch, “Guiding interactive drama,” Ph.D. Dissertation, vol.
School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. Technical Report CMU-CS-97-109, 1997.

[5] M. J. Nelson and M. Mateas, “Search-based drama management in
the interactive fiction Anchorhead.” Proceedings of the First Artificial
Intelligence and Interactive Digital Entertainment Conference, 2005.

[6] D. L. Roberts, M. J. Nelson, C. L. Isbell, M. Mateas, and M. L. Littman,
“Targeting specific distributions of trajectories in MDPs,” Proceedings
of the Twenty-First National Conference on Artificial Intelligence, 2006.

[7] M. O. Riedl, A. Stern, D. M. Dini, and J. M. Alderman., “Dynamic
experience management in virtual worlds for entertainment, education,
and training,” International Transactions on Systems Science and Appli-
cations, 2008.

[8] B. Magerko and J. E. Laird, “Mediating the tension between plot
and interaction,” AAAI Workshop Series: Challenges in Game Artificial
Intelligence, 2004.

[9] M. Mateas and A. Stern, “Integrating plot, character and natural lan-
guage processing in the interactive drama Façade,” Proceedings of the
1st International Conference on technologies for Interactive Digital
Storytelling and Entertainment, 2003.

[10] B. Li and M. O. Riedl, “An offline planning approach to game plotline
adaptation.” Proceedings of the Sixth Artificial Intelligence and Interac-
tive Digital Entertainment conference, 2010.

[11] B. Medler, “Using recommendation systems to adapt gameplay,” Inter-
national Journal of Gaming and Computer Mediated Simulations, vol. 1,
no. 3, pp. 68–80, 2008.

[12] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in Artificial Intelligence, 2009.

[13] M. Sharma, M. Mehta, S. Ontanon, and A. Ram, “Player modeling
evaluation for interactive fiction,” Proceedings of the Third Artificial
Intelligence and Interactive Digital Entertainment conference, 2007.

[14] S. Bhat, D. L. Roberts, M. J. Nelson, C. L. Isbell, and M. Mateas,
“A globally optimal algorithm for TTD-MDPs,” Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2007.

[15] J. Porteous and M. Cavazza, “Controlling narrative generation with
planning trajectories: the role of constraints,” Proceedings of 2nd In-
ternational Conference on Interactive Digital Storytelling, 2009.

[16] R. Lopes and R. Bidarra, “Adaptivity challenges in games and simula-
tions: A survey,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 3, no. 2, pp. 85–99, 2011.

[17] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen, “Interactive story-
telling: A player modelling approach,” Proceedings of the third Artificial
Intelligence and Interactive Digital Entertainment Conference, 2007.

[18] F. Peinado and P. Gervas, “Transferring game mastering laws to
interactive digital storytelling,” Proceedings of the 2nd International
Conference on Technologies for Interactive Digital Storytelling and
Entertainment, 2004.

[19] M. S. El-Nasr, “Engagement, interaction, and drama creating an engag-
ing interactive narrative using performance arts theories,” Interactions
Studies, vol. 8, no. 2, pp. 209–240, 2007.

[20] B. Li, S. Lee-Urban, D. S. Appling, and M. O. Riedl, “Automatically
learning to tell stories about social situations from the crowd,” Pro-
ceedings of the LREC 2012 Workshop on Computational Models of
Narrative, 2012.

[21] M. S. El-Nasr, “Interactive narrative architecture based on filmmaking
theory,” International Journal on Intelligent Games and Simulation,
vol. 3, no. 1, 2004.

[22] R. S. Sutton, “Temporal credit assignment in reinforcement learn-
ing,” Electronic Doctoral Dissertations for UMass Amherst, Paper
AAI8410337, 1984.

[23] K. Yu, S. Zhu, J. Lafferty, and Y. Gong, “Fast nonparametric matrix
factorization for large-scale collaborative filtering,” Proceedings of the
32nd SIGIR conference, 2009.

[24] M. E. Tipping and C. M. Bishop, “Probabilistic principal component
analysis,” Journal of the Royal Statistical Society, vol. B61, no. 3, pp.
611–622, 1999.

[25] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” Advances in Neural Information Processing Systems,
vol. 13, pp. 556–562, 2001.

[26] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from incomplete
ratings using non-negative matrix factorization,” Proceedings of the 6th
SIAM Conference on Data Mining, 2006.

[27] [Online]. Available: http://en.wikipedia.org/wiki/Expectation%E2%80%
93maximization algorithm

[28] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006. [Online]. Available:
www.GaussianProcess.org/gpml

[29] R. B. Cialdini, Influence: The Psychology of Persuasion (Collins Busi-
ness Essentials). Harper Collins Publishers, 2006.

[30] R. Figueiredo and A. Paiva, “”I want to slay that Dragon!” - Influenc-
ing choice in interactive storytelling,” Proceedings of the Third Joint
Conference on Interactive Digital Storytelling, 2010.

[31] ——, “Persu - An architecture to apply persuasion in interactive story-
telling,” Proceedings of the 8th International Conference on Advances
in Computer Entertainment Technology, 2011.

[32] D. L. Roberts, M. L. Furst, and C. L. Isbell, “Using influence and
persuasion to shape player experiences,” Proceedings of the 2009 ACM
SIGGRAPH Symposium on Video Games, 2009.

Hong Yu received the B.S. degree and M.S. degree
in computer science from Shanghai Jiao Tong Uni-
versity in China. He is currently working towards
the Ph.D. degree in School of Computer Science at
Georgia Institute of Technology. He is a member of
the Entertainment Intelligence Lab in Georgia Tech.
His research interests include player modeling for
computer games, story generation, artificial intelli-
gence and machine learning.

Mark Owen Riedl is an Assistant Professor at the
Georgia Institute of Technology School of Interac-
tive Computing. Dr. Riedl’s research resides at the
intersection of artificial intelligence, storytelling, and
virtual worlds, focusing on how intelligent systems
can autonomously create engaging experiences for
users in virtual worlds. His research has implications
for entertainment computing, virtual educational en-
vironments, and virtual training. He has published
over 80 scientific articles on artificial intelligence, s-
tory generation, interactive virtual worlds, and adap-

tive computer games. His research is supported by the NSF, DARPA, the U.S.
Army, Google, and Disney.

Pre-print of an article to appear in the IEEE Transactions on Computational Intelligence and Artificial Intelligence
 in Games (in press).

