
Auton Robot (2016) 40:395–423
DOI 10.1007/s10514-015-9477-5

Maintaining strong mutual visibility of an evader moving over
the reduced visibility graph

Israel Becerra1 · Rafael Murrieta-Cid1 · Raul Monroy2 ·
Seth Hutchinson3 · Jean-Paul Laumond4

Received: 31 October 2013 / Accepted: 18 July 2015 / Published online: 2 August 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, we address the problem of deter-
mining whether a mobile robot, called the pursuer, is able to
maintain strong mutual visibility (a visibility notion between
regions over a convex partition of the environment) of an
antagonist agent, called the evader. We frame the problem
as a non cooperative game. We consider the case in which
the pursuer and the evader move at bounded speed, trav-
eling in a known polygonal environment with or without
holes, and in which there are no restrictions as to the dis-
tance that might separate the agents. Unlike our previous
efforts (Murrieta-Cid et al. in Int J Robot Res 26:233–253,
2007), we give special attention to the combinatorial problem
that arises when searching for a solution through visiting sev-
eral locations in an environment with obstacles. In this paper

A preliminary version of a portion of this work has been presented at
the IEEE International Conference on Robotics and Automation
(Murrieta-Cid et al. 2008).

B Israel Becerra
israelb@cimat.mx

Rafael Murrieta-Cid
murrieta@cimat.mx

Raul Monroy
raulm@itesm.mx

Seth Hutchinson
seth@illinois.edu

Jean-Paul Laumond
jpl@laas.fr

1 Centro de Investigación en Matemáticas, CIMAT,
Guanajuato, Mexico

2 Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias,
Atizapan, Estado de México, Mexico

3 University of Illinois at Urbana-Champaign, Urbana, IL, USA

4 LAAS-CNRS, University of Toulouse, Toulouse, France

we take a step further, namely, we assume an antagonistic
evader who moves continuously and unpredictably, but with
a constraint over its set of admissible motion policies, as the
evader moves in the shortest-path roadmap, also called the
reduced visibility graph (RVG). The pursuer does not know
which among the possible paths over the RVG the evader will
choose, but the pursuer is free to move within all the environ-
ment.We provide a constructivemethod to solve the decision
problem of determining whether or not the pursuer is able to
maintain strong mutual visibility of the evader. This method
is based on an algorithm that computes the safe areas (areas
that keep evader surveillance) at all times. We prove decid-
ability of this problem, and provide a complexity measure
to this evader surveillance game; both contributions hold for
any general polygonal environment that might or not con-
tain holes. All our algorithms have been implemented and
we show simulation results.

Keywords Pursuit-evasion · Tracking · Motion planning ·
Decidability · Complexity

1 Introduction

The problem we consider in this paper is related to pursuit-
evasion games. A great deal of previous research exists in this
area of pursuit-evasion, particularly in that of dynamics and
control in the free space (without obstacles) (Hájek 1965;
Isaacs 1965; Başar and Olsder 1982). The pursuit-evasion
problem is often framed as a problem in noncooperative
dynamic game theory (Başar and Olsder 1982).

Pursuit-evasion can be defined in several ways. One for-
mulation requires finding the evader with one or moremobile
pursuers that sweep the environment so that the evader
does not eventually sneak into an area that has already

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9477-5&domain=pdf

396 Auton Robot (2016) 40:395–423

been explored. Deterministic (Parsons 1976; Suzuki and
Yamashita 1992; Guibas et al. 1999; Sachs et al. 2004; Tovar
and LaValle 2008; Barrière et al. 2002) and probabilistic
(Vidal 2002; Hespanha et al. 2000; Isler et al. 2005; Chung
2008; Hollinger et al. 2009) algorithms have been developed
in this vein.A recent survey of this kind of problems inmobile
robotics is reported in Chung et al. (2011).

Alternatively, the pursuer(s) might have as a goal to
actually “catch” the evader(s), that is, move to a contact con-
figuration, or closer than a given distance. An example of
this kind of problems is the classical differential game, called
the homicidal chauffeur (Isaacs 1965; Merz 1971). There, a
faster pursuer (w.r.t. the evader) has as its objective to get
closer than a given constant distance (the capture condition)
from a slower but more agile evader.

These problems are different from ours, since we assume
that the pursuer is initially aware of the evader’s position,
with the goal of maintaining sight of the evader. Indeed, in
this paper,we consider the problemofmaking amobile robot,
called the pursuer, maintain strong mutual visibility (SMV)
of a moving evader. SMV is a visibility notion between
regions which requires a convex partition of the environ-
ment. The environment is filled with obstacles, the speed of
each of the participants is bounded and the participants may
be separated by an arbitrary distance.

We have already developed motion strategies for evader
surveillance in Murrieta-Cid et al. (2007), analyzing two
main scenarios: one where the distance between the pursuer
and the evader is variable but the speed of both players is
unbounded; and other where the speed of both the evader
and the pursuer is bounded but the distance between the
pursuer and the evader is constant. Under the latter assump-
tion a slower pursuer will always be defeated by the evader,
even in an environment without obstacles. In this paper, we
present a more general formulation, in which, we simulta-
neously consider that the players move at bounded speed,
but that there is no constraint upon their separating distance.
Now a slower pursuer may be able to maintain surveillance
of the evader in a polygonal environment which is simply
connected. A careful inspection on the map and the initial
position of both participants is required to determine the
existence of a solution. In this paper we provide such analy-
sis.

In Murrieta-Cid et al. (2007), we were able to establish
sufficient conditions for escape by the evader (note that if
the evader can escape an infinitely fast pursuer, then it will
naturally escape a pursuer with finite speed), but we were
unable to determine sufficient conditions under which the
pursuer could maintain visibility of the evader. In the present
paper, we provide sufficient conditions for surveillance by
exploiting the concept of SMV between regions in a convex
decomposition of the environment.

Furthermore, in our previouswork,we did not consider the
combinatorial problem inherent to any strategy that considers
visiting several locations in an environment with obstacles,
for the case of bounded pursuer and evader speeds. In this
paper, we solve this problem.

We note that our approach relies on the choice of a spe-
cific convex decomposition of the environment (indeed, our
notions of visibility rely on this decomposition). Different
decompositions will lead to different solution strategies for
the pursuer. Therefore, in Appendix 2 we propose specific
algorithms to construct a decomposition that enjoys a num-
ber of favorable properties. In short, we provide two main
contributions: (1) we prove decidability of this problem for
any arbitrary polygonal environment, which, as far as we
know, has not been done before for the target tracking prob-
lem, and (2) we provide a complexity measure to our evader
surveillance game.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 defines SMV that
is a notion of visibility among convex regions in a given
environment partition, and also introduces what we call the
mutual visibility graph and the accessibility graph (AG),
which respectively will help us to make queries of SMV and
accessibility between regions in the given partition. Once
strong mutual visibility is defined, Sect. 4 makes the formal
statement of our problem. Section 5 provides some basic
definitions and an overview of the proposed solution to the
addressed surveillance problem. In particular the concept of
safe areas is introduced, which are subsets of the workspace
where the pursuer must lie to maintain SMV of the evader,
taking into account the constraint propagation over all the
possible paths that the evader can travel. Section 6 shows
two algorithms to compute the safe areas for any given envi-
ronment; the first one (Sect. 6.1) used when the environment
RVG has a tree topology, and the second one (Sect. 6.2)
used when the environment RVG has cycles within it. Sec-
tion 7 depicts the surveillance motion strategy for both the
evader and the pursuer. For the evader all possible paths
are considered, and for the pursuer its motion strategy is
based on the safe areas. Section 8 offers a deeper discus-
sion of the presented problem regarding to its decidability
along with its complexity, also providing a proof of conver-
gence of the algorithm presented in Sect. 6.2, all of that,
making use of a modeling of our problem based on infi-
nite compositions of relations (Takeuti and Zaring 1971). In
Sect. 9, we present simulation results, and in Sect. 10 the
conclusions and future work. In the Appendices we show
a proposal of a convex partition which enjoys some use-
ful properties for the pursuit-evasion problem. Finally, to
facilitate the presentation of this work, at the end of the man-
uscript we provide a table with the used notation along this
work.

123

Auton Robot (2016) 40:395–423 397

2 Related work

Recent years have seen a growing interest in the problem of
maintaining visibility of a moving evader in an environment
with obstacles (LaValle et al. 1997; González et al. 2002;
Jung and Sukhatme 2002; Bandyopadhyay et al. 2006; Bhat-
tacharya and Hutchinson 2009). Game theory is proposed
in LaValle et al. (1997) as a framework to formulate the track-
ing problem, and an online algorithm is presented. In Becker
et al. (1995), an algorithm is presented that operates by max-
imizing the probability of future visibility of the evader. This
algorithm is also studied with more formalism in LaValle
et al. (1997). The work in Fabiani and Latombe (1999)
presents an approach that takes into account the position-
ing uncertainty of the robot pursuer. The approach presented
in Murrieta-Cid et al. (2005) computes a motion strategy by
maximizing the shortest distance to escape, this is the short-
est distance the evader needs to move in order to escape the
pursuer’s visibility region. In González et al. (2002), a tech-
nique is proposed to track an evader without the need of a
global map. Instead, a range sensor is used to construct a
local map of the environment, and a combinatorial algorithm
is then used to compute a motion for the pursuer at each iter-
ation. Also in González et al. (2002), it has been noticed that
particular difficult configurations arise when the line of sight
between the evader and the pursuer is in contactwith anobsta-
cle. Improving upon González et al. (2002), Bandyopadhyay
et al. (2006) presented an approach based on a localminimum
risk function to deal with such configurations. In Efrat et al.
(2003), the authors show how to efficiently (low-polynomial)
compute an optimal reply path for the pursuer that counter-
acts a given evader movement, however, differently to the
work presented in this paper, Efrat et al. (2003) does not
deal with the problem of deciding whether or not there is
an evader path that escapes surveillance. In O’Kane (2008),
a robot has to track an unpredictable target with bounded
speed; the robot’s sensors are manipulated to record general
information about the target’s movements, but avoiding that
detailed information about the target’s position is available
whenever the robot’s sensors are accessed by other agent that
can damage the target.

The work presented in Bhattacharya and Hutchinson
(2009) addresses the problem of maintaining classical vis-
ibility of the evader as a game of degree (i.e., the emphasis
is over optimizing a given criterion and not over the prob-
lem of deciding which is the winner player). The pursuer
and the evader are omnidirectional (holonomic) systems in
an environment containing obstacles. That work proves the
existence of players strategies that are in Nash equilibrium;
the pursuer wants to maintain visibility of the evader for the
maximumpossible time, while the evaderwants to escape the
pursuer’s sight as soon as possible. Thework in Bhattacharya
and Hutchinson (2009) presents necessary and sufficient

conditions for the visibility based target tracking game in
conjunction with the equilibrium strategies for the players.
However, in Bhattacharya andHutchinson (2009) the authors
do not consider long combinatoric evader paths that take into
account the interaction of several obstacles (see Fig. 4), as
the authors consider one single obstacle corner at once.

Others have studied an extended version of the problem
involvingmultiple participants of each kind (evaders and pur-
suers). For example, Parker (2002) developed a method that
attempts to minimize the total time in which the evaders
escape surveillance. In a similar vein, Jung and Sukhatme
(2002) combined the application ofmobile and static sensors,
using a measure of the degree of occlusion of the evaders. In
Barrière et al. (2002) the authors consider a team of mobile
agents deployed to capture an intruder in a network. In that
work the authors proposed an algorithm that determines the
minimum number of agents to capture the intruder in a tree
network. The authors use a message-passing architecture as
in thiswork, however, themeaning of themessage is different
since the authors do not consider a polygonal environment.

Almost all existing work focuses on the 2-D version of
the problem of maintaining visibility of an evader, but there
are just some few works that deal with the 3-D version of it,
mainly because of the complexity of the visibility relation-
ships in 3-D. One work that deals with the 3-D version of
this problem is the one presented in Bandyopadhyay et al.
(2007). Here the authors present an online algorithm for 3-D
target tracking among obstacles, using only local geometric
information available to a robot’s visual sensors. To prevent
the target from escaping from the robot’s visibility region
both in a short and long terms, a risk function is efficiently
computed. The robot motions are calculated minimizing the
risk function locally also in a greedy fashion. By one hand,
the greedy approaches such asGonzález et al. (2002), Bandy-
opadhyay et al. (2006), Bandyopadhyay et al. (2007) have the
advantage of providing practical solutionswith low computa-
tional cost. But on the other hand, they have the disadvantage
that they may loose solutions since they do not consider long
term paths travelled by the evader, as in our approach. Fur-
thermore, our proposed algorithms can be adapted to handle
short term planning horizons (see Sect. 9), even to the point
of obtaining a totally one step ahead greedy approach, but
with the consequence of loosing solutions.

Maintaining visibility of a moving agent may be used
in a variety of applications. For example, in Tekdas et al.
(2010), the authors noticed the similarity between pursuit-
evasion games and mobile-routing for networking. Applying
this similarity, they proposedmotion planning algorithms for
robotic routers to maintain connectivity between a mobile
user and a base station. That work also includes a proof-of-
concept implementation. Similarly, in Stump et al. (2011)
the authors consider the problem of deploying robots in for-
mations that ensure network connectivity between a fixed

123

398 Auton Robot (2016) 40:395–423

base station and a set of independent agents wandering in
the environment. The authors used a communication model
that requires line-of-sight. They solved robots placements
by finding mutually-visible configurations in a polygonal
decomposition of the environment map.

More related to the presented work is the one in Bhat-
tacharya and Hutchinson (2011). In that work the problem of
maintaining visibility of a moving evader is addressed as a
game of kind (deciding which player wins). The authors pro-
vide guaranteed strategies for surveillance for the observer
in an environment containing a single corner. Later, they
extend their results for a second case of a general environment
containing polygonal obstacles. The evader travels the short-
est paths [equivalent to traveling over the reduced visibility
graph (RVG)] to convex corners, while the pursuer aims to be
placed on regions of the workspace (i.e., star region) related
to the respective convex corners in order to prevent the evader
from escaping. In the second case the authors provide a set of
starting points for the pursuer where the winner of the game
is known. However, there is another set which the authors
point out that the winner of the game is unknown, hence, in
that set the decision problem is unsolved. Similarly to the
approach presented in Bhattacharya and Hutchinson (2011),
in this work the evader also travels the RVG, and also spe-
cific goals for the pursuer are established for preventing the
evader from escaping. As a step beyond the results presented
in Bhattacharya and Hutchinson (2011), in the present work
we provide complete decidability of the problem for any arbi-
trary polygonal environment. Furthermore, in Bhattacharya
and Hutchinson (2011) the authors do not consider that the
surveillance constraints propagation (given by the evader’s
decision of visiting corners with a given order in an attempt
to escape) increases the difficulty for the pursuer to maintain
surveillance. They neither consider long term combinatorial
paths that might include cycles. In this work we show that
it is not possible to decide which player wins considering
corners independently, for this reason, we consider both the
surveillance constraints propagation and long term combina-
torial paths. Besides, we show that the problem is decidable
even if the evader travels in a cycle forever.

InMurrieta-Cid et al. (2008) the notion of SMVwas intro-
duced. SMV is a notion of visibility between regions. In
Murrieta-Cid et al. (2008) it was shown that when we know
the evader trajectory in advance, assuming given pursuer and
evader positions, if the evader moves over the shortest path
to a region R that is not visible for the pursuer, and at all time
the pursuer is able to reach a region that is strongly mutually
visible with the region where the evader lies, then the evader
is not able to escape making use of the shortest path to reach
R or any other path that is not the shortest one. In this paper
we take a step further, namely, we assume an antagonistic
evader who moves continuously and unpredictably, but with
a constraint over its set of admissible motion policies, as the

evader moves in the shortest-path roadmap, the RVG. Notice
that the pursuer does not know, which among the possible
paths in the RVG, the evader will choose; as a consequence,
the main difficulty to address in a solution for that scenario
is the need to consider all such possible evader’s paths at the
same time.

In spite of these efforts, the decision problem answering
whether or not the evader can escape, has not been addressed
for the case in which the evader moves traveling long com-
binatoric paths in an environment with obstacles, while the
speed of each participant is bounded and the surveillance
distance varies.Answering this question under a SMVframe-
work is one of the goals of this paper.

3 Strong mutual visibility

Wenow introduce thedefinitionofSMV.First, let R1, . . . , Rn

be a convexpartition of the environment (Latombe1991), i.e.,
each Ri is a convex polygon, the workspaceW = ⋃

i Ri , and
int (Ri)

⋂
int (R j) = ∅ for i �= j .

Once we have a convex partition of the environment, we
establish a type of visibility between regions, which we call
strong mutual visibility. SMV is a binary relation that holds
when all points in two regions are mutually visible to one
another.

Definition 1 Two regions R and R′ are said to be strongly
mutually visible if classical visibility1 holds for all points x
and x ′ such that x ∈ R and x ′ ∈ R′.

SMV, defines a stronger condition than visibility between
pairs of points (classical visibility (O’Rourke 1987)). A
straightforward test for SMV using a convex hull computa-
tion (O’Rourke 2000), is given in the following expression:

Regions R and R′ are strongly mutually visible if and only
if

int
[
convex − hull

[
(R ∪ R′)

]] ⊂ W

where W is the polygon representing the workspace.
A given partition of the environment into convex regions

induces an AG and aMutual visibility graph (MVG). In each
graph, nodes represent regions. In the AG, two nodes Ri and
R j are connected, written (Ri , R j) ∈ AG, if their associ-
ated regions share a region boundary bigger than one single
point. Likewise, in the MVG, two nodes Ri and R j are con-
nected, written (Ri , R j) ∈ MVG, if their associated regions
are strongly mutually visible. Figure 1b and c respectively
show the MVG and the AG associated to the partition of

1 In classic visibility twopoints are visiblewhen a line segment between
them does not intersect any obstacle Shermer (1992).

123

Auton Robot (2016) 40:395–423 399

Fig. 1 a Environment partition, bmutual visibility graph, and c acces-
sibility graph

the environment shown in Fig. 1a. The MVG therefore pro-
vides information to find a sufficient condition to maintain
evader visibility while an AG provides adjacency between
regions.

In the remaining of this work we use the convex parti-
tion presented in Appendix 2 to explain and illustrate our
method. Nevertheless, we stress that our method works with
any other convex partition. However, the partition presented
in Appendix 2 has the next convenient properties.

One, the decomposition includes regions (corner-guard
polygons) that allow SMV to be maintained at all regions
adjacent to reflex vertices2 (reflex vertices being the main
source of difficulty for maintaining visibility). This gives a
place to stand for the pursuer in order to prevent the evader
to escape using individually each reflex vertex. Two, our
decompositionmaximizes ameasure of SMVfor the adjacent
regions (see Theorem 5 in “How to refine a given convex par-
tition (pivot segments)” section in Appendix 2). Intuitively,
this property means that for a given number of regions, the
total area visible to the players ismaximized. If any other par-
tition is used to obtain the same visible area, more regions
would be needed, which implies more computation. Three,
our decomposition approach admits a refinement mecha-
nism, which allows the construction of decompositions at

2 A reflex vertex is a polygon vertex of an internal angle greater than
π .

arbitrary resolution, such that SMV tends to classical visibil-
ity as the number of regions increases [see “How to refine a
given convex partition (pivot segments)” section inAppendix
2].

4 Problem statement

The evader and the pursuer are modeled as points moving
over a known environment. The environment is modeled as
a polygon that might or not contain holes. Every participant
is assumed to accurately know its position at all times, and
is limited to move at bounded speed (we denote Ve as the
evader’s maximum speed, and equivalently, Vp for the pur-
suer). Other than these, no kinematic nor dynamic constraints
are imposed on the pursuer or the evader.

The pursuer moves freely within the workspace. We shall
assume that the evader will move over the RVG. The RVG
of a polygonal environment, also known as the shortest-path
roadmap, is built in the next way: first of all, the vertices in
the RVG are the reflex vertices of the polygonal environment.
Second, the edge between two vertices in the RVG is gen-
erated if the two vertices are endpoints of the same edge of
an obstacle, or if a bitangent line can be drawn between such
vertices (LaValle 2006). As the reflex vertices break the con-
vexity of the environment, then a reflex vertex is associated
to an escape path. The RVG is of interest as it includes the
shortest paths to any reflex vertex in the environment. Fur-
thermore, for an evader that is free to move in the workspace,
the RVG still gives the shortest path to reach any place within
the polygonal environment, therefore, in most cases, it is the
roadmap that is most advantageous to the evader. Thus, the
RVG represents a worst-case scenario for the pursuer.

Both players are equipped with an omni-directional sen-
sor.We use a SMVmodel, where the pursuer maintains SMV
with the evader if at all times the pursuer and evader lie in
regions that are SMV. Clearly, maintaining SMV is a suf-
ficient condition for classical visibility, however, it is not a
necessary one, as can be easily seen in Fig. 2.

In classical visibility, pursuer-evader configurationswhere
the line of sight between the evader and the pursuer is in con-
tact with an obstacle, are difficult to study analytically, and
can be a chief impediment in the search for necessary and
sufficient conditions, to decide whether or not the pursuer
can maintain visibility of the evader. In this particular case, it
is not clear what the pursuer should do; there is a conflict as
to what the pursuer should strive towards: either minimizing
the shadow region so as to prevent escaping or minimizing
the distance so as to prevent a further, second occlusion [see
Fig. 2, this issue has been already noticed in González et al.
(2002)]. As will become evident, this conflict does not arise
for the case of maintaining SMV, bringing interest on using
SMV. Reasoning in terms of maintaining visibility of regions

123

400 Auton Robot (2016) 40:395–423

second occlusion

Pursuer velocity vector reducing shadow region

Evader velocity vector

Evader

Pursuer

Pursuer velocity vector preventing
second occlusion

Shadow
region

Fig. 2 Classical visibility

represents to plan to prevent the evader from taking the play-
ers to configurations as shown in Fig. 2, which are very hard
for the pursuer. Furthermore, as will be shown in Appen-
dix 2, SMV is a solution for classical visibility for a given
resolution, since as we have already mentioned, SMV tends
to classical visibility as the number of regions increases in
an appropriate partition. Such partition is also provided (see
Appendix 2).

Considering the past scenario we address our target track-
ing problem as a game of kind (Başar and Olsder 1982)
consisting in the next decision problem: is the pursuer able
to maintain surveillance—in the sense of SMV—of an evader
at all time?

Any instance of our decision problem is given by the tuple
(V, A, {Ri }, Vratio,�,�), where V and A represent respec-
tively the nodes and the edges of the reduced visibility graph,
that is RVG = (V, A), {Ri } is the partition of the environ-
ment, Vratio = Vp/Ve is the speed ratio of the players, � is
the size of the paths that the evader travels in terms of the
number of sub-goals (e.g. reflex vertices) that it visits, and�

the set of particular properties that define the evader’s paths
over the RVG (for instance, properties that make the paths
Hamiltonian as in Sect. 8.2).

In the next sections we build over the most general
instances of our problem, where the RVG may have cycles
or not, for any convex partition {Ri } and any Vratio (wemight
have players with equal velocities or either player might be
faster), evader paths of any size (�) and with no particular
properties (�) over them apart from being over the RVG.

5 Basic definitions and overview of solution

Our problem is a non-cooperative game because the evader
and pursuer have antagonistic goals (Rappoport 1966); the

evader wants to escape pursuer’s SMV and the pursuer wants
to maintain evader surveillance. By convention, the visibility
constraint is initially satisfied. Therefore, an action must be
taken by the evader to break it. If the evader is in a region
SMV with the region where the pursuer lies, then the evader
must travel to a region that is not SMVwith the region where
the pursuer is located. To determine the regions not SMV to
the pursuer’s region the MVG is used. Similarly, to establish
the connectivity between regions the AG is queried.

Let E be the region where the evader is located, and P the
region where the pursuer lies. For each region Ri in the envi-
ronment partition there is a set of regions that is SMV to Ri ,
let us call it SMV (Ri). To maintain surveillance, the pursuer
must be in a region belonging to SMV (E) at every instant
of time, therefore, let us assume that P ∈ SMV (E). If the
evader transits from a region E to a region E ′, then in order
to maintain evader’s surveillance the pursuer must move to
a P ′ such that P ′ ∈ SV M(E ′). While the evader travels
over the RVG there are some critical locations that corre-
spond to frontiers between regions in which the set SMV (E)

changes. Such punctual critical locations are what we call
critical points. More formally a critical point is defined as
follows.

Definition 2 A critical point is a point q ∈ RVG such that
when the evader reaches (or leaves) it, the evader transitions
between regions, hence, SMV (E) changes.

There are two types of critical points. The first type of
critical points are the reflex vertices. The other type are the
transition points, which are critical points located on theRVG
edges and are not reflex vertices.

A critical point belongs to more than one region at a time.
When the evader is at a critical point q, the pursuer must lie
in a region that is SMV to all the regions to which the critical
point belongs, that is, P must be in the set of all regions
which are all mutually visible to all the regions that own the
point q, which we denote as the guard polygon gP(q). More
formally, the definition of a guard polygon is as follows:

Definition 3 A guard polygon for a given point q is the set
of all regions in which each of them is mutually visible to all
the regions that own the point q. Let Q(q) = {R : q ∈ R},
then a guard polygon gP(q) for a given point q is defined
by:

gP(q) = {
R : (R, Rk) ∈ MVG, ∀Rk ∈ Q(q)

}
(1)

Figure 3b depicts an example of a guard polygon for a
critical point of a reflex vertex type.

Furthermore, evader surveillancemust be guaranteed at all
times and not only at critical points, therefore, surveillance
must be maintained while the evader is traveling between
critical points, namely, over edges of the RVG. The edges of

123

Auton Robot (2016) 40:395–423 401

(a) If the evader stands on ni, it is simultaneously over
regions {R1, R2, R3, R4, R7, R8, R9}

(b) The guard polygon for point ni is gP (ni) = {R4, R5}

Fig. 3 Guard polygon

the RVG might also belong to more than one region of the
partition. In Sect. 6 we present an algorithm that guarantees
evader surveillance at all time, given that the evader is on the
RVG, either on critical points or traveling between them.

Remark 1 As we have already mentioned, the evader might
be located in a point that belongs tomore than a single region.
This indetermination of the evader location can be considered
as uncertainty related to the region in which the evader is.
When assumed that the evader is in a given location, in order
to maintain SMV of it, the pursuer must maintain SMV of
all the regions that contain the evader location.

The evader has critical points as goals to escape, while the
pursuer has guard polygons as goals. There is a one to one
relation between each critical point to a respective guard
polygon. To maintain evader surveillance as it visits a set
of critical points, the time that takes to the evader to reach
them must be strictly greater than the time that takes to
the pursuer to reach the respective set of guard polygons.
Assume that the evader visits a sequence of critical points
q1 → q2 → q3 → · · · , let tke be the smallest time that takes
to the evader to reach the critical point k+1 from its k critical
point, and tkp the smallest time that takes the pursuer to reach
its corresponding k + 1 guard polygon departing from the k
guard polygon. If tkp − tke ≤ 0∀k, then the pursuer is able to
maintain surveillance, otherwise the evader escapes.

Unfortunately, the sequence of time restrictions imposed
by the evader cannot be analyzed by independent pairs as
will be shown in Sect. 8.1, since the set of points where the
pursuer must be at time k to fulfill the surveillance restriction
at that instant of time, will modify the available set of points
at time k + 1 where the pursuer can keep further evader’s
SMV. Such influence will keep propagating modifying the
set of points where the pursuer is able to maintain evader
surveillance during the whole path that the evader is free to
choose. To model this constraint propagation over the points
where the pursuer must be, we propose a message propaga-
tion algorithm in which the messages are the set of points
that satisfies the constraints for the pursuer. The result of
the message propagation algorithm are what we denote as
safe areas, which are subsets of points of the guard poly-
gons, where the pursuer must lie to keep evader surveillance
taking into account the constraint propagation over all the
possible paths that the evader can travel.

Additionally, to characterize the paths that the evader can
travel, we use the reflex vertices as reference points. Indeed,
the safe areas are related to the reflex vertices in the RVG,
thus, each reflex vertex ni has a related safe area denoted by
s A(ni).

Remark 2 In general the evader travels semi-free paths, that
is, it is allowed to move in contact with the obstacles.

The safe areas depend on the environment structure. To give
a final answer to our decision question, the initial posi-
tions of the players are included to obtain a region of the
workspace, which we call S set, where the pursuer must be
located to maintain SMV at any instant of time given the
current evader’s position (see Sect. 7). The S set defines a
motion strategy for the pursuer consisting on maintaining
itself within that set.

It is worthwhile to mention that the proposed message
passing algorithm is based in critical points over the roadmap,
defined as points over graph edges that represent the risk of
losing evader visibility (this is not unique to the RVG), and
minimal time to travel between such critical points. Hence,
our algorithm is applicable to other roadmaps provided that
the minimal time to travel between critical points is com-
putable.

In the remaining of this paper, we present an approach that
is able to achieve the following specific results:

(1) Algorithms are presented such that for any pair of
bounded maximal speeds of the players, and any pair of
initial positions, these algorithms answer which player
wins: the pursuer wins if it can maintain evader’s sur-
veillance under SMV at all time otherwise the evader
wins (Sects. 6, 7).

(2) Based on the map only, and regardless of the initial posi-
tion of the players, we can determine when the pursuer

123

402 Auton Robot (2016) 40:395–423

will not be able to keep strong mutual visibility of the
evader due to the environment structure (Sect. 7.1).

(3) If there is a solution for the pursuer, our approach can
determine the part of the space—S set—where the pur-
suermust be at every instant of time to guarantee evaders
surveillance (Sect. 7.2).

(4) We show that the decision problem posted above is
decidable (Sect. 8.1).

(5) We provide a complexity characterization of this prob-
lem (Sect. 8.2).

In the next section we present the message propagation
algorithm to calculate the safe areas.

6 Algorithms for computing safe areas

The RVG can be classified into two types: with or without
cycles. To facilitate the exposition, we first present a proce-
dure to compute the safe areas for the case when the RVG has
a tree topology. Later, based on such procedure we present
an algorithm to compute the safe areas when the RVG has
cycles within its structure.

6.1 Tree shape RVG

In this subsection we present an algorithm to compute the
safe areas when we have a tree topology RVG. The first step
of the presented algorithm is to root the RVG, making any
ni ∈ RVG the root node nr of the tree. The second step is
to initialize each safe area s A(ni) with the guard polygon
gP(ni) related to its respective reflex vertex ni . In a third
step, we proceed to refine the current value of the safe areas
to consider the constraint propagation given by the long term
paths that the evader can travel. The constraint propagation is
done through a message propagation scheme, where starting
from the leaf nodes on the rooted RVG, the children nodes
will pass a message (a set of points that satisfies surveillance
constraints, see below) to their parents in a bottom-up hier-
archical fashion, repeating the procedure until nr is reached;
then the same procedure is performed in the opposite direc-
tion, starting from nr all the way down until the leaf nodes
are reached. The message passing scheme considers all the
possible paths that the evader can travel. This is proved in
Theorem 1 for any RVG, either with a tree topology or with
cycles within it.

Theorem 1 The proposed message-passing scheme consid-
ers all the possible paths of unrepeated nodes that the evader
might travel in the RVG. Furthermore, it also considers any
path of repeated nodes.: Refer to Appendix 1 for a proof.

Figure 4 shows a map with its related RVG over it, and
the RVG rooted in n6.

(a) Map and RVG

(b) Tree rooted in n6

Fig. 4 Map with RVG tree topology

Nowwe are more precise of what are the propagated mes-
sages, but we first present some notation.

We divide each edge of the RVG into sub-edges, being the
transition points the division points (see Fig. 5a and b). For
convention, if there are no transition points within a RVG
edge, then such edge has only one sub-edge. Let us consider
the RVG edge between nodes ni and n j . In the next notation
we consider an order from ni to n j . oki j denotes the k-th

transition point between ni and n j (see Fig. 5b). lki j denotes
the k-th sub-edge between ni and n j (see Fig. 5c). As the
evader travels over an edge it visits a series of regions that
can be grouped in clusters. Each cluster is generated grouping
the regions that have a common sub-edge; then, letCk

i j denote
the k-th cluster between ni and n j (see Fig. 5d). Note that,
as the evader travels in a given sub-edge the set of regions
that are SMV with the evader is constant. Furthermore, Ck

i j
is used for the pursuer to maintain SMV of the evader, when
the evader traverses a sub-edge (see below). This notation
with three indices (i, j, k) uniquely identifies each of the
past elements over the RVG.

Based on the observations that while the evader travels
in a given sub-edge the set of regions that are SMV with
the evader is constant, and that there is a one to one relation
between each sub-edge lki j and each cluster of regionsC

k
i j , it is

123

Auton Robot (2016) 40:395–423 403

(a) Edge between ni and nj

(b) Transition points

(c) Sub-edges

(d) Clusters of regions

(e) Set of regions SMV with cluster C2
ij

Fig. 5 Features related to RVG edge between node ni and n j

possible to establish the following definition. SMV (Ck
i j) =

{R : (R, R′) ∈ MVG, such that lki j ∈ R′}. This is,
the set of regions SMV with the regions that fully contain a
given sub-edge, see Fig. 5e. The set SMV (Ck

i j) is of inter-

est because the pursuer must be located into SMV (Ck
i j) to

maintain SMV of the evader, when the evader travels over
lki j .

We now describe the basic operation for sending a mes-
sage from a node n j to a node ni . Let assume that between
ni and n j there are no transition points, and that n j is a leaf
node in the rooted RVG. The basic operation consists in gen-
erating a reachable area over SMV (C1

i j) around gP(n j), and
subsequently intersect the reachable area with gP(ni). The
reachable area depicts the set of departing points belonging
to SMV (C1

i j), from which the pursuer can reach a point in

gP(n j) while the evader travels from ni to n j .3 It is impor-
tant to consider as points to be reached, only points over
SMV (C1

i j), because this guarantees that the pursuer main-
tains SMV of the evader when the evader moves over the
sub-edge l1i j . The set of points that fulfills the described con-
straints is called a message. The set of points (the message)
sent from node n j , is then intersected with the guard polygon
gP(ni). The result of this intersection is the current safe area
s A(ni) of node ni . If there are transition points over the edge
joining ni and n j , the same procedure is done propagating the
message through all the transition points until ni is reached,
generating the respective reachable areas and performing the
respective intersections over the guard polygons related to
the transition points. If there are more leaf nodes connected
to ni apart from n j , ni must incorporate all the constraints
transmitted by all the leaf nodes. For each leaf node a safe
area for node ni is generated and then the intersection of them
is the current safe area s A(ni).

As mentioned above, the messages will first flow from the
leaf nodes all the way up to the root node nr , and then, from
the root node all the way down to the leaf nodes, complet-
ing then the correct calculation of all the safe areas for all
nodes in the RVG. The complete procedure is described by
Algorithm 1 aided by Subroutines 2–5, being Algorithm 1
the main entrance of the procedure. In Algorithm 1, step 2.
corresponds to the flow of messages from the leaf nodes all
the way up to the root node, and step 3. corresponds to the
flow of messages from the root node all the way down to the
leaf nodes. Subroutines 2 and 3 are implemented as recursive
depth first searches (Cormen et al. 2001), with the difference
that Subroutine 2 does a post-order (Cormen et al. 2001) node
processingwhile Subroutine 3 performs a pre-order (Cormen
et al. 2001) processing of the nodes. Subroutines 4 and 5 give
further details on how to implement the function that sends
a message from a node n j to a node ni .

6.2 RVG with cycles

In this subsection we address the case of RVGs that have
cycles intrinsic to their topology (see Fig. 6).

3 In the presented algorithms the computation of the reachable areas is
done backwards from n j to ni .

123

404 Auton Robot (2016) 40:395–423

Algorithm 1 Computing Safe Areas s A
Input: Work space W , environment partition, RVG.
Output: Safe Areas s A.
for every node ni in the RVG do
1. Initialize s A(ni) ← gP(ni);

end for
2. s A ← ReceiveChildNodesMessages(nr , s A)

3. s A ← SendMessageToChildNodes(nr , s A)

4. Store(s A, RVG);

Subroutine 2 ReceiveChildNodesMessages(ni , s A)

Input: ni ∈ RVG is the node that receives the message from its
children, s A is the current set of safe areas.
Output: The modified set of safe areas s A.
if ni is a lea f Node then
Return s A;

else
for every n j ∈ children(ni) do
1. s A ← ReceiveChildNodesMessages(n j , s A);
2. s A(ni) ← s A(ni) ∩ GetMessageFromTo(n j , ni , s A);

end for
end if
Return s A;

Subroutine 3 SendMessageT oChildNodes(ni , s A)

Input: ni ∈ RVG is the node that sends the message to its children,
s A is the current set of safe areas.
Output: The modified set of safe areas s A.
if ni is a lea f Node then
Return s A;

else
for every n j ∈ children(ni) do
1. s A(n j) ← s A(n j) ∩ GetMessageFromTo(ni , n j , s A);
2. s A ← SendMessageToChildNodes(n j , s A);

end for
end if
Return s A;

Subroutine 4 GetMessageFromTo(n j , ni , s A), gets the
message from n j to ni
Input: Connected nodes n j and ni in the RVG, s A is the current set
of safe areas.
Output: Message to intersect with gP(ni).
1. oi j ← GetTransi tionPoints(ni , n j) –see Note at the end–;
if oi j is not empty then
2. Q ← gP(oNi j) ∩ Get ReachableArea(oNi j , n j , s A(n j));
if N ≥ 2 then
for k = N to 2 do
3. Q ← gP(ok−1

i j) ∩ Get ReachableArea(ok−1
i j , oki j , Q);

end for
end if
4. A ← Get ReachableArea(ni , o1i j , Q);

else
5. A ← Get ReachableArea(ni , n j , s A(n j));

end if
Return A;
Note: oi j is the ordered set of N transition points between ni and n j .

Subroutine 5 Get ReachableArea(a, b, r B), generates a
reachable area around r B
Input: Point a and point b (either a or b are transition-points or reflex
vertices), r B ⊆ gP(b).
Output: Reachable area.
1. lki j ← Get SubEdgeConnecting(a, b);

2. Ck
i j ← GetClusterContainingSubEdge(lki j);

3. M = {q ∈ SMV (Ck
i j) : d(q, x) ≤ length(lki j)

Vp
Ve

for some x ∈
r B, where d(q, x) is the shortest distance within SMV (Ck

i j) };
Return M ;

(a) Original RVG (b) Unfolded RVG

(c) Feedback procedure

(d) Tree that considers 2 laps

Fig. 6 Cycles algorithm

123

Auton Robot (2016) 40:395–423 405

Cycles can be unfolded into sequences, taking advantage
of that property, we can use the method presented in the last
section to calculate the safe areas. For computing each safe
area s A(ni), we repeat the next procedure for each node ni
in the RVG until convergence. (Section 8.1 presents formal
arguments showing that the convergence is reached in a finite
number of iterations.)

In a first step we unfold the RVG into a tree. Such transfor-
mation is made using a spanning tree (Cormen et al. 2001),
performing a depth-first search from ni , making it the root
node nr of the tree. From any node n j already in the tree, the
edges in the original RVG considered to continue the expan-
sion, are the ones that fulfill the next properties: one, that they
are different from the edge that lead us to n j , and two, that
they do not cause us to enter into a second lap in a cycle in the
RVG or to enter in a cycle that can be considered in parallel
by other branch in the tree. If there is no edge connected to
n j that fulfills both properties, then n j is a leaf node in the
tree. An example of such transformation is given in Fig. 6a
and b. The resulting tree depicts all the possible paths that the
evader can follow giving at most one lap into cycles. Then,
over the resulting tree we apply the message passing scheme
only from the leaf nodes all the way up to nr .

To deal with the fact that the evader can travel several laps
around a cycle, when the message passing scheme reaches
the root node nr , a feedback procedure takes place in every
leaf node n j equal to nr (that is where a new lap over the
cycle starts again), namely, we make the safe area of each
n j equal to the current value of the safe area of nr ; then the
message propagation flows again toward nr . An example of
such procedure is presented in Fig. 6c. In Fig. 6b it can be
seen that a cycle begins in nr and the cycle is closed in two
of the leaf nodes (nr and the two mentioned leaf nodes refer
to n2 in the original RVG in Fig. 6a). At iteration k of the
feedback procedure, s A(nr)k is generated, which is the safe
area related to node nr considering that the evader travels
at most k laps over cycles. Figure 6d shows an equivalence
between applying once the message-passing scheme in the
tree shown in that figure and applying the feedback procedure
for k = 2 in the tree shown in Fig. 6c. Finally, we keep
iterating through this feedback process until we observe no
further change between s A(nr)k and s A(nr)k+1. This stop
condition is always achieved as shown in Sect. 8.1.

Depending on the RVG structure, there might be nested
cycles, as shown in Fig. 7. In such cases the convergence
is first sought in the most inner cycles, and hierarchically
climbs up to the most outer cycle. In the example shown in
Fig. 7b, the outer cycle that starts in n2 and returns to n2 has a
nested inner cycle that starts in n3 and returns to n3. For each
iteration k of the feedback procedure over the outer cycle,
several iterations over the inner cycle are performed until the
stop condition is fulfilled, and the procedure keeps iterating
until the stop condition is also fulfilled in the outer cycle.

(a) A RVG with nested cycles

(b) Tree representation unfolding the RVG with
nested cycles

Fig. 7 Nested cycles

Algorithm 6 Computing Safe Areas for Cycles s A
Input: Work space W , environment partition, RVG.
Output: Safe Areas s A.
for every node ni in the RVG do
1. Initialize s A(ni) ← gP(ni);
2. I terations(ni) ← 0;

end for
3. s A ← ReceiveChildNodesMessagesC(nr , s A)

4. Store(s A, RVG);

Algorithm 6 gives the details about the presented feedback
procedure.

7 Pursuit/evasion strategies

7.1 Sufficient condition for escape based on the map

In the past sections we have presented a complete procedure
for calculating the safe areas s A(ni) related to any node ni
within the RVG. Figure 8 shows a given environment with
the two safe areas related to the two reflex vertices in the
environment.

The safe areasmight be calculated in a preprocessing stage
before the actual pursuit-evasion game starts. Actually, just
using the mere safe areas a winning criterion for the evader
can be defined. If any calculated safe area results into an
empty set, it is a sufficient condition for the evader to win

123

406 Auton Robot (2016) 40:395–423

Fig. 8 Resulting safe areas

that depends just on the environment structure and not in the
initial configurations of the players, so such condition can be
verified before the game even starts. If the past condition is
fulfilled it is not even worthwhile for the pursuer to play the
game because it will inevitably lose, however, if the contrary
thing happens, the game would take place and in such case
we are interested on giving a motion strategy for the pursuer
so that it can maintain mutual visibility of the evader. It is
worthwhile tomention that the safe areas by themselves actu-
ally contain a whole family of possible solution paths for the
pursuer, so using them we will proceed to establish a motion
strategy that tells the pursuer where to be at any instant of
time.

Remark 3 When any calculated safe area results into an
empty set, it is a sufficient condition for the evader to win the
game. This condition only depends on the environment struc-
ture so it can be verified regardless of the initial positions of
the players.

7.2 Sets of local solution

If none of the safe areas results into an empty set, then the
pursuer needs a motion strategy to keep surveillance of the
evader. The presented pursuer’s motion strategy makes use
of what we call the S set (it comes from solution set), which
will be a set of points within the environment, where the
pursuer must be at any instant of time such that it is able to
keep surveillance of the evader. The S set changes dynam-
ically as the players keep moving. The pursuer’s motion
strategy consists on maintaining itself inside the current
S set.

For the evader’s strategy we proceed systematically, our
algorithms consider all the possible paths that the evader can
follow (see Theorem 1).

The S set is primarily a function of the position of the
evader, denoted by e. If the evader is over a reflex vertex
ni ∈ RVG, we already know that the pursuer must be located
within s A(ni) to prevent an escape through ni , and to enable
the pursuer to reach any other safe area at the time that
the evader arrives to the respective reflex vertex, satisfying

any intermediate surveillance restrictions between nodes. In
other words, when e = ni , then S = s A(ni). A more com-
plicated case is when e lies over an edge in the RVG. Let us
suppose that e is in the edge between reflex vertices ni and
n j , in that case the S set is given by (2).

S =
⎧
⎨

⎩
q : q ∈ gP(e)

∧

v∈V={ni ,n j }
tp(q, s A(v)) ≤ te(e, v)

⎫
⎬

⎭

(2)

In (2), V is a set that contains the reflex vertices or nodes
ni and n j . te(e, v) refers to the smallest time that will take
to the evader to travel from its current position e to point v.
tp(q, s A(v)) refers to the smallest time that will take to the
pursuer to move from point q to reach the safe area s A(v),
taking into account that the pursuer must satisfy intermediate
surveillance restrictions due to the fact that the evader may
visit a series of transition-points while it moves towards v.
Indeed, the S set is a safe area related to e, which would be
calculated by generating reachable areas (messages) around
s A(ni) and s A(n j) towards e, propagating the messages
through a series of respective transition-points oki j until e is
reached; it could be interpreted like e is a virtual node within
the RVGwith ni and n j as its children, and the messages sent
by both nodes are used to refine gP(e). Also notice that the
S set calculation for a given e only makes use of s A(ni) and
s A(n j) and not any other safe area, because those two safe
areas summarize everything that might pass beyond them.
The detailed procedure for calculating the S set is given by
Algorithm 7.

Algorithm 7 Calculate the S set for a given evader position.
Input: RVG, set V that contains reflex vertices, set of safe areas s A,
position of the evader e.
Output: S set.
if e is a node in RVG then
1. Obtain node ni ∈ RVG equal to e;
2. S = s A(ni);

else
3. Initialize S = gP(e);
for every v ∈ V do
4. S ← S ∩ GetMessageFromTo(v, e, s A);

end for
end if
Return S;

In this game the evader is allowed to start in any point
within the environment, lets call that initial position einit .
Then we connect its initial position to the RVG, tracing line
segments from einit to any node ni ∈ RVG, whenever it is
possible. For considering such scenario within the pursuer’s
surveillance strategy, we consider einit as a new node in the
RVG (properly connected as mentioned about), then using

123

Auton Robot (2016) 40:395–423 407

Algorithm 7 we can calculate an S set that considers that the
evader is in einit . From that initial conditions, the pursuer’s
surveillance strategy, as was exactly described in this section,
is then used. Furthermore, if initially the pursuer lies over the
S set related to einit , then it will be able to keep itself within
the S set at all time.

8 Decidability and complexity results

8.1 On the decidability of the problem

Along this section we do some theoretical analysis about the
procedure presented in Sect. 6.2. We first present a modeling
of the problem based on composition of relations (Takeuti
and Zaring 1971) that facilitates the whole analysis, then
using this modeling we present a proof of the algorithms’
convergence, indeed, we also give a proof that demonstrates
that the algorithmsdo converge in afinite number of iterations
showing that the problem is decidable.

For the case when the RVG has a tree topology, as shown
in Sect. 6.1, for the correct calculation of the safe areas only
two tree traversals are needed. One from the leaf nodes all
the way up to the root node, and the other, from the root node
all the way down to the leaf nodes (see Theorem 1 proof).
Hence, the safe areas are obtainedwithAlgorithm1 in a finite
number of iterations.

On the other hand, when the RVG contains cycles intrinsic
to its topology, some questions about the convergence of the
presented algorithms arise. For such cases the proposed solu-
tion for calculating the required safe areas are Algorithm 6,
and Subroutines 8–10. Such algorithm works in a iterative
way performing a series of traversals on a spanning tree,
built based on the original RVG. Such series of traversals
correspond to the iterations of the “do while” loop in Sub-
routine 8 when called in the point where the cycle starts.
Hence, the questions that we address in this section are the
next ones: as the “do while loop” keeps iterating, do the pro-
posed algorithms keep getting closer to the correct value of
the safe areas? Is the “do while” loop able to converge to the
correct value of the safe areas in a finite number of iterations?
Or, as it keeps iterating, it keeps getting infinitely closer to
the correct solution without actually reaching it in a finite
number of iterations, in which case our problem might be
undecidable.

The presented modeling is based on relations, composi-
tion of relations and their preimages. The key idea consists
on representing the valid set of points for the pursuer tomain-
tain surveillance as a preimage of a relation between guard
polygons.

Let us consider without loss of generality a single cycle
q1 → q2 → · · · → qn−1 → qn , where qi may be either a
reflex vertex or a transition-point, and where the evader first

Subroutine 8 ReceiveChildNodesMessagesC(ni , s A)

Input: ni ∈ RVG is the node that receives the message from its
children, s A is the current set of safe areas.
Output: The modified set of safe areas s A.
repeat
1. past_s A(ni) ← s A(ni);
if ReturnFrom(ni) is True then
Return s A;

else
for every n j ∈ children(ni) do
A. s A ← ReceiveChildNodesMessagesC(n j , s A);
B. s A(ni) ← s A(ni) ∩ GetMessageFromTo(n j , ni , s A);

end for
end if
2. s A(Descendant NodeEqualT o(ni)) ← s A(ni);
3. I terations(ni) ← I terations(ni) + 1;

until Stop(ni , past_s A(ni), s A(ni)) is True
4. I terations(ni) ← 0;
Return s A;

Subroutine 9 ReturnFrom(ni)
Input: ni ∈ RVG.
Output: A True of False value that indicates to stop or not iterating
through a cycle.
if ni is a lea f Node then
Return True;

else if aCycleI sClosed In(parent (ni)) is True
∧

0 < I terations(Ancestor NodeEqualT o(parent (ni))) then
Return True;

else
Return False;

end if

Subroutine 10 Stop(ni , past_s A(ni), s A(ni))

Input: ni ∈ RVG, past_s A(ni) is the past value of the safe area
related to ni , s A(ni) is the current value of the safe area related to ni ..
Output: A True of False value that indicates to stop or not iterating
through a cycle.
if past_s A(ni) �= s A(ni)

∧
aCycleBegins In(ni) is True then

Return False;
else
Return True;

end if

visits the point q1 and returns to that point after traveling
the loop, we mean qn = q1. Now, let us focus on a pair of
points qi and qi+1 within that loop. If the evader travels from
qi to qi+1 and the pursuer is able to maintain surveillance
of it, then there should be a valid subset of departure points
D ⊆ gP(qi) where the pursuer can be, which allows to it
to reach on time a subset of points H ⊆ gP(qi+1). Each
point in D will be able to reach its own subset of points in H ;
suchmapping can bemodeled as the relationRi,i+1 in Eq. 3.4

Let Im−1(Ri,i+1) denote the preimage of the relationRi,i+1.
In terms of our problem, the preimage Im−1(Ri,i+1) is the
set of valid departure points over gP(qi) such that when the

4 tc(w, z) denotes the smallest time that takes to the player c to move
from point w to point z.

123

408 Auton Robot (2016) 40:395–423

pursuer starts from them, it is able tomaintain surveillance of
the evader when this last one visits the sequence qi → qi+1.

Ri,i+1 =
{
(w, z) : tp(w, z) ≤ te(qi , qi+1)

where w ∈ gP(qi) and z ∈ gP(qi+1)
}

(3)

If we consider a third point qi+2 so the evader now
goes from qi to qi+2 passing through qi+1, then a point
w ∈ gP(qi) is a valid departure point for the pursuer
when it wants to maintain surveillance of the mentioned
evader’s path, if there exists a point z ∈ gP(qi+2) such
that (w, y) ∈ Ri,i+1 ∧ (y, z) ∈ Ri+1,i+2, which fits the
definition of a composition of relations. In other words,
if the evader travels the sequence qi → qi+1 → qi+2,
then a valid departure point w, which allows the pursuer
to maintain evader’s surveillance, must belong to the preim-
age Im−1(Ri+1,i+2 ◦Ri,i+1). Based on that reasoning let us
denoteR1,n = Rn−1,n ◦Rn−2,n−1◦· · ·◦R1,2, as themapping
process that suffers a pursuer’s position w ∈ gP(q1) while
the evader travels the cycle one time. Furthermore, we will
denote RN

1,n = R1,n ◦ · · · ◦ R1,n with N − 1 compositions,
as the progressive pursuer’s position mapping that considers
that the evader travels the cycle N times. Actually, what it is
done in each iteration k of the “dowhile” loop in Subroutine 8
when called at q1, is to calculate the preimage Im−1(Rk

1,n)

[which is s A(q1)k], starting with k = 1, then k = 2, etc., and
as the algorithm keeps iterating, evader’s traversals of more
and more laps around the mentioned cycle are considered.
Specifically, the preimage Im−1(R∞

1,n) is crucial, where

R∞
1,n = lim

k−→∞Rk
1,n

In this pursuit-evasion problem, Im−1(R∞
1,n) is the set of

valid departure points over gP(q1) that allow to the pursuer
to maintain evader’s surveillance if the evader decides to tra-
verse any number of laps on the considered cycle (the case
when the evader keeps going forever around that cycle is
included). Notice that the preimage Im−1(R∞

1,n) is the safe
area s A(q1) corresponding to an evader that just keeps trav-
eling around such cycle in the predefined direction.

Once we have presented a proper modeling using com-
position of relations, we will proceed to prove through
Theorem 2 the convergence of Algorithm 6 to the desired
solution. Notice that Theorem 2 claims convergence but not
in a finite number of iterations, which is then proved in The-
orem 3.

Theorem 2 Consider an evader that is continuously trav-
eling across a path q1 → q2 → · · · → qn−1 → q1,
making loops around that cycle. As Algorithm 6 keeps iter-
ating, the calculated preimage Im−1(Rk

1,n) converges to

Im−1(R∞
1,n), which is the safe area s A(q1) that corresponds

to that evader’s behavior.

Proof First of all, we know that any further compositionR1,n

to R∞
1,n does not alter its preimage, therefore, Im−1(R1,n ◦

R∞
1,n) = Im−1(R∞

1,n) which can be rewritten as:

Im−1(RN+1
1,n

) −→ Im−1(RN
1,n

)
for N −→ ∞

Im−1(RN
1,n

)\Im−1(RN+1
1,n

) −→ ∅ for N −→ ∞ (4)

Hence, asAlgorithm 6 keeps iterating, the preimage Im−1

(Rk
1,n) calculated by such algorithm at each iteration k must

have the next property:

lim
k−→∞ Im−1(Rk

1,n

) \ Im−1(Rk+1
1,n

) = ∅ (5)

We also know that the relations composition that consid-
ers k evader’s laps to the cycle can be written as Rk+1

1,n =
R1,n ◦ Rk

1,n , where Rk
1,n is the inner relation that will be

further composed through the outer relation R1,n . Using a
standardmethodology to calculate Im−1(Rk+1

1,n), wefirst take

the preimage of the inner relation, Im−1(Rk
1,n), as a first

approach of Im−1(Rk+1
1,n). Subsequently, by removing the

correct elements from Im−1(Rk
1,n), we add the restrictions

given by the values of Im(Rk
1,n) for which Im−1(R1,n) is

not defined (see Fig. 9). Hence we can conclude that:

Im−1(Rk+1
1,n

) ⊆ Im−1(Rk
1,n

)
. (6)

Based on Eq. 6 two possibilities arise. The first possibil-
ity is that the equality in Eq. 6 is fulfilled, in which case
the condition given by Eq. 5 is also fulfilled telling us that
Algorithm 6 has already converged. This past result can be
obtained as follows. Let us suppose that the equality in Eq.
6 is fulfilled at iteration s + 1, namely, Im−1(Rs+1

1,n) =
Im−1(Rs

1,n). From this point, for any iteration k ≥ s we

would obtain Im−1(Rk+1
1,n) = Im−1(Rk

1,n); this equality
is proved by induction. As the induction step we have:

Fig. 9 Structure of the composition Rk+1
1,n = R1,n ◦ Rk

1,n

123

Auton Robot (2016) 40:395–423 409

Im−1(Rk+1
1,n) = Im−1(Im(R1,n)∩Im−1(Rk

1,n)), and assum-

ing Im−1(Rk
1,n) = Im−1(Rk−1

1,n), then Im−1(Rk+1
1,n) =

Im−1(Im(R1,n) ∩ Im−1(Rk−1
1,n)). We also know that Im−1

(Rk
1,n) is equal to Im

−1(Im(R1,n)∩Im−1(Rk−1
1,n)), hence,we

conclude that Im−1(Rk+1
1,n)= Im−1(Rk

1,n)using Im
−1(Rs+1

1,n)

= Im−1(Rs
1,n) as the base case. So, if Im

−1(Rk
1,n) does not

have any further change from k = s, then as k −→ ∞,
we have Im−1(Rk

1,n) \ Im−1(Rk+1
1,n) = ∅, which is actually

Eq. 5, telling us that at iteration k = s the convergence has
already been achieved. The result follows, precisely, for the
first possibility when the equality in Eq. 6 is fulfilled.

The second possibility is that the equality in Eq. 6 is not
fulfilled in which case we have:

. . . Im−1(Rk+1
1,n

) ⊂ Im−1(Rk
1,n

) ⊂ Im−1(Rk−1
1,n

)
. . . (7)

Using Eq. 7, if Im−1(Rk+1
1,n) ⊂ Im−1(Rk

1,n) it implies

that Im−1(Rk
1,n) \ Im−1(Rk+1

1,n) ⊂ Im−1(Rk
1,n). As a con-

sequence, Im−1(Rk
1,n) can be treated as an upper bound to

Im−1(Rk
1,n) \ Im−1(Rk+1

1,n). On the other hand, we know

that Im−1(Rk
1,n) cannot be smaller than Im−1(R∞

1,n), so

Im−1(Rk
1,n) \ Im−1(Rk+1

1,n) has the empty set ∅ as a lower
bound.Now, due toEq. 7we can observe that the upper bound
Im−1(Rk

1,n) is contracting as the iteration index k increases,

pushing Im−1(Rk
1,n) \ Im−1(Rk+1

1,n) at each iteration to its
lower bound ∅, hence as the iterations of Subroutine 8 when
called at q1 tend to infinity, Im−1(Rk

1,n)\ Im−1(Rk+1
1,n) tends

to ∅, which actually is the property given by Eq. 5. The result
follows. ��

Concerning the decidability of our problem, the question
that might arise is whether the contraction presented in Eq.
7 keeps going forever such that Algorithm 6 and its sub-
routines are not able to calculate Im−1(R∞

1,n) in finite time,
which might suggest that the problem is undecidable. How-
ever, that is not the case, in Theorem 3 (below) we will prove
that our surveillance problem is decidable. As an outline of
the proof of Theorem 3, we first assume that we have already
calculated Im−1(R1

1,n) (actuallyR
1
1,n isR1,n), then what we

do is to base our analysis on the number of laps that the
pursuer can maintain surveillance of the evader. That num-
ber of laps is mapped into the plane generating two groups
within Im−1(R1

1,n). The first group is formed by points over

Im−1(R1
1,n) that will be valid departure points for the pur-

suer such that if it starts from them it will be able to maintain
evader’s surveillance during any number of laps, in other
words, it can watch the evader even if it decides to travel an
“infinite” number of laps. The second group in Im−1(R1

1,n),
are valid departure points for the pursuer such that if it starts
from them it will just be able to maintain evader’s surveil-
lance during a finite number of laps. Finally, analyzing the

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 10 Venn diagrams of the decompositions of Im−1(R1
1,n) pre-

sented in the cases of Theorem 3

different cases whether the first or second group are empty
sets, we establish the decidability result.

Theorem 3 The proposed algorithm always converges in a
finite number of iterations, hence, the problem of deciding
whether or not a pursuer is able to maintain SMV of an
evader that travels over the RVG, both players moving at
bounded speed, is decidable.

Proof Consider an evader that is continuously traveling
across a path q1 → q2 → · · · → qn−1 → q1, making
loops around that cycle. Also consider that we have run one
iteration of the “do while” loop in Subroutine 8 calling it in
q1, such that Im−1(R1

1,n) has already been calculated, that is,
we already have calculated the departure points over gP(q1)
that allow the pursuer to maintain SMV of an evader for at
least one lap. Now, we proceed to partition Im−1(R1

1,n) into
two sets. The first one, let us call it I , which will be the set
of points over Im−1(R1

1,n) that are valid departure points
for the pursuer such that they allow it to maintain SMV of
an evader that travels an “infinite” number of laps around
the cycle, which means that I = Im−1(R∞

1,n). The second

set, lets call it F , will be the set of points in Im−1(R1
1,n)

such that when the pursuer departs from them, they just
allow the pursuer to maintain SMV of the evader during
a finite number of laps around the cycle. We mean that
Im−1(R1

1,n)\ Im−1(Rk
1,n) ∈ F ,5 for k = 2, 3, 4, . . . , M+1,

with M being a natural number denoting the maximum finite
number of laps that the pursuer can maintain evader’s sur-
veillance. We can think in F as the complement of I in
Im−1(R1

1,n), that is, F = Im−1(R1
1,n) \ I .

Based on such partition of Im−1(R1
1,n) four cases may

arise considering whether or not, either I or F are empty
sets (see Fig. 10). The four cases are the next ones:

– Case 1 I = ∅ and F = ∅. Due to the fact that
Im−1(R1

1,n) = I ∪ F , this case implies that Im−1(R1
1,n)

is equal to ∅. This means that from the very first iteration
of Subroutine 8, we notice that there are no departure

5 The set Im−1(R1
1,n) \ Im−1(Rk

1,n) is formed by the elements in

Im−1(R1
1,n) such that if the pursuer departs from them, it can main-

tain SMV of the evader for at most k − 1 laps.

123

410 Auton Robot (2016) 40:395–423

points for the pursuer in gP(q1) that allow it to main-
tain SMV of the evader, not even for one lap through the
cycle. In this case the evader wins.

– Case 2 I = ∅ and F �= ∅. As we already know, when
Subroutine 8 is called from q1, each iteration k of the “do
while” loop calculates the preimage Im−1(Rk

1,n). Note

that at iteration k the elements Im−1(R1
1,n)\ Im−1(Rk

1,n)

are also being removed from Im−1(R1
1,n), which are all

the departure points for the pursuer that just allow it to
maintain surveillance of the evader during k − 1 or less
laps to the cycle. By the definition of the set F , we know
that it contains valid pursuer’s departure points that allow
evader’s surveillance for atmostM laps (recallM is a nat-
ural number),whichmeans that in the iteration k = M+1
the whole set F must have been removed, and taking
into account that I = ∅, at iteration k = M + 1 we have
Im−1(Rk

1,n) = ∅ allowing us to determine that the evader
just needs to take M + 1 laps to win the game. Above
all, notice that the number M + 1 can be huge but at the
end it is reachable in finite time. Also notice that in each
iteration k ≤ M + 1 there must be a continuous removal
of points from Im−1(R1

1,n), because if somehow in an
iteration k ≤ M + 1 there is no removal of points, we
have Im−1(Rk

1,n) = Im−1(Rk−1
1,n) that as seen in The-

orem 2’s proof, that causes Im−1(Rk
1,n) not have any

further change indicating the existence of Im−1(R∞
1,n)

within Im−1(Rk
1,n), which contradicts the assumptions

of this case that is I = ∅.
– Case 3 I �= ∅ and F = ∅. We obtained Im−1(R1

1,n)

when a first iteration of Subroutine 8 is called from q1.
Due to the fact that F = ∅, Im−1(R1

1,n) only contains
I = Im−1(R∞

1,n). If we execute a second iteration, that

is k = 2, we obtain that Im−1(R2
1,n) = Im−1(R1

1,n).

Furthermore, we obtain Im−1(Rk+1
1,n) = Im−1(Rk

1,n)

for any iteration k ≥ 1, as stated by the argument pre-
sented in Theorem 2’s proof. This means that once we
have calculated Im−1(R1

1,n), it will never change in any

further iteration, telling us that actually Im−1(R1
1,n) =

Im−1(R∞
1,n). Due to such arguments, we can say that

in iteration k = 2 if we notice that Im−1(R2
1,n) =

Im−1(R1
1,n), thenwecanbe sure thatwehave already cal-

culated Im−1(R∞
1,n), which means that the pursuer wins

because it is able tomaintain SMVof an evader that takes
any number of laps around the cycle.

– Case 4 I �= ∅ and F �= ∅. Similarly as it happened in case
2, at iteration k = M +1 the whole set F must have been
removed because by definition it contains valid pursuer’s
departure points that allow evader’s surveillance for at
most M laps. Hence, at iteration k = M +1 Im−1(Rk

1,n)

only contains the set I = Im−1(R∞
1,n), so as happened

in case 3, we have Im−1(Rk+1
1,n) = Im−1(Rk

1,n) for any

k ≥ M + 1, telling that Im−1(R∞
1,n) has already been

computed. Furthermore, at iteration k = M + 2 we are
able to tell that Im−1(R∞

1,n) exists concluding that the
pursuer wins because it is able to maintain SMV of an
evader that takes any number of laps around the cycle.

Through the past four cases it can be seen that in any situa-
tionwe are able to determine if the pursuer is able tomaintain
surveillance of the evader in a finite number of iterations that
is at must M + 2 iterations, which indicates that the problem
is decidable. The result follows. ��
Remark 4 The problem of decidingwhich player wins is his-
tory dependent. It is not possible to decide which player wins
considering only pairs of relations independently.

8.2 A complexity result

Recall that any instance of our decision problem stated in
Sect. 4 is givenby the tuple (V, A, {Ri }, Vratio,�,�),where
V and A represent respectively the nodes and the edges of
the RVG, that is RVG = (V, A), {Ri } is the partition of
the environment, Vratio = Vp/Ve is the speed ratio of the
players, � is the size of the paths that the evader travels in
terms of the number of critical points that it visits, and � the
set of particular properties that define the evader’s paths.

The evader moves between critical points, while the pur-
suer moves between guard polygons. Whether or not the
pursuer or evader has a winning strategy for a given instance
(V, E, {Ri }, Vratio,�,�) of our problem, amounts to check
the cost over the edges connecting critical points for any
evader’s path that fulfills the size constraint � and the set of
properties �. The cost associated with every edge is simply
given by tkp − tke , where t

k
e be the time that takes to the evader

to reach the critical point k + 1 from its k critical point, and
tkp the time that takes the pursuer to reach its corresponding
k + 1 guard polygon departing from the k guard polygon.

The evader has a winning strategy if there exists a path for
which the constraint tkp − tke ≤ 0 is broken. Conversely, the
pursuer has a winning strategy if for every path it preserves
the constraint. Notice that all the paths cost must be checked
to reach a decision. This is the rationale behind the proof of
Theorem 4.

Notice that the algorithms presented on the past sections
were built over the most general instances of our problem,
where the RVGmayhave cycles or not, for any partition {Ri }
and any Vratio (we might have players with equal velocities
or either player might be faster), and where � might tend to
∞ and � = ∅; hence, we considered evader paths of any
size with no particular restriction over them. If � is set to a
particular value and � �= ∅, the message passing scheme is
maintained but applied to the evader paths that fulfill � and
�. The cost over the edges connecting critical points can be

123

Auton Robot (2016) 40:395–423 411

abstracted to the existence of safe areas obtained by Sect. 6
algorithms. If and only if a safe area is empty then the cost of
moving among critical points in the partition has a positive
cost.

The problem of deciding which player wins is NP-
complete as we will prove later on this section. The decision
version of bottleneck traveling salesman problem (TSP),
known to be NP-complete (Garey and Johnson 1979), has
an immediate equivalence to some specific instances of the
problem of establishing a feasibility cost over the edges con-
necting critical points.

The decision version of the bottleneck TSP is defined as
following:

Definition 4 For a given length x , is there a Hamiltonian
cycle in a graph g with no edge longer than x? (Garey and
Johnson 1979).

The proof consists on a reduction by restriction (Garey
and Johnson 1979). What it is done is to add restrictions to
the instances of the problem, which results into a restricted
problem that is identical to the decision version of the bottle-
neck TSP. In other words, we show that our decision problem
contains the bottleneck TSP as an special case. The restricted
problem consists in an evader traveling Hamiltonian cycles,
which are the paths that consider visiting all the different
nodes in the RVG. This is one type of paths among all the
possible paths that the evader might try to escape.

Theorem 4 The problem of deciding whether or not the pur-
suer is able tomaintain SMVof an evader that travels over the
RVG, both playersmoving at bounded speed, isNP-complete.

Proof In order to make a formal reduction, we use the con-
cept of critical points and guard regions. Let us consider
environments in which the critical points are only reflex
vertices. Those reflex vertices are the nodes of the RVG.
The evader moves between reflex vertices, while the pursuer
moves between the corresponding guard polygons. The cost
related to the RVG edges is given by tkp − tke , where t

k
e is the

time that takes to the evader to reach the reflex vertex k + 1
from its k reflex vertex, and tkp the time that takes the pursuer
to reach its corresponding k + 1 guard polygon departing
from the k guard polygon.

We assume, without loss of generality, that both play-
ers move at saturated speed. Let us also consider IHC

as the set of instances of our decision problem that are
obtained by making � contain the necessary properties such
that the evader’s path are Hamiltonian cycles, that is, the
paths followed by the evader will be permutations of nodes
〈n1, n2, . . . , n|V |, n|V |+1〉, which automatically sets � =
|V |+1, where ni and ni+1 are connected in RVG = (V, A),
and where ni �= n j , except for n|V |+1 which is equal to n1.

The reduction consists in defining the cost over the RVG
edges in the instances of IHC , as the edge weights of the

bottleneck traveling salesman problem. Answering whether
or not there is a Hamiltonian cycle in the RVG with no edge
longer than C will both solve: the decision version of the
bottleneck traveling salesman problem and the instances in
IHC of deciding which player will win. A pursuer solution
corresponds to C ≤ 0. A polynomial time algorithm capable
of solving these instances of our decision problemwould also
solve all instances of the decision version of the bottleneck
traveling salesman problem in polynomial time. Therefore,
our decision problem is NP-complete. ��

Notice that the complexity result in Theorem 4 holds
regardless of the algorithm used to solve the proposed prob-
lem, since the evader is free to choose any problem instance,
for example, it can choose to travel a specific one that purely
include Hamiltonian paths, which are computational costly.

Remark 5 The issues of considering environments with tran-
sition points or evader motions over repeated cycles are not
needed to establish the complexity of this problem. These
issues can only increase the complexity.

Remark 6 To get around the need of a computationally infea-
sible algorithm, the players might use an on-line strategy. An
on-line strategy computes a motion plan for the next h future
stages, and re-plans in the next iteration for the following h
future stages. Typically, h is a small number.

9 Simulations results

On this section we present some simulation results, mak-
ing use of implementations of the proposed algorithms. The
objective of these simulations is to graphically show the safe
areas and S sets under different conditions, specifically, the
topology of the map (with or without holes), the topology
of the RVG (with or without cycles), and different velocity
ratios of the players (pursuer faster than the evader or vice-
versa). All our simulation experiments were run on a dual
core processor PC, equipped with 1 GB of RAM, running
Linux, and were programmed in C++ using the computa-
tional geometry library LEDA.

In the next figureswe present in dark grey (green) the com-
puted safe areas. In Fig. 11 we show a sample environment
with its partition, the resulting safe areas and the respective
RVG. Something interesting to note in this example is that
the calculations consider a pursuer that moves at a 90% of
the evader’s velocity (Vp/Ve = 0.9), resulting into safe areas
that are not empty sets, showing that there exists maps where
an slower pursuer canmaintain surveillance of a faster evader.
The safe areas along with the environment partition and the
necessary graphs, were computed in 0.2 s.

Figure 12 shows amore complexmapwith a tree topology
RVG. In this example we considered a pursuer 10% faster

123

412 Auton Robot (2016) 40:395–423

(a)

(b)

Fig. 11 Example 1 with a tree topology RVG and its calculated safe
areas

than the evader (Vp/Ve = 1.1). For a better appreciation of
the resulting safe areas, Fig. 12c shows all of them separately;
in that figure we can notice that the safe areas may result into
curved polygons, whose forms are not precisely intuitive.
Also notice that when the safe areas result into sets greater
than a single point, there is a whole family of paths that
the pursuer can choose from to move between safe areas.
The environment partition, the necessary graphs and the safe
areas were computed in 0.7 s.

Figure 13 shows an environment whose RVG has a cycle
in its topology. It is worthwhile to mention that this map is
not simply connected, showing in that way the validity of our
solution for both simply and non-simply connected environ-
ments. In Fig. 13a we considered a pursuer 20% faster than
the evader (Vp/Ve = 1.2); keep in mind that it is impossi-
ble for a slower pursuer to maintain surveillance of a faster
evader in an environmentwith holes. Actually in that case the
safe areas result into empty sets. Such behaviour is shown in
Fig. 13a, and c–e. In Fig. 13c a velocity ratio Vp/Ve = 1.05
is used, then in Fig. 13d the velocity ratio is set to 1.015,
showing the fact that as the velocity ratio Vp/Ve → 1, the
safe areas tend to be single points giving just one possible
path for the pursuer to move between safe areas, and when
we have Vp/Ve < 1 the safe areas result into empty sets,
such as depicted in Fig. 13e where a Vp/Ve was set to 0.999.
Making use of Eq. 6, as stopping criteria of our algorithm
we compare the area of s A(nr)(k) between consecutive iter-
ations, and once we have no further change on such area we
stop iterating (that area was calculated with a double float-
ing point precision). It is worthwhile to mention that what
we present here are just computational geometry approxi-
mations, but for obtaining exact mathematical results that
perfectly fit the theoretical results on the previous sections,

(a)

6

7

8 9

(b)

(c)

Fig. 12 Example 2 with a tree topology RVG and its calculated safe
areas

a comparison between the algebraic expressions (which are
line segments and circle arcs) that describe the boundaries
of s A(nr)(k) between consecutive iterations could be used
as stopping criteria; however, that would imply that we need
to implement algebraic simulations whose complexity go far
beyond the illustration purposes intended by these simula-
tions.

To conclude this discussion,whenweconsideredVp/Ve =
1.2 (Fig. 13a) the convergence was achieved in 7 iterations,
for Vp/Ve = 1.05 (Fig. 13c) 9 iterations were needed, for
Vp/Ve = 1.015 (Fig. 13d) 10 iterations, and for Vp/Ve =
0.999 (Fig. 13e) 2 iterations (recall that at least 2 iterations
of the algorithm are required). The simulation that took the
longest computation time was the one that considered the
velocity ratio Vp/Ve = 1.015, and took 3.61 s.

123

Auton Robot (2016) 40:395–423 413

(a) Vp/Ve = 1.2 (b) (c) Vp/Ve = 1.05

(d) Vp/Ve = 1.015 (e) Vp/Ve = 0.999

Fig. 13 Example 3 with cycles in the RVG and its calculated safe areas

In Figs. 14 and 15we present a fourth and fifth experiment.
The purpose behind these experiments is to evaluate how the
execution time of the proposed algorithm increases as the
number of reflex vertices also increases. The maps presented
in Fig. 14 correspond to an expansion of the map presented
in Fig. 12. The map in Fig. 14a was obtained doubling the
number of reflex vertices of the map in Fig. 12a, yielding a
total of 20 reflex vertices. The map in Fig. 14b triplicates the
number of reflex vertices of the map in Fig. 12a for a total of
30 reflex vertices. In both maps the RVG has a tree topology.
The safe areas in the map of 20 vertices where computed in
1.84 s, and in the map with 30 vertices they were computed
in 3.16 s. The maps in Fig. 15 were constructed based on
Fig. 13a. The map in Fig. 15a was obtained doubling the
number of reflex vertices of the map in Figs. 13a, and 14b
tripling such number of vertices, yielding, respectively, 12
and 18 reflex vertices. In both maps the RVG has cycles;
also notice that the complexity of the maps increased, as the
number of holes, hence, the number of intrinsic cycles, also
increased. The safe areas in the map with 12 vertices where
computed in 13.04 s, and in the map with 18 vertices they
were computed in 31.69 s. In Fig. 16 a plot is presented,
showing the variation of the execution time of the algorithm
as the number of vertices increases. In Fig. 16 the x axis
reflects the fact that the number of reflex vertices in Figs. 12a

and 13a is double and tripled. The y axis shows the factor
by which the execution time increased. In Fig. 16 it can be
noticed that despite the fact that the number of vertices is
increased by the same factor, the execution time increases
faster in Example 5 (maps in Fig. 15). This shows that the
number of vertices is not the only element that affects the
execution time of the algorithm, the topology of the RVG
also has an influence on it. A more detailed analysis of this
issue is an interesting direction for future work.

In Fig. 17 we introduce the S set, which we show in light
gray (yellow). As we already mentioned, the S set will be
primarily a function of the evader’s position, which we show
as a red square. In Fig. 17a the evader is standing on the
middle of the edge that joins the reflex vertices n1 and n2. In
that image the S set is calculated generating reachable areas
around the safe areas s A(n1) and s A(n2). We only make use
of those two safe areas because they already summarize all
the possible subsequent visits of the evader to any other reflex
vertex in the RVG. For obtaining those results we consider
a velocity ratio Vp/Ve = 0.9, while in Fig. 17b the velocity
ratio is set to 0.78, and in Fig. 17c is set to 0.71, showing
the fact that as the pursuer is slower the S set gets smaller
giving less flexibility of movement to the pursuer (recall that
the pursuer must maintain itself inside the S set at all time).
Actually there is minimum value for the velocity ratio that

123

414 Auton Robot (2016) 40:395–423

n
n
n n

n

n

n n n

n

n

n
n
n n

n n nn

n

(a)

n
n
n n
n

n
n n n

n

n
n n

n n
n n n

n

n
n
n

n n
n n

n n
n

n

(b)

Fig. 14 Example 4 with tree topology RVG’s and their calculated safe
areas

n

n

n

n
n

n
n

n

n
n

n

n

(a)

n
n
n

nn
n nn

n n n
n nn

n n n
n

(b)

Fig. 15 Example 5 with cycles in the RVG’s and their calculated safe
areas

Fig. 16 Comparison chart showing howmany times the execution time
of the proposed algorithm increases as the number of vertices is doubled
and tripled (Examples 4, 5)

still allows to the pursuer to maintain evader surveillance;
for smaller values of that minimum threshold the safe areas
along with the S set collapse into empty sets. Figure 17d–h
show how the S set changes and moves as the evader travel
from n1 to n2. In average the S sets were calculated in 0.19
s.

It is worthwhile tomention that for all shown examples the
complete solution was computed due to fact that no special
restriction was considered on the paths traveled by the evader
in the RVG. Nevertheless, keep in mind that since the evader
is free to choose any path in the RVG, it can travel computa-
tional costly paths such as Hamiltonian paths, which yields
the complexity result for the proposed problem regardless of
the algorithm used to solve such problem. However, a solu-
tion that considers just a finite ahead horizon can always be
computed. In Fig. 18 the same map of Fig. 11a is considered,
but this time, the safe areas where computed considering
just one step ahead, which results into bigger safe areas as
they include only the restriction imposed by the next reflex
vertex in the evader’s path. The safe areas can always be
computed off-line in a pre-computation stage. On the other
hand, the simulation results also show that the S set can be
computed on-line while the players move around the envi-
ronment, as we were able to calculate them at a rate of 10
hertz, but we strongly believe that that rate can be improved
with better hardware and implementing some computations
in parallel (in the S set calculation, the messages for each
v ∈ V = {ni , n j } sent to e can be computed in parallel).

10 Conclusion and future work

In this paper, we have addressed the problem of maintaining
SMVof amoving evader by a pursuer, in an environmentwith
obstacles, where the speed of each participant is bounded and
there is not an a priory limit as to the distance that may sepa-
rate them. More specifically we have addressed the problem
of maintaining strong mutual visibility of a moving evader
traveling in the shortest-path road-map (RVG), but under the
assumption that the pursuer does not know, which among the
possible paths, the evader will choose.

Central to our proposed solution is the concept of safe
areas, that is, areas where the pursuer must be to keep evader
surveillance at all time. Using preimage and compositions of
relations we have shown that our algorithm will always con-
verge in finite time, even when the evader decides to travel in
a loop forever. If there is a solution for the pursuer, we have
also found, the part of the space where the pursuer must be at
every instant of time to guarantee evaders surveillance. Fur-
thermore, based on the map only, and regardless of the initial
position of the players, we can determine when the pursuer
will not be able to keep SMV of the evader. We have imple-
mented all our algorithms and presented simulation results.

123

Auton Robot (2016) 40:395–423 415

(a) Vp/Ve = 0.9 (b) Vp/Ve = 0.78

(c) Vp/Ve = 0.71

(d) (e) (f)

(g) (h)

Fig. 17 Example 4 with its calculated safe areas and sample S sets

Fig. 18 Example 6 with safe areas calculated one step ahead

In short, we have provided two main contributions: (1) we
proved decidability of this problem for any arbitrary polygo-
nal environment, and (2) we provided a complexity measure
to our evader surveillance game that holds regardless of the
algorithm used to solve the game.

As future work, a possibility is to analyze in detail the case
of an evader traveling over other roadmaps apart from the

RVG, nevertheless, we would prefer to address the problem
of maintaining SMV of a moving evader, in which the evader
is free to travel any pathwithin theworkspace and the pursuer
does not know the motion evader policy. A first effort in this
direction is presented in Becerra et al. (2010). Moreover, we
believe that we will be able to use our current progress as an
stepping stone to solve that more general problem, since in
an antagonist game a worst case scenario is commonly used
to establish the solution of the game, and the RVG seems to
be at least part of the worst case scenario since it contains
the shortest paths to escape.

We would also like to consider the case, in which both
the pursuer and the evader have bounded sensor range and
bounded speed, and are disc shaped robots. We think that the
concept of strong mutual visibility is specially suitable for
the later case, since it defines visibility between regions with
area.

123

416 Auton Robot (2016) 40:395–423

Acknowledgments This work was partially funded by CONACYT
Project 106475 and NSF-CONACYT Project J110.534/2006.

Appendix 1: Proof of Theorem 1

Theorem 1 The proposed message-passing scheme consid-
ers all the possible paths of unrepeated nodes that the evader
might travel in the RVG. Furthermore, it also considers any
path of repeated nodes.

Proof We first elaborate for the case when the RVG has a
tree topology. Later, we built upon the tree case to address
when the RVG has cycles within it.

The proof for the case of a RVG with tree topology pro-
ceeds as follows. First, it considers the paths of unrepeated
nodes. This class of paths is exhaustively decomposed into
two types, one that starts from the root node nr to any other
node ni ∈ RVG (refer to Fig. 19a), and the second, paths
from any node ni ∈ RVG to any node n j ∈ RVG, with
ni �= n j �= nr (refer to Fig. 19b). Later, paths with repeated
nodes are considered and it is shown that such class of paths
can be constructed as concatenations of paths with unre-
peated nodes.

First,we prove that themessage-passing scheme considers
the first type of unrepeated nodes paths. Let us consider then
a path of unrepeated nodes from nr to ni , with nr �= ni .
When the message propagation starts from the leaf nodes all
the way up to nr , at some iteration it surely reaches node

(a) First type

(b) Second type

Fig. 19 Types of paths with unrepeated nodes

ni , as nr is the root node of the RVG and therefore ni is a
descendant node of nr ; subsequently, the message-passing
scheme starts travelling the path from ni up to nr , which is
the unrepeated nodes path from nr to ni but in reverse order,
passing the necessary surveillance restrictions for going from
nr to ni . The result follows.

Now,weprove that themessage-passing schemeconsiders
the second type of unrepeated nodes paths. If the evader first
visits nr and then it decides to go to any other node ni ∈
RVG, there is always the possibility that after the evader
arrives to ni , it might decide to move to any other node n j �=
nr , that is, to follow a path of the second type. So let us
assume such case when the evader first visits nr–using nr as
an entry point to the RVG–, then it arrives to a node ni , and
then it decides to follow a path of the second type to a node
n j . Focusing on these last two nodes, ni and n j , for each
node a path can be tracked towards nr until both paths have a
common ancestor node, lets call it na , see Fig. 19b. Following
this procedure the pathwith unrepeated nodes between ni and
n j can be found (in a tree this path is unique). Such path can
be divided into two parts, the first one from ni to na and
the second one from na to n j . In the first part of the path,
following the message-passing schemewe already know that
node na receives the proper information or restrictions (from
the parent of ni , following a succession of ancestors nodes up
to na), so that the pursuer canmaintain SMVof an evader that
first visitsna and then follows a sequenceof unrepeatednodes
until ni . If the pursuer fulfils the restrictions passed to na
(indeed, this is done by first fulfilling the restrictions passed
to nr) then there must exist a path ρp(na, ni) from gP(na) to
gP(ni) for the pursuer, such that it allows evader surveillance
when the evader moves from na to ni ; let us call that evader’s
path ρe(na, ni). If such path ρp(na, ni) exists, the pursuer
can simply follow ρp(na, ni) in the opposite direction (that
is ρp(ni , na), successfully returning to gP(na)) to maintain
surveillance of an evader that follows ρe(na, ni), but also in
the opposite direction (that is ρe(ni , na)).6 Furthermore, for
every viable path for the pursuer from gP(ni) to gP(na),
there must be its counterpart in the opposite direction, that
is from gP(na) to gP(ni), because if that does not hold
means that there exists a path ρp(ni , na) that the pursuer
cannot follow in the opposite direction, which is not possible.
Hence, no extra restrictions need to be passed to node na (and
therefore to nr) so that if the pursuer fulfils the restrictions
passed tonr , which includes the ones fromna , the pursuer can
maintain surveillance of an evader that moves starting from
nr , passing though na , then arriving to ni and then moving
back to na .

Let us analyse the second part of the path, that is when the
evader moves from na to n j . Following the message-passing

6 Also recall that in a tree the path of unrepeated nodes from ni to na
is unique and it can only be ρe(ni , na).

123

Auton Robot (2016) 40:395–423 417

scheme, na receives the proper information or restrictions,
so that if the pursuer fulfils such restrictions it can main-
tain SMV of an evader that visits na and then follows a
sequence of unrepeated nodes until it reaches any node below
na , which also includes n j ; it can be seen that the message-
passing scheme by itself considers the evader’s path from na
to n j . Now, we can conclude that using the message passing
scheme, node nr receives all the necessary restrictions that
the pursuer must fulfil to maintain surveillance of an evader
that moves starting from nr , passing though na , then arriving
to ni and then moving back to na and finally arriving to n j .

Any subsequent path of repeated nodes of the evader can
be described as concatenations of paths with unrepeated
nodes. This is done splitting the repeated nodes paths by
considering a new unrepeated nodes sub-path starting in
a node before a repeated node appears. Therefore, every
path of repeated nodes is a succession of paths of the type
ni → · · · → na → · · · → n j , and first fulfilling the
restrictions passed to nr (using it as an entry point to the
RVG), always allows the pursuer to fulfil the restrictions
related to any node na , so a path ni → · · · → na fol-
lowed by na → · · · → n j can always be traced by the
pursuer as shown before, adding no extra restrictions to the
ones already passed to nr via the proposed message-passing
scheme.

In the message passing-scheme, when the messages are
passed from the leaf nodes all the way up to nr , any node only
receives the surveillance restrictions from all the nodes below
it. By propagating the messages from nr all the way down
to the leaf nodes, the remaining surveillance restrictions are
sent to every node ni ∈ RVG (restrictions from branches
not bellow ni), enabling any node ni as an entry point to the
RVG, i.e., as a root node. The result follows.

For the case of a RVGwith cycles, it is possible to consider
all the evader paths by unfolding the graph in a succession of
trees (refer to Sect. 6.2 for a complete procedure to unfold the
graph), therefore the result for this later case follows directly
from the tree case. ��

Appendix 2: Workspace partitions

The notion of SMV relies on the availability of a convex par-
tition of the workspace W . In this section we present a two
steps algorithm that generates two different resolution par-
titions, however, we first introduce some terminology used
along this section.

Notice that reflex vertices are crucial in our problem, since
they break the convexity of the polygonal environment.

Definition 5 For a given reflex vertex v, a reflex ray is a
line segment from v, to the boundary of W , collinear to the

(a)

(b)

Fig. 20 a Reflex rays, and b extended bitangent segment

supporting line of the edge incident to v.7 Each reflex vertex
defines two reflex rays. See Fig. 20a.

Definition 6 For a given pair of visible8 reflex vertices, v

and u, an extended bitangent segment B between them, is a
line segment in the workspace W such that:

– The endpoints of B are neither v nor u.
– B is tangent to ∂W (boundary of W) in v and u.
– Considering a ball Br (x) with an arbitrarily small radius
r centred at point x , then, ∀x ∈ B, Br (x)∩∂W ∩B = {x}
or Br (x) ∩ ∂W ∩ B = ∅.

– There is no other extended bitangent segment B′ related
to v and u, such that B ⊂ B′.

Figure 20b shows an example of a extended bitangent seg-
ment.

Definition 7 A line segment a b ⊂ W is tangent to ∂W in a
point p, iff:

– p �= a and p �= b.
– Considering a ball Br (p) with an arbitrarily small radius
r centred at p, then, Br (p) ∩ ∂W ∩ a b = {p}.

7 Note that a reflex ray differs from an inflection ray, as defined in
LaValle (2006). Whenever a robot crosses an inflection ray, a gap in the
gap navigation tree (GNT) will (dis)appear.
8 We say that two points are visible when we can draw a line segment
between them and it is not intersected by any obstacle.

123

418 Auton Robot (2016) 40:395–423

Fig. 21 cgP(v) = {R2, R6}, where both R2 and R6 are corner-guard
regions

Definition 8 A corner-guard polygon, cgP(v), for a given
reflex vertex v, is the set of points withinW delimited by the
lines supporting v.9 Refer to Fig. 21.

Our proposal for partitioning the environment follows a
two-step approach, being purely based on the environment
structure rather than on the current positioning of the play-
ers. The steps are as follows:

(1) For every reflex vertex, trace both of its reflex rays.
(2) For every pair of reflex vertices, trace an extended bitan-

gent segment, whenever possible.

The first resolution partition comes from integrating reflex
rays, considering a convex region Ri a convex polygonwhose
interior is not intersected by a reflex ray. Any convex region
Ri is bounded by reflex rays, portions of them (as the reflex
rays might intersect), or portions of the polygonal workspace
boundary. The second resolution partition comes from con-
sidering both reflex rays and extended bitangent segments.
In such case any convex region Ri might also be bounded by
extended bitangent segments or portions of them.

First resolution partition (reflex rays)

Focusing on the first partition, notice that the first step of
our approach yields for every reflex vertex, regions located
over its related corner-guard polygons, which we name as
corner-guard regions. Taking this into account, we get the
next definition.

Definition 9 Aregion Ri is a corner-guard region for a given
reflex vertex v, denoting it as cgR(v), iff it is fully contained
in cgP(v), and at the same time, ∀p ∈ cgR(v), p v ⊂ W .
Refer to Fig. 21.

Remark 7 A corner-guard polygon cgP(v)might have more
than one corner-guard region.

9 Presented Murrieta-Cid et al. (2003), and referred in Bhattacharya
and Hutchinson (2011) as star region.

Fig. 22 Resulting partition after the first step of the partitioning algo-
rithm

The relevance behind the concept of corner-guard regions
is that, since the reflex vertices are the ones that break con-
vexity in a given polygon, the evader is obliged to use them
to break SMVwith the pursuer, and once the pursuer is over a
corner-guard region cgR(v), the pursuer completely nullifies
any attempt of the evader to break SMV with it making use
exclusively of reflex vertex v. This happens because there is
no point p ∈ cgR(v), where an open line segment is trace-
able to a point q ∈ Ri , such that p q is exclusively intersected
by the edges incident to v. Our fist resolution partition gen-
erates the corner-guard regions, which nullifies all possible
evader escape using only one single reflex vertex. An exam-
ple of the resulting partition after applying the first step of
the partitioning algorithm is shown in Fig. 22.

How to refine a given convex partition (pivot segments)

Intuitively, since maintaining SMV is a sufficient condition
for surveillance, it is desirable to choose a partition that yields
pairs of SMV regions that are as large as possible, and yields
regions that are SMVwith as many other regions as possible.
Notice that both objectives have a trade-off between them
as we can keep splitting any region. On the other hand, we
are also interested on keeping reflex rays as they generate
corner-guard regions, nevertheless, we can still do a further
refinement to the partition yielded from the first step of our
approach, in order to generate new regions that are as large as
possible and have a gain in SMV with respect to its regions
of provenance. Keeping that in mind, denote by SMV (Ri)

the set of regions that are SMVwith region Ri . The total area
of these regions is then given by

Vsm(Ri) =
∑

Rk∈SMV (Ri)

μ(Rk)

in which μ(Rk) denotes the area of region Rk . If the sum-
mation of each Vsm(Ri) is done over all region Ri , then∑Vsm(Ri) is a global measure intrinsic to a given partition,
which depicts us a degree of interaction between its regions

123

Auton Robot (2016) 40:395–423 419

(a) (b)

(c) (d)

Fig. 23 Different partitioning procedures depicted on Theorem’s 5
proof

regarding to SMV. As it comes naturally from looking for a
partition where every region is of the largest size and with
the largest SMV relation, we are interested on a partition that
gives a value of

∑Vsm(Ri) as big as possible.
After applying the first step of our partitioning algorithm,

we can then perform a further refinement of the yielded
partition in order to increment

∑Vsm(Ri). Knowing that
the reflex vertices are the features that break the convexity
of the environment, without loss of generality, let us focus
on a single reflex vertex v and assume that it only has a
single corner-guard region related to it, further referred as
cgR(v), and call R1 and R2, to the two regions adjacent to
cgR(v) (see Fig. 23a). We know that cgR(v) is SMV with
both R1 and R2, but R1 and R2 are not SMV with each
other. To bring an increment on

∑Vsm(Ri), what we need
to do is to partition both R1 and R2 in order to generate
new regions over R1 and R2 that are now SMV. There are
several ways for partitioning R1 and R2, however, in Theo-
rem 5 we show that the best way to partition R1 and R2 in
order to bring an increment to

∑Vsm(Ri), is to add pivot
segments over v, consequently, let us first define a pivot seg-
ment.

Definition 10 A pivot segment S for a given reflex vertex v,
is a line segment in W such that:

– The endpoints of S are not v.
– v ∈ S.
– Considering a ball Br (x) with an arbitrarily small radius
r centered at point x . ∀x ∈ S, Br (x) ∩ ∂W ∩ S = {x} or
Br (x) ∩ ∂W ∩ S = ∅.

– There is no other pivot segment S ′ related to v, such that
S ⊂ S ′.

Theorem 5 For a given reflex vertex v, for any other pro-
cedure ς for partitioning R1 and R2 into two new regions
each, apart from drawing pivot segments, there exists a pivot
segment S that partitions both R1 and R2 that yields a big-
ger value of

∑Vsm(Ri) than the one related to the partition
obtained by applying ς .

Proof First of all, we know that vertex v stands between
regions R1 and R2, so they are not SMV. In order to bring
an increment to

∑Vsm(Ri) in the simplest way, R1 and R2

should be split into two new regions each, such that some
of the new emerging regions are now SMV. Let us call the
new regions, Rg

1 , R
ng
1 , Rg

2 and Rng
2 , where g stands for the

fact that region Rg
i has a gain in visibility because it is now

SMVwith a region at the other side of cgR(v), and ng stands
for the case where there is no gain in SMV for a region Rng

i
(Fig. 23a, b).

What it is done next, is to characterize the procedure ς

for partitioning the regions R1 and R2. To further partition
R1 and R2 into two new regions each, also recalling that
the resulting regions must be convex, both R1 and R2 are
split with a line segment each. Therefore, the procedure ς ,
in order to be valid, must take the form of adding a couple
of line segments that respectively split R1 and R2. Also, for
ς to be valid, regions Rg

1 and Rg
2 should emerge because if

there is no gain in SMV, then there is no sense on applying
ς .

Now let us assume that ς is then a valid partitioning pro-
cedure, and that it adds two line segments s1 and s2, one for
each respective region R1 and R2, but such that the endpoints
of both s1 and s2 are not collinear (see Fig. 23b). If this is
the case, there is always a procedure ς ′ that adds two line
segments s′

1 and s′
2, being all its four endpoints collinear,

such that gives a greater value of
∑Vsm(Ri). To obtain such

a procedure ς ′ from ς , we only need to extend either s1
or s2 towards ∂W , subsequently keep the segment s j whose
extension permits an increment on size for Rg

i , and thenmake
s′
j = s j and s′

i equal to the intersection of the extension of
s j with Ri (see Fig. 23c). Applying this transformation is
equivalently to growing region Rg

i towards Rng
i , such that

Rg
i is still SMV with Rg

j .
Let us consider a region Rk within a given partition, and

call Rnb to a neighbor region of Rk , both sharing a boundary
bigger than a single point. Then, define the next sets: I =
SMV (Rk) ∩ SMV (Rnb), Ek = SMV (Rk) \ I and Enb =
SMV (Rnb) \ I. The set I contains the regions SMV with
both Rk and Rnb, the set Ek contains the regions exclusively
SMV with region Rk , and the set Enb contains the regions
exclusively SMV with region Rnb.

Under such definitions and returning to the resulting par-
tition from applying ς , see Fig. 23b, make Rk = Rg

1 and
Rnb = Rng

1 , then we have that I = {cgP(v), Rg
1 , Rng

1 },

123

420 Auton Robot (2016) 40:395–423

Ek = {Rg
2 } and Enb = ∅, therefore growing Rk towards Rnb

keeps Enb = ∅, the terms Vsm(Ri) for any Ri ∈ I remains
equal, but terms Vsm(Ri) for any Ri ∈ Ek have an increment
if Rk grows towards Rnb up to s′

1, asμ(Rk) increases, produc-
ing an increment to

∑Vsm(Ri). We conclude that procedure
ς ′ yields a bigger value of

∑Vsm(Ri) than the one obtained
from ς , then, our current best way to partition R1 and R2 is
to add a couple of line segments s1 and s2 whose endpoints
are collinear.

Now let us consider again procedure ς ′, which we assume
to be valid and consists on adding a couple of segments s′

1
and s′

2, whose endpoints are collinear, but nowadd the restric-
tion that the straight line that contains both s′

1 and s′
2 does

not contain v. If this is the case, we can always generate
a pivot segment S from ς ′, which yields a greater value of
∑Vsm(Ri) than the one yielded from ς ′, all by just following
the next steps: choose either s′

1 or s
′
2, and name it as s′

i , then
trace a line segment from the endpoint of s′

i in contact with
∂W , towards v location, extending it as long as possible (see
Fig. 23d). Let us call such procedure ς�. S now defines new
potential boundaries for Rg

1 and R
g
2 . This procedurewould be

equivalent to both growing Rg
1 towards Rng

1 , and Rg
2 towards

Rng
2 , growing both regions as much as possible still main-

taining Rg
1 and Rg

2 mutually visible (see Fig. 23d). Following
equivalent arguments to the ones used to compare ς against
ς ′, it is shown that the partition yielded by ς� gives a greater
value of

∑Vsm(Ri) than the one obtained through ς ′. Since
our best current method to partition R1 and R2 was to add a
couple of segments s1 and s2 whose endpoints are collinear,
and since we have proved that within that category the best
option is to trace a pivot segment S, then the result follows.

��
It is interesting to notice that as we increase the number

of pivot segments that partition the environment touching
a reflex vertex, the number of regions that are SMV also
increases, and

∑Vsm(Ri) also increases, see Fig. 24. In the
same sense,Theorem5 is of importancebecause it tells us that
nomatter howmany lines wewant to add to refine the current
environment’s partition in order to increment

∑Vsm(Ri), the
lines that we should add should be pivot segments. Indeed, if
the number of partitioning pivot segments tends to infinity,
SMV tends to classical visibility, therefore, a solution based

Fig. 24 Pivot segments

on SMV is a solution for classical visibility for a given res-
olution. It is possible to think about this as if we had a line
pivoting over the reflex vertex, starting being parallel to one
of the reflex rays, and ending up being parallel to the other
reflex ray. However, the behavior of the algorithms to com-
pute the safe-areas, and the approximation of the solution for
a given partition to classical visibility, do depend on the used
partition, and a deeper analysis is left for future work.

Remark 8 Alternatively, Theorem5 states that nomatter how
many lines we want to add to refine a current environment’s
partition in order to increase

∑Vsm(Ri), the lines that we
should add must be pivot segments. Furthermore, if the num-
ber of partitioning pivot segments tends to infinity, SMV
tends to classical visibility, therefore, a solution based on
SMV is a solution for classical visibility for a given resolu-
tion.

Second resolution partition (reflex rays and extended
bitangent segments)

Actually, what we propose in our second step of our parti-
tioning algorithm is to add pivot segments between reflex
rays in order to bring a further refinement to the partition
yielded from the first step. The pivot segments that we add
are the extended bitangent segments, which happen to be
pivot segments that a pair of reflex vertices have in common.
Adding them results into a further refinement that increases
∑Vsm(Ri), which seeks to avoid generating a big number
of regions that will lately translate into more computational
work for the surveillance algorithms of the previous sections.

The complete two steps partitioning procedure is based on
the notion of visibility complex (Pocchiola andVegter 1996).
However, to construct our partition we make use of some
specific maximal free segments (reflex rays and extended
bitangent segments) in order to yield equivalence classes (the
regions {Ri }), where the positions within a class (Ri) share
the same approximation to the visibility polygon [the approx-
imation is SMV (Ri)]. An example of the resulting partition
after applying the second step of the partitioning algorithm
is shown in Fig. 25.

Fig. 25 Second resulting partition

123

Auton Robot (2016) 40:395–423 421

General notation
{Ri } or R1, . . . , Rn Convex environment partition
Ri or R Convex region
W Workspace
∂W Workspace boundary
MVG Mutual visibility graph
SMV (R) Set of regions that are SMV with

region R
AG Accessibility graph
RVG Reduced visibility graph
ni Node in RVG
E Current evader’s region
P Current pursuer’s region
Ve Evader’s speed
Vp Pursuer’s speed
qi Critical point
q1 → q2 →
· · · → qn−1 → qn

Critical points sequence

gP(q) Guard polygon of point q
tke Smallest time that takes to the

evader to reach the critical point
k + 1 from its k Critical point

tkp Smallest time that takes the pursuer
to reach its corresponding

k + 1 guard polygon departing
from the k Guard polygon

s A(ni) Safe area
q1 → q2 →
· · · → qn−1 → q1

Critical points cycle

Algorithm and pursuit strategies specific notation
nr Root node in RVG
Ck
i j The kth cluster of regions from ni

towards n j

oki j The transition point between
clusters Ck

i j and C
k+1
i j

lki j The kth sub-edge over line segment
that joins nodes ni and n j

SMV (cRk
i j) Set of regions SMV with cluster

cRk
i j

s A(q1)k Safe area calculated in the kth
iteration of the cycles algorithm

S Set of local solution
V Set of reflex vertices used to

calculate the S set
te(e, v) Smallest time that takes to the

evader to travel from its current
position e to point v

tp(q, s A(v)) Smallest time that takes to the
pursuer to reach s A(v) from
point q,

respecting surveillance restrictions
between s A(v) and q

einit Initial evader’s position
Decidability specific notation
Ri,i+1 Relation that models a mapping

between gP(qi) and gP(qi+1)

Im−1(Ri,i+1) Preimage of Ri,i+1
Ri+1,i+2 ◦ Ri,i+1 Composition of relations Ri,i+1

and Ri+1,i+2
R1,n Composition of relations R1,2,

R2,3, ..., Rn−1,n

RN
1,n Relation of N − 1 compositions of

relation R1,n
R∞
1,n Relation of an infinite number of

compositions of relation R1,n
Complexity specific notation

(V, A) RVG = (V, A); V is set of
vertices; A is set of edges

Vratio Vp/Ve
� Size of the paths that the evader

travels in terms of the number of
critical points that it visits

� Set of particular properties that
define the evader’s paths

Partition specific notation
B Bitangent segment
v or u Reflex vertices
cgP(v) The corner-guard polygon related

to reflex vertex v

cgR(v) A corner-guard region related to
reflex vertex v

μ(Ri) Area of Ri
Vsm(Ri) Total area of regions SMV with Ri
S Pivot segment
ς A procedure to refine an

environment’s partition

References

Bandyopadhyay, T., Li, Y., Ang, M.H., & Hsu, D. (2006). A greedy
strategy for tracking a locally predictable target among obstacles.
In Proceedings of IEEE International Conference on Robotics and
Automation.

Bandyopadhyay, T., Ang, M.H., & Hsu, D. (2007). Motion planning for
3-D target tracking among obstacles. In International Symposium
on Robotics Research.

Barrière, L., Flocchini, P., Fraigniaud, P., & Santoro, N. (2002). Capture
of an intruder by mobile agents. In Proceedings of the 14th Annual
ACM Symposium on Parallel Algorithms and Architectures (pp.
200–209). Winnipeg, Manitoba.

Başar, T., & Olsder, G. (1982). Dynamic noncooperative game theory.
London: Academic Press.

Becerra, I., Murrieta-Cid, R., &Monroy, R. (2010). Evader surveillance
under incomplete information. In IEEE International Conference
on Robotics and Automation.

Becker, C., González-Baños, H., Latombe, J.-C., & Tomasi, C. (1995).
An intelligent observer. In International Symposium on Experi-
mental Robotics.

Bhattacharya, S., & Hutchinson, S. (2009). On the existence of nash
equilibrium for a two player pursuit-evasion game with visibility
constraints. In International Journal on Robotics Research.

Bhattacharya, S., & Hutchinson, S. (2011). A Cell decomposition
approach to visibility-based pursuit evasion among obstacles. The
International Journal of Robotics Research, 30(14), 1709–1727.

Chung, T.H. (2008). On probabilistic search decisions under searcher
motion constraints. In WAFR 2008 (pp. 501–516).

Chung, T., Hollinger, G., & Isler, V. (2011). Search and pursuit-evasion
inmobile robotics: A survey.Autonomous Robots, 31(4), 299–316.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001).
Introduction to algorithms. Groveport: McGraw-Hill Higher Edu-
cation.

123

422 Auton Robot (2016) 40:395–423

Efrat, A., Gonzalez-Baños, H.H., Kobourov, S.G., & Palaniappan, L.
(2003).Optimalmotion strategies to track and capture a predictable
target. InProceedings of IEEE International Conference onRobot-
ics and Automation (pp. 411–423). Taipei, Taiwan.

Fabiani, P., & Latombe, J.-C. (1999). Tracking a partially predictable
objectwith uncertainty and visibility constraints:Agame-theoretic
approach. In IJCAI.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability.
New York: W. H. Freeman and Company.

González, H.H. et al. (2002). Real-time combinatorial tracking of a
target moving unpredictably among obstacles. In Proceedings of
IEEE International Conference on Robotics and Automation.

Guibas, L., Latombe, J.-C., LaValle, S. M., Lin, D., & Motwani,
R. (1999). Visibility-based pursuit-evasion in a polygonal envi-
ronment. International Journal of Computational Geometry and
Applications, 9(5), 471–494.

Hájek, O. (1965). Pursuit games. New York: Academic Press.
Hespanha, J., Prandini, M., & Sastry, S. (2000). Probabilistic pursuit-

evasion games: A one-step Nash approach. In Proceedings of
Conference on Decision and Control.

Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient
multi-robot search for a moving target. The International Journal
of Robotics Research, 28(2), 201–219.

Isaacs, R. (1965). Differential games. New York: Wiley.
Isler, V., Kannan, S., &Khanna, S. (2005). Randomized pursuit-evasion

in a polygonal environment. IEEE Transactions on Robotics,
5(21), 864–875.

Jung, B., & Sukhatme, G. (2002). Tracking targets using multiple
robots: The effect of environment occlusion. Journal Autonomous
Robots, 12, 191–205.

Latombe, J.-C. (1991).Robot motion planning. NewYork: KluwerAca-
demic Publishers.

LaValle, S.M., González-Baños, H.H., Becker, C., & Latombe, J.-C.
(1997)Motion strategies formaintaining visibility of amoving tar-
get. In Proceedings of IEEE International Conference on Robotics
and Automation.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge
University Press.

Merz, A.W. (1971). The homicidal chauffeur a differential game. PhD.
Thesis. Stanford University.

Murrieta-Cid, R., Sarmiento, A., & Hutchinson, S. (2003). On the
existence of a strategy to maintain a moving target within the
sensing range of an observer reacting with delay. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and
Systems.

Murrieta-Cid, R., Tovar, B.,&Hutchinson, S. (2005).A sampling-based
motion planning approach to maintain visibility of unpredictable
targets. Journal Autonomous Robots, 19(3), 285–300.

Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., &
Hutchinson, S. (2007). Surveillance strategies for a pursuer with
finite sensor range. International Journal of Robotics Research,
26(3), 233–253.

Murrieta-Cid, R.,Monroy, R., Hutchinson, S., &Laumond, J.-P. (2008).
A complexity result for the pursuit-evasion game of maintaining
visibility of a moving evader. In IEEE International Conference
on Robotics and Automation.

O’Rourke, J. (2000). Computational geometry in C. Cambridge: Cam-
bridge University Press.

O’Rourke, J. (1987). Art gallery theorems and algorithms. Oxford:
Oxford University Press.

O’Kane, J.M. (2008). On the value of ignorance: Balancing tracking
and privacy using a two-bit sensor. InProceedings of International
Workshop on the Algorithmic Foundations of Robotics.

Parker, L. (2002). Algorithms for multi-robot observation of multiple
targets. Journal Autonomous Robots, 12, 231–255.

Parsons, T. D. (1976). Pursuit-evasion in a graph. In Y. Alani & D.
R. Lick (Eds.), Theory and application of graphs (pp. 426–441).
Berlin: Springer.

Pocchiola, M., & Vegter, G. (1996). The visibility complex. In Interna-
tional Journal of Computational Geometry and Applications.

Rappoport, A. (1966). Two-person game theory. Dover: Courier Cor-
poration.

Sachs, S., Rajko, S., & LaValle, S. M. (2004). Visibility-based pursuit-
evasion in an unknown planar environment. International Journal
on Robotics Research, 23(1), 3–26.

Shermer, T.C. (1992). Recent results in art galleries. In Proceedings of
the IEEE (vol. 80, no. 9).

Stump, E., Michael, N., Kumar, V., & Isler, V. (2011). Visibility-based
deployment of robot formations for communication maintenance.
In IEEE International Conference on Robotics and Automation
2011.

Suzuki, I., & Yamashita, M. (1992). Searching for a mobile intruder in
a polygonal region. SIAM Journal on Computing, 21(5), 863–888.

Takeuti, G., & Zaring, W. M. (1971). Introduction to axiomatic set
theory. New York: Springer.

Tekdas, O., Yang, W., & Isler, V. (2010). Robotic routers: Algo-
rithms and implementation. The International Journal of Robotics
Research, 29(1), 110–126.

Tovar, B., & LaValle, S. M. (2008). Visibility-based pursuit—evasion
with bounded speed. The International Journal of Robotics
Research, 27(11–12), 1350–1360.

Vidal, R., et al. (2002). Probabilistic pursuit-evasion games: Theory,
implementation, and experimental evaluation. IEEE Transactions
on Robotics and Automation, 18(5), 662–669.

Israel Becerra received the B.S.
degree in Mechatronics Engi-
neering from the ITESM, cam-
pus Estado de México (2007),
and the M.Sc. degree in Com-
puter Science from CIMAT—
Centro de Investigación en Ma-
temáticas—(2010). Currently
(2013) he is pursuing the Ph.D.
degree in Computer Science at
CIMAT, Guanajuato, Mexico.
He is mainly interested inmotion
planning, pursuit-evasion games
and probabilistic robotics.

Rafael Murrieta-Cid received
the B.S. degree in Physics
Engineering from the ITESM,
campus Monterrey (1990). He
received his Ph.D. from the Insti-
tut National Polytechnique (INP)
of Toulouse, France (1998). His
Ph.D. research was done in the
RIA group of the LAAS-CNRS.
In 1998–1999, he was a postdoc-
toral researcher in the Computer
Science Department at Stanford
University. In 2002–2004, he
was working as a postdoctoral
research associate in the Beck-

man Institute and Department of Electrical and Computer Engineering
of the University of Illinois at Urbana-Champaign. From August 2004
to January 2006 he was a Professor and Director of the Mechatron-
ics Research Center in Tec de Monterrey, Campus Estado de México.

123

Auton Robot (2016) 40:395–423 423

Since March 2006, he has been working in the Mathematical Comput-
ing Group at the CIMAT —Centro de Investigación en Matemáticas,
in Guanajuato México. He is mainly interested in robotics and robot
motion planning, and has published more than 40 papers in Journals
and International Conferences on these topics.

Raul Monroy obtained a Ph.D.
in Artificial Intelligence in 1998
from Edinburgh University,
under the supervision of Profes-
sor Bundy. He has been in Com-
puting at Tecnológico de Mon-
terrey (ITESM), Campus Estado
de México, since 1985. In 1992
he was promoted to Assistant
Professor and in 2000 he was
promoted to Associate Profes-
sor. Since 1998 he is a member
of the CONACYT-SNI National
Research System. Dr. Monroy
has held 6 research Grants from

several funding agencies, including CONACYT (holder), the national
research council, BMBF (co-holder), FRIDA (holder) and CONACyT-
REDII (co-holder). He is the sole or joint author of over 20 published
papers. He is programme co-chair for MICAI-2004 and MICAI-2005
and has been on several programme committees. He has been Secretary
Treasurer to the Mexican Society for Artificial Intelligence since 2000.
Dr. Monroy’s research focuses on automating the use of theorem prov-
ing to formal methods of system development. He is also interested in
issues of computer security. Currently, his research concerns: the dis-
covery and application of proof plans to automate the verification of
security protocols; the discovery an application of general search con-
trol strategies for uncovering and correcting errors in either a system
or its specification; and the discovery of novel methods for anomaly
detection in computer security.

Seth Hutchinson received his
Ph.D. from Purdue University
in 1988. In 1990 he joined
the faculty at the University of
Illinois in Urbana-Champaign,
where he is currently a Profes-
sor in the Department of Electri-
cal and Computer Engineering,
the Coordinated Science Labora-
tory, and the Beckman Institute
for Advanced Science and Tech-
nology. Hutchinson has served
as Editor-in-Chief of the IEEE
Transactions on Robotics, and as
the first Editor-in-Chief for the

RAS Conference Editorial Board. He currently serves on the editor-
ial boards of the International Journal of Robotics Research and the
Journal of Intelligent Service Robotics. In 1996 he was a Guest Edi-
tor for a special section of the Transactions devoted to the topic of

visual servo control, and in 1994 he was co-chair of an IEEEWorkshop
on Visual Servoing. In 1996 and 1998 he co-authored papers that were
finalists for the King-Sun FuMemorial Best Transactions Paper Award.
He was co-chair of IEEE Robotics and Automation Society Technical
Committee on Computer and Robot Vision from 1992 to 1996, and
has served on the program committees for more than fifty conferences
related to robotics and computer vision. He has published more than
150 papers on the topics of robotics and computer vision, and is coau-
thor of the books “Principles of RobotMotion: Theory, Algorithms, and
Implementations,” published by MIT Press, and “Robot Modeling and
Control,” published by Wiley. Hutchinson is a Fellow of the IEEE.

Jean-Paul Laumond received
the M.S. degree in Mathemat-
ics, the Ph.D. degree in Robotics
and the Habilitation degree from
the University Paul Sabatier,
Toulouse France, in 1976, 1984
and 1989 respectively. He is
Directeur de Recherche at
LAAS-CNRS in Toulouse,
France. With his group Gepetto
(www.laas.fr/gepetto), he is
exploring the computational
foundations of anthropomorphic
motion. He has been coordina-
tor of two the European Esprit

projects PROMotion (Planning RObot Motion, 1992–1995) and
MOLOG (Motion for Logistics, 1999–2002), both dedicated to robot
motion planning technology.During 2001 and 2002 he created andman-
aged Kineo CAM, a spin-off company from LAAS-CNRS devoted to
develop and market motion planning technology. His current research
is devoted to Human Motion studies along three perspectives: artificial
motion for humanoid robots, virtual motion for digital actors and man-
nequins, and natural motions of human beings. He teaches Robotics at
ENSTA and Ecole Normale Supérieure in Paris. He has edited three
books. He has published more than 150 papers in International Journals
and Conferences in Computer Science, Automatic Control and Robot-
ics. He is IEEE Fellow and Member of the IEEE RAS AdCom.

123

www.laas.fr/gepetto

	Maintaining strong mutual visibility of an evader moving over the reduced visibility graph
	Abstract
	1 Introduction
	2 Related work
	3 Strong mutual visibility
	4 Problem statement
	5 Basic definitions and overview of solution
	6 Algorithms for computing safe areas
	6.1 Tree shape RVG
	6.2 RVG with cycles

	7 Pursuit/evasion strategies
	7.1 Sufficient condition for escape based on the map
	7.2 Sets of local solution

	8 Decidability and complexity results
	8.1 On the decidability of the problem
	8.2 A complexity result

	9 Simulations results
	10 Conclusion and future work
	Acknowledgments
	Appendix 1: Proof of Theorem 1
	Appendix 2: Workspace partitions
	First resolution partition (reflex rays)
	How to refine a given convex partition (pivot segments)
	Second resolution partition (reflex rays and extended bitangent segments)

	References

