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Efficient Search and Hierarchical Motion
Planning by Dynamically Maintaining
Single-Source Shortest Paths Trees
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Abstract— Hierarchical approximate cell decomposition is a
popular approach to the geometric robot motion planning prob-
lem. Planners that use this approach iteratively refine an approx-
imate representation of the robot configuration space, searching
each refined representation for a solution path, until a solution
path is found. In many cases, the search effort expended at a
particular iteration can be greatly reduced by exploiting the work
done during previous iterations. In this paper, we describe how
this exploitation of past computation can be effected by the use
of a dynamically maintained single-source shortest paths tree.

Our approach is as follows. We embed a single-source short-
est paths tree in the connectivity graph of the approximate
representation of the robot configuration space. This shortest
paths tree records the most promising path to each vertex in
the connectivity graph from the vertex corresponding to the
robot’s initial configuration. At each iteration, some vertex in
the connectivity graph is replaced with a new set of vertices,
corresponding to a more detailed representation of the configu-
ration space. Our new, dynamic algorithm is then used to update
the single-source shortest paths tree to reflect these changes to
the underlying connectivity graph. Thus, at each iteration of
the planning algorithm, a representation of the best path from
the initial configuration to the goal configuration is computed
by a set of local tree update operations. Our planner is fully
implemented and we give empirical results to illustrate the
performance improvements of the dynamic algorithms.

Index Terms— Hierarchical Robot Motion Planning, Dynamic
Single-source Shortest Paths

I. INTRODUCTION

HE ultimate goal of robotics research is the creation of
Tautonomous agents, capable of planning and executing
tasks that are specified in terms of high level goals. One of
the many requirements for such an agent is the ability to
plan collision free paths through an environment populated
with obstacles. In its most restricted form, this path planning
problem considers only the geometry of the robot and the
obstacles in the environment (it ignores, for example, con-
straints on dynamic response). This restricted version of the
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path planning problem is known in the robotics literature as the
geometric motion planning problem, the Mover’s problem, or
the FindPath problem.

There have been many approaches to the geometric motion
planning problem, including exact methods ([15], [45], [7]),
artificial potential fields-based methods ([34], [43], [32], [11],
[47]), and approximate methods ([13], [14], [23], [24], [31],
[33], [49]). In this paper, we present a new approach to the
geometric robot motion planning problem using hierarchical
approximate cell decomposition.

Hierarchical approximate cell decomposition has several
advantages over competing methods. First, a complete, explicit
description of the configuration space is not computed a
priori. Instead, a representation of the configuration space is
constructed incrementally, and only to the resolution neces-
sary to solve the current problem. Furthermore, approximate
methods are complete to an arbitrary resolution. Secondly,
hierarchical approximate cell decomposition does not suffer
from the problems associated with the artificial potential fields
method (the most well known problem being that of local
minima in the potential field).

A number of issues must be addressed when designing a
hierarchical approximate cell decomposition motion planner,
including the representation of configuration space, cell subdi-
vision, cell labeling, and search. The first three of these have
been well-treated in many previous papers: representation in
[39], [13], [14], [49], subdivision in [13], [14], [23], [24],
[49], and labeling in [13], [14], [49]. In this paper we use the
representation and labeling algorithm given in [13], [14], and
octrees for cell-subdivision.

Search, in the context of hierarchical motion planning, has
received less thorough attention, in spite of the fact that the
dominant computational cost at each iteration of the planner
is generally the time spent constructing a path from the initial
to the goal configuration. To date, two basic search strategies
for finding a path at each iteration of the planning algorithm
have been reported: A* search [13), [14], and a bridge the gap
strategy [13], [14], [33], [49] (these will be discussed in more
detail in Section II-B). For each of these search methods,
the planner often performs much redundant computation at
successive iterations of the planning algorithm. Furthermore,
the bridge the gap strategy may produce long and convoluted
paths.

In this paper, we present a new search method that elimi-
nates the redundancy between searches at successive iterations
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of the planning algorithm. Our search method is founded on
the ability to efficiently maintain a single-source shortest paths
tree embedded in the connectivity graph, subject to the dy-
namic modifications that result from incremental subdivision
of cells. Thus, at each iteration of the planning algorithm, a
representation of the best path from the initial configuration to
the goal configuration is computed by a set of local tree update
operations. At each iteration, the path that is determined by our
algorithm is the same as would be found by A* search, but the
redundant computation that would be incurred by using A* at
each iteration is avoided.

The computation of shortest paths trees is a fundamental,
and well studied, problem in computer science; however, the
problem of dynamically updating a shortest paths tree when the
underlying graph undergoes some change (e.g. nodes are added
to, or deleted from, the underlying graph) has only recently
emerged as a topic of active research. Progress in this area
could directly benefit many research areas, including com-
munication networks, VLSI design, transportation networks,
and scheduling in manufacturing shops. Thus, our results,
although applied specifically to the problem of geometric robot
motion planning, have potential application to a wide variety
of problems.

The remainder of the paper is organized as follows. In
Section II we present a formal specification of the robot motion
planning problem, in the context of hierarchical approximate
cell decomposition. In Section III we give a precise charac-
terization of the search performed by hierarchical approximate
cell decomposition planners. In Section IV we describe how
changing the connectivity graph for the configuration space (by
subdividing some cell in the representation of the configuration
space) affects a single-source shortest paths tree that is used
to maintain the best path to each vertex in the graph from the
vertex that corresponds to the initial configuration. In Section
V we present two new dynamic algorithms for the construction
of a single-source shortest paths tree. Then, in Section VI we
present results, and compare our new planner to those reported
in [13], [14], [49]. In Section VII, we discuss how our solution
overcomes previous criticisms of hierarchical approximate cell
decomposition methods, and future work aimed at further
reducing planning time. Finally, in Section VIII we present
some conclusions about our work.

1I. PROBLEM FORMULATION

For a polygonal robot moving among polygonal obstacles
in the plane, the motion planning problem can be expressed as
follows. The configuration space of the robot is C = R? x S*.
All configurations ¢ € C for which the robot is in contact with
(or intersects) some obstacle belong to the set of configuration
space obstacles (abbreviated C-obstacles), denoted by CB. For
all other configurations, the robot is in free space, denoted
by Crree. A planning problem is specified by an initial and
a goal configuration, ¢;,;; and ¢goat, respectively. A solution
trajectory is a continuous mapping 7 : [0,1] — Crreg, such
that 7(0) = ¢ini+ and 7(1) = Ggoal-

We use a hierarchical subdivision algorithm to partition
C into rectangloid cells, x; = [wf.2?] x [yl y)] x (6}, 6]

1

procedure FindPath (ginit, goa:configuration; Go:graph)

[1] 10
12] T « an M-path from vin; t0 Vgoar in G;
[3]  until 7 is an E-path or 7 is NIL do
4] select vertices {v;} C 7
(5] subdivide cells {x;} and construct G;;1
(6] i—itl
(7] 7 «— an M-path from vini t0 Vgoar in G;
[8] returnw
end
Fig. 1. The traditional FindPath algorithm.

with § = 0 procedurally identified with § = 27. We denote
a partition of C as P, and the subdivision of a cell x as
P~ following [36]. Each cell is labeled empry, FuLL, Or mixep
depending on whether it is completely contained in Crree,
completely contained in C13, or not known to be completely
contained in either Crree or CB, respectively. The subdivision
algorithm is approximate because mixeo cells below some user-
specified resolution are considered to be ruLe [13], [14] [23],
[24], [33], [29], [49], [36].

A sequence of adjacent cells, riKo...ky, is called a
channel. A channel composed of empry and mixen cells is
termed an M-channel, and an M-channel that has only emery
cells is an E-channel. Let k¢ and ko, denote those cells
that contain g;,,;+ and ggoqr, respectively. Then the planning
process consists of subdividing mxep cells until an E-channel,
Kinit - - - Kgoal 18 found. Subdivision of cell £ in P; produces
Piy1 as follows: Piy1 = (P;—{x})UP". A solution trajectory
can be obtained from this E-channel subject to various criteria
that we do not discuss here [13], [14], [23], [24], [33], [29],
[36].

To facilitate efficient search for an E-channel, we maintain
the connectivity graph G(V, E) of P. Each vertex v € V has
an associated non-ruLL cell, . An edge (v;,v;) € E if and
only if x; N «; is a two dimensional boundary area. The con-
nectivity relation is nonreflexive and symmetric. Associated
with each path in G is a channel in P. We refer to a path
that corresponds to an M-channel (respectively, E-channel) as
an M-path (respectively, E-path). Let v;,;; and vy,. be the
vertices associated with r;,;; and rgea, respectively.

Our planner initially subdivides ;i and Kgoq; until they
are empry, to ensure that ¢, and ¢goq can be represented
within the given resolution. (This is also done in [13], [14].)
As an aside, this means that k;,;; and Kgoq Will never be
subdivided in the course of planning.

The traditional FindPath algorithm is shown in Fig. 1.
The description of this algorithm is not unique, of course.
Variations can be found in [36], {13], [14] for example. We
chose this instance of the FindPath algorithm to emphasize
the distinct implementation choices of Lines 4 and 7, and the
ramifications of the selection of an M-path in Line 7 on the
termination of the FindPath algorithm in Line 3.

In this paper we show how the performance of the traditional
FindPath algorithm can be significantly improved through the
use of a single-source shortest paths tree (SP) to maintain
potential solution paths at each iteration of the algorithm.
Specifically, by dynamically maintaining SP, we reduce the
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G,

Fig. 2. Plan search space.

procedure FindPath (ginit, ggoai:configuration; Go:graph)
[1] 1+ 0
]

[2 7 — the least cost path from vy t0 Vgoa in SP;
[3]  until 7 is an E-path or 7 is NIL do
4] v, «— v € 7 such that cost(v) is maximum
[5] subdivide MIXED cell k, and construct G4y
6] propagate changes to construct SP;y
7 te—i+1
8] 7 « the least cost path from vy t0 Vgear in SP;
[0 returnw
end
Fig. 3. Our improved FindPath algorithm.

search for an M-path in Line 7 to a local tree update. In
contrast, traditional implementations use some type of search
at each iteration. Fig. 3 depicts our improved algorithm.

III. FINDPATH SEARCH

The FindPath algorithm shown in Fig. | searches for a
graph G, that contains an E-path from v;,; t0 vyee. The
search for G, begins with the initial connectivity graph Gy and
progresses by subdividing some mixeo cells in the underlying
partition P to obtain G, (thereby producing a more detailed
representation of the underlying configuration space, C), and
so on. In order to more clearly understand this search process,
we can decompose the search into two components: the search
for a solution graph G,,, and the search within §; for an E-path.
An example of a possible execution of FindPath is illustrated
in Fig. 2. In the figure, the search for a solution graph G,, is
represented by a vertical sequence of graphs from the initial
graph Gy to a solution graph Gs;. Within each G;, the search
for an E-path produces either an M-path or an E-path. In the
figure, these paths are indicated by arrows, and shading is used
to represent vertex cost (our vertex cost function is described
in Section VI-A).

In the remainder of this section, we will develop a mathe-
matical characterization of the search process, use this char-
acterization to describe previous hierarchical approaches to

motion planning, and give a brief overview of our new
approach.

A. The Lattice of Connectivity Graphs

We assume that C is bounded, and is enclosed in a cell £y. A
given deterministic subdivision algorithm uniquely partitions
ro into subcells. For example, using octrees o would be
subdivided into eight cells. The following definitions provide
a mathematical characterization of the space of all possible
decompositions of C.

Definition 1: Let AP be the space of all partitions that can
be obtained by performing a sequence of subdivisions on cells
in the representation of C.

Definition 2: Given two partitions, P; and P in AP,
P1 < Py if and only if for all x; € P there exists some
Ko € Ps such that ;) C ko.

The < relation imposes a partial order on AP. Every pair
of partitions has a greatest lower bound and a least upper
bound in AP. Therefore AP is a lattice. For a given minimum
resolution on the size of a cell, or if the subdivision algorithm
is exact, the lattice is finite. The least upper bound of the
lattice is the initial partition P, that contains only the cell
Ko, the initial unsubdivided cell that encloses C. The greatest
lower bound of the lattice is the completely subdivided (to
resolution) partition Pe.

For every partition P € AP, there is a unique corresponding
connectivity graph G, which leads to the following definition.

Definition 3: For AP, the space of partitions for some
configuration space representation, denote by AG the corre-
sponding space of connectivity graphs.

The bijective map between AP and .AG implies that AG is
also a lattice. (The mapping is a bijection because associated
with each vertex in the connectivity graph is a spatially unique
cell of the partition. Thus while two connectivity graphs G,
and G», with corresponding partitions P; and P, may be
topologically isomorphic, Gi # G- since the vertices in the
two graphs have unique, spatially dependent labels.) So, for
every connectivity graph G € AG, there is a corresponding
underlying partition P € AP. Let G,4, < G; if and only if
Piy1 3 P

We now characterize the set of solution graphs that exist
within AG.

Definition 4. A solution graph is any graph G € AG that
contains an E-path from v;,;s t0 v404. Denote by SG the set
of all solution graphs.

A sublattice is a subset of a lattice that is itself a lattice. If
SG were a sublattice, a natural goal for the FindPath algorithm
would be to find the least upper bound of SG as the solution
graph. In general, the set SG does not form a sublattice of AG
because there may be multiple incomparable solution graphs
such that their least upper bound is not a solution graph.
However, once an E-path exists in G, further subdivisions
to mixep cells in the underlying partition P do not affect the
existence of that E-path. This has also been noted in [49], [36].
We express this more formally in the following theorem.

Theorem I [Solution]: Let G € SG, and let G = {G; €
AG | G; 2 G} (i.e. G is the set of all connectivity graphs
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that can be obtained from G by a sequence of subdivisions in
P). Then G C SG.

Proof: 1t is given that G € SG. Assume that after some
number of subdivisions to cells in the corresponding partition
P we have obtained G; € SG. Let « be the cell that is
subdivided in P; to produce P;41. If « is not in the E-channel
in P;, then the E-channel in P; exists in P; 1 so Gi+1 € SG. If
# is an empry cell in the E-channel in P;, then « subdivides into
adjacent emery cells and there is a solution E-channel in P4,
50 G;+1 € SG. By induction on the number of subdivisions to
P, every G; that can be obtained by subdividing cells in P is
a solution graph. So G C SG.

Definition 5: A solution predicate is a function f:AG —
{true. eaLse} that maps some of the solution graphs to True and
all other graphs to raLsE.

Definition 6: We say that a solution graph G € SG is
recognizable by a solution predicate if the solution predicate
maps G to wue. Let RG C SG be the set of all recognizable
solution graphs.

Definition 7: A solution predicate is omniscient if and only
if RG = SG.

In this paper, we use the solution predicate *‘the least cost
path {(vinit ... Vgoa) is an E-path.”” Whether this particular
solution predicate is omniscient or not depends on the choice
of the vertex cost function. If a particular connectivity graph,
G, contains an M-Path (v, ... vg0q1) With lower cost than
any such E-path in G, then our solution predicate will return
raLst for G. In all cases, by Theorem 1, if a solution graph exists
in AG, our algorithm will eventually produce a connectivity
graph, G, such that our solution predicate will return True for
G (since P.. contains only emrry cells).

B. Searching a Connectivity Graph

To date, most hierarchical motion planners based on ap-
proximate cell decomposition have used hill-climbing to find
a solution graph in AG, terminating when the selected path in
the graph is an E-path. Where the planners have differed has
been in how a path is selected at each iteration (Line 7 of the
algorithm of Fig. 1).

The first reported method to find a path in G; was A*
search. A* search returns the least cost M-path in G;. The
next connectivity graph, G, 11, is then generated by subdividing
mixep cells from the corresponding M-channel. This approach
was first used in the planner described in [13], [14], which we
will refer to as BLPI.

The major drawback of BLPI, as noted by the authors, is
the inefficiency due to repeated use of A* search to find the
least cost M-path. This led to the introduction of the bridge
the gap strategy, which was first used by the planner reported
in [13], [14]. We will refer to this planner as BLP2. The bridge
the gap strategy works as follows. A vertex v, with a mxeo
cell in the previous M-path is selected for subdivision. This
vertex is removed from the graph; its corresponding cell is
subdivided; and the new vertices with non-ruLL subcells are
added to the connectivity graph. A local search for a bridge
is then performed to connect the predecessor of v, to the
successor of v, in the new M-path. In conjunction with the
bridge the gap strategy, the authors also recommend increasing

the number of cells subdivided per iteration to help combat
the inefficiency.

The hierarchical planners given in [33], [49] also use the
bridge the gap strategy. We will refer to these planners as
KD and ZL, respectively. Both KD and ZL, which is a
generalization of KD, restrict the search for a bridge to the
vertices corresponding to the subcells of the just-subdivided
cell. If no bridge is found, KD and ZL backtrack over decisions
made at previous iterations. In the event that the bridge
construction fails, ZL uses annotations to prune the search
space in an attempt to limit the amount of search for an M-
path. Once it has been determined that a bridge cannot be
constructed between two vertices, no attempt will be repeated
in the course of searching for an M-path connecting v;,;; and
1goql- The annotations of ZL limit the amount of time spent
generating paths, rather than preventing their occurrence. The
use of annotations does prevent some repeated search effort;
however, annotations do not eliminate the repeated search
effort between global searches across iterations (comparing
the search for an M-path in G; with that in G;;1), nor do
they completely eliminate repeated search effort when failures
require backtracking within an iteration.

The main disadvantage to the bridge the gap strategy is
that, in the worst case, the construction of the bridge can
be as difficult as performing a global search for an M-
path. Furthermore, the construction of a bridge can lead to
convoluted paths; and in no case is it guaranteed to find
the least cost path from v;,;¢ t0 V40w in G;. These effects
are worsened by subdividing multiple cells per iteration. To
prevent excessively convoluted paths, BLP2 puts resource
limits on the search for a bridge in the form of a bound on the
depth of the search. If no bridge is found within the resource
limits, a global search for a new path from vinit 10 Vgoat is
undertaken. KD and ZL do not address this issue.

In this paper, we introduce a mechanism that eliminates the
redundancy exhibited when using A* search at each iteration
of FindPath, without resorting to the bridge the gap strategy.
Specifically, we make use of the single-source shortest paths
tree (SP) embedded in G, wherein the least cost path from
the source, vy, to every vertex is maintained. For our planning
application, vg is wini, and the path we are interested in is
the path from vy 10 vgoal-

The relationship between A* search and computing SP can
be seen by comparing the sequence of vertices expanded by
A* search (with heuristic function & = 0) with the sequence
of deletions in Dijkstra’s algorithm, which is described in
Section V. Both algorithms begin at the initial vertex vin;¢.
Both algorithms expand the search by first adding all vertices
adjacent to the current vertex to a set of generated but not
yet expanded vertices. Both then select the vertex in this
set with the least cost path from v;,;; to expand next. The
difference is that Dijkstra’s algorithm finishes when all of
the vertices have been expanded, while A* search terminates
when v4,q; has been obtained. To this extent, a heuristic cost
function, h > 0, may help A* terminate earlier. In summary,
A* search computes the least cost path from vinit 10 Vgoat
while Dijkstra’s algorithm computes the least cost path from
Vinit tO every vertex.
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At each iteration of our improved FindPath algorithm, a
mixep cell is subdivided and SP;; is computed. Once SP;
is computed, the least cost path from v to v, is immediately
available without the need to search. It may, in some cases,
be computationally less expensive to use A* search than to
compute SP;;1 since A* search may not examine all of the
vertices in the graph to obtain a solution, as explained above.
However, we note that the changes to G; are local. Therefore,
if SP; is dynamically maintained (i.e. SP;4; is obtained by
efficiently updating SP; to reflect the new changes), this yields
a superior FindPath algorithm, which is depicted in Fig. 3.

IV. INCREMENTAL CHANGES IN 8P

When a mixep cell is subdivided, the connectivity graph,
G. is modified to reflect the existence of the resulting new
cells. In this section, we introduce the theory that describes the
corresponding changes to a single-source shortest paths tree,
SP, embedded in G. Specifically, we describe the differences
between SP; and SP; ., given that (a) SP; is a single-source
shortest paths tree embedded in G;, (b) G, is the connectivity
graph obtained by subdividing some mixep cell in G;, and (c)
SPiy1 is a single-source shortest paths tree embedded in G; ;4.

In Section IV-A we introduce terminology, and a local
decision criterion for determining whether a tree is a single-
source shortest paths tree. In Section IV-B we identify the
changes that can occur between SP; and SP;; for the special
case when G, ; is obtained by changing the cost of a single
vertex in G;. Then, in Section IV-C, we discuss the changes
that can occur between SP; and SP;4, in the more general
case where G;;; is the connectivity graph that results from
subdividing a mixep cell that corresponds to a vertex of G,.

A. Terminology

A single-source shortest paths tree SP is a directed sub-
graph, G'(V', E'), of G(V. E) such that V' consists of exactly
those vertices in G that are reachable from the source vertex,
and E’ consists of exactly those edges that form the least cost
paths from the source to every vertex.

In the standard shortest paths problem, we are given a
weighted, directed graph G(V. E), with cost function cost :
E — (0.2c), mapping edges to positive, real-valued costs
[3], [17]. For our problem, we associate costs with vertices
rather than edges, since the cells associated with the vertices
represent the physical space through which a trajectory must
pass. We could equivalently assess the cost of each edge as
the average of the costs of the vertices it connects. For our
problem, the edges of a connectivity graph G are undirected;
however, the algorithms developed in this paper do not depend
on this fact. Also, in this paper we will use the term ‘‘least
cost’’ instead of ‘‘shortest.”

Throughout this paper, we will denote the root of a tree by
the label vy. We use the usual definitions for neighbor, parent,
child and sibling. Note that the neighbor relation applies to
the underlying graph G, while the parent, child, and sibling
relations are specific to the embedded tree G'. We will use the
term proper-neighbor to denote those neighbors of a vertex,
v, that are neither the parent, child or sibling of v. We will

Fig. 4. Vertex relationships.

use the notation parentg, (v) to denote the parent of a vertex
in the unique simple path from vy to v in the tree G’. These
relationships are illustrated in Fig. 4, which emphasizes the
fact that there can be multiple children (c), siblings (s), and
proper-neighbors (N) of a vertex (v), but only one parent (»).
Note that siblings are not necessarily neighbors. Arrows in the
figure represent directed tree edges on top of undirected edges
in the underlying graph.

The following definition and lemma establish an alterna-
tive formulation of a single-source shortest paths tree. This
formulation is central to the understanding of the algorithms
presented in Section V.

Definition 8: Given a tree G'(V', E') embedded in a graph
G(V, E), with root vy, a vertex v € V is locally SP (abbre-
viated [SP) if and only if

0 ifmg(vo.v) =9

arent; (v) = .
P g () {p otherwise

where p is such  that  pathcost(mg (vo.p)) <
pathcost(wg: (vo,n)) Yn € neighbors(v) and mg: (vg,v)
denotes the unique simple path from the root vy to the
vertex v.

Lemma 2 [SP]: Given a tree G'(V'. E’) embedded in a
graph G(V. F), with root vy, G' is a single-source shortest
paths tree embedded in G if and only if every v € V is ISP.

The proof is very similar to that given for the correctness of
Dijkstra’s algorithm which can be found in many sources [18],
[3], [17). The complete proof of the lemma is given in [9]).

The significance of the SP lemma is that it provides a local
decision criterion for establishing and determining whether
a particular tree, G’, is a single-source shortest paths tree
embedded in G.

B. Changing Costs

We now examine the simple case where G, is obtained
by altering the cost of a single vertex » in G; (and hence its
path cost). In particular, in this section we identify a set of
conditions that determine which vertices must remain (S in
Giy1, and which vertices may not be [SP in G;;,. Those
vertices that may not be /[SP in G,;; must be considered
by the dynamic single-source shortest paths tree algorithms
presented in Section V. The major results of this section are
contained in a number of theorems and their corollaries, which
are summarized in Table I. Most of the proofs have been
omitted for length considerations and may be found in [9]. The
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TABLE 1
SUMMARY OF RESULTS PRESENTED IN SECTION IV: LET G BE A SINGLE-SOURCE SHORTEST PATHS TREE EMBEDDED IN A GRAPH 4, ; LET Giy1 Be
THE GRAPH OBTAINED BY CHANGING COST (r') FOR SOME VERTEX © € G| AND LET g,’+, BE G, wiTH THE NEW VALUE FOR COST (r')

The parent of v remains ISP in Gij1.

Theorem 3 and Theorem 5

The siblings of v remain [SP in Gi4;.

Theorem 3 and Theorem 5

For increases to cost(v), the non-descendants

of v remain ISP in G;1,.

Theorem 4 and Theorem 5

For all decreases to cost(v), the descendants

of v remain ISP in G4;.

Theorem 6

If the path cost of a vertex v decreases by more than
pathcost(mg:, (vo, v)) - pathcost(mg, (vo, parentg (n))),
for a proper-neighbor n, then n remains ISP in Gy

if it exchanges its parent for v.

Corollary 8

omitted proofs follow from standard facts on shortest paths and
the theory introduced in this paper.

Throughout this section we will assume that the graph G; 3
is obtained by changing the cost of some vertex v in G;.
Structurally, G; and G, 4 are identical. The tree G! is embedded
in G; and is a single-source shortest paths tree. The tree G; , ; is
embedded in G; 1, and is structurally identical to G!. However,

4 41 has a new value for cost(v), and therefore, in general,
G, is not a single-source shortest paths tree.

Definition 9: For a specific change to cost (v), we say that
a vertex u is independent of v if and only if

1) pathcost(xg:  (vo.u)) = pathcost(mg: (vo. 1))

2y mgr,,, (vo,u) € 1Ig  (vo.u).

where II%(vg,v) denotes the set of all simple least cost
paths from vy to v in G.

In other words, the least cost path from the source, vy, to
vertex u is insulated from the particular change to the cost
of vertex wv.

Definition 10: For a particular change to cost(v), the set of
affected vertices, AFF(v), is given by

AFF(v) = {u € V | uis not independent of v}.

The following theorem provides a local condition that is
sufficient to establish that some vertex w is independent of v
for a specified change in cost (v). The proof is provided in
the Appendix.

Theorem 3 [Independence]: A vertex u # v is independent
of v for all changes to cost (v) if

pathcost(mg-, (vg. parentg, (u)))

< pathcost(mgr, (vo. parentg/ (v))). €))

We can also state a weaker property that holds for nonde-
scendants of v, which includes all proper-neighbors of v. Let
D(v) denote the descendents of .

Theorem 4 [Nondescendants]: The nondescendants of v
are independent of v for all increases in cost (v).

The previous theorems provide local conditions that are
sufficient to test whether a vertex u is independent of some
other vertex v for a specified change in the cost (v). We
now present a theorem that relates independence to the [SP

property.

Theorem 5: A vertex u that is independent of v in G; for a
particular change to cost (v) is ISP in G;41.

The next theorem identifies conditions for the descendants
of v to remain ISP in Gii1.

Theorem 6 [Descendants]: The set of descendants of v
remain [SP in G;, for all decreases to cost (v).

Because the previous results provide only sufficient con-
ditions, we cannot infer which vertices fail to remain ISP
in G;1. The final theorem of this section identifies suffi-
cient conditions for a set of vertices to notr remain [SP in
Gi 1. Furthermore, the corollary specifies how to rectify the
situation.

Theorem 7 [Proper-Neighbor]: A vertex n that is ISP in
a tree G/ embedded in a graph G; is not ISP in G;y1 if the
path cost of a proper-neighbor v of n changes such that

pathcost(rg:,  , (vg. v)) < pathcost(rg:, (vo, parentg; (n))).

Corollary 8 [Proper-Neighbor]: A proper-neighbor n that
is no longer ISP by the proper-neighbor theorem, will become
ISP by exchanging its parent for the vertex v of the proper-
neighbor theorem.

The results of this section show that when the cost of
a single vertex v decreases, the parent, siblings, children,
and some proper-neighbors of v remain ISP in G; 1. Those
proper-neighbors . of v that are not [SP in ;1 will become
ISP if the parent of n becomes v. The corresponding decrease
in the path cost of n can be propagated to its neighbors in a
similar fashion. When the cost of v increases, by Theorem
4, the nondescendants remain ISP, while the descendants
may not remain [SP in Gi1. These results are illustrated
in Fig. 5. In the figure, vertex v is depicted together with
its descendants, D(v). When the cost of v decreases, the
preexisting descendants remain descendants, and those proper-
neighbors that are no longer ISP in G; ;1 become descendants
of v. When the cost of v increases, the descendants may not be
{SP in G; 41 and may therefore obtain alternate paths from the
source. The arrows in the figure illustrate the general trends
in the changing paths.

The importance of the theorems and corollaries presented in
this section stems from the SP lemma. We want to compute a
single-source shortest paths tree in G;;1. The SP lemma tells
us that if every vertex is [SP in G4 then we have solved the
problem. The preceding theorems and their corollaries identify
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D(v) D(v)

increase cost(v) decrease cost(v)

Fig. 5. Effects of changing the cost of a vertex.

large, easily recognized subsets of vertices that are already
ISP after a given change to the graph and therefore need no
further processing.

C. Changing the Graph

In our planning application, a selected vertex v, is deleted
from G, its corresponding mixep cell x, is subdivided, and
the vertices corresponding to the non-ruLL cells of P** are
added to construct G, ;1. The new vertices also inherit a subset
of the neighbors of v,. The cell adjacency tests take only a
constant amount of time for rectangloid cells. So computing
Gi+1 from G, is a local operation of complexity on the order
of the number of neighbors of v,. All edges incident on, or
emanating from, v, are removed from G/ as well as from G;.
As a result of this modification to Qf, children (v,) do not have
parents in G/, and parent (v,) has one less child in G/, ;.
Also, each newly created vertex has no parent in G/ T1-

If we could make a local repair to G! to integrate the
new and orphaned vertices, then we could propagate the
changes to the graph as if we had merely changed the cost
of the deleted vertex. Unfortunately, integrating the new and
orphaned vertices into SP;; in their permanent positions is
as difficult as computing SP;;; from scratch. The general
case is more difficult than the case of a single vertex changing
its cost, because the cumulative effect that introducing the new
vertices has on the affected vertices in G;__ ; is uncertain. There
are two sources for this difficulty: the net change in the vertex
costs relative to cost (v,), and the topological changes from
Gi to Giy.

The parent of v, together with the new and orphaned
vertices do not necessarily form a connected subgraph of
Gi+1. Therefore, locally, the neighbor with smallest path cost
is not necessarily known. For example, any new vertex v
that is adjacent to p = parentg, (v,) becomes a child of p.
However, there may not be any such v. If we greedily choose
the nonchild neighbor with the minimum path cost, it is
unlikely that this local repair is globally consistent. Although
propagation guarantees global consistency, this greedy repair
may result in an inefficient algorithm [10].

So in the general case we must propagate both increases and
decreases in parallel. A decrease may override an increase, or
may cancel it out. Or, due to the altered topology of the graph,
the separate changes may be independent of one another. An
algorithm for propagating path costs must be able to account
for this behavior as well as what was observed for the simple
case. These issues are addressed in the next section in the
context of our specific implementations.

V. ALGORITHMS

Dijkstra’s algorithm [18] is a well-known solution to the
single-source shortest paths problem for a given graph G(V, F)
with nonnegative edge weights. Dijkstra’s algorithm can be
viewed as a direct implementation of the SP lemma. The
algorithm begins by initializing the pathcost of the source
vertex to 0' and the pathcost of all other vertices to oc.

The algorithm proceeds by progressing from the source,
incrementally outward. At each iteration, a vertex v, is selected
and added to the list of vertices for which the least cost path
from the source is known. We will refer to such vertices as
‘‘stable.”” The neighbors of v, are then tested to see whether
their current least cost path can be bettered by going through
vs. At this time, a neighboring vertex with its initial infinite
path cost will obtain a finite path cost. Since the algorithm
progresses from the source incrementally outward, by the time
a vertex is added to the list, it has been notified of all neighbors
with lower cost paths and has therefore attained the least cost
path to the source, and is therefore also [SP.

The original algorithm [18] is understood to use a |V| x |V|
adjacency matrix to represent the graph and runs in time
O(|V|?). Since the number of edges can be as large as
O(|V]?), in general, this is optimal [48]. However for sparse
graphs, where |E| < |V|?, Dijkstra’s algorithm can be
modified to run in time O(|E}log|V]|) through the use of
a priority queue [3], [17], where the priority of a vertex
is the value of pathcost. (The use of Fibonacci heaps [28],
for example, leads to further theoretical improvements.) An
additional improvement to average case running time can
be achieved by a slight modification to Dijkstra’s algorithm:
initially place only the source vertex, vy, in the queue, and add
vertices to the queue as they are reached by the propagation.
We will refer to this modified Dijkstra’s algorithm as ‘‘the
static Dijkstra’s algorithm.”” We use this algorithm as a
benchmark for our comparisons in Section VL.

In the worst case, there can be O(|V|?) edges in a con-
nectivity graph. However, as is shown in [8], the connectivity
graph G(V. F) of an octree is sparse. Specifically |E| < 22|V,
Therefore, the complexity of Dijkstra’s algorithm is bounded
by O(|V]log |V ]).

In the remainder of this section we will describe two
new algorithms. In Section V-A we present a modification
of Dijkstra’s algorithm that takes advantage of the existing
structure of G/, ;. Then in Section V-B we present a second
modification of Dijkstra’s algorithm that also takes advantage
of Q;H but is a less conservative algorithm. Finally, in Section
V-C we discuss other solutions to the dynamic single-source
shortest paths problem and to related problems.

Throughout this section, we assume that a vertex v and the
relationships between vertices described in Section IV-A are
represented by a data structure with the following fields: cost,
the assessed cost of x, pathcost, the globally best known least
path cost, and localpc, the locally best known least path cost.
The localpc field is only used by the dynamic algorithm of
Section V-B. The vertex relationships are represented by the
parent, children, and neighbors fields. During the execution of

! Any value less than ~x will serve the same purpose.
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the algorithms a vertex may not be [SP, but each algorithm
developed below first establishes and then maintains this
relationship for all vertices in G, to construct SP. This is
discussed in more detail below.

It is important to note that the complexity analysis of the
algorithms presented in this section is a worst case analysis.
It may be that an average case analysis, and, for example, the
use of dynamic data structures, will yield better expected time
bounds. As we note below, in the worst case, the entire graph
may change and the dynamic algorithms perform no better than
the static Dijkstra’s algorithm. However, for problems where
this is not typical, such as hierarchical motion planning, the
dynamic algorithms do much better.

A. A Dynamic Batch Algorithm

The static Dijkstra’s algorithm suffers from the drawback
of initializing all of the graph vertices and computing SP; 11
from scratch for each G,;;. In this section we present an
algorithm that makes use of the existence of G/ to update only
those vertices that might be affected by a given modification to
G;. Specifically, we apply the static Dijkstra’s algorithm only
to the potentially small set of affected vertices.? This yields a
dynamic batch algorithm, which we will refer to as DB.

We identified in Section IV those vertices that are in-
dependent of a given change to the graph. There is no
need to re-initialize such vertices as they are already correct.
The descendants of v, the vertex that has changed, are not
independent of v, and may require modification.

We know (by Theorems 3, 5, and 7) that if the new vertices
act as if the vertex cost of v, were increased in G, 4, then
only the descendants of v, might not be ISP in G;,,. By
collecting the descendants and initializing their pathcost to o,
as is done for the static Dijkstra’s algorithm, we avoid having
to consider the troublesome case of increasing a pathcost.
Relative to the initialized pathcosts, the effective change to
the graph is to decrease the cost of a vertex. While there is
only one vertex with an initially bounded priority in the static
Dijkstra’s algorithm, in DB there are many. This means that
the initialization process of the static Dijkstra’s algorithm must
be extended somewhat. After every descendant is initialized
to have infinite pathcost, every descendant is then tested to
see whether or not it is adjacent to some vertex in the set of
stable vertices, and, if so, what its least cost path is.

In the case of an effective decrease in the cost of the vertex,
the descendants decrease their path costs, and some proper-
neighbors may no longer be [SP. In this case, DB functions
similar to the static Dijkstra’s algorithm, incrementally adding
such vertices to the priority queue.

In the pseudocode for DB, shown in Fig. 6, Divide-Vertex
is responsible for the following five tasks:

1) Delete the vertex v, and associated edges from §; and

SP;.

2) Subdivide the cell «, associated with v,.

3) Label the new cells of P"* empry, MiXep, OF FULL.

4) Create new vertices for the non-ruL cells of P**.

5) Add the new vertices to construct G; 4.

2 A similar idea is presented in [16).

procedure Split-Vertex (v:vertex; G:graph)
(1] D «— Init-and-Return-All-Descendants(v)
[2] N « Divide-Vertex(v, §)
(3] DB (DU N)

end

procedure DB (affected:vertex-list)

1 DB-Initialize( affected)
2] Q — BuildPQ(affected)
(3] while Q # @ do
(4] u — DeleteMin(Q)
[5] foreach v € u.neighbors do
(6] Relax(u, v, Q)
end
procedure DB-Initialize (vertices:vertex-list)
1] foreach v € vertices do
2] p — Min-Neighbor(v)
(3] v.pathcost «— v.cost + p.pathcost

end

procedure Relax (u, v:vertex; Q:priority-queue)
1] if v.pathcost > v.cost + u.pathcost
2] then v.parent «— u
(3] v.pathcost — v.cost + u.pathcost
[4] Adjust-Vertex (v, Q)

procedure Adjust-Vertex (v:vertex, Q:priority-queue)

1] ifve@
[2] then UpdatePriority(v, Q, v.pathcost)
(3] else Insert(v, Q,v.pathcost)

end

Fig. 6. Dynamic batch algorithm for constructing a single-source shortest
paths tree.

Divide-Vertex returns the set of newly created vertices. Min-
Neighbor returns the neighboring vertex with the minimum
pathcost (the posted least path cost from the source). Init-and-
Return-All-Descendants performs a tree-traversal, collecting
the descendants. As a side-effect, each descendant vertex has
its pathcost reset to infinity and its parent reset to . Split-
Vertex is the top-level function that is called by the FindPath
algorithm.

In the complexity analysis for DB that follows, let v, be
the vertex that is subdivided, let |v| be |AF F(v,)|, and let e]
be the number of edges incident on AFF (v, ). We use |v| and
le| as subset analogs of [V| and |E|.

The complexity analysis for DB is very similar to that of
the static Dijkstra’s algorithm. There is a linear amount of
work during initialization: DB-Initialize calls Min-Neighbor
which yields an O(e|) instead of the O(|V]) preliminary step
of the static Dijkstra’s algorithm; and BuildPQ requires only
O(|v]) time instead of O(|V]). Each vertex is deleted only
once from the priority queue and Relax is called once for each
neighbor. Thus the complexity of DB is O([e|log [v]). Again,
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in the worse case, when the source vertex changes its cost, D53
takes time O(|E|log |V]). In the event that v, changes its cost,
DB is equivalent to the static Dijkstra’s algorithm, although
DB will perform some extraneous initializations without undo
overhead. However, on average, it is expected that |¢| < |E|
and jv| < (V.

B. A Dynamic Incremental Algorithm

In this section, we present a dynamic incremental algorithm,
DI, that incrementally propagates changes to only that subset
of the graph that is actually affected. The critical distinction
between DI and DB is that DI must propagate increases
as well as decreases. Most notably, Split-Vertex initializes
only those vertices that have been modified, as opposed to
those that are potentially affected, as for DB3. But as we shall
see below, D7 handles vertices that increase their path cost
in much the same fashion as DB: by resetting the pathcost
field to oc, thereby converting the vertex to one whose
pathcost is monotonically decreasing. Here it becomes clear
why we need separate localpc and pathcost fields: we need
to distinguish between the local properties of a vertex and the
global properties that we are attempting to establish.

There are two modifications to DB that must be made to
accommodate the case of a parent that increases its path cost.
The first modification is that the relaxation procedure must
explicitly test for, and handle, vertices whose parents have
increased their pathcost. When a parent propagates an increase,
the locally best path of the child is reevaluated. At this point
there is not sufficient information to determine whether the
child’s path cost will eventually increase or decrease.

The conservative solution is to make the priority of a vertex
to be the smaller of the pathcost and the locally best path cost
(which may change as other changes are propagated). This
avoids committing to an apparent increase too early.

The only time we can be sure that the path cost will increase
is when the child is selected as the vertex with the minimum
priority (the purportedly least path cost) to be added to the
set of stable vertices. At that time, if the vertex is adjacent to
some stable vertex and also has the least cost path, then it is
correct to add the vertex to the set of stable vertices. However,
if the pathcost is smaller than the localpc, we are guaranteed
that the vertex path cost must increase. In other words, the
pathcost has been held artificially low in case a lower cost
path is discovered to avoid an unnecessary increase, but no
such path was found.

So, the second modification to DB is to test that when a
vertex is deleted from the priority queue, if its pathcost is
less than its localpc, the vertex is initialized to have infinite
pathcost, re-inserted into the priority queue (with priority equal
to the locally least path cost, unless it is not reachable from
the source), and the increase is propagated to its neighbors.
A vertex is therefore deleted from the priority queue at most
twice. This argument is also given in [42].

We consider the case of a neighbor with no parent to be
the same as if a parent has increased to accommodate new
vertices. Also, if after relaxation, a vertex is found to have its
localpc equal to its pathcost, then it need not be inserted, and
can even be deleted from the priority queue, as this condition

entails that the vertex is effectively unchanged by the change
to the graph [42]. The pseudocode for DI is shown in Figs.
7 and 8.

In the complexity analysis for DZ that follows, let v, be
the vertex that is subdivided, let |v| be |AFF(v,)|, and let
|e| be the number of edges incident on AFF(v,). Let M be
the initial set of modified vertices (i.e. the new vertices from
P~+, and the orphaned vertices, v..children), and let |[N| be
the number of edges incident on M. We assume without loss
of generality that [N| < |e| and |M]| < |v|.

BuildPQ is used to create an empty priority queue, which
takes constant time. DI-Init calls Min-Neighbor for each vertex
in M and then inserts the vertex into the priority queue.
The only situation in which a vertex is not inserted into the
priority queue is when it is no longer a part of the connected
subgraph containing the source. Therefore DI-Init takes time
O(N + Mlog M). In the worst case, DI-Relax on Line 13
requires O(d + log |v|) time, where d is the average degree
of a vertex (i.e. |E| = d|V|). This is the result of one call to
Min-Neighbor and one call to Adjust-Vertex, respectively.

The while loop on Line 3 of DI iterates O(|v|) times.
Each iteration produces a call to DeleteMin, and, in the
worst case, a call to Min-Neighbor and to Insert. Each it-
eration also produces d calls to DI-Relax. This yields an
O(Jv|(log o] + d + d(d + log |v]))) = O(Jv|d(d + log |v])) =
O(le|(d + log|v])) time complexity for DZ. Assuming that
d < log|el], the complexity is O(|¢|log |v|). Because |E| =
O(|V]), this assumption is reasonable. An alternative solution
with this bound can be found in [42].

In the worst case |v] is O(|V|) which occurs when v, is near
vg and the subcells of P"* produce a drastic effective change in
path costs relative to v,.pathcost. DI behaves like DB in this
case: first accumulating the descendants in the priority queue,
initializing their path costs, and then monotonically decreasing
the path costs until their minimum value is obtained.

When compared to DB, DI examines a potentially smaller
set of vertices at a slightly higher cost per vertex. The higher
cost is due in part to examining each vertex more than once,
but is predominantly due to the need to assess the locally least
cost path during relaxation.

C. Related Problems

Much of the research on computing single-source shortest
paths trees focuses on arbitrarily changing a single edge [3],
[17], [1], [41]. While we can arbitrarily change the cost of
a vertex, this effectively results in a uniform change to the
weights of all incident edges. Also many researchers limit
themselves to the case of unit cost or small integer cost edges.
For example, the assumption of small integer costs yields a
time bound of O(|E| + |V|v1og W) to compute SP, where
W is the number of bits required to represent the largest
cost [17]. An efficient solution to the dynamic single-source
shortest paths problem where multiple simultaneous changes
to the graph are allowed can be found in [42].

An incremental dynamic algorithm was independently de-
veloped in [42]. We will call this algorithm RR. DI, as
originally proposed, differs from RR in three ways.
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procedure DI (modified:vertex-list)
1] DI-Init(modified, Q)
2] Q «— BuildPQ(n1L)
13] while Q # ¢ do

[4] u « DeleteMin(Q)
[5) if u.pathcost > u.localpc
(6] then u.pathcost — u.localpc
(7] else u.pathcost — 0o
(8] u.parent «— Min-Neighbor(u)
[9] u.localpc « u.cost + u.parent.pathcost
[10] if u.pathcost # u.localpc
[11] then Insert(u, @, u.localpc)
[12] foreach v € u.neighbors do
[13] DI-Relax(u, v, @)
end

procedure DI-Init (vertices:vertex-list, Q:priority-queue)

1] foreach v € vertices do

2] v.parent «— Min-Neighbor(v)

(3] v.localpe — v.cost + v.parent.pathcost

(4] if v.pathcost # v.localpc

5] then Insert(v, Q,min(v.pathcost, v.localpc))
end

procedure DI-Relax (u,v:vertex; Q:priority-queue)

[1] ¢ « v.cost + u.pathcost
2] if v.parent = NIL or (v.parent = u and v.localpc < ¢)
(3] then v.parent — Min-Neighbor(v)
4] v.localpc — v.cost + v.parent.pathcost
(5] Adjust-Vertex(v, Q)
[6] elseif v.localpc > ¢
[7] then v.parent — u
8] v.localpc — v.cost + v.parent.pathcost
[9] Adjust-Vertex(v, Q)
end
Fig. 7. Dynamic incremental algorithm for constructing a single-source

shortest paths tree.

1) RR deletes vertices from the priority queue as soon
as they are discovered to be correct (v.pathcost =
v.localpc). This results in a smaller priority queue (and
hence the primitive priority queue operations are more
efficient) and vertices are not relaxed unnecessarily. We
have included this modification to DZ in the pseudocode
presented in Section V-B.

2) DI keeps track of the least path cost neighbor, which
saves time computing the path cost of a vertex. RR ad-
dresses this problem by keeping a subset of the neighbors
of a vertex in a local priority queue so that the least cost
neighbor is always immediately available. Although we
considered this solution, we have not implemented it,
in part, because a standard implementation of priority
queues would also increase the overall complexity of
the algorithm. It is also the case for RR that the use of
local queues increases the complexity of their algorithm
for a standard implementation of priority queues. The
authors suggest implementing the local priority queues
as Fibonacci heaps [28]; but then Fibonacci heaps should
be used for the global priority queue as well.

procedure Split-Vertex (v:vertex; G:graph)
(1] M — v.children
(2] N « Divide-Vertex(v,G)
B8] DI(NuM)

end

procedure Adjust-Vertex (v:vertex, Q:priority-queue)

(1] if v.pathcost = v.localpc
2] thenif v € Q
[3] then Delete(v, Q)
4] elseif v € Q
[5] then UpdatePriority(v, Q,min(v.pathcost, v.localpc))
(6] else Insert(v, Q,min(v.pathcost, v.localpc))
end

Fig. 8. Dynamic incremental algorithm for constructing a single-source
shortest paths tree (continued).

3) RR, when applied to our problem, will initially consider
all of the neighbors of the vertex that has been deleted
from the graph. DZ only considers the children of the
vertex. Since the modification to the graph is to insert
new vertices with initially infinite path costs, the other
neighbors maintain their correctness initially. R'R will
later detect this and not insert such vertices into the
queue.

Some research on dynamic shortest paths trees focuses on
the restricted problem of planar graphs [25] for which it is
known how to efficiently compute good separators [26]. Our
analysis would not benefit from considering planar graphs
since our connectivity graphs are already sparse. The ability to
compute good separators in connectivity graphs is considered
in Section VII which discusses future research.

There is a considerable amount of research dedicated to the
dynamic all-pairs shortest paths problem [44], [22], [6], [38],
[41], [42], [35]. This may be of some interest if we want to
consider many different planning problems within the same
environment. Dynamically maintaining the all-pairs shortest
paths may be more efficient than computing SP for each new
problem.

There is also considerable research on minimum spanning
trees (MST) [3], [26], [17], [27], [2], [21]. Of these [21]
presents the best known bound for dynamically maintaining
a MST.

Other related problems include network flows, matching, the
simplex method, and computational circuit analysis [37], [30],
[4], [5]. The connectivity graph looks like the dual (Delaunay
triangulation) of the Voronoi diagram [20] constructed from the
centroid of each cell with the distance metric an individually
weighted city-block distance. This observation may lead to
insights and an alternate formulation of the problem, perhaps
based on a topological plane sweep [20].

VI. EXPERIMENTAL RESULTS

In this section we present a number of experimental results.
In Section VI-A we describe a number of implementation
issues. In Section VI-B we compare the different algorithms
to compute a single-source shortest paths tree on randomly
generated problems. The results show that the dynamic al-
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gorithms, DB and DZ, are comparable to each other, and
that they are better than the static Dijkstra’s algorithm. In
Section VI-C we compare our algorithms in a planning context
with the best known approximate cell decomposition planners
reported in the literature. Finally, in Section VI-D, we present
several additional typical problems that have been solved by
our planner.

Statistics for each experiment were collected for random
planning problems within twelve of the environments taken
from the motion planning literature [13], [14], [7], [49]. The
problems were created by generating random (x,y. ) tuples
and testing each to ensure the distance from CB was at
least the minimum resolution. The twelve environments and
sample planning problems are shown in Fig. 9. The illustrated
problems are similar to those given in [49]. The trajectories
shown are not optimized, smoothed or interpolated. The tra-
jectories are illustrated by drawing the robot at a discrete set
of points along the trajectory. These points are ¢init» Ggoals
and the centroids of the intersection of two adjacent cells of
the solution E-channel, x; N x, 1. Thus, a large gap between
successively drawn robots implies that the underlying cell is
quite large. Similarly, where successively drawn robots are
densely packed, there is a very fine underlying subdivision of
C.

We have also compared our algorithms on thousands of
random problems within dozens of randomly generated en-
vironments. We found these problems to be unrepresentative
of practical problems. A large proportion of the problems were
either trivial or impossible. Simple measures of environmental
complexity are also unsatisfactory. For example, [49] define
complexity as the number of edges in the input workspace, and
sparsity as the minimum vertical distance between workspace
obstacles. This complexity measure does not distinguish be-
tween a square with a small ‘‘step’” taken out, an octogon, and
a four-pointed star; and this sparsity measure does not account
for the density of obstacles or for the surface area of the
limiting gap between critical obstacles. 1deally, we would like
to control for the number and lengths of potential passageways
between the initial and goal configurations, however, it is
difficult to parameterize an environment generator with these
variables.

A. Implementation Issues

The vertex cost function determines which path is the least
cost path and therefore the function is instrumental to the
convergence of the FindPath algorithm. In our experiments,
we have used the vertex cost function

cost(v) = a (¢ — ¢=) (max-volume — volume(w)) + 1

)

=1- w, volume(v) is the volume of

volume(v) )
the cell associated with v, max-volume is the volume of ko,

and full-volume(v) is the relative volume of CB in the cell.
The parameters «v and /3 are used to adjust the relative effects
of the terms. This function grows rapidly for cells that contain
small proportions of rrek, prefers larger cells over smaller cells,
is positively valued, and is continuous. It is also the case that
the cost of a vertex with an empry cell is no greater than the

where p(v)

I
u%®

Example 1

Example 10 Example 11 Example 12

Fig. 9. Twelve environments from the literature.

cost of a vertex with a mixeo cell. We estimate full-volume(v)
by averaging slices of CB3 within «. In particular, each slice in
6 yields a set of (overlapping) polygons [39], and we compute
the area of the union of these polygons using a plane sweep
algorithm [40], [20]. Our estimate of full-volume(v) has the
property that cells labeled empry or ruLL are correctly estimated.
In [8] we show that « has little effect on performance, and that
any reasonable value of 3 gives good performance.

At each iteration of FindPath, the mixep cell in the least cost
path with the maximum cost is selected for subdivision. This
cell selection policy causes the planner to work out the most
difficult constraints on the solution trajectory first (squeezing
through narrow gaps) the remaining constraints, prioritized by
the size of the bottleneck presented, are incrementally easier
to satisfy. In [8] we show that cost is the best criterion for cell
selection, followed closely by the proportion of free space in
a cell (minimizing). Cell volume was a reasonable selection
method (maximizing); and cell location within the least cost
path proved to be quite poor. Indeed, all policies based on
location produced larger solution graphs than vertices chosen
at random (within the least cost path).

B. Static versus Dynamic Algorithms

In this experiment, (random) graphs were generated and
randomly perturbed in order to measure the inherent differ-
ences between the static Dijkstra’s algorithm and our dynamic
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Fig. 10. Total work spent repairing SP during random subdivisions.

algorithm DZ. We implemented this by maintaining a single-
source shortest paths tree subject to a fixed number of random
subdivisions for each of the twelve environments. Specifically,
first a random point was selected as the initial configuration,
for each of the twelve environments. Then, at each iteration, a
cell was randomly selected for subdivision, and a single-source
shortest paths tree constructed. There were 600 iterations for
each environment and initial configuration.

For the dynamic algorithm, independent of the size of the
graph, vertices on the fringe of the single-source shortest paths
tree are inherently cheaper to repair than those near the source.
In other words, the hardest problem in a large graph is much
harder than the hardest problem in a small graph. At the same
time, the easiest problem is the same for all graphs. It is also
the case, in general, that the number of hard problems does
not grow as quickly as the number of easy problems as the
size of the graph increases.

During each experiment, several quantities were measured
after each subdivision:

« The total time spent constructing SP;y, is a rough
measure of the amount of work performed by each
algorithm.

« The total number of invocations to adjust the priority
queue (the primitive operations are DeleteMin, Insert,
UpdatePriority, and Delete), and the average size of the
priority queue at each invocation, are intended to directly
measure the performance of the SP algorithms. These
quantities are machine independent.

The results are summarized in Figs. 10 and 11. Fig. 10
illustrates algorithm performance as a function of the size
of the connectivity graph. For both time and priority queue
operations, we see that the dynamic algorithm typically far
outperforms the static Dijkstra’s algorithm, occasionally is as
bad as the static Dijkstra’s algorithm, and rarely is worse than
the static Dijkstra’s algorithm. The base two logarithm of the
average size of the priority queue for the algorithms is shown
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Fig. 11. Work spent per vertex repairing ST during random subdivisions.

in the lower left of Fig. 10. The dynamic algorithm maintained
a nearly constant queue size. This suggests that empirically, on
average, the cost of each primitive queue operation is constant,
implying an overall average time complexity of O(c) for the
dynamic algorithm.

The histograms in Fig. 11 were constructed as follows:

1) We normalized the attribute values by dividing by the
size of the graph. This yields ‘‘time per vertex’’ for
example. Thus each attribute value is independent of the
size of the graph.

2) A histogram is then constructed. On the horizontal axis
of the histogram are the attribute values, and on the
vertical axis we plot frequency of occurrence.

3) The histograms are then normalized so that the total area
sums to 1. This renders the frequencies of occurrence
into percentages of occurrence.

We observe that, on average, very little time is spent per
vertex for the dynamic algorithm. Likewise, there are very
few primitive operations performed per vertex for the dynamic
algorithm. This is consistent with the fact that there are more
vertices near the leaves of a single-source shortest paths tree
than near the source. Since the static Dijkstra’s algorithm does
not take advantage of the preexisting single-source shortest
paths tree, the amount of time per vertex is nearly uniform.
Note that the static Dijkstra’s algorithm spends exactly two
primitive operations per vertex [8].

C. Planner Efficiency

In this section we compare our planner to BLP2 [13], [14]
and ZL [49].% Both BLP2 and ZL use a bridge the gap strategy

3BLP2 results were obtained on an MIT Lisp Machine; ZL results were
obtained on a Macintosh II running Allegro Common Lisp; our results were
obtained on a SUN IPC running Lucid Common Lisp version 3. The sweepline
code we use to estimate the volume of free space in a cell is implemented in
C.
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TABLE II
SUMMARY OF 12 PROBLEMS

example plan time (min) total cells empty cells channel length
ZL BH A* BLP2| ZL BH BLP2| ZL BH BLP2|ZL BH BLP2
1 06 12 64 98 236 35 62 12 24
2 09 20 132 140 349 74 148 18 56
3 1.5 54 347 210 572 104 167 10 66
4 25 81 475 264 662 134 228 28 81
5 55 6.5 36.3 10s | 293 602 644 | 96 241 120 | 36 79 87
6 50 4.5 244 218 487 116 140 29 71
7 09 07 39 160 170 77 51 22 18
8 25 33 144 10s | 205 219 782 | 88 85 62| 17 32 29
9 6.5 4.1 29.2 170 529 25 168 13 60
10 98 7.5 313 206 442 46 159 19 67
11 11.0 3.2 228 10s | 312 451 727 72 138 127 | 21 50 79
12 10.5 2.6 128 369 287 121 112 18 46
to select a path at each iteration of the FindPath algorithm. TABLE 11l
BLP2 employs the same representation of configuration space ZHU AND LATOMBE PLANNER USING OCTREES VERSUS OUR PLANNER
as our planner; but it uses binary subdivision for its spatial example | total cells
decomposition, and it subdivides every mixep cell in the M- 7L, BH
channel obtained at each iteration of the FindPath algorithm. D) > 500 349
ZL employs a more precise configuration space representation, > 2000 487
and a novel spatial decomposition. With so many differences, 11 > 5000 451
the meaningful comparisons that can be made between our 12 > 5000 287

results and those given for ZL and BLP2 are limited to results
given for ZL using octrees, and to the ratio of planning time
to the number of vertices produced.

To compare planners, we reproduced the experiments given
in [13], [14], [7], [49] and measured the total planning time
(with the time to generate an initial representation of an
environment separated from the actual planning time), the
numbers of emery and mixeo cells in the solution graph, and
the number of cells in the solution E-channel, which we refer
to as channel length. Our results are summarized in Table II
(an extension of the table given by [49]). Execution times
should be considered approximate due to the different imple-
mentations, architectures, and other experimental conditions.
We use the abbreviation BH for our planner (using the D7
algorithm). We also give the times for our planner using an
uninformed A* search, which is faster than using the static
Dijkstra’s algorithm. Data for BLP2 was taken from {13], [14].

Note especially Examples 3 and 12. In Example 3, the
bridge the gap strategy used by ZL is advantageous when the
heuristic fits the problem and there are several good alterna-
tives to consider. In Example 12, the bridge the gap strategy
hinders the planner. Note also that there is no correspondence
between the number of cells generated and the total planning
time. In Example 9, for instance, our planner generated over
three times the number of cells but took only 60% of the time
to find a solution. For the twelve problems BH averaged about
6 times faster than A* (h=0), which is probably comparable
to BLP2.

We compare the total number of cells generated by our
planner to the estimates given in [49] for the total number of
cells generated by ZL using an octree representation, for four
of the twelve problems shown in Fig. 9. Their estimates for

the total number of cells generated in the course of planning
far exceed the number of cells generated by our planner. That
our planner can contain the explosion in the number of cells
that typifies planners based on octrees [7], [49], [13], [14]
illustrates the tight control over the search process exhibited
by our planner. This is illustrated in Table 111, an extension of
the table presented in [49].

Finally, we can also look at the average time spent per
vertex, estimated from Table II. This shows ZL and BLP2
spend roughly twice as much time per vertex as our planner.
This is especially important in the context of the quality of
solutions generated. While the example solutions reported in
the literature are certainly of very good quality, they are not
optimal in the sense of least cost paths, as is our planner. It may
be that for some cost function, the solutions reported in the
literature are optimal, however there is no way to guarantee
this performance because those planners rely on the bridge
the gap strategy.

D. Additional Examples

In Figs. 12-14 and Table IV we present a few more examples
and results from our planner. The environments were designed
with the intention of making our planner work very hard. Long
convoluted paths and many distributed gaps that are nearly or
just barely wide enough for the robot to pass through should at
least force the planner to consider many reasonable alternatives
at each iteration. As can be seen in the table, we were partially
successful at this endeavor.

In the figures, all robots are single polygons except for
Examples 4, 5, 6, and 9. The robot in Example 4 is a pair
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Fig. 14. Ninth extra environment.

Example 3 Example 4

Fig. 12. First four extra environments.

Example 7

Example 8

Fig. 13. Second four extra environments.

of parallel rectangles, the robot in Example 5 is a rectangle
with a small cross piece, and the robot in Examples 6 and
9 is a pair of overlapping triangles. Note the asymmetry in
the trajectory in Example 1. This is a side effect produced

TABLE [V
SUMMARY OF EXTRA PROBLEMS
example | plan time (min) | total | empty | channel
BH A* | cells | cells | length
1 621.0 2316.1 | 3928 | 1088 446
2 7.0 43.8 | 666 216 98
3 8.2 34.2 | 515 167 62
4 56.3 284.0 | 1618 378 177
5 4.1 17.8 | 378 97 42
6 5.4 29.9 | 523 187 68
7 6.4 379 | 614 169 79
8 11.3 61.8 | 800 203 91
9 34.1 180.6 | 1322 | - 407 158

by the octree decomposition. Again, the trajectories given are
not optimized in any way so as to illustrate the underlying
partition of C.

VII. DISCUSSION

Hierarchical Approximate Cell Decomposition (ACD)
methods have a computational advantage over the Exact
methods. This advantage stems from not having to explicitly
reason about interactions among constraints, and not having to
explicitly reason about the full detail of the entire configuration
space. Therefore, for problems without very high degrees of
freedom, ACD methods are often the method of choice. For
problems with high degrees of freedom, a binary subdivision
method is preferred over a 2%-tree. This avoids generating
extraneous cells and reduces the amount of memory dedicated
to representing configuration space.

Our solution is optimal in the sense of least cost path in
a given subdivision. This solution may not be optimal in the
sense of the shortest path that exists at resolution. In order
for our algorithm to generate the shortest path, an appropriate
cost function must be used.
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The computational bounds presented in this paper are worst
case. Further improvement may be made through the use of
Fibonacci heaps [28], for example. It might be possible to
employ dynamic trees [46] to maintain the set of paths in
the tree, so that the maximal cost mixed cell on the least
cost path is also immediately available at each iteration. This
information could also be used to speed up the termination
predicate. As mentioned earlier, the algorithm might benefit
from alternative approaches, such as maintaining a set of good
separators in the graph [26], [21], [12]. We should also note
that it should be fairly straightforward to generalize our results
to changing edge weights instead of vertex costs, as is done
in [41], [42].

Donald argues that ACD methods fail to take advantage of
the “‘coherence’” of configuration space [19]. He specifically
addresses the imprecision due to the simple labeling scheme
(mixep, empry, and ruiL) used in the representation. Our volume
estimates and cost function overcomes this specific lack of
coherence. Another form of coherence appears in the FindPath
algorithm. The initial implementations of the FindPath algo-
rithm either suffered from uncorrelated search efforts, or the
inability to guarantee the quality of the solution and the rate of
convergence of the search algorithm. Our improved FindPath
algorithm (shown in Fig. 3) overcomes these difficulties by
efficiently maintaining the shortest path between two points,
as better approximations are obtained.

There are at least three important directions for future
research. Two directions are aimed at further work reductions
in the FindPath algorithm. The third direction attempts to show
that our improved FindPath algorithm actually performs only
a constant amount of work to maintain the shortest paths tree.

Our improved FindPath algorithm maintains the least cost
path from the source to every vertex in the connectivity graph.
At successive iterations of the planning algorithm, the least
cost path might alternate among multiple paths until an E-path
is found. If the costs of the various paths only differ by ¢, these
alternations may entail much effort to maintain the tree, with
small returns. Instead, we could require that the change in path
cost exceed ¢ before changes to the single-source shortest paths
tree are made. This would allow the planner to concentrate its
attention on a single potential path, with the guarantee that the
cost of the final solution path would be no more than (1 + ¢)
times the cost of the least cost path. A similar result is obtained
in [35] and mentioned in [12].

Another way to avoid extra work in the FindPath algorithm
is to monitor the quality of the least cost path, where quality
is related to the vertex costs. At some point, the least cost
path may be based on mixep cells of very low cost. Because
our cost function has a heavy penalty based on the relative
volume of the cell occupied by C-obstacles, and because C-
obstacles are compact, a low cost cell has an excellent chance
of containing a collision-free trajectory. Rather than continue
to iterate, subdividing a single cell at a time, and updating the
shortest paths tree, a fast collision detection algorithm may
quickly test whether the current M-path does in fact contain a
solution trajectory. Thus with a minimal amount of overhead,
we may be able to cut the number of iterations of the FindPath
algorithm in half.
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Our dynamic algorithm is based on the idea that the con-
nectivity graph changes nominally at each iteration of the
FindPath algorithm, with minimal impact on the shortest paths
tree. Occasionally, this requires a great deal of computation. It
is possible that an amortized analysis will show that over the
course of planning, our improved FindPath algorithm performs
a constant amount of work to maintain the shortest paths tree
at each iteration. An extension of this analysis to the number of
constraints that are applicable to a given cell might also show
that our improved FindPath algorithm takes only constant time
for an entire iteration on average.

VIII. CONCLUSIONS

In this paper we introduced the use of a single-source short-
est paths tree to maintain the least cost path (Vinit - .. Vgoal),
thereby avoiding the exhibited redundancy of repeated A*
search, without sacrificing the quality of the solution or
the convergence properties of the FindPath algorithm. We
presented two new algorithms for dynamically maintaining
a single-source shortest paths tree efficiently. Our results
show that on average, the dynamic algorithms do very well
compared to the static Dijkstra’s algorithm. We compared
the resulting planner to previous planners. Most previously
reported results are given in terms that are highly implemen-
tation and machine specific (e.g. execution times). Our results
show that the improvements to the FindPath algorithm can be
significant. Note that we have only improved the search aspect
of hierarchical motion planning. Further improvements can
be made through an improved representation of configuration
space and improved cell subdivision and labeling, as evidenced
by [49].

APPENDIX

The following lemmas are well-known in the literature and
are stated here without proof. Also, we remind the reader that
7g (vo, v) denotes the unique simple path in the tree G’ from
the root vy to the vertex »; and I1%(vg,v) denotes the set of
all simple least cost paths from g to v in G.

Lemma 9 [Ancestor]: For ©' = {(u...w) a proper sub-
path of some simple path 7 = (u...w...v), pathcost(r) >
pathcost(r’).

Lemma 10 [Least Cost Paths]: Subpaths of least cost paths
are themselves least cost paths:

Theorem 3 [Independence]: A vertex « # v is independent
of v for all changes to cost (v) if

pathcost(rg-, (vo. parent, (u))) <
pathcost(rg:, (vg. parentg, (v))). (3)

Proof:
We must show that the two independence conditions hold
for every vertex that satisfies the claim.

1) pathcost(mg: ,, (vo.u)) = pathcost(mg, (vo, 1)).
Since G/, is structurally the same as §j, if
v & 7mg (vo.u) then v & mg . (vo,u). It then
follows immediately that pathcost(ng:,, (vo,u))
= pathcost(rg (vg.u)) since v is the only vertex
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whose cost is not the same in G, and G,;. We
need only therefore show that v ¢ =g (vy.u) for
all u that satisfy the inequality given by (3). We
show this by contradiction. Suppose v € wg (vg. ).
Then » is an ancestor of w and by the ancestor
lemma pathcost(rg: (vo.v)) < pathcost(mg:, (vo.u)).
Furthermore, by applying the ancestor lemma to the
parents of u and v, we obtain

pathcost(rg:, (vg. parentg, (v))) <
pathcost(wg/, (vo. parentg (u)))

which is a contradiction of (3).

ng,,, (vo.u) € I (vo.u). We prove this in the
following three steps.

(2a) We show that since the structure of G;.; is the
same as G;, 115 (vo,v) = I (vo.v) where v is the
vertex whose cost has changed.

(2b) We then show that the parent of v satisfies
TGy (w(,.parentg'/ ‘( v)) € 11, H(wo,parentgfﬂ('u)).
(2c) We then show that any other vertex u # v
that satisfies the inequality given by (3), satisfies
o (o, w) € TIE l(170,u).

TG,

a) Consider the set 1l (vg.v) of all simple paths
from vo to v in G;, sorted by path cost. The path
cost of every path m = (vg...p.v) € Ig (vo.v)
is given by cost (v) + pathcost({vg . ..p)). Chang-
ing cost (v) by some amount uniformly changes
the path cost of every path in Ilg,,  (vg.v) by
that amount (since these are simple paths, v oc-
curs exactly once in each such path). Therefore,
g H(u“,’v) = g, (vy,v) and the order of the
paths in Ilg,,  (vg.v), sorted by path cost, is the

same as in Ilg, (vg,v). Therefore 115 (vo.v) =
I1g (vo. v).

b) Now consider the path 7g , (vg.v) =
ngr, (vg.v). Since H;,“(vo v) = IIg (vo,)
and 7 (vg.v) € g (vg.v), then wg:  (vo,v)
€ Mg, (vo.v). Then =g, (vo. parent~, ()
€ [IZ;M(fun.parenty,“(v)) because eubpaths of

least cost paths are themselves least cost paths
by the least cost paths lemma.
¢) Finally, consider a vertex u # v such that the
inequality given by (3) holds. We show that
wgr,,, (vo.u) € Mg (vo.u) by contradiction.
Assume that g, (vo.u) ¢ 115 | (vo,u). Then
there is some © € ng (wg. ) such that
pathcost(r) < pathcost(rg:,, , (vo.)).
There was no such © € I1§ (wvg. u) because Glisa
single-source shortest paths tree and ngr, (Vo u) €
LIE (vo. ). Since only the cost of v has changed,
any such m € IIg; | (vg.u) must include v. For if
v & w, then pathcost(r) has not changed from
G; to G;y1 and the claim that pathcost(r) <
pathcost(tg ., (vo. 1)) = pathcost(mg: (vg.w)) is

(1]

[2]

3]

(4}
{5

[6]

[71

contradicted. Then 7 has the form
l(’1:)_ v,

Since 7 is a least cost path, all subpaths of
7« must be least cost paths by the least cost
path lemma. In particular, the subpath m; =
(’UO...paremg:_H(w)) is a least cost path. But
TG ., (’uo.parentg:+l (v)) is also a least cost path
from statement (2b) above. Therefore pathcost(r)
= pathcost(mgr, , (vo. parentg, (v))).

Now, the path cost of 7 can be written as the sum
of the costs of its subpaths.

m={vg... parentg’/+

(S

pathcost(7) = pathcost(mg:

. (0))
+cost(v) + COS[( 1) +y

(g, parentg:

where v > 0 is the cost of the least cost path
connecting v to u. Since 7 is a least cost path,
pathcost(m) < pathcost(mg , (v, u)). We also
know that

pathcost(mg:, . (vg. 1)) =

pathcost(mg/, ., (vo, parentg:+1 (u))) 4 cost(u).
Finally, we know that both
pathcost(mg: ., (0. parentg:+l (v)) =
pathcost(mg, (v, parent, (v))
and
pathcost(rg:,, ,

()=

pathcost(mg:, (v, parentg (u)))

(vo- parentg:+

by statement (1) of the proof, above. Therefore,
since vertex costs are positively valued, by simple
algebraic manipulation we have:
pathcost(mg:, (vo, parentg (v))) =
pathcost(mg/, (v, parentg (u)))

which is a contradiction of (3). Od
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