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• We propose a novel approach to customizing haptic and visual feedback.
• Geometric/behavioral characteristics of user control were extracted from user data.
• Using the virtual fixturing, we customized haptic and visual assistances.
• Human subject experiments were conducted to verify the proposed approach.
• The user’s performance significantly enhanced with the customized haptic assistance.
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a b s t r a c t

This paper presents an approach to developing an assistive interface for human–robot interaction that
provides users with customized haptic and visual feedback. The developed interface targets to improve
users’ task performance by customizing assistance policy and level based on users’ performance and
control strategy. To achieve this, the users’ control strategywasmodeled based on inverse optimal control
technique. Then, features describing the geometric and behavioral characteristics of user control are
derived. Finally, an expert whose features most closely matched each user was identified. The identified
expert was assigned to the user to define and provide customized assistance via a virtual fixturing.
In human subject experiments, control strategies of twenty-three users were identified and featured;
their performance was measured with four assistance types (no-assist, haptic assistance, visual zooming
assistance, haptic assistance + visual zooming assistance) × two parameterization types (customized,
non-customized). By analyzing the experimental data, we found an optimal combination of assistance
type× parameterization type that results in the most improvement of performance. The results showed
that the users’ task completion time andmean required effort yielded the best improvementswhen haptic
assistance (with no visual zooming assistance)× customized parameterization were provided for mobile
robot driving tasks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Assistive interfaces are currently prevalent in various applica-
tions due to their unique characteristics of guiding user-driven
control input and reducing the user’s burden for fine control [1].
For about two decades, they have shown feasibility for user’s
task performance improvement including telerobotic tasks [2],
steering tasks [3,4], robot-assisted manipulation [5,6], assistive
medical devices and telesurgery [7–10], etc. Previous studies also
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reported that human task performance could be enhanced by
blending two control inputs from a human user and an assistive
system. These blending techniques are often referred to as various
names such as shared control [11–13], control blending [2,14],
assistive/cooperative control [6,15], and so on.

Accordingly, abundant applications of assistive interfaces exist
to provide mobility related assistance [16]. To assist a user for a
power wheelchair control, researchers conducted several studies.
Marchal-Crespo et al. developed a wheelchair trainer system [17].
Urdiales et al. introduced a wheelchair collaborative control for
indoor navigation [18]. Carson et al. proposed a collaborative smart
power wheelchair [15]. Simpson et al. introduced a hephaestus
smart wheelchair assistance which used a belief histogram of
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obstacle location for speed control [19].1 For car-driving assistance,
Storms et al. proposed a model predictive controller based ap-
proach [14]. Jensen et al. addressed a method to utilize a haptical
sensation [21] whereas Griffiths and Gillespie proposed a shared
control approach via a haptic steeringwheel [11]. In all these appli-
cations, it was a critical issue to define an assistance policy (which
means a way of blending a human user’s intention and an assis-
tive machine’s intention and providing guidance control) and an
assistance level (the intensity of guidance). For instance, a human
user may experience severe difficulty controlling a smart power
wheelchair in a preferred direction or at the desired speed when
an assistance policy and an assistance level were set improperly.

Aforementioned aspects in assistive interface design claimed
that ‘‘an excessive assistance for a skilled user would slow down
task completion, whereas a lack of assistance for a novice usermay
cause a task failure [17,18]’’. These aspects initiated techniques
to adapt the assistance policy and the assistance level based on
user’s skill level, such as ‘‘assistance-as-needed’’ [22] followed by
‘‘guidance-as-needed’’ [3,4], ‘‘virtual teacher’’ [12,23], ‘‘progressive
guiding torque’’ [24], etc. Selected works in the current state of
the art consider assistance adaptation techniques. For instance,
Passenberg et al. reported a method that utilized a deviation from
the desired trajectory as a metric to vary an assistance level in real
time [25,26]. Abbink et al. introduced the smooth shifting of haptic
control authority [13]. Smisek et al. proposed physiology-based
approaches by considering user grip force [27] and neuromuscu-
lar impedance in [28]. Fisher et al. considered user’s behavioral
model [29]. Although there exist ample approaches, an assistance
adaptation technique based on both the user’s control strategy
and performance has not yet been fully considered for assistive
interfaces to provide improved mobility. Furthermore, most of the
existing frameworks cannot compatibly/flexibly cope with select-
ing a reference trajectory or the intensity of assistancewith respect
to a wide variety of user’s skill level and behavioral characteristics.

Tomitigate these issues, we proposed an approach to customiz-
ing haptic and visual feedback based on the user’s control strategy
as well as user performance for the custom-designed assistive
human–robot interaction (HRI) interface. In our approach, we first
model user’s control strategy as a cost function by using inverse
optimal control (IOC) [30,31]. Then, we define characteristic fea-
tures that describe the geometric and behavioral characteristics of
user control. Finally, the features will serve as parameters to set
an assistance policy and an assistance level to provide the cus-
tomized haptic and visual feedback. Specifically, the parameters
obtained from the characteristic features of the user control will
be utilized to set a virtual fixture similar to constructing a virtual
convex-shaped hull along the desired trajectory. The purpose of
the virtual hull (i.e., wall) is to constrain the position of a controlled
object in the vicinity of the desired trajectory [32]. Accordingly, the
assistance via haptic and visual feedback will be modulated based
on the slope of the virtual well.

To our best knowledge, no studies have explicitly addressed
these issues. Fisher et al. considered user’s behavioral pattern only
within a constrained task space [29]. Kucukyilmaz and Demiris’s
approach is the closest example where a human expert simultane-
ously demonstrate his strategywhile a novice is performing a given
task [33]. However, direct assistance by an expert’s demonstration
can cause degraded user performance due to expert’s fatigue or
boredom.

To validate our proposed approach, we performed human sub-
ject experiments. In the experiments, users were given several
tasks for which they control amobile robot to a goal positionwhile
watching a monitor display in a virtual environment. These tasks
were adopted for the potential applications where a rider drives

1 [20] provides a valuable historical survey of a smart wheelchair.

an assistive power wheelchair while monitoring Google Maps or
Bing Maps through a tablet. Statistical analysis was performed
to explain the effects of assistance types and parameterization
types (either positive or negative) on user performance improve-
ment. While analyzing experimental data, the following research
questions were addressed: ‘‘how do assistance types affect user’s
performance?’’, ‘‘how does the customized parameterization affect
user’s performance?’’, and ‘‘what is the optimal combination of
the types of assistance and parameterization for the best user
performance?’’

The rest of the paper is organized as follows: Section 2 presents
an assistive HRI interface platform, guidance-based virtual fixture,
and mathematical descriptions for setting both haptic and visual
assistance policies. Section 3 discusses an approach to customizing
assistance policy and level. Section 4 introduces the design of the
human subject experiment. The experimental results are discussed
in Section 5, followed by discussion in Section 6. Section 7 ad-
dresses the conclusion of this study.

2. Assistive human–robot interface with haptic guidance and
visual zooming

2.1. Interface architecture

The developed assistive HRI interface platform is illustrated
in Fig. 1. The platform is equipped with a haptic joystick (input
device), a display monitor, and a custom-designed simulator ap-
plication with a virtual mobile robot. To control the mobile robot,
a user interacts with the simulator application while receiving
haptic and visual feedback from the haptic joystick and the display
monitor, respectively. For human subject experiment, the platform
provides several tasks where a user controls a mobile robot along
a road with various scenarios.

A haptic and visual feedback controller performs functional key
roles (see the inside of the programmed simulator application
in Fig. 1). For the human user, the haptic and visual feedback con-
troller modifies haptic force fhaptic and a zoom level α. It generates
guiding force fg which becomes fhaptic at the user’s hand. To enhance
the user’s task performance, this guiding force is transferred to
the mobile robot controller and blended with a control force f
generated by a user input. All of these key roles depend on a virtual
fixturing along the road (right-top corner in Fig. 1). The virtual
fixturing is a set of three parameters: a reference trajectory (γ ), a
width of virtual fixturing (d), and the maximum level of assistance
(1 − κδ⊥ ) that indicates the maximum level of assistance that a
user will receive from a haptic feedback system (i.e., the portion of
control force f that will be blended with the haptic system). These
three parameters are targeted to be customized for each user by
the proposed assistance customization algorithm in Section 3.

2.2. Setting haptic and visual assistances via a guidance-based virtual
fixturing

In our assistive HRI interface, an assistance policy is set by a
virtual fixturing. Among various types of virtual fixturing,we adopt
a guidance-based virtual fixturing (GVF) introduced in [32]. For the
developed interface, the adopted GVF plays a key role in setting
haptic and visual assistance.

2.2.1. Guidance-based virtual fixturing
GVF refers to defining a function along the desired trajectory

to assist a user in moving a controlled object along the desired
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Fig. 1. Assistive HRI interface platform and the three virtual fixture parameters: the level of maximum assistance (1 − κδ⊥ ), width (d), and reference trajectory (γ ). The
proposed algorithm will explain a method to customize these three parameters for each user.

trajectory [5]. Typically, the function for GVF is monotonically
non-decreasing as the controlled object deviates further from the
desired trajectory (whichwill be referred to as a reference trajectory
below), and its value is related to the intensity of applied assis-
tance.

To explain the adopted GVF in detail, we start by introducing
preferred direction and non-preferred direction vectors. Let x be
the position vector of the controlled object, [x1, x2]T , and s be
the closest point on a reference trajectory from x (see Fig. 2).
Following [32], we first define the error e to be

e = s− x. (1)

Next, let h and f be a tangential vector on s and the control force
generated by a user input, respectively. We define a vector toward
the preferred direction, denoted by δ, as

δ = signum
(
f Th

) h
∥h∥
+ kee (2)

where ke is a positive constant. Correspondingly, the non-preferred
direction, denoted by δ⊥, is defined as an orthogonal direction to
the preferred direction.

Now, we define a preservation level, denoted by κδ⊥ , as a mono-
tonically non-increasing function from 1 to κδ⊥ with respect to ∥e∥

κδ⊥ (∥e∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

κδ⊥ , if ∥e∥ >
d
2

κδ⊥ +

[
d/2− ∥e∥

ν

]2

× (1− κδ⊥ ), if
d
2
− ν < ∥e∥ ≤

d
2

1.0, if ∥e∥ ≤
d
2
− ν

(3)

where d
2 is half the width of a virtual fixture, and ν is the width of

an assist zone inwhich κδ⊥ changes its value [32].2 ν is typically de-
fined as ν = 0.9× d

2 , meaning that if the deviation of the controlled
object is less than the 10% of road half width, no assistance will be
provided. From Eq. (3), the lower preservation level is, the stronger
assistance will be applied to the user. Since the preservation level
κδ⊥ will play an important role for deriving guiding force fg, it is
more convenient to consider the level of haptic assistance 1 − κδ⊥ ,

2 κδ⊥ is called attenuating admittance in [32]; however, we use a different name
(i.e., preservation level) to present our idea more clearly.

Fig. 2. Preferred direction δ and non-preferred direction δ⊥ .

instead. Fig. 3 illustrates the two examples of haptic assistance
policy, soft assistance and firm assistance policies, according to the
two different GVFs with the maximum level of haptic assistance.

Similarly, we also define a zoom level, denoted by α, a monoton-
ically non-decreasing function from 1 to ᾱ with respect to ∥e∥

α(∥e∥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ, if ∥e∥ >
d
2

ᾱ +

[
d/2− ∥e∥

ν

]2

× (1− ᾱ), if
d
2
− ν < ∥e∥ ≤

d
2

1.0, if ∥e∥ ≤
d
2
− ν

(4)

where ᾱ ≥ 1.0 is the upper bound of zoom level. For various
zoom level settings, we regard ᾱ as the level of visual assistance.
From Eq. (4), we know that zoom level α has a similar shape to
1− κδ⊥ along the reference trajectory except that the range of the
zoom level is from 1.0 to ᾱ; compared to that of the preservation
level is from κδ⊥ to 1.0.

Finally, from Eqs. (3) and (4), we can summarize the property of
κδ⊥ and α as follows:

• If the controlled object position x lies outside the virtual
fixture, then κδ⊥ and α are set to κδ⊥ and ᾱ, respectively.
• If the position lies in an assist zone ν, then κδ⊥ and α are

adjusted based on the error ∥e∥.
• If the position is near to the reference trajectory, then κδ⊥

and α are set to 1, meaning that the user input is fully
preserved, and the user will perceive no visual zooming
effect.
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2.2.2. Haptic assistance by a guiding force
Let f be a control force generated by a user input via haptic

joystick to control an object as illustrated in Fig. 4. To decompose f
into preferred direction and non-preferred direction components,
we first define a projection operator Pδ that performs a vector
projection of f onto δ

Pδ =
1

δT δ
δδT . (5)

Now, we can express the control force f in terms of the preferred
and the non-preferred direction component by using Pδ

f = Pδf + (I − Pδ)f
= fδ + fδ⊥ . (6)

We define the assisted control force fassisted as

fassisted = fδ + κδ⊥ fδ⊥ (7)

where the preservation level κδ⊥ determines howmuch portion of
the non-preferred direction component in f is preserved. The role
of κδ⊥ for f can be interpreted as a suppression against f . To show
this, we perform simple algebraic manipulation on Eq. (7)

fassisted = fδ + κδ⊥ fδ⊥
= fδ + fδ⊥ − (1− κδ⊥ )fδ⊥
= f

original term

+ [−(1− κδ⊥ )fδ⊥ ]  
suppressive term

=: f + fg. (8)

Thus, the guiding force fg in Eq. (8) is defined as the suppressive
term−(1− κδ⊥ )fδ⊥ above, which serves as an assistance to attract
the controlled object to the reference trajectory. Hence, the guiding
force can be transferred as haptic guidance fhaptic to the user’s hand
(see Fig. 1)

fhaptic = kg fg (9)

where kg is a positive scaling constant which can be determined
by the specification of the employed haptic joystick. Note that
enabling a haptic feedback functionality will be referred to as
haptic condition for assistance type in Section 4.

2.2.3. Visual assistance by adapting a zoom level
The developed assistive interface provides a global view and a

local working field of view (WFoV) as shown in Fig. 5. By these
two views, a user receives environmental information around a
controlled object as a visual feedback. In [34], Accot and Zhai
reported that the index of difficulty (ID) for a steering task is
proportional to the integral of the inverse of the path width along
the trajectory. If C is a curved path, then the ID can be defined

ID =
∫
C

ds
W (s)

(10)

where s andW (s) are a continuous curves along the center of C and
the width of path, respectively.

Inspired by their findings, we design our assistive HRI interface
to perform the zooming-in and out of the local WFoV so that it
adapts to the difficulty of a given task by dynamically changing
a zoom level α. To reduce the task difficulty, α increases (ac-
cordingly, the local WFoV is zoomed-in) as the controlled object
further deviates from the reference trajectory by a user control.
However, while the controlled object is moving at a velocity ẋ, if
α increases then its velocity being seen by a user through the local

(a) Soft assistance.

(b) Firm assistance.

Fig. 3. Two examples of haptic assistance policy according to the two different GVFs
with the maximum level of haptic assistance 1 − κδ⊥ (z-axis value in the figures).
(a) soft assistance: if 1 − κδ⊥ = 0.1 and (b) firm assistance: 1 − κδ⊥ = 0.9. The
solid-red line in the middle represents a reference trajectory.

Fig. 4. Assisted control force fassisted and guiding force fg .

WFoV window, denoted by ẋseen, increases accordingly.3 Namely,
a relationship between ẋseen and ẋ is

ẋseen = αẋ (11)

as illustrated in Fig. 6. Since varying vseen may cause unexpected
side effects, the actual velocity of the controlled object should be
compensated while α is being adjusted. This compensation can be

3 The closer the observer’s distance is to an object, the faster the velocity is
perceived.
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Fig. 5. Twowindows in the developed assistive HRI interface providing visual assistance. A global view (left) and a local working field of view (right). The local working field
of view will be zoomed-in and out based on Eq. (4).

(a) Two different WFoVs.

(b) The user will perceive ẋseen via the local screen.

Fig. 6. (a) Two different working field of view examples with respect to α = 1.0
andα = 2.0. (b) Although ẋ remains unchanged, the userwill perceive twodifferent
ẋseens with respect to α. Therefore, the velocity of the controlled object needs to be
compensated by multiplying 1

α
to ẋwhen α is being adjusted.

easily done by multiplying 1
α
to ẋ so that ẋseen becomes

ẋseen = α

(
ẋ
α

)
= ẋ (12)

which represents the velocity of the controlled objects is indeed
decreased proportionally as α increases (and vice versa). Conse-
quently, the user perceives as if the controlled object is moving at
the consistent velocity in the localWFoVwhile α is being adjusted.
We note that enabling a zooming functionality of the assistive HRI
interface will be referred to as visual condition for assistance type
in Section 4.

Fig. 7. The mobile robot kinematics and the inner and the outer road boundaries.

2.3. Joystick configuration, a control force, and a mobile robot control
command

Throughout Section 2.2, we assumed that a controlled object
could freelymove toward any directions on 2D Cartesian plane (x1-
x2 plane) when a control force f = [fx1 , fx2 ]

T was applied. Namely,
the control force f acting on the controlled objects produced ẋ =
[ẋ1, ẋ2]T whose elements represents two translational velocities.
However, in practice our controlled object is a mobile robot with
two differentially driving wheels of which kinematic equation is

ẋ1 = cos(x3)u1
ẋ2 = sin(x3)u1
ẋ3 = u2.

(13)

Therefore, it cannot take a translational maneuver toward a per-
pendicular direction with respect to a current heading direction;
in other words, there exist nonholonomic constraints.

For this reason,weneed to define amapping from ẋ, the velocity
of the controlled object, to u, the linear and angular velocity of the
mobile robot, as well as how to produce f via haptic joystick con-
figuration q = [qx1 , qx2 ]

T . Note that we introduce the production
of f via q as well as the mapping from ẋ to u in Appendix.

3. Approach to customize assistance policy and assistance level

3.1. The kinematic model of a mobile robot in a discrete-time

Let [x1, x2, x3]T be the position and the orientation of a mobile
robot, and [u1, u2]

T be a control input as illustrated in Fig. 7. The
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discrete-time kinematic equations of the mobile robot are given as
follows [35,36]:

x1,k+1 = x1,k + ts cos(x3,k)u1,k
x2,k+1 = x2,k + ts sin(x3,k)u1,k
x3,k+1 = x3,k + tsu2,k

(14)

where ts and k are the sampling time and corresponding time step,
respectively. The points pib1:2,k = [pib1, pib2]T ∈ Pib and pob1:2,k =
[pob1, pob2]T ∈Pob are the closest points from current mobile robot
position x1:2 = [x1, x2]T (for convenience, we use matlab-like
expression interchangeably) to inner and outer side boundaries
respectively.

3.2. Modeling user’s control strategy as a cost function

To model a user’s control strategy as a cost function, we con-
sider the specific form of a cost function for quadratic regula-
tor (QR) that represents how the user regulates speed, steering, and
proximities to road boundaries. Let the state and control input of
mobile robot be x = {x0, . . . , xN−1} and u = {u0, . . . , uN−1}, for
k = 0, . . . ,N − 1, respectively. Then the cost function, L(x, u), is
defined as

L(x, u) =
N−1∑
k=0

[
uT
kRuk + (x1:2,k − pib1:2,k)TQib(x1:2,k − pib1:2,k)

+ (x1:2,k − pob1:2,k)TQob(x1:2,k − pob1:2,k)
]

(15)

where

R =
[
cv 0
0 cω

]
, Qib =

[
cib 0
0 cib

]
, and

Qob =

[
cob 0
0 cob

]
.

(16)

The subscripted parameters cv , cω , cib, and cob represent the
weightings for speed, steering, proximity to the inner, and prox-
imity to the outer boundary, respectively.

An optimal control problem is to find an optimal control u∗ (and
its corresponding state x∗) which minimizes a given cost function

L(x, u) −→ (u∗, x∗).

From now on, an optimal control problem will be referred to as a
forward optimal control problem for disambiguation. The forward
optimal control problem with the cost function in Eq. (15) can be
formalized

min
u

[ N−1∑
k=0

uT
kRuk + (x1:2,k − pib1:2,k)TQib(x1:2,k − pib1:2,k)

+ (x1:2,k − pob1:2,k)TQob(x1:2,k − pob1:2,k)
]

subject to
x1,k+1 = x1,k + ts cos(x3,k)u1,k
x2,k+1 = x2,k + ts sin(x3,k)u1,k
x3,k+1 = x3,k + tsu2,k

x0 = xstart
xN = xgoal.

(17)

In contrast, an inverse optimal control (IOC) problem is to infer a
cost function with unknown parameters from a given set of tuples
(u∗, x∗) obtained from user demonstration, which is assumed to be
a locally optimal solution; thus

(u∗, x∗) −→ L(x, u).

Therefore, the IOC problem corresponding to Eq. (17) can be de-
scribed as

Given: (u∗, x∗) data demonstrated by a user, which is assumed to
be a locally optimal solution of Eq. (17),

Infer: the user’s cost function by inferring the unknown param-
eters, cv , cω , cib, and cob, in matrices R, Qib, and Qob.

3.2.1. Applied numerical method to solve ioc problem
We start by rewriting the kinematic equation of a mobile robot

in Eq. (14) as

xk+1 = xk + tsf (xk, uk).

Following by [37,38], we define the discrete time Hamiltonian Hk

Hk(xk, uk, λk)
= L(xk, uk)+ λT

k f (xk, uk)

=

[
uT
kRuk + (x1:2,k − pib1:2,k)TQib(x1:2,k − pib1:2,k)

+ (x1:2,k − pob1:2,k)TQob(x1:2,k − pob1:2,k)
]

+ λT
k

[cos(x3,k)u1,k
sin(x3,k)u1,k

u2,k

]
(18)

where λk ∈ R3×1 is a costate vector at time step k. By applying Pon-
tryagin’s Maximum Principle, we obtain the costate (propagation)
equation [39,40]

∂Hk

∂xk
=

[2(x1,k − pib1,k)cib + 2(x1,k − pob1,k)cob
2(x2,k − pib2,k)cib + 2(x2,k − pob2,k)cob
−λ1,k sin x3,ku1,k + λ2,k cos x3,ku1,k

]

= −
λk+1 − λk

ts
. (19)

Rearranging Eq. (19) yields[2ts(x1,k − pib1,k)cib + 2ts(x1,k − pob1,k)cob
2ts(x2,k − pib2,k)cib + 2ts(x2,k − pob2,k)cob
ts(−λ1,k sin x3,ku1,k + λ2,k cos x3,ku1,k)

]

+

[
λ1,k+1 − λ1,k
λ2,k+1 − λ2,k
λ3,k+1 − λ3,k

]
= 0T . (20)

From a necessary condition for optimality [40], we also have

∂Hk

∂uk
=

[
2u1,kcv + (λ1,k cos x3,k + λ2,k sin x3,k)

2u2,kcω + λ3,k

]
= 0T . (21)

By defining a vector zk as

zk = [cv cω cib cib cob cob λ1,k+1 λ2,k+1 λ3,k+1 λ1,k λ2,k λ3,k]
T (22)

then two equations Eq. (20) and Eq. (21) can be combined and
rewritten in the form, which gives us a system of equation rk

rk =
[
A11,k A12,k A13,k A14,k
A21,k A22,k A23,k A24,k

]
zk =: Akzk. (23)

The submatrices in the first row are (Note: A12,k takes a transposed
representation by the limited column width)

A11,k = O3×2

A12,k =

⎡⎢⎣2ts(x1,k − pib1,k) 0 0
0 2ts(x2,k − pib2,k) 0

2ts(x1,k − pob1,k) 0 0
0 2ts(x2,k − pob2,k) 0

⎤⎥⎦
T

A13,k = I3×3

A14,k = −I3×3 +

[ 0 0 0
0 0 0

−tsu1,k sin x3,k tsu1,k cos x3,k 0

]
(24)
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and in the second row

A21,k =

[
2u1,k 0
0 2u2,k

]
A22,k = O2×4

A23,k = O2×3

A24,k =

[
cos x3,k sin x3,k 0

0 0 1

] (25)

where Om×n and Im×n represent m-by-n zero matrix and identity
matrix, respectively.

Finally, the given discrete time IOC problem becomes identical
to solving the following least squares problem

min
c,λ

N−1∑
k=0

∥r∗k ∥
2 (26)

or, equivalently

min
c,λ

N−1∑
k=0

∥A∗kzk∥
2 (27)

where A∗k represents Ak evaluated at k with (x∗k, u
∗

k).

3.3. Featuring modeled control strategy and classifying into the fea-
tured group

3.3.1. Three features describing user’s control strategy
After modeling each user’s strategy by using inverse optimal

control (IOC), a user’s control strategy can be characterized by
features from the inferred parameters, cv, cω, cib, and cob, that
describe

• cv/cω: the curvature of the generated path
• cib/cob: its proximity to inner/outer boundaries
• ∥RQ−1ib ∥F + ∥RQ−1ob ∥F : the ratio of control effort over bound-

ary collision avoidance

By identifying features of user’s control strategy, the user can be
treated as a sample point q in feature space R3

q# =
(
cv
cω

,
cib
cob

, ∥RQ−1ib ∥F + ∥RQ
−1
ob ∥F

)
=:

(
q#1 , q

#
2 , q

#
3

)
(28)

where # indicates a user index. In the third feature, ∥ · ∥F (in the
last feature) represents the Frobenius norm, hence

∥RQ−1ib ∥F + ∥RQ
−1
ob ∥F

=

√(
cv
cib

)2

+

(
cω
cib

)2

+

√(
cv
cob

)2

+

(
cω
cob

)2

. (29)

3.4. Assistance customization by setting a customized virtual fixture
parameters

3.4.1. Classifying users into expert groups
Recall that the purpose of assistance customization is to guide

novice users with experts’ control strategy. Suppose that four ex-
perts were selected, and we want to assign each expert to a group
of users whose three control strategic features are most similar
to the expert. To do so, we use the preselected experts as four-
centroid for k-nearest neighbor (KNN) classification algorithm. Let
qA, qB, qC, and qD be the four feature vectors of expert A, B, C, and
D, respectively. For a user whose feature is q#, we can assign an
expert q∗ to the user and store them as a tuple

{q#, q∗} where q∗ ← arg min
∗∈{A,B,C,D}

∥q# − q∗∥1 (30)

where ∥ · ∥1 represents L1 norm.

3.4.2. Setting a customized virtual fixture for each user
Based on the feature-based classification result for each user, a

customized virtual fixture can be set by following steps:

1. Assign a reference trajectory γ ∗: If a new task is given
to a user, a reference trajectory for virtual fixturing can
be generated by solving a forward optimal control prob-
lem since the assigned expert’s control strategy was priorly
modeled. If a known task (e.g., the task that was used to
select experts) is given to the user, we can either directly
employ a trajectory demonstrated by the assigned expert as
the reference trajectory or generate one by solving a forward
optimal control problem.

2. Determine a width d: The second feature representing the
ratio of inner/outer boundary preference is a good cue to
determine the width d of the virtual fixture. If expert∗ is
assigned to a user#, then we define d as

d = W
[
1+ β

(
q#2 − q∗2

)2]−1
(31)

where W is a road width, and β is a positive constant
determined by the developer’s choice. For instance, we set
W = 50 (pixels) and β = 1.0.

3. Set κδ⊥ and ᾱ : From Eq. (3), we know that 1 − κδ⊥ mono-
tonically increases with respect to the deviation from the
reference trajectory up to 1 − κδ⊥ . For our application, we
want κδ⊥ to be a function of user’s task completion time T#

so that it linearly decreases within an interval [κmin
δ⊥

, κmax
δ⊥
]

with respect to T#

κδ⊥ (T
#) =

(κmin
δ⊥
− κmax

δ⊥
)

η
|T#
− T ∗| + κmax

δ⊥
(32)

where κmin
δ⊥

and κmax
δ⊥

are the minimum and the maximum
bound for κδ⊥ , respectively. T

∗ is the assigned expert’s task
completion time, and η is a constant can be determined by
examining a difference between the fastest expert’s and the
slowest subject’s task-completion time. If |T#

− T ∗| ≥ η,
meaning that a new user takes a longer time to complete
a task than the slowest user, then κδ⊥ = κmin

δ⊥
. We used

κmin
δ⊥
= 0.1 and κmax

δ⊥
= 0.9. Similarly, ᾱ can be determined

as an increasing function with respect to |T#
− T ∗|

ᾱ(T#) =
(ᾱmax

− ᾱmin)
η

|T#
− T ∗| + ᾱmin. (33)

If |T#
− T ∗| ≥ η then ᾱ = ᾱmax, and ᾱmax

= 2.0 and
ᾱmin
= 1.1 were used.

The entire assistance customization procedure is summarized
in Algorithm 1.

4. Human subject experiment

4.1. Subjects and experimental setup

Twenty-three healthy young adults (11 male and 12 female,
age = 18–25 yrs) participated in this study. None of the subjects
had previous experiences with haptic driving tasks. Subjects were
instructed to sit comfortably on an office chair with wheels at 0.8
m from a display monitor and were provided with a haptic input
device. All subjects gave informed consent before their participa-
tion andwere given the instructions about thewhole experimental
procedure. This study was approved by the Texas A&M University
Institutional Review Board.

The experimental setup (see Fig. 8) consists of a Novint Falcon
as an input device, a computer that runs the simulation, and a 21-
inch monitor showing the simulated environment. The top right
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Algorithm 1: Assistance Customization.

Input: {x∗, u∗}# and T# of N-users. qA, qB, qC, qD of experts.
Output: User# : {γ , d, κδ⊥ , ᾱ} for N-users.

1. Inferring a cost function from the user-demonstrated data
for #← 1 to N do
[cv, cω, cib, cob] ← SolveInverseOptimalControl({x∗, u∗}#)

end
2. Featuring user’s control strategy
for #← 1 to N do

q#1 = cv/cω
q#2 = cib/cob
q#3 = ∥RQ

−1
ib ∥F + ∥RQ−1ob ∥F

end
3. Assign an expert
for #← 1 to N do

q∗ = argmin∗∈{A,B,C,D} ∥q# − q∗∥1
end
4. Set the customized virtual fixture parameters: γ , d, κδ⊥ , ᾱ

for #← 1 to N do
γ ← γ ∗(expert∗’s trajectory for user#)

d = W
[
1+ β

(
q#2 − q∗2

)2]−1
κδ⊥ (T

#) =
(κmin

δ⊥
−κmax

δ⊥
)

η
|T#
− T ∗| + κmax

δ⊥

ᾱ(T#) = (ᾱmax
−ᾱmin)
η

|T#
− T ∗| + ᾱmin

end
return User#:{γ , d, κδ⊥ , ᾱ}

Fig. 8. The apparatus of the experimental setup. Right top corner shows simulator
interface while the subject is performing a given task (the photo is used by courtesy
of the participant).

corner in Fig. 8 shows our simulator interface displayed to the
subject. The interface window size was approximately 19.63 cm
× 35.55 cm (height × width) in 1920 × 1080 display resolution
and provided a global view and a local working field of view of the
environment. The other area of themonitorwas filledwith uniform
gray color to prevent distractions caused by background content.

4.2. Procedure

4.2.1. Practice session
During the practice session, a user (subject) was asked to famil-

iarize him/herself with the developed assistive interface by driving
a mobile robot. The user was allowed to drive the mobile robot

Fig. 9. Track and given tests for (a) the user demonstration session and (b) the
evaluation session. The arrows and dotted-lines indicate start and goal positions
for each test.

around either inside or outside of the road boundaries. However,
the userwas instructed that itwould be regarded as a task failure to
drive themobile robot outside of the road boundary after the prac-
tice session. We provided the user a five-minute practice session
to make the user to be familiarized with the experimental settings
and the virtual navigation system. Also, by limiting the practice
session to five minutes, we tried to avoid the user learning about
the task. Note that the road path presented in the practice session
was not used in the rest of the sessions.

4.2.2. User demonstration session
During the user demonstration session, users were instructed

to drive the mobile robot from the starting position to the goal
position as fast and safely as possible for each of four locations (see
Fig. 9(a) for the starting and goal positions for four locations). The
simulator provided four tasks (or locations) each of which has
different road curvature and turning angles as illustrated in Fig. 9.
These four locations were chosen due to the following reasons:
(1) these four locations are more difficult regions to complete the
task compared with straight path, (2) variability of task perfor-
mance (i.e., task completion time) ismore pronounced inmore dif-
ficult tasks, and (3) accordingly, the users’ control strategy through
these four locations are directly related to their task performance
in the evaluation session where the entire lap along a given track
includes the four curved locations and straight paths (see Fig. 9(b)).

Thewidth of road displayed on the screenwas fixed at all times.
Each test set was presented to the user five times; therefore there
were 4 (locations) × 5 (repetition per one location) = 20 trials.
During the 20 trials, the test sets were presented in randomized
order. Among the five repetitions for each test set, a trial of which
completion time is median was selected as the user-demonstrated
data (x∗, u∗) to exclude any coincidental best/worst demonstra-
tion.

4.2.3. Assistance customization session
After obtaining user-demonstration data, the procedure was

followed by solving an inverse optimal control problem to infer a
cost function with the user-demonstration data. The cost function
featured users’ control strategy, and classified the users into their
corresponding expert groups based on the three features. Then,
{γ , d, κδ⊥ , ᾱ} for the users were customized as presented in Algo-
rithm 1. During this session, users were asked to take a 10-minute
break while this procedure was being processed.

4.2.4. Evaluation session
Finally, after 10 min break of the assistance customization ses-

sion, users were instructed to complete an entire lap of a given
track during the evaluation session. When the mobile robot col-
lided with the road boundaries, the task was restarted from the



266 H.U. Yoon et al. / Robotics and Autonomous Systems 91 (2017) 258–269

Table 1
Two metrics of user’s performance improvement. The acronyms stand for no-assist(N), haptic(H), visual(V), haptic-visual(HV), customized(CS), and non-
customized(NCS). Value represents mean(standard deviation) for four assistance type conditions and two parameterization type conditions, and p-values for interaction
effect (assistance type × parameterization type). Superscripts represent significant differences from the other main effects conditions resulting from Bonferroni adjusted
comparison.

Performance metrics Assistance type Parameterization type Interaction p-value

N H V HV CS NCS

Time improvement (%) 0.00 (0.00)H 9.03 (2.89)N,V,HV −10.05 (3.48)H −6.91 (3.18)H −0.64 (2.51)NCS −3.33 (2.20)CS <0.001
Mean. fg improvement (%) 0.00 (0.00)H,HV 46.75 (3.20)N,V 13.39 (6.76)H,HV 44.56 (4.00)N,V 42.142 (4.31)NCS 10.21 (3.44)CS <0.001

center of the road at the point of failure, and users received a 3-
second penalty. The maximum number of collisions was limited
to ten. If the user collided the mobile robot more than ten times,
the user’s data was discarded. There were eight evaluation sets
as a combination of two dependent factors: different assistance
type {no-assist(NA), haptic(H), visual(V), haptic-visual(HV)} and
parameterization type {customized(CS), non-customized(NCS)}.
When the condition of the parameterization type was non-
customized, the virtual fixturing was set with a road center as
a reference trajectory γ with κδ⊥ = 0.1 and ᾱ = 2.0. Each
evaluation trial was presented three times. Hence, there were
8 (evaluation sets) × 3 (repetition) = 24 trials. The evaluation
sets were presented in a randomized order during the 24 trials to
prevent learning effects.

4.3. Data storing and analysis

During the evaluation session, the developed application
recorded the position (x1, x2) and the orientation x3 of the mo-
bile robot and guiding force fg every 20 ms. It also stored task
completion time, task number, trial number, position, orienta-
tion, linear/angular velocities, the number of collisions, and task
result (i.e., success or failure). The improvement in completion
time and average guiding force were used as two metrics for task
performance. One subject data (subject#17) was excluded due to
unexpected distraction during the experiment; hence, 22-subjects
data were used for data analysis.

To identify the effect of two dependent factors, assistance type
and parameterization type, a repeated measures analysis of vari-
ance (rANOVA) was performed with the significance level of p <
0.05 (SPSS, v21, Chicago, IL). When the assumption of sphericity
was violated for the main effects, the degree of freedom was
corrected using Greenhouse-Geisser estimates of sphericity. For a
pairwise comparison, the Bonferroni-adjusted pairwise compari-
son was used, and the result is presented in the form of ‘‘mean
difference (standard error)’’. The significance level was set at p <
0.05. For better readability,wepresent the ‘‘mean (standard error)’’
values of the two user performance metrics across four assistance
type conditions and two parameterization type conditions in Ta-
ble 1.

5. Results

We present the effects of two independent factors, assistance
type (N, H, V, HV) and parameterization type (CS, NCS), on two user
performancemetrics, i.e., completion time improvement andmean
guiding force improvement. Please note that when the assistance
type was set to N or V, our assistive HRI interface did not transfer
the actual guiding force to users’ hand via haptic joystick becauseN
andVdonot involve haptic feedback. However, here,we include all
four assistance type conditions, N, H, V, HV for the analyses of the
improvement in completion time as well as in mean guiding force
over time. This allows us to identify the possibly desired efforts
to guide a mobile robot to a reference trajectory by examining
the calculated mean guiding force under the four assistance type
conditions. The positive improvements were defined as ‘‘less com-
pletion time’’ and ‘‘less mean guiding force’’, respectively.

5.1. Effects of assistance type

Effect on completion time improvement. The rANOVA result on
the improvement in completion time indicated that there was a
significant main effect of the assistance type, F (1.70, 35.65) =
22.17, p < 0.05. The pairwise comparison revealed that N vs. H,
−9.03 (2.89), p = 0.031, N vs. V, 10.05 (3.48), p = 0.053, and N
vs. HV, 6.91 (3.18), p = 0.249, indicating a significance difference
between N and H but only a tendency between N and V. No signifi-
cant differencewas found between N and HV. In contrast, the com-
parisons of H vs. other conditions showed significant differences as
H vs. N, 9.03 (2.89), p = 0.031, H vs. V, 19.08 (1.83), p < 0.001,
and H vs. HV, 15.94 (1.59), p < 0.001, implying that H led to the
greatest improvement over other conditions in completion time.
No other significant differences were found between the rest of
assistance type conditions.
Effect on mean guiding force improvement. Analysis on mean
guiding force improvement yielded a significant main effect for
assistance type, F (1.56, 32.77) = 51.03, p < 0.05. Pairwise com-
parisons revealed N vs. H, − 46.75 (3.20), p < 0.001, N vs. V, −
13.39 (6.76), p = 0.364, and N vs. HV, − 44.56 (4.00), p <
0.001, suggesting that the improvement in mean guiding force
increased significantly under assistance type conditions H and HV
compared to N. Since the mean guiding force mostly improved
(i.e., yielded the least mean difference) under H with significance,
we performed pairwise comparison with H vs. other assistance
type conditions, and it revealed H vs. N, 46.75 (3.20), p < 0.001,
H vs. V, 33.36 (5.44), p < 0.001, and H vs. HV, 2.19 (1.76), p =
1.000. Hence, H significantly lowered the average guiding force
than N and V but no significant difference could be found for HV.

5.2. Effects of parameterization type

Effect on completion time improvement. Parameterization type
showed the significantmain effect on the improvement in comple-
tion time, F (1, 21) = 5.28, p < 0.05. The pairwise comparison re-
vealed a significant difference CS vs. NCS, 2.69 (1.17), p = 0.032,
which implies the users’ improvement in completion time is higher
when parameters are customized.
Effect onmean guiding force improvement. The significantmain
effect of the parameterization type on the average guiding force
was also found F (1, 21) = 49.92, p < 0.001. Pairwise comparison
yielded a significant difference CS vs. NCS, 31.93 (4.52), p < 0.001,
which indicates the mean guiding force improvement is higher
when parameters are customized.

5.3. Interaction effects of assistance type× parameterization type

Interaction effect on completion time improvement. The analy-
sis revealed that there was a significant interaction effect between
the assistance type and the parameterization type in completion
time improvement, F (3, 63) = 9.66, p < 0.001, as shown in
the rightmost column in Table 1. Fig. 10(a) depicts that users’
completion time improvement tended to increase in H and Vwhen
assistance was customized whereas it tended to decrease in HV.
This indicates that parameterization type had different effects on
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(a) Completion Time Improvement (%). (b) Mean Guiding Force Improvement (%).

Fig. 10. Mean values for (a) users’ completion time improvement and (b) mean guiding force over time under four assistance type conditions: No-assist, Haptic, Visual,
Haptic-Visual. Each assistance type condition showed two mean values when its parameters were Customized and Non-customized. Error bars indicate standard error.
Significance is indicated for p < 0.05 (∗) from the pairwise comparison between customized and non-customizedwithin each of the assistance type conditions.

completion time improvement depending on which condition of
assistance type was provided. Pairwise comparisons revealed that
CS significantly increased completion time improvement under
H (p < 0.001).
Interaction effect on mean guiding force improvement. A sig-
nificant interaction effect between the assistance type and the
parameterization type was also found in mean guiding force im-
provement, F (2.15, 45.07) = 25.69, p < 0.001. From Fig. 10(b),
we can see thatmean guiding force improvement simply tended to
decrease in all assistance type conditions. Hence, the significant of
the interaction effect on mean guiding force improvement might
be caused by using N as a baseline condition. The pairwise com-
parison indicated that CS significantly increased the mean force
improvement under all assistance type conditions, H, V, and HV,
with p < 0.001.

6. Discussion

The main idea of this study was to develop an assistive HRI
interface providing customized haptic and visual feedback. We
also wanted to identify the effect of assistance type and param-
eterization type on users’ performance. The uniquenesses of our
design approach are (1) to set the maximum level of assistance
based on user’s performance as well as control strategy and (2)
to modify assistance interactively with respect to a user input and
the current state of amobile robot. Furthermore, wewanted to find
some insights about an optimal combination of assistance type and
parameterization type throughout data analysis.

H outperformed the other assistance type conditions regard-
ing both completion time improvement and mean guiding force
improvement for our mobile robot control task (see Table 1).
Although the benefit of haptic feedback still has been debat-
able [4,12,41], this could be interpreted as the positive effect
of applying haptic feedback for our task. In this perspective, it
was worthwhile to further investigate whether V can be im-
proved when H was added. Pairwise comparison HV vs V revealed
3.14(1.51) with p = 0.299 in completion time improvement and
31.16(4.66) with p < 0.001 in mean guiding force improvement.
Therefore, adding H on V would be beneficial to lessen the total
desired effort to guide the mobile robot.

Next, the users’ performance tended to degrade in completion
time improvement when V was solely provided. This outcome is
consistent to existing findings in [42] and [43] which presented
the deteriorative tendency of user performance with zooming
and visual feedback, respectively. When visual feedback is being
zoomed in/out during the task, the performance degradationmight
be caused due to changes in a working field of view. Specifically,
user’s behavior andmobile robot dynamics became different in the

enlarged working field. Consequently, providing guidance based
on the expert’s control strategy might not work properly since
it was obtained under the absence of visual cue. In contrast, V
encouraged mean guiding force improvement.

CS seemed to promote the improvement in both completion
time and mean guiding force except the improvement in com-
pletion time under HV. We have already observed that V has
the negative effect on user performance. Therefore, the exception
under HV was possibly caused by combining the customized V
withH. Additional studies are needed, however, to substantiate the
varying negative effect of V.

Statistical analysis revealed that the customized haptic (H/CS)
is the optimal combination to provide feedback for given tasks in
this study. However, if we only consider the mean guiding force as
a performance metric, then HV/CS is also a competitive candidate
as an option to provide feedback (the estimated ‘‘mean(standard
error)’’ values for H/CS and HV/CS are 64.29(4.11) and 61.18(5.01),
respectively). Therefore, we can choose the option to provide feed-
back for a newly given task by various definition about perfor-
mance index.

Lastly, there exists a wide range of real world applications for
which the proposed assistance customization algorithm can be ap-
plied. For example, medical instruments such as the endoscope [8],
laparoscope [44], and surgical robots [45] are promising candidates
expected to encourage the user’s performance improvement by
applying the haptic and visual assistance customization.

7. Conclusion

In this study, we proposed an approach to design an assistive
human–robot interface that provides haptic and visual feedback as
well as an algorithm to customize two feedbacks based on user’s
control strategy. In our approach, the user’s control strategy was
modeled by using inverse optimal control. Then, it was featured
to describe the geometric and behavioral characteristic of user
control. For each user, features were utilized to assign an expert
to the user so that both features were the closest to each other.
Finally, assistance was customized based on the assigned expert’s
strategy to provide feedback via a virtual fixturing.

The result showed that the user performances were improved
when the customized assistance was provided; however, contra-
dicting tendency in completion time improvement was also ob-
served when two assistance types were combined. Among four as-
sistance type conditions, haptic outperformed the other assistance
type conditions regarding the improvement in both completion
time andmean guiding force. Consequently, the customized haptic
feedback was revealed as an optimal assistance way for the given
mobile robot control task.
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Fig. 11. Suppose that xr is the desired position of a ball determined by the user
input, then the control force f = M ẍr + Bd(ẋr − ẋ) + Kp(xr − x) is applied to the
ball (left). Afterward, the generated velocity ẋ of the ball is aligned to the current
heading direction of the mobile robot and scaled by c1 and c1 to yield the control
input [u1, u2] for the mobile robot.

Future studies should be followed in the directions of applying
the proposed approach for various tasks, findingmore features that
can describe the geometric and behavioral characteristics of user
control, and employing various sensory feedback types in assistive
HRI interface design.

Appendix

Suppose that a controlled object is a ball of massM as shown in
Fig. 11(left). Let x = [x1, x2]T and f be the current position of the
ball (center) and a control force applied to the ball, respectively.
The equation of motion of this system is

M ẍ = f . (34)

Also, let xr = [xr1, xr2]T be the desired position of the ball. In our
assistive interface, this desiredposition is translated by auser input
via the haptic joystick

ẋr = kq (35)

where k is a positive constant which can be determined by a haptic
joystick specification (e.g., the range of motion and the maximum
retrieved value from the encoder).

Next, if the desired position xr is set by the user input, the ball
can be guided to xr by applying the following control force f

f = M ẍr + Bd(ẋr − ẋ)+ Kd(xr − x) (36)

where Bd and Kd are desired damping and stiffness parameters,
respectively. Substituting Eq. (36) into Eq. (34) yields

M ¨̃x+ Bd ˙̃x+ Kd̃x = 0, where x̃ = xr − x, (37)

which implies the ball reaches to the desired position. When an
assisted control force is applied, Eq. (34) becomes

M ẍ = fassisted = f + fg, (38)

and substituting Eq. (36) into Eq. (38) yields

M ¨̃x+ Bd ˙̃x+ Kd̃x = fg where x̃ = xr − x. (39)

As the ball is being guided to a reference trajectory, fg will be
eliminated (fg → 0). Hence, Eq. (37) will eventually hold.

In Eq. (37) or Eq. (39), the velocity of the ball generated by the
control force is ẋ = [ẋ1, ẋ2]T . Considering our controlled object
in practice is a mobile robot with nonholonomic constraints, we
need to define a mapping from [ẋ1, ẋ2]T to [u1, u2]

T . As illustrated
in Fig. 11(right), this mapping can be defined by aligning x1-axis to

the current heading direction x3 of the mobile robot, then scaling
the aligned ẋ1 and ẋ2 to yield u1 and u2[
u1
u2

]
=

[
c1 0
0 c2

][
˙̄x1
˙̄x2

]
=

[
c1 0
0 c2

]
  

scaling

[
cos(x3) sin(x3)
− sin(x3) cos(x3)

]
  

aligning x1-axis to x3

[
ẋ1
ẋ2

]
(40)

where c1 and c2 are positive scaling constants. We can choose
c1 and c2 to satisfy passivity condition: the kinetic energy of the
mobile robot is not greater than that of the ball [46]. Let Mm and
Jm be themass and themoment of inertia of themobile robot, then
the passivity condition for this mapping can be expressed as
1
2
Mmu2

1 +
1
2
Jmu2

2 ≤
1
2
M( ˙̄x

2
1 +
˙̄x
2
2). (41)

Hence, from Eq. (40) and Eq. (41), we have

c1 ≤

√
M
Mm

and c2 ≤

√
M
Jm

. (42)
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