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Abstract

In this paper, we present a game-theoretic analysis of a visibility-
based pursuit–evasion game in a planar environment containing ob-
stacles. The pursuer and the evader are holonomic having bounded
speeds. Both players have a complete map of the environment. Both
players have omnidirectional vision and have knowledge about each
other’s current position as long as they are visible to each other. The
pursuer wants to maintain visibility of the evader for the maximum
possible time and the evader wants to escape the pursuer’s sight as
soon as possible. Under this information structure, we present neces-
sary and sufficient conditions for surveillance and escape. We present
strategies for the players that are in Nash equilibrium. The strategies
are a function of the value of the game. Using these strategies, we con-
struct a value function by integrating the adjoint equations backward
in time from the termination situations provided by the corners in the
environment. From these value functions we recompute the control
strategies for the players to obtain optimal trajectories for the players
near the termination situation. This is the first work that presents the
necessary and sufficient conditions for tracking for a visibility based
pursuit–evasion game and presents the equilibrium strategies for the
players.
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1. Introduction

Consider a situation in which a group of mobile pursuers hav-
ing bounded speeds are trying to keep sight of an unpredictable
evader in a cluttered environment. In order to deploy mini-
mum number of pursuers needed to track the evader it would
be useful to know the best strategy that can be used by a sin-
gle pursuer. In this work, we analyze the problem of a mo-
bile pursuer trying to track a mobile evader in an environ-
ment containing obstacles. Both the pursuer and the evader
are holonomic with bounded speeds and can see each other
at the beginning of the game. The players do not have knowl-
edge of each other’s future actions. We formulate the problem
of tracking as a game in which the goal of the pursuer is to
keep the evader in its field of view for maximum possible time
and the goal of the evader is to escape the pursuer’s field of
view in minimum time by breaking the line of sight around a
corner.

An interesting application of this problem is in security
and surveillance systems. It may be useful for a security ro-
bot to track a malicious evader that is trying to escape. Also,
an ’evader’ may not be intentionally trying to slip out of view.
A pursuer robot may simply be asked to continuously follow
and monitor at a distance an evader performing a task not nec-
essarily related to the target tracking game (Becker 1995). The
pursuer may also be monitoring the evader for quality control,
verifying the evader does not perform some undesired behav-
ior, or ensuring that the evader is not in distress. The results are
useful as an analysis of when escape is possible. If it is impos-
sible to slip away, it may be desirable for the evader to imme-
diately surrender or undertake a strategy not involving escape.
In home care settings, a tracking robot can follow elderly peo-
ple and alert caregivers of emergencies. Target-tracking tech-
niques in the presence of obstacles have been proposed for the
graphic animation of digital actors, in order to select the suc-
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cessive viewpoints under which an actor is to be displayed as
it moves in its environment (Li et al. 1997).

In the past, we have addressed tracking problems similar to
the one described in this paper. In Bhattacharya et al. (2007),
we addressed the problem of a pursuer trying to track an an-
tagonistic evader around a single corner. We partition the vis-
ibility region of the pursuer into regions based on the strate-
gies used by the players to achieve their goals. Based on these
partitions we propose a sufficient condition of escape for the
evader in general environments. In Bhattacharya and Hutchin-
son (2008a), given the initial position of the evader in a gen-
eral environment, we use the sufficient condition to compute
an approximate bound on the initial positions of the pursuer
from which it might track the evader. In this work, we formu-
late the target-tracking problem as a game in which the pursuer
wants to maximize the time for which it can track the evader
and the evader wants to minimize it. We compute the strate-
gies for the players that are in Nash equilibrium. If a player
follows its equilibrium strategy, it is guaranteed of a minimum
outcome without any knowledge of the other player’s future
actions. Moreover, when a pair of strategies for the players is
in Nash equilibrium then any unilateral deviation of a player
from its equilibrium strategy might lead to a lower outcome
for it. Consider a situation in which the pursuer can keep the
evader in sight for time t f when the players follow their equi-
librium strategies. If the evader deviates from its equilibrium
strategy, then the pursuer has a strategy to track it for a time
greater than t f . On the other hand, if the pursuer deviates from
its equilibrium strategy, then the evader can escape in time
less than t f . Hence, there is no motivation for either of the
players to deviate from their equilibrium strategies due to the
lack of knowledge of the other player’s future actions. For a
pair of equilibrium strategies for the players either the evader
can escape the pursuer’s sight in finite time or the pursuer can
track the evader forever. Hence, computing them gives us the
strategies sufficient for tracking or escape, whichever holds at
a given point in the state space. This is the first work that ad-
dresses the necessary and sufficient conditions for tracking and
provides equilibrium strategies for the players. We use these
strategies to integrate the kinematic equations of the system
backward in time from the termination situations to obtain the
optimal trajectories for the players.

Prior work regarding the problem of tracking is based on
discretizing the motion models of the players or the state space
in which the game is being played (LaValle et al. 1997� Bandy-
opadhyay et al. 2006). These techniques lead to approximate
numerical solutions that become computationally inefficient
with increasing time horizon of the game. Moreover, they as-
sume a prior model of uncertainty for the evader’s future ac-
tions. In contrast to these works, we use continuous-time mo-
tion models for the players and provide closed-form solutions
to the coupled non-linear differential equations that govern our
system kinematics. Hence, no error is introduced in the solu-
tions due to discretizations of any form. Further, our results

are valid for scenarios in which the players have no knowledge
about each others future actions.

In this work, we use differential games to analyze a pursuit–
evasion problem. The theory of deterministic pursuit–evasion
was single-handedly created by Isaacs that culminated in his
1965 book (Isaacs 1965). An exhaustive analysis of solved
and partly solved zero-sum differential games is provided in
Başar and Olsder (1999) and Lewin (1994). Most of the classi-
cal problems in pursuit–evasion deal with players in obstacle-
free space having either constraints on their motion or con-
straints on their control due to under-actuation. In the re-
cent past, researchers have analyzed pursuit–evasion problems
with constraints in the state space. In Melikyan and Hov-
akimyan (1991a,b, 1993), a pursuit–evasion game is analyzed
with the pursuer and the evader constrained to move on a
two-dimensional conical surface in a three-dimensional space.
Our work belongs to this category of problems. In our prob-
lem, the state constraints arise due to the presence of obsta-
cles that obstruct visibility as well as motion of the players in
the workspace and the control constraints arise as a result of
the bounded speed of the players. Apart from these problems,
researchers have also analyzed pursuit–evasion in �n (Kop-
party and Ravishankar 2005), in non-convex domains of ar-
bitrary dimension (Alexander et al. 2006), in unbounded do-
mains (Alexander et al. 2008) and in graphs (Parsons 1976).

In Section 2, we present the formulation of the game. In
Section 3, we analyze the termination situations presented by
the obstacles around any corner in the environment. In Sec-
tion 4, we present the strategies for the players that are in Nash
equilibrium. In Section 5 we present the construction of the
optimal trajectories. In Section 6, we present the conclusions
and the future work.

2. Formulation of the game

We consider a mobile pursuer and an evader moving in a plane
with velocities u � �u p� � p� and � � �ue� � e�, respectively.
Here u p and ue are the speeds of the players that are bounded
by � p and �e, respectively, and � p and � e are the direction of
the velocity vectors. We use r to denote the ratio of the max-
imum speed of the evader to that of the pursuer r � �e�� p.
They are point robots with no constraints in their motion ex-
cept for bounded speeds. The workspace contains obstacles
that restrict pursuer and evader motions and may occlude the
pursuer’s line of sight to the evader. The initial position of the
pursuer and the evader is such that they are visible to each
other. The visibility region of the pursuer is the set of points
from which a line segment from the pursuer to that point
does not intersect the obstacle region. Visibility extends uni-
formly in all directions and is only terminated by workspace
obstacles (omnidirectional, unbounded visibility). The pursuer
and the evader know each others current position as long as
they can see each other. Both players have a complete map
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Fig. 1. State variables and control inputs.

of the environment. In this setting, we consider the following
game. The pursuer wants to keep the evader in its visibility re-
gion for the maximum possible time and the evader wants to
break the line of sight to the pursuer as soon as possible. If,
at any instant, the evader breaks the line of sight to the pur-
suer, the game terminates. Given the initial position of the pur-
suer and the evader, we want to know the optimal strategies
used by the players to achieve their respective goals. Optimal-
ity refers to the strategies used by the players that are in Nash
equilibrium.

We model the system as a non-rigid bar of variable length
representing the line of sight between the pursuer and the
evader. The bounded velocities of the pursuer and the evader
are modeled as control inputs at opposite ends of the bar.
Any occlusion between the pursuer and the evader leads to
a situation in which the bar intersects the obstacles. Hence,
the pursuer’s goal is to keep the bar in free space for the
maximum possible time and the evader’s goal is to force the
bar to intersect some obstacle as soon as possible. In this
work we assume that the line of sight is not blocked due
to grazing contact with the boundary. Hence, visibility is re-
tained even if a vertex in the environment is incident on the
bar.

Figure 1 shows the configuration of the system along with
the state variables and the control inputs. Here �x� y� is the
position of the end of the bar controlled by the pursuer, l is
the length of the bar and � is the angle made by the bar with
the horizontal line. The configuration of the system can be ex-
pressed as �x� y� l� �� and hence it is �3� S1. In the rest of the
paper, x �� �3 � S1) will be used to represent the state of the
bar. The pursuer controls the velocity, u, of one end of the bar
and the evader controls the velocity, � , of the other end of the
bar. The differential equation describing the kinematics of the
system is given by the following equation:

Fig. 2. (a) Workspace obstacles and (b) types of contacts on
the boundary.
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ue cos�� e � ��� u p cos�� p � ��
ue
l sin�� e � ��� u p

l sin�� p � ��

�
��������
�

The above equation can also be expressed in the form �x �
f �x� u� ��.

3. State Constraints and Termination Situations

In this section, we present a description of the obstacles in the
configuration space. The workspace contains polygonal obsta-
cles in the plane that obstruct the visibility and motion of the
players. Since the system is modeled as a bar representing the
line of sight between the players, the obstruction of mutual
visibility as well as the motion of the players caused due to
obstacles in the workspace can be expressed as a state con-
straint in �3 � S1. These state constraints can be expressed as
configuration space obstacles. In �3 � S1, the configuration
space obstacles are the set of all �x� y� l� �� such that the
bar has a non-empty intersection with some obstacle in the
workspace. Figure 2 shows two such configurations of the bar
that lies in configuration space obstacles. In one configuration
the obstacle blocks the line of sight between the pursuer and
the evader. In the other configuration a player is inside the ob-
stacle which is forbidden according to the rules of the game.

The game set is the set of all points in �3 � S1 that belong
to the free space. Hence, the boundary of the game set is the
same as the boundary of the configuration space obstacles. The
boundary of the game set consists of two kinds of contact be-
tween the bar and the obstacles. Refer to Figure 2(b). The first
kind of contact occurs when at least one end of the bar touches
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an obstacle in the plane. At no point in time can the state of
the game cross the boundary at such a point, as this is equiva-
lent to either of the players penetrating into an obstacle in the
workspace. The second kind of contact occurs when a vertex
of an obstacle is incident on the bar and this set of points on
the boundary of the game set is called the Target set. At any
point in time, if the current state of the game lies on the tar-
get set, then it can cross the boundary according to the rules of
the game since in the workspace this is equivalent to breaking
the mutual visibility between the players which results in the
termination of the game. Since we are interested in situations
where the mutual visibility between the players can be broken,
we are only interested in the part of the boundary that forms
the target set.

In this game, termination occurs only when the evader can
break the line of sight to the pursuer around a corner. Every
corner in the environment presents an opportunity for the
evader to break the line of sight. Hence, every corner presents
a termination situation for the game.

If the state of the system lies on the target set, then a ver-
tex of some obstacle is incident on the bar. The evader cannot
guarantee termination at every point on the target set. Figure 3
shows a configuration of the bar in which the system is on the
target set. Let dp denote the distance of the vertex from �x� y�
which is same as the distance of the pursuer from the vertex.
Let l denote the length of the bar which is same as the distance
between the pursuer and the evader. The evader can force ter-
mination if and only if the maximum angular velocity of the
evader around the corner is greater than the maximum angular
velocity achievable by the pursuer around the corner. This can
happen if and only if

dp

l
	

1

1� r
�

Hence, we can further subdivide the target set depending on
whether the evader can guarantee termination at that point. The
part of the target set where evader can guarantee termination
regardless of the choice of the controls of the pursuer is called
the usable part (UP). The remaining part of the target set out-
side the UP is called the non-usable part (NUP) and the game
will never terminate on the NUP. Given any initial position of
the pursuer and the evader, the game will always terminate on
the UP.

We now present the equations characterizing the target set
around a vertex of an obstacle. Refer to Figure 3. The figure
shows a configuration of the bar in which a vertex, � , lies on
the bar. Hence, the current state of the bar lies on the target set.
We want the equation of the hyperplane that characterizes the
target set generated by � . Let �x� y� l� �� be the configuration
of the bar and �xo� yo� be the coordinates of the vertex of the
obstacle. Let 
 � �0� 1� be a variable that determines the frac-
tion of the length of the bar between �x� y� and the corner
�xo� yo�. We can write the following equations of constraints
for the bar.

Fig. 3. A configuration of the bar on the target set.

xo � x � 
l cos ��

yo � y � 
l sin ��

In the above equation, as 
 changes, the point of contact be-
tween the bar and the vertex changes. Hence, the target set is
characterized by the following equation:

	 F�x� y� l� �� � �yo � y� cos � � �xo � x� sin � � 0� (1)

Since the above equation applies to any 
 � �r��1� r�� 1�,
Equation (1) also characterizes the usable part of the target set.

Given a vertex, the target set generated by it in the
configuration space has the following boundaries.


 The pursuer lies on the corner	 �x� y� � �xo� yo�.


 The evader lies on the corner 	 �x � l cos �� y �
l sin �� � �xo� yo�.


 The bar is parallel to either of the edges incident on the
vertex: � � �2 or � � �1.

Every vertex will generate a target set. The final bound-
ary of the target set generated by a vertex will depend on the
position of the other vertices and edges in the environment.
However, the equation of the target set will be given by Equa-
tion (1).

The unit normal to a point �x� y� l� �� on the target set is
given by

n�x� y� l� �� � �F � 1�
1� �xo � x�2 sec2 �

� [sin � � cos � 0 � �xo � x� sec �]T� (2)

4. Optimal Strategies

In this section we present the optimal controls for the players.
Before we define the concept of optimality we need to define
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the payoff for the players in the game. Consider a game that
terminates at time t f . Since the pursuer wants to increase the
time of termination its payoff function can be considered as t f .
On the other hand, since the evader wants to minimize the time
of termination its payoff can be considered to be�t f . Since the
payoff functions of the players add to zero, this is a zero sum
game. Another way to show that it is a zero sum game is to
observe that the pursuer’s gain is equal to the evader’s loss and
vice versa. The time of termination is a function of the initial
state x0 and the control history during the play, u and � . Let
� denote the functional � : �x0� u� �� � t f � �. Here �
is called the outcome functional and is given by the following
expression:

� [x0� u� �] �
	 t f

0
L[x�� �� u�� �� ��� �] d� � G[x�t f �]�

In the above expression L[x�� �� u�� �� ��� �] is called the
running cost function and G[x�t f �] is called the terminal cost
function. The running cost function is the cost incurred while
the game is being played. The terminal cost function is the cost
incurred for reaching a particular terminal state on the target
set. In this game, L[x�� �� u�� �� ��� �] � 1 and G[x�t f �] � 0.
The pursuer wants to maximize the outcome functional and the
evader wants to minimize it.

For a point x in the state space, J �x� represents the out-
come if the players implement their optimal strategy starting
at the point x. It is the time of termination of the game when
the players implement their optimal strategies. It is also called
the value of the game at x. Any unilateral deviation from the
optimal strategy by a player can lead to a better payoff for the
other player. For example, for a game that starts at a point x,
if the evader deviates from the optimal strategy then there is
a strategy for the pursuer in which its payoff is greater than
J �x� and if the pursuer deviates from the optimal strategy then
there is a strategy for evader in which its payoff is greater than
�J �x�. Since this is a zero sum game, any strategy that leads
to a higher payoff for one player will reduce the payoff for the
second player.

Here � J � [Jx Jy Jl J� ]T denotes the gradient of the
value function. The Hamiltonian of such systems is given by
the following expression:

H�x�� J� u� �� � � J 
 f �x� u� ��� L�x� u� ��

Let u� � �u�p� �
�
p� and �� � �u�e� �

�
e� be the optimal con-

trols used by the pursuer and the evader respectively. From
the definition of the value of the game we can conclude that
J �x0� � �[x0� u�� ��]. The Hamiltonian of the system sat-
isfies the following conditions along the optimal trajectories
(Isaacs 1965). These are called the Isaacs conditions:

1. H�x� � J� u� ��� � H�x� � J� u�� ��� � H�x� � J� u��
���

2. H�x� � J� u�� ��� � 0.

Condition 1 implies that when the players implement their op-
timal strategies any unilateral deviation by the pursuer leads to
a smaller value for the Hamiltonian and any unilateral devia-
tion by the evader leads to a larger value of the Hamiltonian.
Moreover, condition 2 implies that when the players imple-
ment their optimal controls the Hamiltonian of the system is
zero. The Isaacs conditions are an extension of the Pontrya-
gin’s principle in optimization to a game.

The Hamiltonian of our system is given by the following
expression:

H�x�� J� u� �� � � J 
 f �x� u� ��� L

� u p



Jx cos � p � Jl cos�� p � ��

� J�
l

sin�� p � ��� Jy sin � p

�

� ue



Jl cos�� e � ��� J�

l
sin�� e � ��

�
� 1�

Since the evader wants to minimize the time of escape and
the pursuer wants to maximize the time of escape, Isaacs first
condition requires the following to be true along the optimal
trajectories:

�u�e � �
�
e � u

�
p� �

�
p� � min

ue��e
max
u p�� p

H�x�� J� u� ��� (3)

We can see that the Hamiltonian is separable in the controls
u p and ue, i.e. it can be written in the form u p f1�x�� J � �
ue f2�x�� J �. Hence, the optimal controls for the players are
given by the following expressions in terms of the gradient of
the value function:

�cos ��p� sin ��p�
����



Jx � Jl cos � � J�
l

sin �� Jy

� Jl sin � � J�
l

cos �

�
�

�cos���e � ��� sin���e � ���
����


�Jl�� J�

l

�
�

u�e � �e�

u�p � � p� (4)

Owing to the lack of space, the derivation is presented elab-
orately in Bhattacharya and Hutchinson (2008b). In the first
and the second equation � is used to denote parallel vectors. In
case

Jx � Jl cos � � J�
l

sin � � 0

and

Jy � Jl sin � � J�
l

cos � � 0�
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then ��p can take any value and the pursuer can follow any
control strategy. Similarly if Jl � 0 and J� � l � 0, then ��e can
take any value and the evader can follow any control strategy.
These conditions represent singularity in the Hamiltonian.

The entire game set can be partitioned into two regions de-
pending on the value of the game. For all the initial positions
of the pursuer and the evader for which the value of the game
J �x� is finite, the evader can break the line of sight in finite
time by following the strategies in Equation (4). For all of the
initial positions of the pursuer and the evader for which the
value of the game is infinite, the pursuer can track the evader
forever if it follows the controls given in Equation (4). Hence,
Equation (3) are the necessary and sufficient conditions for
pursuer to track the evader in terms of the Hamiltonian of the
system.

The analysis performed in this section implies that if we
are given the value function J �x�, then we can compute the
optimal strategies for the players by using Equation (4).

5. Construction of Optimal Trajectories

In this section we present the trajectories generated by the op-
timal control laws that terminate on the UP. We use the follow-
ing theorem to construct the optimal trajectories.

Theorem 1 (Isaacs (1965)). Along the optimal trajectory,
the following equation holds:

d

dt
� J [x�t�] � � 



x
H�x�� J� u�� ����

The above equation is called the adjoint equation and the com-
ponents of � J �x� are called adjoint variables. The retro-time
(time-to-go) form of the adjoint equations is

d

d�
� J [x�� �] � 



x
H�x�� J� u�� ����

where � � t f � t is called the retro-time and t f is the time of
termination of the game.

The adjoint equation is a differential equation for the gra-
dient of the value function J �x� along the optimal trajectories
in terms of the optimal controls. Since Equation (4) gives the
optimal controls of the players as a function of � J �x�, we in-
tegrate the adjoint equations backward in time from the UP
to obtain � J �x� in terms of the state variables. Substituting
� J �x� into the optimal controls gives a feedback control strat-
egy for the players. Substituting the feedback control laws for
the players into the kinematic equation leads to the optimal tra-
jectories. Owing to a lack of space, the construction of the op-
timal trajectories is provided elaborately in Bhattacharya and
Hutchinson (2008b).

From the analysis performed in Bhattacharya and Hutchin-
son (2008b), we present the optimal trajectories of the players.

Fig. 4. Optimal trajectories for a terminating situation around
a corner.

Let �x f � y f � l f � � f � denote the configuration of the bar at the
termination situation. The optimal trajectory of the pursuer as
a function of retro-time is given by the following equations:

x p�� � � x f � �� p sin � f �

yp�� � � y f � �� p cos � f � (5)

The optimal trajectory of the evader as a function of retro-time
is given by the following equations:

xe�� � � x f � l f cos � f � �e� sin � f �

ye�� � � y f � l f sin � f � �e� cos � f � (6)

The optimal trajectories for the pursuer and the evader are
straight lines. Moreover the trajectories are perpendicular to
the orientation of the bar at the termination situation and hence
parallel to each other. The players move in opposite directions
as they follow the optimal trajectories. Figure 4 shows the op-
timal trajectories for the pursuer and the evader that terminate
at a corner at the origin. The evader is shown by the red dots
and the pursuer is shown by green dots. The black line joining
the pursuer and the evader represents the orientation of the bar
(line of sight) at different time instants. The value of the speed
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ratio, r , is 0.5. At the termination situation, the bar is oriented
at an angle of ��4 with respect to the x-axis, the position of
the pursuer is ��3��3� and the position of the evader is �1� 1�.
The payoff for both players at any point on the optimal trajec-
tory is given by the variable � since it is the time required for
termination. In the figure, the payoff for an orientation of the
bar is shown on the side of the bar. The bar with � � 0 rep-
resents the termination situation. If the pursuer deviates from
its optimal strategy, then the evader has a strategy for which it
can escape around the corner in time less than � . If the evader
deviates from its optimal trajectory then the pursuer has a strat-
egy for which it can track the evader for a time greater than � .
This is due to the fact that the trajectories are obtained from
strategies that are in Nash equilibrium. Hence, there is no mo-
tivation for either of the players to deviate from their optimal
strategies.

For a general environment in the plane, the optimal trajec-
tories lie in �3 � S1. In order to depict them in �3, we need
to consider a subspace of the optimal paths terminating at a
corner. In the following examples, for each corner in the envi-
ronment we show the subspace of the optimal paths that have
a fixed distance of the pursuer from the corner at the termina-
tion situation. The value of the speed ratio, r , is 0.66 in all of
the following examples. Figure 5 shows the optimal trajecto-
ries for the players in a simple environment containing a point
obstacle at the origin. The line of sight between the pursuer
and the evader is broken if it passes through the origin. The
evader wants to minimize the time required to break the line of
sight and the pursuer wants to maximize it. Let �x f � y f � l f � � f �
represent the orientation of the bar at the termination situation.
Figure 5(a) shows the optimal trajectories of the players for all
possible values of l f for a constant value of x f , y f and � f . Fig-
ure 5(b) shows the optimal trajectories for every orientation of
the bar at the termination situation. The z-axis represents the
angle of the bar at the termination situation. A cross-section
parallel to the xy-plane gives the optimal trajectories of the
players in a plane for a given � f . The red line in the middle
denotes the point obstacle. The inner spiral is formed by the
optimal trajectories of the evader and the outer spiral is formed
by the optimal trajectory of the pursuer. The color of a point is
a representative of the value of the game, J �x�, at that point.
The value of the game increases as the color changes from blue
to red.

Figure 6(a) shows a single corner in the plane. The inter-
nal angle at the corner is 2��3. Figure 6(b) shows the optimal
trajectories of the players for the corner. The symmetry in the
trajectories is due to the fact that termination situations occur
symmetrically around a corner.

Figure 7(a) shows a regular hexagon in the plane. Fig-
ure 7(b) shows the optimal trajectories of the players for the
hexagonal obstacle.

Fig. 5. Optimal trajectories for an environment having a single
point obstacle: (a) optimal trajectories in the plane� (b) optimal
trajectories across a section in �3 � S1.

6. Conclusion and Future work

In this paper, we have addressed a visibility-based pursuit–
evasion game in an environment containing obstacles. The pur-
suer and the evader are holonomic having bounded speeds.
The pursuer wants to maintain visibility of the evader for the
maximum possible time and the evader wants to escape the
pursuer’s sight as soon as possible. Both players have knowl-
edge about each others current position. Under this informa-
tion structure, we present necessary and sufficient conditions
for surveillance and escape. We have presented strategies for
the players that are in Nash equilibrium. The strategies are a
function of the value of the game. Using the strategies, we have
constructed a value function by backward integration of the ad-
joint equations from the termination situations provided by the
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Fig. 6. Optimal trajectories of the players for a corner in space:
(a) a single corner in space� (b) optimal Trajectories for the
players.

corners in the environment. From the value functions we have
recomputed the control strategies for the players to obtain op-
timal trajectories for the players near the termination situation.
We have shown that the optimal strategy for the players is to
move on straight lines parallel to each other in opposite di-
rections towards a termination situation. We show a subspace
of the optimal trajectories for a point obstacle, a corner and a
hexagonal obstacle in space.

In order to extend the results in this paper to environment
containing multiple obstacles, we plan to address the following
issues in the future.

1. In a general environment there might be points from
which the pursuer can see the entire free space. Such en-
vironments are called star-shaped and the set of points
for which the property holds is called the kernel of the
star-shaped environment. If the pursuer can reach the
kernel while keeping the evader in its sight then the pur-
suer can see the evader forever. Hence, the kernel also
provides a termination situation where the pursuer can
track the evader forever. The shape of the kernel depends
on the shape of the environment. At this moment, we do

Fig. 7. Optimal trajectories of the players for a hexagonal ob-
stacle in space: (a) a hexagonal obstacle in space� (b) optimal
trajectories for the players.

not have a general characterization of the shape of the
kernel in the configuration space, i.e. �3 � S1 which
makes it difficult to compute the final conditions for the
adjoint variables in the adjoint equation. Hence, we are
unable to present the optimal trajectories that are gen-
erated back from the termination situation posed due to
the presence of such regions. Another interesting future
direction is to efficiently compute and update the visibil-
ity polygon of a point moving in an environment (Cheng
2005). From the visibility information, we might be able
to devise strategies for the pursuer to keep track of a
moving evader.

2. In the previous section, we presented the optimal tra-
jectories for the players terminating at a corner in the
environment. In a general environment containing mul-
tiple obstacles, we can use the analysis of a single corner
to compute globally optimal trajectories. In order to do
so, we need to use suitable matching principles to gen-
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erate a value function that does not violate fundamental
principles of optimality. The method of singular charac-
teristics provides us with tools to match the value func-
tions originating from different termination situations.
Our current efforts in this direction are to characterize
the singular surfaces that might appear in this scenario.
The construction and characterization of such surfaces
analytically in four dimensions is a challenging prob-
lem. In order to overcome this difficulty we plan to use
efficient numerical techniques to construct such surfaces
so that we can characterize the interesting behavior of
the players in the neighborhood of such surfaces.

In the future, we plan to use viscosity solutions to pro-
pose an algorithm to construct the optimal trajectories for the
players in a environment containing multiple obstacles. We
also plan to extend the results to multiple pursuers chasing an
evader. In addition, we plan to extend our work to players hav-
ing non-holonomic constraints in their motion.
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