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Abstract-When designing a visual servo system, it is important to have a complete and accurate 
model of the imaging process. Unmodelled imaging dynamics may play an important role in the 
stability and performance of such systems. In this paper, we present a detailed camera model which 
can be used in the design and analysis of visual servo systems. 

Using the free-standing acrobat as a testbed, we analyze the effects of unmodelled imaging dynamics 
on visual servo control systems. We show that certain camera parameters strongly influence the 
performance of this system, and that accurate modeling is necessary for proper selection of imaging 
hardware. 

1. INTRODUCTION 

To perform effectively in real-world settings, robots must be able to plan and execute tasks in 
the presence of uncertainty. Typical sources of uncertainty in a robotic work cell include limited 

sensing accuracy, errors in dynamic models, and discrepancies between geometric object models 
and physical objects (including the parts to be manipulated and the robot itself). Because of 
this, the application of robotic technology to manufacturing problems has typically been restricted 
to situations in which uncertainty can be tightly controlled (for example, by using specialized 

fixturing devices). 

One approach to dealing with the inherent uncertainty in a robot work cell is the use of physical 

compliance-based control schemes. For example, when a robotic manipulator is equipped with 
force sensing, it is possible to use hybrid position/force control to execute compliant motions [1,2]. 
The appealing characteristic of such motions is that they are constrained along one or more 
dimensions by the task geometry, thereby reducing the required precision in position information. 
The primary limitation of force feedback is that it can only be used to constrain motion along 
directions that are normal to workpiece surfaces at contact points. Pure position control must 
be used to control motions in directions that are tangent to the workpiece surface. Therefore, if 
the exact manipulator and goal positions are not known, the position-based control may fail to 
achieve the goal and hybrid position/force control is not sufficient. 

One way to cope with the limitations of hybrid force/position control is to add vision sensing to 
the control servo loop. If the geometry of the imaging process is known, then the task geometry 
can be used to constrain the motions in the plane tangent to the workpiece surface using visual 
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servo control. In recent years, the integration of computer vision with robot motion control has 
steadily progressed, from early look-and-move systems in which vision was used to recognize 
and locate an object prior to its manipulation [3,4], to current systems in which visual feedback 
is incorporated directly into the control loop [5-91. Th is recent ability has made sensor-based 
robotics useful for a number of tasks where sensorless manipulation had previously failed, for 
example in welding (U-12]. 

A common characteristic of the visual servo control schemes reported to date is that the 
organization is hierarchical. The vision system is used in an outer “command loop,” which 

generates reference inputs to an inner “robot control loop” (e.g., [5-9, 13-171). This arrangement, 
which we shall refer to as a dual-loop visual servo controller, is illustrated in Figure 1. In dual- 
loop controllers, the vision loop typically runs at a frequency much lower than that of the robot 
controller. This difference in sampling rates is typically due to limitations of the vision system, 
which include limits on the sampling time for vision hardware and the computing time required 

by various vision algorithms. 
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Figure 1. Dual-loop visual servo. 

By keeping the vision sensing outside the servo level control loop, these hierarchical control 
schemes possess certain inherent robustness properties. The internal robot control loop is designed 
to guarantee that the system is stable, and relies on the vision system only for trajectories and 
set-points to track. Such robustness may be achieved at the expense of performance, in that 
the dynamics of the environment, including the vision system, are outside the feedback loop, 
and hence, cannot be compensated for. An alternative controller architecture is illustrated in 
Figure 2, which we shall refer to ss a direct visual servo system. 

In a direct visual servo system the vision system directly feeds back state information (instead 
of reference inputs) to the robot controller. Such an architecture may be advantageous in a 
variety of settings, and may in fact possess better overall qualities than the dual-loop systems 
described above for certain applications [S]. For example, in a task space feedback lineatization 
scheme [18,19], one can define an output error as the difference between the position of the object 
to be tracked (environment) and the robot end-effector. This error signal can be used directly in 
the output feedback control scheme. In thii case, the only means of sensing the object may be 
through the vision system. 

In order to design robust direct visual servo control systems, it is important to fully understand 
the interactions between the image formation process and state estimation, where the state can 
be a combination of standard robotic state data and information about the environment. To this 
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Figure 2. Direct visual servo. 

end, we present a detailed model of the image formation process, including a set of parameters 
that characterize the departure of the system from the ideal (which in the computer vision 
literature is typically considered to be an ideal pinhole lens system). To date very little effort 
has been directed at the analysis of the relationship between distortions in the imaging process 
and the performance of visual servo systems [20], a fact that could be attributable to the nature 
of the dual-loop approaches currently in favor, wherein errors produced by imaging distortions 
can easily be overshadowed by the more prevalent effects of the set-point generation approach 
and the associated delays. Although our work is done specifically in the context of direct visual 
servo systems, the results may also benefit designers of dual-loop visual servo systems. 

The remainder of the paper is organized as follows. In Section 2, we discuss the nature of 
the image formation process, including possible distortions and aberrations for a specific class 
of visual sensors, namely, the Charge Coupled Device (CCD) camera. We discuss a complete 
camera model and parameterize a set of disturbances that can affect visual data extracted from 
such a camera. In Section 3, we present a brief description of a robotic system, the free-standing 
acrobat, and a visual state estimation algorithm. In Section 4, we present a simulation study of 
direct visual servo of the free-standing acrobat under a variety of conditions. Discussion of the 
results are found in Section 5, and the conclusions are contained in Section 6. 

2. THE IMAGING PROCESS 

In this section, we present a detailed model of the imaging process for standard CCD cameras. 
We begin with a discussion of geometric issues, including projective geometry and lens distortions. 
Following this, we discuss photometric issues such as defocus, blur, etc. Finally, we present a 
brief discussion of the temporal aspects of the imaging process. The models that we present here 
will be used extensively in the analysis and empirical investigations of Section 4. 

2.1. Geometric Aspects of Image Formation 

In most existing visual servo systems, it is assumed that the imaging geometry can be ade- 
quately modelled as an ideal pinhole lens, as shown in Figure 3. With this model, a scene point 
whose coordinates in the camera frame are (xc, yc, z,J projects onto the image plane as follows 

(1) 

where f is the focal length of the camera lens, and the subscript i indicates the ideal image 
coordinates, with no distortion. For even a simple lens imaging system, this model is fairly naive. 
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Figure 3. Pinhole lens with associated coordinate- systems. 

In a real imaging system, lens distortions or aberrations can affect the geometric correspondence 
between points in the camera’s field of view and points in the image. Several camera calibration 
schemes seek to identify the set of lens distortions for off-the-shelf cameras [21-241. 

We have chosen the work of [22] as the basis of our model, due to its completeness and variety 
of distortion parameters. The three types of distortion that are documented there are radical 
distotiora, dear&ring, and thin prism distortion. We now give a brief overview of each of these 
distortions and discuss the physical characteristics that generate them in a real camera system. 
Systematic derivations of the resulting distortion equations can be found in (221 and its associated 
references. 

Radial distortions are perhaps the most common and familiar to the image processing and 
optics communities. Radial distortions cause a displacement of image points toward (pincushion 
distortions) or away from (barrel distortions) the optical axis, which intersects the center of the 
image plane (see Figure 3). Radial distortion arises from flaws in the lens construction, typically 
in the curvature of one or more of the lenses in the system. While it cannot be corrected without 
the addition of complicated lens systems or replacement of the camera, it does not change over 
time. Once isolated, radial distortion can be considered a known parameter of the imaging system. 
The result of radial distortion is a displacement of (&,, ,,? 6 ) from the ideal image coordinates, 
given by 

hb, = LlU (u” + v2) + 0 [(U,V)“] , (3) 
&, = hv (u2 + v2) + 0 [(u,v)“] , (4 

where ki is positive for barrel and negative for pincushion. We use the notation O[(U, v)~] to 
denote an nth order term in the image coordinates (21,~). 

Figure 4 shows a normalized vector field generated by barrel distortion, with a positive value 
for ICI. The small dots are the heads of the vectors, which represent the normalized distortion 
vector [&, &] of the image plane point from which the vector originates, Negative values of Icr 
produce a similar vector field that is aligned at all points toward the optical axis. 

Decentering distortion occurs when the elements in a lens system are not aligned properly, so 
that the optical axes of the lenses may differ slightly. This type of distortion can easily appear 
after a camera system has been moved or disassembled and reassembled, even if it was not 
present earlier. The effect of decentering distortion, parameterized by (PI, p2), is a displacement 
of (&, &) from the ideal image coordinates, given by 

6 ud = pi (3U2 + V’) + 2p2W.J + 0 [(a, V,“] 7 w 

6 ud = 3’1~v +pZ (U” + 3V2) + 0 [(Z&v)“] . (6) 
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Figure 4. Vector filed distortions from a positive kl . 

Figures 5 and 6 show the vector fields of the distortion generated by positive values of pl 

and ~2. Negative values of PI would simply reflect Figure 5 about the vertical axis though the 

f.mter Point. Negative values for pz similarly reflect Figure 6 about the horizontal axis through 
the center point. 

-_--.-.e.........*- “_A- 

_____* . . . . . . . ..*-e--4 

-____**........*---_- 
-___ 4 1 a.. . . . . . . - - - --- 

_-_A_* . . . . . . . ..--.-.__- 

_dL_s_e_. . . . . . . .._-.- _A_ 

A_?“/_... A a.. . . . . .1- 5 -..--.--. 

Figure 5. Vector field of distortions from a Positive Pi. 

Thin prism distortion results from improper lens design or from errors in the construction of 

the lens system. Typical examples include variations in the radius of curvature over a single side 

of a lens or a slight tilt of a lens in the array. This type of distortion can be modelled by adding 
a parameterized thin prism to the system. The resulting image plane displacement is given by 

a,, = Sl (U2 + V2) + 0 [(W#] , (71 

s,, = s2 (u2 + v2) + 0 [(u, v)“] , (8) 

where sr and 92 are the parameters of the thin prism. Figures 7 and 8 show the distortion fields 
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Figure 6. Vector field of distortions from a positive pz. 
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Figure 7. Vector field of distortions from a positive 81 

for positive values of .si and ss, respectively. Negative values of these parameters simply change 
the sign of the vectors, as can be seen from examining (7) and (8). 

Combining the effects of these three types of distortion gives the following set of equations for 
total distortion of idea3 image points (2ti, Vi): 

?.A = ui f 6ui, + && + &,, (9) 
2) = ‘ui + &, + 6vid + bviP. (10) 

We simplify our model by ignoring terms in the distortions that are above order three. In fact, 
it is known that an exact representation of these disturbances requires an infinite number of 
terms [25]. We use only the low-order terms since empirical evidence has suggested that ignoring 
these high-order terms is appropriate [21,22]. Further, we define the area of interest in the 
image plane to be -1 I u, v L 1, thereby making these terms much less significant. While this 



Visual Servo Control Applications 85 

Figure 8. Vector field of distortions from a positive 82. 

restriction of interest relies on the image plane units chosen, all distortion parameters will be 

considered in (units)-’ or (units)-2, thereby inherently containing the scaling information. 

2.2. The Photometric Aspects of Image Formation 

To this point, we have been concerned with the geometry of the transfer of light from a 

scene to the image plane. We will now focus on the method by which this light is transformed 

into a discrete image in the camera. In doing so, we will describe a variety of parameters and 

disturbances that can affect the intensity levels of the pixels. 

The image plane of a CCD camera is made up of an array of photosensors, such as photodiodes, 

coupled to charge storage devices, such as Metal-Oxide Semiconductor (MOS) capacitors. The 

output voltage level of a given photodiode element at any given time is proportional to the average 

intensity of incoming light over its entire sensing area, and tends to be a function of both the 

intensity of the light and its wavelength. A photosensor of any type has a characteristic element 

sensitivity function with respect to incoming light, and the nature of any image generated is 

based on this sensitivity function. 

Camera sensitivity, as distinguished from element sensitivity, is the responsiveness of each 

sensing element to the light incident on the portion of the lens that would ideally focus onto that 

element. It is often the case that an imaging system shows excellent camera sensitivity near its 

optical axis, but that the lens system does not deliver proper amounts of incoming light near the 

edges of the CCD array, causing what should be identical intensities at the optical axis and the 

edge of the image to differ by several grey scale levels. Thus, camera sensitivity is a result of 

aberrations in the lens system, different from those geometric aberrations detailed in Section 2.1, 

and has no connection to the CCD array or its dynamics. Under this assumption, we model this 

disturbance as 

I = IO co@ (tan-1 (5))) (11) 

where I is the distorted image intensity, IO is the ideal, undistorted image intensity, r = dw 

image plane units, f is the camera focal length in image plane units, and p is a nonnegative 

integer. 
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If there is relative motion between the camera and the scene during image formation, the 

resulting image will be blurred. Under normal circumstances, the image blur is a simple function 

of the motion and the camera equations as defined above. In many cases, this blur will not 

present a problem, as the image plane motions of the features of interest may be very small over 

the sample interval. In addition, many CCD cameras can be electronically shuttered to provide 

an exposure time that is very small with respect to the frame rates, typically as short as one 

millisecond or less, reducing or eliminating blur. Specialized CCD cameras exist that have even 

lower exposure times, with frame rates as high as 10,000 frames per second, albeit with low 

resolution [26]. We shall define a parameter called the exposure factor, denoted Et, which is the 

fraction of the sample period under which the shutter is open. By default we will assume this 

factor is 1.0. This parameter will play a significant role in the experimental dynamic analyses of 

Section 4. 

Another problem that can arise in most types of imaging systems is defocus, which is often 

confused with motion blur. If a camera system is not in proper focus, the image will appear 

blurred, even with no motion in the scene. Defocus can be represented by a two-dimensional 

convolution of the image intensity profile with a radially symmetric function known as the point 

spread funct&~ We will assume that defocus can be modelled by a sequence of N convolutions 

with a mask such as the one in Figure 9. The parameters fs, fi, f2 and the number N are the 

parameters for the defocus. 

f2 fl f2 

fl t7l fl 

f2 fl f2 

Figure 9. Meek for discrete convolution in defocus simulation. 

Finally, as with any measured value in the real world, the intensity of an image pixel is subject 

to noise in the image formation process. We model image noise ss an additive term with a zero 

mean Gaussian distribution and a standard deviation of u grey levels. 

2.3. Temporal Aspects of Image Formation 

The standard video frame rate is thirty frames per second, but many CCD cameras employ an 

interlaced scan method by which a single N,/2 x N,/2 frame is available at twice this rate. In 

addition, cameras designed for slow motion tend to have sample rates which greatly exceed the 

standard 30 Hz. We will denote the sample rate of the simulated camera by w,, (samples/set). 

The final parameter we consider depends not only on the camera system, but on the algorithms 

and hardware used to derive information from the images. There is a finite time interval T& 

required by the camera to output the image data to external devices, which then require some 

interval Tcaic to calculate or extract the desired data to be used by the control system. We 

will combine these two delays into a single parameter called T&lay. Delays of this sort are both 

intrinsic and extrinsic as they depend on the camera system as well ss the type of calculations 

required by the visual servo system. Often, this type of delay is ignored in visual servo system 

design; this problem will be considered more completely in Section 4. 
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3. EXPERIMENTAL SETUP 

To evaluate the influences of the various imaging system parameters, we have designed a direct 
visual servo controller for the free-standing acrobat. In this section, we will briefly describe the 
free-standing acrobat, its dynamics, and our controller. 

3.1. The F&e-Standing Acrobat 

The free-standing acrobat, illustrated in Figure 10, is a twolink, planar robot with a single 
actuation between the links. The end of the first link, which is to be in contact with the ground 
plane, is rounded and has no moving parts. The robot is freestanding and can function on 
any smooth surface. In the literature, the free-standing acrobat is also referred to as the rolling 
acrobat, which can sometimes cause confusion. For the remainder of this paper, we will refer to 
the freestanding acrobat simply as the acrobat. 

Figure 10. The free-standing acrobat. 

The dynamic equations of the acrobat as described are 

where q = [qt , qzlT and 

M(q) = 01+ 02 C4Il) e7 cm((?2) + 08 co&l - 42) 

e7 co8(q2) + 68 CO&l - a) e5 1 7 

The value r is the input torque. The quantities (ei, 02, &, &, . . . ,010) are the dynamic parameters 
of the system. We define ml and ms as the masses of links one and two, respectively, Z,r and 1,s 
as the distance from the axis to the center of mass of links one and two, respectively, 11 as the 
length of link one, R as the radius of the “drum” on the end of link one, and Ji and J2 as the 
moments of inertia of links one and two, respectively. The dynamic parameters of the system are 
given in Table 1. The nonsequential numbering of the dynamic parameters allows correspondence 
between these dynamic equations and those of [27]. 

When the input torque between the two links is zero, the device has an unstable equilibrium 
point corresponding to the vertical position. For each value of input torque r, the device has 
another unstable equilibrium point. The set of all such points defines an unstable equilibrium 
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Table 1. Dynamic parameter definitions for the acrobat. 

1 Name 1 Definition I TvLx3 I 

e8 

es 

elo 

m2hb2 

mlglcl + m2gh 

m2&2 

Inertial 

Gravity 

Gravity 

manifold in the robot’s state space, shown in Figure 11 as a function of the state (~1,~s) given 
in radians. The equation for this manifold is 

qi = -arcsin (2sin(qz)). (13) 

The manifold shown is for (es, 191s) = (4.779,1.880), which will be used in the simulations that 

follow. 
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Figure 11. Equilibrium manifold for the acrobat. 

The goal of a control system design is to stabilize the acrobat in a region of this manifold. 
Trajectories to be tracked or set-points to be followed would then be generated as a function 
of the position on the manifold. For purposes of thii work, let the manifold be parameterized 
by the variable z, with positive values corresponding to positive q2 values. A value of a = 0.5 
corresponds to a distance along the manifold from q2 = 0 of about 75% of the total length of 
that arm of the manifold. Note that in Figure 11, the manifold only extends to approximately q2 

= 2.35 radians, which is the point at which the links are assumed to contact one another. The 
origin of the z-parameterization of the manifold lies in the original controller design of [27]. A 
quantitative examination of the control algorithm is beyond the scope of this work. In order to 
shed some light on the analyses that follow, we will offer a brief, qualitative discussion of the 
controller. Details can be found in [27]. 

A standard approach in nonlinear control is that of feedbaclc linearization. Under certain 
conditions on the dynamics of a given system, a nonlinear state transformation and state feedback 
can be found such that, when applied to the system, its ~dynamlcs become linear. Making a 
nonlinear system behave linearly is desirable due to the broad range of well-known linear control 
algorithms available. 
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It can be shown that the nonlinear dynamics of the acrobat cannot be transformed into linear 

system dynamics through the use of state feedback. Instead, we use a technique known as 

pseudolinearization [28]. Through the use of a coordinate transformation and nonlinear feedback 

control law, a system can be forced to have a Jacobian linearization along some equilibrium 

manifold that is independent of the location along that manifold. The exact form of the control 

can be modified to exhibit specific behaviors that are desired, such as system tracking along the 

equilibrium manifold. 

This approach, unlike feedback linearization, can be successfully applied to the acrobat. The 

control law is complex, and involves extensive use of B-splines for numerical calculation. The 

important characteristics for purposes of this work are that the final control algorithm is designed 

to force the acrobat to track positions on its unstable equilibrium manifold, and that the system 

is only shown to be globally uniformly ultimately bounded. This indicates that we can only prove 

that the system will asymptotically converge to a neighborhood of the desired equilibrium point, 

but may be at any point inside that neighborhood at any time after its convergence. Further, 

while the theoretical work is global, the physical system has additional constraints, in that it is 

possible for the links to collide. Thus, for our purposes, the control result holds only in a local 

region of attraction of the equilibrium manifold. 

The controller that we have implemented requires full state feedback, i.e., (ql, qz,tjl, 42). How- 

ever, in our implementation, & and & are calculated from successive observations of (ql, 42) using 

first order difference approximations. Therefore, in the context of state estimation below, we will 

refer to the couple (ql, q2) as the “state” of the acrobat. 

Because the first link of the acrobat is unpinned and has no moving parts at its contact point 

with the ground plane, measurement of the state of the robot via traditional means (e.g., using 

encoders) is not possible. At present, there is no functioning control scheme for state estimation 

of this system that does not involve hardware modifications to the scrobot itself. The existing 

scheme of [27] relies on an assumption that the acrobat has only rolling contact with the ground 

plane. 

The pseudolinearizing control algorithm of [27] can be combined with visual state estimation 

to comprise a direct visual servo control system. Because the control is being attempted along 

an unstable manifold, and the controller has only been proven globally uniformly ultimately 

bounded, errors in the state estimates are of paramount concern. Therefore, this system provides 

a suitable test bed for direct visual servo control. 

3.2. State Estimation 

The role of the vision system in our direct visual servo approach is to determine the state of the 

robot, (ql, qz), as shown in Figure 10. In order to ease the task of state estimation, we have made 

minor cosmetic modifications to the robot. In particular, states are estimated by determining the 

centroids of images of circles that are inscribed on the robot’s links. Such techniques have been 

used in many recent visual servo systems, e.g., [7,14]. Many other feature tracking algorithms 

have been proposed in the literature, e.g., [9,29,30]. 

Our system is configured so that the robot lies in a plane perpendicular to the optical axis of 

the (fixed) camera. Feature circles are placed at the joint and at the tips of the first and final 

links. Each camera image is thresholded at a user-defined level, generating a binary image that 

ideally consists only of images of the inscribed circles. Centroids can easily be calculated from 

such binary images. 

Assuming knowledge of the correspondence between image circles and the actual inscribed 

circles on the robot, calculation of the state is a simple task. In order to determine this cor- 

respondence, it is assumed that the sample rate of the vision system is small enough that the 

maximum displacement of each circle between images is less than one-half the smallest separa- 

tion between any two circles. Use of the robot’s Jacobian allows the designer to be aware of the 
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largest possible Cartesian space velocity of each inscribed circle based on the possible generated 
torque 7, and to modify positioning or make other arrangements if correspondence might become 
a problem in certain configurations of the inscribed circles. Assuming an initial knowledge of the 
correspondence, we can determine which circles in subsequent images identify with circles in the 
original image and thereby with the inscribed circles, by straightforward feature tracking. 

The problem of noise necessitates the introduction of two new parameters for the sensing 

system. Nmin and Nmax are the smallest and largest allowable areas, in pixels, of image regions 

that will be identified ss the images of the feature circles. This visual algorithm can easily be 
implemented in standard video hardware (e.g., the Datacube MaxVideo system). 

The robot states (ql, q2) are calculated from each image frame and passed, along with the 
calculated derivatives (Q?1, Qs), to the controller of [27]. The camera is assumed to be a perfect 
pinhole lens. Any lens distortions or other imaging aberrations are then unmodelled imaging 
dynamics. In Section 4, we consider the errors in the state estimates generated by the unmodelled 

image dynamics and their effects on control system performance. 

4. SIMULATIONS AND ANALYSES 

In this section, we will consider the effects of the various imaging dynamics and distortions 
discussed in Section 2 on both the state estimation routine ss described in Section 3.2, and on the 
stability of the entire direct visual servo system. Details of the simulation can be found in [27,31]. 

For the following simulations, we consider the field of view of the lixed camera to be a square 
of 20 x 20 units in the world space. The acrobat stands on the (horizontal) ground plane in a 
plane perpendicular to the optical axis of the camera. When both links are vertical (q1 = q2 = 0) 

and no distortions are present, the acrobat covers approximately 70% of the total height of the 
image plane. Initial placement of the acrobat is such that in its vertical position it lies along the 
camera’s vertical (v) axis. Since the acrobat moves across the ground plane as q1 changes, an 
initial configuration with a nonzero q1 will have a horizontal displacement of the contact point 
from21=0. 

The dynamic parameters of the simulated acrobat are given in Table 2. The lengths of the links 
are 6.19 units for the first link and 6.9 units for the second link, with a base radius of 1.0 unit. 
The inscribed circles each have a radius of 0.2 unit. 

Table 2. Dynamic parameters for ecrobot simulations. 

1 Name 1 Value I 

The simulated camera implements the model derived in Section 2.2. The output is assumed 
to be a 512 x 512 pixel matrix quantized to 256 grey levels. Unless otherwise stated, the 
exposure factor Et was assumed to be small, on the order of 0.01, and wcam was 30Hz. It 
was determined that the inscribed circles with radius 0.2 unit in the world coordinate frame 
would cover approximately 75 pixels. There was no provision made for specularity, shadowing or 
reflection, nor for nonhomogeneity of lighting sources. 

4.1. State Estimation 

In this section, we will consider the effects of various disturbances on estimation of the state of 
the acrobat. We will consider all of the disturbances detailed in Section 2.2 except for delay, which 
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is unimportant for purposes of state estimation. For the following simulations, we will consider 
the acrobat as it moves along its unstable manifold. In all of the simulations, the acrobat was 
initially placed with (ql, qz) = (O,O), which corresponds to the unactuated equilibrium point. The 
acrobat was then positioned at a variety of points along its unstable manifold and the estimation 
error was measured over the entire manifold. All plots are given as error versus value of q2, 
which intuitively parameter&s the unstable manifold. We have chosen q2 instead of ql, since 
the manifold is parameterized by a function q1 = f(q& where f-l does not exist. All values are 
given in radians and estimation errors are of the form qactual - qwtimatd. 

Using a discrete system such as a CCD camera to estimate a continuous value, such as the 
state of the acrobat, causes quantization error both in the intensity value and in the image plane 
coordinates of the centroids of the inscribed circles. Figure 12 shows the corresponding state 
estimation error for the case of no distortions. 

Figure 12. Error in visual state estimation with no distortions. 

4.1.1 Blur, focus, camera sensitivity, and noise 

The state estimates calculated when blurring was present (i.e., when the acrobat was in motion 
and Et was near one) tended to give the value of the states at the midpoint of the exposure interval 
unless the angular velocities of the links were too high, in which case the system lost identification 
as the feature blurred out to a grey scale level below the threshold. We have experimentally 
determined that 0.15 unit per second is the velocity along the unstable equilibrium manifold at 
which the system will lose identification, assuming Et has a value of one, so that the exposure 
interval is equal to the sample period, l/30 second. 

Experimentation has demonstrated that the amount of defocus characteristic of typical systems 
is negligible for our purposes. Further, it is noted that poor camera sensitivity (i.e., high values 
of p) effectively reduces the usable region of the image plane for thresholding-based techniques. 
As the features move away from the optical axis, the pixels in the feature image drop in intensity. 
At some point, they cross the threshold value and are mapped to zero. We will sssume that 
the features of interest lie in the region of the image plane in which their image pixel values 
remain above the threshold. Under this assumption, camera sensitivity has little effect on the 
state estimates. Simulations and experiments have shown that Gaussian noise, even with high 
variance, has little effect on the estimation error of the sensing strategy we have chosen. Details 
are given in [31]. 
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4.1.2. Lens distortions 

We present, in thii section, an analysis of the effects of the five lens distortion parameters 
(kr, pi, p2, ~1, ~2). Figures 13-17 show the errors in the estimates of (ql,qz) along the unstable 
equilibrium manifold for each of the lens distortion parameters at a value of 0.1, with all other 
distortions equal to zero (including zero blur). In all of the figures, the estimation error in q1 is 

denoted by a solid line and estimation error in q2 by a dashed line. 

-0.02 - 

Figure 13. State estimation error (ql solid, q2 dashed) under radial distortion (kl = 
0.1). 

0.06 - 

Figure 14. State estimation error (ql solid, 42 dashed) under decentering distortion 

(Pl = 0.1). 

Changing the sign of sr or pi leaves the shape and magnitude of the corresponding error profile 
unchanged, but reflects it about the q2 = 0 axis. Changing the sign of ki, ss, and pz results in 
almost unchanged error curve shapes as well, except that the sign of the errors are reversed. Like 
pi and si, a sign reversal on ki leaves the magnitude of the estimation error almost unchanged. 
Negative values of pz and ~2, however, result in estimation errors for q1 that are smaller in 
absolute value than those corresponding to equivalent positive parameter values. The estimation 
error for q2 in these cases increases over a portion of the unstable manifold near z = 0, but 
decreases near the extremes of the manifold. 
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Figure 15. State estimation error (q1 solid, q2 daehed) under decentering distortion 
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Figure 16. State estimation error (91 solid, q2 dashed) under thin prism distortion 
(91 = 0.1). 

The error in the state estimates has a characteristic shape for each type of distortion, Varying 
the magnitudes of any of the lens distortion parameters causes a proportional change in the 
estimation errors due to that distortion, but no change in the characteristic shape. This is to be 
expected, since (3)-( 7) are linear in the distortion parameters. 

We have determined estimates for the approximate proportionality constants relating the ab- 
solute value of each parameter to the maximum state estimation error over the unstable equi- 
librium manifold. For each distortion parameter, there are corresponding K,, and Kq2 values 
relating the parameter’s value to the maximum absolute value of the estimation error for q1 

and 42, respectively. These values are given in Table 3. 

We note that, for the simulations of pz = 0.1 and ss = 0.1, certain parameters used in our 
feature segmentation algorithm have to be tuned, specifically Nmin and Nmax. The need for this 
reevaluation of parameters could be seen in the amount of overall distortion. In a real system, 
the necessity for such a tuning of the parameters would be detected during setup. In fact, the 
distortion in these cases was so strong that it is unlikely the designer would ever have considered 
the simulated camera as a viable sensor. 
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Figure 17. State estimation error (ql solid, q2 dashed) under thin prism distortion 
(82 = 0.1). 

Table 3. Proportionality constants for estimation error. 

Parameter 1 Km 1 Km 

kl I 0.2 I 0.1 

It is almost always the case that, with image plane units of cm, lpi], ]pz], Isi], 1~21 < 0.1. 
However, even with the distortions on the order of 0.1, the state estimates were consistently within 
0.1 radian of the correct value. For values of these distortions that are not readily observable by 
the human eye in images generated by the camera, the errors in the state estimates will be much 
smaller. 

4.13. Composite effects 

In this section, we consider state estimation when a variety of aberrations and disturbances 
are simultaneously present in the lens system. The following simulation uses values that could 
easily be encountered in a real camera system. 

We allow noise with Q = 15 grey levels and a defocus of (fe, fi, 1s) = (5/9,2/27,1/27) with 
N = 2 (which is rather excessively defocused). We do not consider blur. The lens distortion 
parameters used are (ki,pi,~, si, 52) = (0.2,0.002,0.002,0.02,0.01), which are on the order 
of those experimentally determined in [22]. The resulting estimation error over the unstable 
equilibrium manifold is given in Figure 18. Estimation errors are on the order of 0.05 radian. 

4.2. Control Simulations 

In Section 4.1, we considered the effects of imaging distortions on the state estimates. We now 
consider the effects of these state estimation errors on the stability and performance of the entire 
direct visual feedback system, thus relating imaging distortion to control system performance. 

In Sections 4.2.1 and 4.2.2, we will consider the effects of only those distortions that were seen 
to have a strong impact on the state estimates. All simulations were begun with an initial total 
state of 

[41,!?2,d~,~21T = [-0.05,0.L0,01T. (14) 
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Figure 18. State estimation error (ql solid, qz dashed) under all aberrations. 

Figure 19 shows the performance of the acrobat under direct visual servo control as it is given 
a ,?&_sird function to track on its unstable equilibrium manifold. No distortions were present, 
and the exposure was assumed to be instantaneous at the end of each sample interval. No delay 
from any calculation or image processing was present. The four graphs in Figure 19 represent 
the important state and control information over the simulation interval, and provide a point of 
comparison for the following simulations. Simulations of the acrobat under full state feedback are 
shown in Figure 20. In all of the control simulations, the system’s tracking behavior is displayed 
in the upper left subgraph. The signal to be tracked, zd&&, is the solid line, while the system’s 
actual position on the unstable equilibrium manifold is given by the dashed line. 

Figure 19. Visual servo of the acrobat with no distortions (see text). 

We see that neither quantization errors (and their effects on state estimates) or the first order 
approximations for Qi and Q have noticeable effect on system stability. We note that the results 
of the full state feedback simulation are almost identical to those of the visual servo case, except 
for the lack of significant chattering in the control signal. The chattering in the visual servo case 
can be accounted for by the discrete nature of the state estimates in combination with the first 
order velocity approximations. 



96 B. BISHOP et nl. 

!, 
0.5 , 

, ’ 

P 
I ’ 
I ‘\ 10: I,, 

J q \ I 

\ 1 
I ’ 

-0.5 
0 

Tifm$ec) 
40 

Figure 20. Rolling ecrobot under full state feedback control (see text). 

4.2.1. Control of acrobat under system delay and blur 

There are several sources of delay in the feedback loop of this direct visual servo system. There 
is an inherent delay of approximately one-half of the period during which the shutter is open (or 
0.5Et/w seconds). This is a result of the integrating nature of CCD camera elements. Processing 
takes additional time that may or may not be significant. 

To determine if this delay was significant to our control system, a simulation was performed 
under a delay of one full period, or l/30 of a second, together with the delay inherent when Et 
has a value of 1.00. Thus Tdelay = 1.5T where T is the sample period. Further, noise was present 

with g = 15 grey levels in addition to a defocus of (fo, fr, fs) = (5/9,2/27,1/27) with N = 1. 
No other lens distortions were present. At 30Hz, this system became unstable, even for very 
small &j&red. At 60Hz, the system was stable. This indicates that our computations should 
not require a full sample period at 30 Hz-the delay is too great. The inherent delay of one-half 
a sample period (due to blur) at 30Hz did not cause instability, nor did an additional delay of 
one-half the sample period. This indicates that our vision and control calculations should be 
able to be carried out in l/60 of a second. For the algorithm described in Section 3.2, this is an 
acceptable restriction. 

4.2.2. Control of acrobat under lens distortions 

In the following simulations, the values of the distortion parameters were chosen so that 
the maximum state estimation error over the entire unstable manifold would be approximately 
0.01 radian. No defocus, noise, or blur were allowed, so that the effects of the individual distor- 
tions could be more clearly evaluated. 

Unlike the case of state estimation, we are concerned here with distortions of both signs for all 
cases except pl and si, which simply reverse their effects with respect to z = 0 on the unstable 
equilibrium manifold (see Figures 5 and 7). We are concerned with the effect of the errors in 
state estimates on the performance and stability of the system. Note that, if the device reaches 
q2 = 2.35 radians, the two links have contacted one another and the system is assumed to have 
become unstable. 

The following simulations show the tracking error in Z, the values of q1 and q2 with respect 
to time, and the input torque for various values of the lens distortion parameters. When we 
consider the state estimation error graphs given in Section 4.1, Figures 13-18, we can see that 
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the error graphs for pl and si are symmetric with respect to g2 = 0, while those of the remaining 
distortions are antisymmetric. 
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Figure 21. Visual servo with kl = 0.1 (see text). 
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Figure 22. Visual servo with kl = -0.1 (see text). 

In Figures 21 and 22, we see the simulations for Ici = fO.l. We note that the very small 
errors in the state which are produced by the vision system, together with the erroneous values 
of velocities, cause a significant steady-state error in z. The magnitude of this error is dependent 
on the portion of the manifold that the system is to track, since the state estimation error 
varies greatly over the workspace when lens distortions are present. The steady-state error 
for zdwi& = 0.5 is approximately 0.1 in absolute value for both positive and negative values 
of ICI. Therefore, we expect that for this system, the maximum steady-state error produced by a 
distortion that is purely radial in nature would be on the order of the distortion parameter itself. 

In Figures 23-25 we see the effects of various values of pl and pz. The error induced by a 
positive value for pl is always of the same sign in steady-state. We have now seen simulations for 
positive and negative values of distortions which have both symmetric and antisymmetric state 
estimation error graphs. This provides us with insight into the behavior of the system under 
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Figure 23. Visual servo with pr = 0.015 (see text). 
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Figure 24. Visual servo with p1 = -0.015 (see text). 

various distortions when tracking positive versus negative values of z. Thus, we will henceforth 

consider only positive z values. 

In Figures 26 and 27 we see the effects of thin prism distortions on the closed-loop system. 

We note that the estimation error graph for si shown in Figure 16 is symmetric with respect 

to I = 0, while that of s2 in Figure 17 is antisymmetric. Thus, we expect sr to produce effects 

similar to pi, while s2 will produce effects similar to p_+ Thii is borne out by the simulations. 
The sizes of the steady-state errors in Figure 26 cannot be easily rationalized from the shape 

of the estimation error graph for si (Figure 16). Even though the total state estimation error is 

smaller when the system is in steady-state at large values of z than it is near z = 0, the error 

in z is greatest when the Z,j ,+d is larger. This behavior is a result of the control algorithm, and 

should be noted when the system is set up. 

5. DISCUSSION 

Overall, we see that distortions that contain tangential components are very bad for the per- 

formance of this system. Thii is not necessarily the case for a general system, but is the product 
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Figure 25. Visual servo with pz = 0.015 (see text). 
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Figure 26. Visual servo with 81 = 0.0125 (see text). 

of the special geometry of thii system. The proper choice of camera for direct visual servoing 
of the acrobat would thus be one which has low tangential distortion and a small exposure fac- 
tor Et. Further, we note that the acrobat system, given a camera with very low distortions, 
can be controlled very well using the extremely simple direct visual servo system described in 
Section 3.2. 

As for the stability of the system when distortions are present, we can see that the steady-state 
error near z = 0.5 could easily force the system unstable, were the distortions large enough. 
We further note that, in the absence of distortions, the system is stable for sample rates as low 
as lOHz, for a slowly varying desired trajectory. Thus, it may be possible to perform better 
visual servoing of this particular system using more complex methods. For moderate distortions, 
however, we see that a sample rate of 30Hz is sufficient. Even so, for a camera with a full sample 
period exposure time, the sample period should be as low as possible to avoid blurring and to 
reduce the inherent delay time produced by thii algorithm under the effects of motion blur. 

A major concern when utilizing a direct visual servo system is the input torque 7. As seen in 
the simulations of the acrobat under direct visual servo, the control signal has a great deal of 
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Figure 27. Visual servo with 92 = 0.025 (see text). 

chatter, which could present a problem for a real implementation. It is possible that the desired 
control torque might not be achievable by the actuator, which would have a flxed maximum 
value of i. This is a difficulty that could lead to additional oscillations in the system, or even to 

instability. 
All simulations pointed toward one additional fact that is not necessarily intuitive. In every 

case, the steady-state tracking error was greater for a Z&sired which was large in magnitude than 

it WEW when .&sir& = 0. Thus, for our example, we should arrange the system such that the 
state estimation error is minimized at the extremes of the unstable equilibrium manifold. This 
might be accomplished by arranging the robot in the field of view of the camera in a special way 

based on the existing distortion. This behavior highlights the fact that we should not ignore the 
specific properties of a controller when designing and implementing a visual servo system. 

We have demonstrated the effects of lens distortions and aberrations on the performance of a 
specific direct visual servo system. A straightforward continuation of this line of endeavor is to 
consider methods of dealing with such distortions in a general direct visual servo paradigm. A 
complete discussion of such approaches is beyond the scope of this paper. However, it can be 
stated that for a well-identified camera system in a relatively constrained visual servo problem, 
it is possible and perhaps desirable to compensate for some of the distortion. 

In the acrobat example, it is possible for us to compensate for lens distortions based on our 
knowledge of state estimation errors with respect to distortion values, assuming we have calibrated 
the camera and identified the distortions. This is a simple application of the same simulation 
used to discuss the estimation errors in Section 4.1.2. In general, each specific problem can offer 
a variety of methods for compensating for lens distortions. 

6. CONCLUSIONS 

In this paper, we have presented qualitative and quantitative analyses of the effects of various 
real-world unmodelled imaging dynamics on visual servo systems, concentrating mainly on the 
very fundamental issues associated with the simplest form of such control: the direct visual servo 
system. 

We have generated a complete, detailed camera model for use in evaluating various visual 
algorithms, and have shown an example of a system that is well-suited to direct visual servo 
control. We have presented an analysis of the estimation errors and stability questions involved 
with this system and have given concrete examples of the effects of various distortions and 
disturbances on the system. 
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We have shown that defocus and image noise have little effect on the type of feature-based 
data extraction technique utilized herein, but that motion blur may present significant difficulties 

that require special care to overcome. We have classified a set of lens distortion parameters that 
quantify the divergence of a real camera lens system from the ideal pinhole lens model. We have 
seen that the effects of these distortions vary by application and sensing strategy. The analysis of 

lens distortions has also provided valuable data concerning some general guidelines, that should 
be followed when there is the possibility of significant lens distortion in a system. 

Future work includes the study of the effects of actuator dynamics, such as a hxed i, on the 
stability of direct visual servo systems in general, and the acrobat case in specific. Inclusion of 
special processing steps to reduce defocus and motion blur, as well as attempts to generate more 

accurate velocity calculations and smooth control, are all areas of interest for direct visual servo 

systems. 

REFERENCES 

1. M.H. Baibert and J.J. Craig, Hybrid position/force control of manipulators, ASME .ZournaZ of Dynamic 
Systems, Maurement and Control 102 (6), 126-133 (1981). 

2. T. Yoshikawa, T. Sugie and N. Tanaka, Dynamic hybrid postion/force control of robot manipulators- 
controller design and experiments, IEEE Journal of Robotics and Automation HA-4 (6), 699-705 (1988). 

3. Y. Shirai and H. Inoue, Guiding robot by visual feedback in assembling tasks, Pattern Recognition 5, 99-108 
(1973). 

4. P. Saraga and B.M. Jones, Simple assembly under visual control, In Robot Vision, (Edited by A. Pugh) pp. 
209-233, IFS Pub. Ltd., U.K., (1983). 

5. P. Allen, B. Ycehimi and A. Timcenko, Real-time visual servoing, In Proceedings of the IEEE International 
Conference on Robotics and Automation, pp. 851-856, (1991). 

6. L.E. Weiss, A.C. Sanderson and C.P. Neuman, Dynamic sensor-based control of robots with visual feedback, 
IEEE Journal of Robotics and Automation HA-3 (5), 404-417 (1987). 

7. J.T. Feddema and O.R. Mitchell, Vision-guided servoing with feature-based trajectory generation, IEEE 
l+ansactions on Robotics and Automation 6 (5), 691-700 (1989). 

8. S.B. Skaar, W.H. Brockman and R. Hanson, Camera-space manipulation, Znterbational Journal of Robotics 
Research 6 (4), 20-32 (1987). 

9. N. Papanikolopoulos, P.K. Khosla and T. Kanade, Vision and control techniques for robotic visual tracking, 
In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 857-864, (1991). 

10. W.F. Clocksin, J.S.E. Bromley, P.G. Davey, AR. Vilder and C.G. Morgan, An implementation of model- 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

based visual feedback for robot arc welding of thin sheet steel, International Journal of Robotics Research 
4 (l), 13-26 (1985). 

P.K. Khcela, C.P. Neuman and F.B. Prinz, An algorithm for seam tracking applications, Zntemational 
Journal of Robotics Research 4 (l), 327-41 (1985). 
J.E. Agapakii, J.M. Katz, J.M. Friedman and G.N. Epstein, Vision-aided robotic welding: An approach 
and a flexible implementation, International Journal of Robotics Research 9 (5), 17-33 (1990). 
A. Castano and S.A. Hutchinson, Hybrid vision/position servo sontrol of a robotic manipulator, In Pro- 
ceedings of the IEEE International Conference on Robotics and Automation, pp. 1264-1269, Nice, France, 
(1992). 
B. Bspiau, F. Chaumette and P. Rives, A new approach to visual servoing in robotics, IEEE tinsactions 
on Robotics and Automation 8 (3), 313-326 (1992). 
K. Hashimoto, T. Kimoto T. Ebine and H. Kinura, Manipulator control with image-based visual servo, In 
Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2267-2272, Sacramento, 
CA, (1991). 
A.J. Koivo and N. Houshangi, Heal-time vison feedback for servoing robotic manipulator with self-tuning 
controller, IEEE ‘Bwnsactiona on Systems, Man, and Cybernetics 21 (l), 134-142 (1991). 
S.B. Skaar, W.H. Brockman and W.S. Jang, Three-dimensional camera-space manipulation, Zntemational 
Journal of Robotics Research 9 (4), 22-39 (1990). 
0. Khatib, A unified approach for motion and force control of robot manipulators: The operational space 
formulation, IEEE Journal of Robotics and Automation Fl.A-3, 43-53 (1987). 
T.J. Tarn, A. Bejczy, A. Isidori and Y. Chen, Nonlinear feedback in robot arm control, In IEEE Conf. on 
Decision and Control, (1984). 
PI. Corke, Dynamics of visual control, In Proc. IEEE Workshop on Visual Seruoing: Achievements, Ap- 
plications and Open Problems, (Edited by G. Hager and S. Hutchinson), Inst. of Electrical and Electronics 
Eng., Inc., (1994). 

21. R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using 
off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation 3 (4), 323-344 (1987). 



102 B. BISHOP et al. 

22. J. Weng, P. Cohen Bnd M. Heriou, Calibration of stereo cameras using a nonlinear distortion model, In Intl. 
Conj. on Pattern Recognition, pp. 246-253, (1990). 

23. H.A. Martins, JR. Biik and R.B. Kelly, Camera models based on data from two calibration plates, Computer 
Vi&on, Gmphice, and Image Pmcessing 17, 173-180 (1981). 

24. G.V. Puskorius and L.A. Feldluunp, Camera calibration methodology based on a linear perspective trans- 
formation error model, In proceedings of the IEEE International Conference on Robotics and Automation, 
1858-1860, (1980). 

25. Manual of Photogmmmetry, 4th edition, American Society of Photogrammetry, (1980). 
26. CCD Image Sensors and Cameras, DALSA Inc., Waterloo, Ontario, Canada, (1991). 
27. S.A. Bortoff, Pseudolinearizartion using Spline functions with application to the acrobat, Ph.D. Thesis, 

University of Illinois at Urben8Xhamp8ign, Coordinated Science Laboratory, (1992). 
28. C. Reboulet and C. Champetier, Feedback control of nonlinear systems by extended linearization, Interna- 

tional Journal of Control 40 (4), 631-638 (1964). 
29. J. Aloimonos and D.P. T&ii, On the mathematics of visual trecking, Image and Vision Computing 9 

(4), 235-251 (1991). 
30. P. Anandan, A computational framework and an rrlgorithm for the measurement of visual motion, Zntema- 

tionol Journal of Computer Vision 2, 283-310 (1989). 
31. B.E. Bishop, Direct visual servo control with application to the acrobat, M.S. Thesis, University of Illinois 

at Urban8Champaign, Coordinated Science Laboratory, (1994). 


