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Abstract environment but is passive unlike sonar or laser range find-

_ _ _ ing systems, which measure a reflected output signal. It also

Visual servoing has been a viable method of robot manipulator con-  enjoys the advantage of providing sensory data with which
trol for more than a decade. Initial developmentsinvolved position-  humans are naturally familiar.

gasfd visual xnvong (PBVS)}T'&;’]V“&CT‘ the Cgf;g 99“;' edistsin Shirai and Inoue (1973) first described the use of visual

artesian space. The younger od, image- visual servoing . . :
(IBVS), has scen considerable development in recent years, PBVS data in a feedback_ loop to accurately position a_robot. This
was the advent of visual servo control, the closed-loop control

and IBVS offer tradeoffs in performance, and neither can solve all . .
tasks that may confront a robot. In response to these issues, several of a robot end-effector through the use of image data. While

methods have been devised that partition the control scheme, allow- ~ Progress was initially stunted by technological limitations,
ing some motions to be performed in the manner of a PBVS system, the recent decade has seen phenomenal increases in computa-
whilethe remaining motionsare performed usingan IBVSapproach.  tional power and digital imaging technology. The ability now

To date, there has been little research that exploresthe relative  exists to perform real-time image processing on detailed im-
strengths and weaknesses of these methods. In this paper wepresent ~ ages using commercially available computers and cameras.
such an evaluation. We have chosen three recent visual servo ap- Employing these advances, visual servoing holds a great
proaches for evaluation in addition to the traditional PBVS and ~ deal of potential for the control of robots in changing envi-
IBVS approaches. We posit a set of performance metrics that mea-  ronments. This includes diverse applications such as indus-
sure quantitatively the performance of a visual servo controller for  trial factories, tracking systems, and steering vehicles (Corke
a specific task. We then evaluate each of the candidate visual servo ~ 1993). Visual servoing is also distinctly suited to tasks where
methods for four canonical tasks with simulations and with experi-  the robot must interact or manipulate the environment rather
ments in a robotic work cell. than merely observing.

. . . In general, there are two basic approaches to visual
KEY WORDS—visual servoing, partitioned methods, pencor:'servo control: position-based visual servoing (PBVS; Weiss,

mance, test, comparison Sanderson, and Neuman 1987; Feddema and Mitchell 1989;
Martinet, Gallice, and Khadraoui 1996) and image-based vi-
1. Introduction sual servoing (IBVS; Sanderson and Weiss 1980; Hutchin-

son, Hager, and Corke 1996). In PBVS systems, features

The use of visual data for robot control has been an objecti@é€e detected in an image and are used to generate a three-

for many years. It provides dynamic information about théimensional (3D) model of the environment. An error be-
tween the current pose and desired pose is then computed in
The International Journal of Robotics Research the Cartesian task space, and it is this error that is used by the
Vol. 22, No. 10-11, October—November 2003, pp. 955-981, control system.
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In IBVS, an error Slgnal IS measured between the |mag 0 feature point trajectories for IBVS o feature point trajectories for 2.5D
features in two images and is mapped directly to actuattso 50
commands. The choice between IBVS and PBVS offers maro 100
tradeoffs. PBVS often requires a 3D CAD model of the object™® — 150 —
in the image. Additionally, PBVS often performs optimally in”> /’ — (’
three dimensions, i.e., the motions of the robot will typically, | / 500 f
follow a least-distance path to the goal. However, PBVS su, [ 350 P
renders control of the feature point trajectories in the imaguoo 400
and can often fail due to lost feature points. Lastly, methocsse 450
of estimating 3D motions from images are often slow an® 550 30 0 50 o 0 w0 30 a6 o
typically susceptible to noise and calibration errors. N Clasic BVSteaure point erorin pixels 250 pvsteaue ponrorinpis
IBVS requires no 3D reconstruction of the environment, | | BN
but does require an image taken from the goal position. 1BV, o N\
performs optimally in the image space and it is a simple mas, \\ 5 \\\5
ter to regulate the trajectory of image features, for instance -\ , o\ \\ \
preventing them from leaving the field of view. However, cer= o\
tain control tasks can lead to singularities in the image Jac® \ % \&\\
bian, resulting in system failure. Image-based systems al” — “’ TS
surrender control of the Cartesian velocities. Thus, while the  © =@ # # = ® = % % » x @& @ ®
task error may be quickly reduced to zero, complicated ar » o s e oo mdeyeen ERTREIIITR
unnecessary motions may be performed. This is particular | P \\,_7,,,,,,¥ .
troublesome when operating in a physically limited or haz e L :iy ;
ardous environment. Finally, while IBVS is robust in the fa054 —w; , —wl
of signal noise and calibration errors, it requires an estimate = N
the feature point depth, which may be unavailable or difficul® ’
to estimate accurately. s ‘
The characteristics of PBVS and IBVS systems haveled o \— 555532 o555 55

the creation of several partitioned methods (Malis,Chaumett,eIg_ 1. Contrasting performance of IBVS angDZvisuaI
and Boudet 1999; Deguchi 1998; Corke and Hutchinsogbrvoing for optical axis rotation.

1999). Partitioned methods use classic, Jacobian-based IBVS

to control certain end-effector motions while using other tech-

nigues to control the remaining degrees of freedom. Section 2

will provide necessary background on PBVS and IBVS, as

well as the use of epipolar geometry to determine camera mige presented in Section'4.

tion. The partitioned systems will also be described using a As we detail in Section 4, each system has precise strengths

single notational framework in Section 2. and weaknesses. However, these systems operate in fun-
While there have been some theoretical analyses of thedg@mentally different ways, and were designed with differ-

systems (Chaumette 1998; Corke and Hutchinson 1999),&8t control tasks in mind. As an example, Figure 1 shows

date, there has been little quantitative analysis of these methe performance of IBVS and;® visual servoing (Malis,

ods. Martinet (1999) performed an experimental investigatidgahaumette, and Boudet 1999) for a task of rotatingefbut

of IBVS and several PBVS systems, but only tested thrdbe optical axis. Performance here is revealed in terms of fea-

different positioning tasks. We seek to evaluate numerolidre point trajectories, the feature point error over time, and

systems over a wide range of motions. We present such thie camera velocity over time. The systems are both able to

evaluation for the three methods in Malis, Chaumette, aryiccessfully zero the feature point error, but the performed

Boudet (1999), Deguchi (1998), and Corke and HutchinsdRotions gnd the trafje.ctolry. of the feature poinFs differ greatly.

(1999) along with the classic PBVS and IBVS approaches. For this reason, it is difficult and often spurious to contrast

To arrive at a meaningful evaluation, we posit a set of perfof1® Systems. We do not seek to formally rate the systems;

mance metrics that measure quantitatively the performance’@fher the goal of this paper is to establish a basis for com-

a visual servo controller for a specific task. We then evaluafi@1S0n and present typical system performance so that the

each of the candidate visual servo methods for four canoni&:ﬂo,per system can be chosen .to S}‘J't the task at hand. :!'hlus,

tasks, under a range of experimental conditions. The metridéhilé we may truly be comparing “apples and oranges”, it

canonical tasks and the experimental conditions are described

. . . . Th ti f the data will b ilabl Matlab fi t http:// -
in Section 3. The most interesting results from these tests Wi r‘afui?c'_fgjﬁsetﬁlngai;wVs_e avallable as Mallab Tigures at Rtp-iwww
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at least becomes possible to select a good apple over a bad

orange. Sh X

2. Background

In this section we present basic concepts involved in IBVS
review the established methods of determining camera motion._
from images using a homography matrix (a method used in
several partitioned IBVS systems, and able to provide a PB S
method), and introduce the three partitioned IBVS systems—
those developed by Malis, Chaumette, and Boudet (1999),
Deguchi (1998), and Corke and Hutchinson (1999).

R+t
2.1. Camera Motion from a Homography Matrix Flg 2. Notation for two |mage£ of pOI ntsin apl ane.

Two of the partitioned IBVS systems, and one possible PBVS
system, derive specific camera motions by computing the ho-
mography matrix relating coplanar—planar feature points in
twoimages. Asin Figure 2, forthe 3D poirfis i =1,... ,n  2.2. Position-Based Visual Servoing
lying on the planer, we definef andf; as the homoge- ) .
neous coordinates of the corresponding points in two imagé?gv_S has a long hlstqry (Weiss, S.andergon, and Neuman
Throughout this paper, variables superscripted with * will rel 87, Feddema and Mitchell 1989; Martinet, Gallice, and

fer to variables in the goal image and values accentedAwitﬁhadraou' 1996). In PBV Sthearror signal exisisin Cartesian

: % * * * 1T
will refer to estimated values. These points are related by Space. Hay| ng stored a goal pose P . Lx™, Y7, Z. 0 u ]
where 6u isthe vector/angle representation of the orientation

f— Hf* 1) (vector/angle is traditionally used in describing the control,
' ” but any method of representing the rotation matrix in three

in whichH is the 3x 3 homography matrix. This can further V&iablesis allowable) and I' is a scalar or matrix gain coef-

be decomposed as ficient, we can use methods such as the homography detailed
previoudly or that given in DeMenthon and Davis (1992) to
tn' determine the current pose of therobot P = [X, Y, Z, 4u]".
H=R ('3 - 7) (2)  We can then set aproportional control law
wherel; is a 3x 3 identity matrix andR andt are the rotation P=—-I'(P—PY. (©)]

matrix and translation vector, respectively, relating the two
camera coordinate framasis the normal of the plane, and  If we define the origin of the world coordinate frame as coin-
d is the distance from the second camera origin to the ptane ciding with the goal camera position, this simplifies to
There are numerous methods for computihgiven two
sets of image points. We have focused our attention on linear P=—I(P). 4
solutions since visual servoing, in general, requires quicker
calculations than iterative methods may provide. The major Using this method, we can incorporate epipolar methods
drawback to linear methods is that they are susceptible $ach asthose described above by defining the position of the
noise. goal view asthe origin. We calculate P in eq. (4) asfollows:
After computing the homography, itis necessary to decont- = [7,, T,, T.]" = dt, whered is an estimate of d. Given
poseH as in eq. (2). Methods to perform this decompositioknowledge of the geometry of the feature point locations, it
are detailed in Faugeras and Lustman (1988) and Zhang dsgossible to accurately estimate d and so determine t to
Hanson (1996). Decomposing the homography is not a trivitle proper scale. From the rotation matrix R, we extract the
exercise and generally cannot be solved uniquely. Additionedll, pitch and yaw angles, w., w,, ®,, obtaining the velocity
information or views are required to select from multiple soscrew u = k[T, T,, T, w,, ®,, ®.] inwhichk isascalar gain
lutions. The sets of solutions for multiple views will typically constant, or a6 x 6 gain matrix.
intersect at one solution. This operation is a simple matter in We choose to explore the use of the homography in PBVS
visual servoing as the view from the previous iteration can ksénceit sharesafew characteristicswith IBV S such asrequir-
used. However, for the first iteration, it will be necessary ting two images and depth estimation. We will refer to this
perform an extra motion to acquire a unique view. method as homographic visual servoing (HVS).
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2.3. Image-Based Visual Servoing

Letr = (x,y,z, 0,0, o) represent coordinates of the
end-effector, and f = (7., T,, T., ., w,, 2.)" represent the
corresponding end-effector velocity. Let f = (u, v)" be the
image-plane coordinates of a point in theimage and let f be
the corresponding instantaneous feature point velocity. The
feature point velocity can be approximated using the first-
order differences byf ~ (u—u*,v —v*)". For astationary
collection of 3D points, the image Jacobian relationship is
given by

f=Jr, (5)
with
L0 —x w222
J = : S zjvz u)”v (6)
|: 0 & Tz AA * u :|

in which A isthe focal length for the camera. Derivations of
this can be found in a number of references including Es-
piau, Chaumette, and Rives (1992), Chaumette (1998), and
Hutchinson, Hager, and Corke (1996). Concatenating the ma-
trix J for three more feature points creates a matrix with full
rank.

The simplest approach to IBVSisto merely use eg. (5) to
construct the proportional feedback control

f =TJYr)f (7

in which f is the desired feature motion on the image plane,
" isagain scalar or matrix, and f isthe control input, an end-
effector velocity. In the general case that the Jacobian is not
square, the pseudo-inverse, J*, is used.

IBV S provides aleast-distance sol ution to theimage error.
Thus, the feature points will tend to move in straight lines
to their goal configurations. This often resultsin complicated
and unnecessary camera motions.

2.4. 23D Visual Servoing

Thefirst group to partition the motion calculationsin avisual
servo system (Malis, Chaumette, and Boudet 1999) devel oped
a system with the goal to correct two shortcomings of IBVS.
The first is the need for depth estimation when calculating
the image Jacobian. The second is the fact that IBV'S often
does not convergeto zero error when theinitial positionisfar
removed from the goal position. Deriving therotation R from
the homography matrix (2), and inserting it into the control
law, this system is coined 22D visual servoing (23D).

Z%D uses a different feature point vector and image Ja-
cobian than the other IBVS systems we investigate. We
will denote the unique parameters with a ~. The feature
point velocity vector is augmented with depth and rotation
information

f= (u —ux, v — v, logp, Ou)" 8

where p istheratio £, and 6 i isthe angle and rotation axis of
the rotation matrix R extracted from the homography matrix
asin eg. (2). Furthermore, p can be directly calculated from
the homography matrix as

[f*T’ 1]n*
[fT, 1]n ~

Malis, Chaumette, and Boudet (1999) define the motion con-
trol law as

p = det(H) 9)

t=—-TJr)f, (10)

~ 7 -1 _ T -1
1 [ dpJ, d=pd, ™, ] (11)

0 I3

where J, and J,, are the translational and rotational portions
of the standard image Jacobian (6), composed of thefirst three
and last three columnsrespectively, and d* isanestimateof the
distance between the focal point and the feature point plane.

Note that while four or more points are required to com-
pute the homography matrix, the partitioned Jacobian, and
therefore the velocity, are determined using only one point.
In the presence of noise or quantization error, this may cause
motions that would not be present in aleast-squares solution.

Given its embedded depth estimation, we expect the 21D
system to perform well given little or no external data on the
distanceto goal. Additionally, using motion estimation meth-
ods to compute rotations should alow it to perform well in
the face of extreme rotations. However, reliance on H also
appears to be an Achilles' heel, adding a great deal of com-
plexity to calculate and decompose, aswell as a susceptibility
to noise, as discussed in Section 2.1.

2.5. The Method of Deguchi

Deguchi (1998) addresses the fact that only the translation
portion of the Jacobian is dependent upon the distance to the
goal. Similar to 2% D, Deguchi’s method (which we will refer
toasKD) partitionsthesystemintotrand ational and rotational
components. Solving the planar homography, as in eg. (2),
deliversthe scaled translation ©. Thetranslational velocity of
the end-effector is then computed as
. T -~ T
where d is an estimate of the distance from the camera god
position to the plane containing theimage features. The equa-
tion for the rotational velocities becomes
fo = 00,017 =3¢ - 3,r,) (13)
with J,, and J, the same as eg. (10).
Continuous depth estimation is no longer required since
the distance d is a constant and needs to be generated only
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once. Additionally, d appears simply as a gain factor to the
translational motion component; thus, it is not necessary that
the estimate be highly accurate.

We expect that KD will have similar strengths and weak-
nesses to 2§D. It does not require explicit depth estimation;
however, the use of the homography matrix adds complexity
and increased noise susceptibility.

2.6. The Method of Corke and Hutchinson

The method of Corke and Hutchinson (1999) (referred to as
PC& SH) was designed to avoid the task problem dueto large
rotationsabout theoptical axis. AsIBV S systemsproceed, the
feature points converge to their goal configuration in straight
lines. Thus, rotation about the optical axis will be accompa-
nied by a backwards trandation, a phenomenon referred to
as camera retreat (Chaumette 1998; Corke and Hutchinson
1999).

As the rotation approaches 180°, this retreat approaches
infinity. To counter this, Corke and Hutchinson decouple the
optical axiscomponentsof translation and rotation (7, and w.)
from the Jacobian, and cal cul ate these motions using smple
image features.

To caculate T, o is defined as the square root of the area
of the regular polygon enclosed by the feature points. Here
we take a departure from the technique described in Corke
and Hutchinson (2000). Rather than defining

TzZVTZ(U*—U) (14)

we define

=y i) (1s)

wherex indicatesafeatureinthegoal image, and ;. isascalar
gain coefficient. This deliversa T, which varies linearly with
motion along the optical axis.

Regarding w., the variable 6 is defined as the angle be-
tween the horizontal axis of the image and the line segment
connecting two pointsin theimage. This leads to

w, = v,.(0" - 0). (16)

Defining avector f, consisting of the trangation and rota-
tion along the optical axis, the equation for x and y motions
is

iy =TT, 0, 0] =TI -3i) (17
where J,, and J, are matrices built from the x and y com-

ponents of the image Jacobian and the z components of the
image Jacobian, respectively.

3. Descriptionsof Canonical Tasks, Performance
Metrics, Test Conditionsand theM ethodol ogy of
Simulations

When comparing a diverse set of visual control systems, itis
extremely important to avoid inadvertent bias. Thus, arigid
set of standards must be determined and applied throughout
testing. Towards this goal, we have formulated a series of
control tasks which typify common visual servo operations.
In addition, we have a set of quantitative metrics with which
to evaluate performance. We have also categorized work con-
ditions that visual servo systems often experience difficulty
handling.

3.1. Tasks

Many of the approaches to visual servoing have been devel-
oped in responseto specific problemsthat are task-dependent.
Therefore, to eval uate the various methods, we have selected a
set of four tasksthat we believe represent the most interesting
tasks encountered by visual servo systems.

e Task 1: Optical axis rotation. The first task that we
consider corresponds to a pure rotation about the optic
axis. The difficulty of this task for IBV'S systems was
first noted in Chaumette (1998). By testing the systems
over alargerange of initial rotations, we can easily see
how different systems perform. We evaluated perfor-
mance over rotations ranging from 30° to 210°, specif-
icaly to gain insight into performance into rotations
greater than 180°.

e Task 2: Optical axistrandation. The second task is
a pure trangation along the optic axis, with initial po-
sitions ranging from 1 m retreated from goal to 1 m
advanced through the goal. We have chosen to isolate
this direction of motion, since visual servo systems are
intrinsically dependent upon depth estimation. Transla-
tion perpendicular to the optical axis does not typically
prove difficult for visua servo systems and is of little
practical interest, thus is not considered as a separate
control task.

e Task 3: Camera y-axis rotation. The third task cor-
responds to a pure rotation of the camera about the
y-axis of the camera coordinate frame. These results
should be indicative of rotation about any axis parallel
to the image plane. The initial values range from 10°
to 80° of rotation. While pure rotations of just a few
degrees will remove features from the CCD array of a
standard camera, in simulation we can allow ourselves
an infinite image plane to perform thistest.

» Task 4: Feature point rotation/general motion. The
final task is to rotate the 3D feature points about an
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axis perpendicular to the optical axis and lying in the
feature point plane. The visual servo system will need
to perform rotation and translation in order to zero the
imageerror. Thefeature pointswill berotated through a
range of positionsfrom 10° to 80°. After 80° thefeature
points in the image plane become nearly collinear, and
visual servoing becomesimpossible.

Examplesof theinitial and goal positionsfor each task can
be seenin Figure 3.

3.2. Performance Metrics

Before aquantitative evaluation can be performed, it isneces-
sary to posit aset of performance metricsthat can be quantita-
tively evaluated. We have chosen the following performance
metrics for our analysis.

* Number of iterations to convergence. Visua servo-
ing was considered successful and halted if the average
feature point error was less than one pixel. If the aver-
age error varied less than 0.1 pixels for five iterations
the system was considered to have converged to a con-
stant value and servoing was halted. The number of
iterations can obviously be increased or decreased by
atering the coefficients of the gain matrix. Thus, the
number of iterationsitself is not extremely meaningful
but provesinsightful when comparing the performance
of multiple systems or a system versustask errors.

e Error at termination. At the halt of visual servoing,
theremaining pixel error of each point fromitsgoal po-
sition was calculated. Visua servoing was halted if the
error was successfully zeroed or converged to steady
state, as discussed above. Additionally, if over 300 it-
erations had been performed without convergence vi-
sual servoing was halted. Finally, visual servoing was
halted if the camera had retreated more than 10 m from
the goal, advanced through O m depth, or if the fea-
ture points moved to more than 3000 pixels from the
principle point.

* Maximum feature excursion. At each iteration while
visual servoing, the current norm of each feature point
to the principle point (center of image) was cal cul ated.
The maximum value, in pixels, attained over the entire
process was then reported.

* Maximum camera excursion. At each iteration, the
current Cartesian distance of the camera from its goal
position was calculated. The maximum value attained
was reported.

e Maximum camera rotation. Maximum camera rota-
tion can be difficult to track as singular positions can
give rise to enormous angle measures (roll/pitch/yaw

R otation About the Opticd Axis
500 500
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450 + _initial coordinates 450

400 B 400
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Fig. 3. Typica feature point motions during IBVS optical
axisrotation.

angles, for instance) while resulting in little or no ac-
tual camerarotation. To gain auseful measurewetrans-
formed the rotations into single axis/angle form and
tracked themagnitude of theangl e of rotation. Themax-
imum val ue obtained was reported.

3.3. Test Conditions

There is an extremely broad set of test conditions that
can affect performance of visual servo systems. These in-
clude signal noise, camera calibration error, robot kinematic
error and quantization effects. We have selected two ex-
tremely important test conditions and performed simulations
of several visual servo systems under our prescribed testing
methodol ogy.

* Noise in measured pixel coordinates. Signal noise
will cause an erroneous offset in the location of feature
points. Thiswill naturally generateerrorsinto the cal cu-
lated camera motion. To measure the effects noise can
have on different systems, we simulated signal noise
in feature detection by adding an offset to the image
feature coordinates. This offset is a two-dimensional
(2D), zero-mean Gaussian random variable with vari-
ance being ranging from 0 to 0.8 pixels. Since noiseis
a random process, the experiment was performed for
the full range of motions and variance 100 times the
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results averaged in order to smooth the results and re-
duce the effect of outliers. These results are presented
as 3D graphs with variance and the rotation/trandl ation
appropriate for the task as independent parameters.

e Method of depth estimation. As mentioned above,
image-based approaches require some estimate of
depth. Several methods have been previoudly investi-
gated, including using a constant depth val ue (often the
depth value for the goal configuration), using an esti-
mation scheme to reconstruct the depth, or, in the case
of simulations, using the exact depth. The method of
depth estimation is an input parameter for our simula-
tions. The results of these tests are 2D graphs showing
the performance of each system for each task using the
three different depth estimation methods with the ap-
propriate rotation/tranglation as independent variable.

3.4. Simulation Methodology

All of our experiments were conducted in simulation us-
ing Matlab and the Machine Vision Toolbox and Robotics
Toolbox (Corke 1996), which are publicly available at
http://www.cat.csiro.au/cmst/staff/pic/. For each simulation,
feature points consist of the corner points of asguarein three
dimensions. The square was simulated as 0.1 x 0.1 m?, and
the camera was positioned 1.4 m from the plane. The use of
homography in three of the visual servo systems requires that
the features be planar. While the placement of feature points
in this plane should have little effect on system performance,
using the corners of asquare for feature points allowsfor uni-
formity of results that an oddly shaped configuration might
not.

Images were projected using a simulated camera with
0.00001 m? pixels and afocal length of 0.0078 m2. The cam-
era plane was allowed to be infinite. However, if a feature
point strayed more then 3000 pixels from the principal point,
visual servoing was halted to prevent the presence of extreme
outliersin the data set. Additionaly, if a system had not ze-
roed the error or converged to steady-state error within 300
iterations, visua servoing was halted. The feature point loca-
tionswere represented by floating point numbersand were not
rounded, thus the effects of quantization error were ignored.

The gain for each system was a 6 x 6 diagonal matrix,
allowing for theindividual tuning of each degree of Cartesian
freedom. The gains were selected in order to zero an error
for the corresponding degree of freedom in approximately 30
iterations, while motion in the remaining degrees of freedom
was held at zero. This is significantly faster than visual ser-
voing systems aretypically run, but represents arealistic goal
of zeroing an error in 1 s of video signal.

Under several conditions detailed below, visua servoing
will be halted. If the error was successfully zeroed or con-
verged to steady state, the system will be considered to have

Fig. 4. Typica feature point motions during IBV'S optical
axisrotation.

been successful; otherwise, visual servoingwill be considered
to have failed. In the case that certain metrics are exceeded,
visual servoing will be halted. Since these excessive results
indicate an unbounded output, the system will be considered
to have become BIBO unstable.

3.5. Experiment Methodology

We performed experiments to verify the simulated results for
different depth estimation. Itisnot practical to experimentally
verify the reaction to increased noise since thiswould involve
adding artificial offsetsto the feature point locations, whichis
little different than what was donein the simulations. Further-
more, the time necessary to perform Monte Carlo analysis of
the random effects of noise is extravagant.

The experiments were performed on a PUMA 560 robot
arm, which has six degrees of freedom. The camera was a
Sony V-500 with a 1.2 mm focal length lens. Theimages con-
sisted of four colored dots on a black background, arrayed at
thecornersof ina5.08 cm square. Thefeature pointsconsisted
of the centers of these dots, and could generally beisolated to
within 0.1 pixels. The image was centered to within one pixel
in the image. The goal position was approximately 60 cm
above the feature point plane. The camera was coarsely cal-
ibrated using the methods detailed in Tsai (1987) and Lenz
and Tsai (1989). No averaging was done to reduce the effects
of signal noise, but obvious outliers were not included in the
final results.

An example of the initial and goal images can be seenin
Figure 4.

Visual servoing proceeded until al feature points were
within one pixel of their goal positions (zeroed the error),
the average pixel error had not deviated more than within 0.5
pixels for more than ten iterations (steady state), more than
500 iterations were performed (timeout), the robot reached its
joint limits (failure) or afeature point was lost (failure).

4. Results

In this section we present the data collected for each of the
four systemsin Section 3: classic IBVS; 22D visual servoing
(2§D) of Malis, Chaumette, and Boudet (1999); the method
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(KD) of Deguchi (1998); and the method (PC& SH) of Corke
and Hutchinson (2000). Each system was tested for the four
control tasks described and test conditions detailed in Sec-
tion 3. Each division of this section will detail one control
task under one of the test conditions. At the beginning of
each division, we briefly present notable results, followed by
separate subdivisions for each performance metric detailing
individual system performance.

Graphs are presented in groups of four, one for each sys-
tem. They are ordered, in clockwise fashion, as IBVS, KD,
PC& SH, and 22D. Tests conducted under the effects of ad-
ditive white noise are presented as 3D graphs with the noise
variance increasing along the right-most axis while the inde-
pendent variable (amount of rotation or translation) increases
along the left axis. The dependent variable (the performance
metric) detailed in each section increases along the vertical
axis. Tasks performed under differing depth estimation meth-
odsare 2D graphswith overlaid plotsfor each method. Thein-
dependent variable increases along the horizontal axis, while
the dependent variable under consideration increaseswith the
vertical axis. Note that results for each system can vary to
such a degree that the dependent variable is often plotted on
adifferent scale.

IBVS has noted difficulty for severe rotations about the
optical axis and when the current view is far removed from
the goal position. We thus expect it to have difficulty for most
extreme motions. Both 2% D and KD decoupletherotation and
translation motion and generally perform well, but both suffer
worse from the effects of noise than the other systems due to
the susceptibility of the homography matrix computations to
noise.

The fact that the trandational component of the homog-
raphy matrix is affected by noise worse than the rotational
component causes KD to suffer the worse detriment. PC& SH
was designed specifically to address the difficultly IBV'S ex-
periences during large rotations about the optical axis. The
z-axis rotations and translation are dependent upon the rela
tive positions of the feature point, which will cause problems
when rotations about the x-axis and/or y-axis deform the lo-
cations of feature points. We expect its performance to suffer
during these motions.

Both KD and 2§D were also designed to remove explicit
dependence upon depth estimation for control, so we ex-
pect good performance under a variety of depth estimation
schemes, including the use of constant depth. KD does per-
form quitewell for all depth estimations, while 2% D typically
shows solid performance for constant methods but markedly
better when using true depth. It is somewhat misleading to
claim that IBVS and PC& SH are dependent upon depth in-
formation. While the current depth does explicitly appear in
the Jacobian, any chosen value will merely have the effect of
scaling thetranslation. A poor choice of depth estimation may
indeed result in failure, but convergence will be possible for
an astute choice.

Fig. 5. Typical feature point trajectories during IBV S optical
axisrotation.

For the tests conducted under the effects of additive white
noise, the noise variance increases along the right-most axis
while the independent variable (amount of rotation or trans-
lation) increases.

4.1. Simulation: Rotation About the Optical Axiswith Noise

Rotation about the optical axis presents a classical problem
for IBVS for large values of the rotation angle. Since IBV'S
attempts to zero the error of each feature point in a least-
distance manner (a straight line) the camera will retreat then
move forward again as it rotates. Feature point trajectories
resulting from initial positions corresponding to a moderate
and alarge optical axis rotation are shown in Figure 5.

For largerotationsthe camerawill theoretically experience
an infinite retreat resulting in a Jacobian singularity. In real-
ity, the camera will usually reach the limits imposed by the
particular kinematics of the robotic system used. HV'S, being
a PBVS system, should not suffer any unnecessary motions.
The partitioned systems we are considering decouple the ro-
tation from the translation motions, they will not suffer from
cameraretreat and are expected to succeed for afull range of
motions.

4.1.1. Remaining Pixel Error

We begin with the remaining pixel error, as seen in Figure 6.
IBVSis able to zero the remaining pixel for rotations under
approximately 160°, even under the effects of increasing lev-
elsof noise, asdescribed in Section 3.3. Thereisan extremely
sharp increasein error after 160°. At this point the camerare-
treat has essentially brought the feature pointsto the principle
point and cannot zero the error. These cases also show adlight
increasein pixel error as noise levelsincrease.

HV S shows moderate dependence upon noise levels, but
no dependence upontheangleof rotation. KD isabletoreduce
the pixel error to zero for al rotations except those extremely
closeto 180°. Pixel error increasesrapidly with noisefor these
failed cases.

The system 22D showsaslightly more complicated result.
It is able to zero the error for all rotations under low noise.
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remaining pixel err vs degrees of z rotation and noise for IBVS

average remaining pixel error vs degrees of  rotation for HVS
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remaining pixel err vs degrees of z rotation and noise for KD

remaining pixel err vs degrees of z rotation and noise for PC&SH

Fig. 6. Average remaining pixel error versus degrees of z-axis
of rotation versus noise variance.

However, there is an increase in pixel error as noise levels
increase. Under higher noiselevels, pixel error beginsto show
a dependence on the angle of rotation as well. The greatest
error is below seven pixels, much lower than the failed cases
of IBVSor KD. Thejagged appearance of thisgraph suggests
the presence of outliers.

Finally, PC& SH is able to greatly reduce the pixel error
for all rotations, with no increase as rotation increases. There
isasdlight increase as noise increases but of only afew pixels.
This indicates that the system converges to constant error for
all levels of rotation.

4.1.2. Number of Iterations Until Convergence or Failure

We now turn our attention to the average number of iterations
until convergence or failure, asseenin Figure 7. IBV S under-
goesanincreasein iterations as noiseincreases. At peak noise
it requires about four times as many iterations to converge as
for zero noise. There is aso a shallow increase in iterations
as rotation angle increases. After about 160° (mirroring the
sharp increase in remaining pixel error) the number of iter-
ations drops immediately to a negligible number, indicating
that failure generally occurs very quickly.

iterations vs degrees of zrotation for HOM/PBVS

iterations vs degrees of zrotation for IBVS

iterations.

Fig. 7. Average iterations until convergence versus degrees
of z-axis of rotation versus noise variance.

The number of iterationsfor HV S dightly increases asthe
rotation angle increases. Additionally, noise levels over 0.5
pixels cause a sharp increase in the iterations required for
convergence.

KD shows an extreme increase in iterations as noise lev-
elsincrease, requiring about twelve times as many iterations
under high noise. There is a shalow increase in iterations as
rotation increases, with a brief spike towards zero very near
180°.

The Z%D system shows positive dependence upon both
noise and rotation. These increases are fairly shallow if only
one of theindependent variablesislarge; however, under large
rotation and high noise levels the number of iterations rises
dramatically, up to about ten times greater than the lowest
value.

PC& SH shows a very slight increase in iterations as rota-
tion approaches 180° and a sharper increase as noise levels
grow, requiring perhaps four times as many iterations under
high noise levels than at zero noise.

4.1.3. Maximum Feature Point Excursion from the Principal
Point

The maximum excursions of feature points from the principal
point during this test are shown in Figure 8. Since this test
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maximum feature point excursion vs degrees of z rotation and noise for HVS

maximum feature point excursion vs degrees of z rotation and noise for IBVS

400

excursion

rotation noise

excursion

rotation noise

Fig. 8. Average maximum feature point excursion versus
degrees of z-axis rotation versus noise variance.

involves rotation of the camera about the optical axis, and
since the feature points are symmetric about the principle
point in the goa image, we expect the graphs to normally
be very flat as the maximum feature point excursions should
correspond withtheinitial and final positions. Atthegoal con-
figuration, the distance of the feature pointsfrom the principal
point is 79 pixels.

IBV Sisvery flat for lower rotations, showing only adlight
increase with increasing noise levels. At approximately 160°
it takes a sharp increase followed by a sharp decrease.

The graph for HV Sisflat for no noise, but for higher noise
levels the amount of feature point excursion increases as the
amount of rotation increases.

KD isextremely flat for amost theentirerange of rotations,
and any dependence upon noiseisobscured by the large scale
of thisgraph. For values very near 180° and significant noise,
there is aridge of extremely high feature point excursion, as
high as several thousand pixels. Thisindicates an unbounded
output as the cause of failure.

The 22D system undergoes a steady increase in maximum
feature point excursion as the amount of rotation increases;
thisindicates that the feature points are undergoing large mo-
tionsin the image plane.

max camera translation vs degrees of z rotation and noise for IBVS

maximum camera translation vs degrees of z rotationd for HVS|

induced translation
N oos o o

b
8o

rotation noise

max camera translation vs degrees of z rotation and noise for 2.5D

induced translation
induced translation

rotation noise

rotation noise

max camera translation vs degrees of z rotation and noise for PC&SH

induced translation

rotation noise

Fig. 9. Average maximum camera tranglation versus degrees
of z-axis rotation versus noise variance.

PC& SH haslittleexcursion for theentirerange of rotations
when noise levels are low. However, as noise levelsincrease,
there is a sharp increase in the feature point excursion for
rotations over 100°.

4.1.4. Maximum Camera Trandation

During pure rotation about the optical axis, the maximum
camera trangdlation is arguably the most interesting feature.
Plots for this metric are seen in Figure 9.

Asexpected, IBV S has a substantial amount of camerare-
treat. The maximum cameratranglation increasesin aroughly
exponential fashion asthe camerarotation increases and cam-
eraretreat becomes more significant. At about 165° the cam-
eraretreat exceeds 10 m from the goal, and visua servoingis
halted.

HV Shasminimal cameratrandlation, aswould be expected
for aPBV S method. Thereisadlight increase as noise levels
cause erroneous motions.

KD has one extremely sharp point of camera motion at
180 of rotation and 0.8 pixel standard deviation white noise.
This is when the most strenuous conditions are experienced
and, likely, an outlier results from an unbounded outpuit.
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T vs meters of z translation and noise for HVS

remaining pixel err vs meters Z translation from goal for IBVS
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It vs meters z translation from goal for KD
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Fig. 10. Average remaining pixel error versus meters of
transl ation versus noise variance.

Both PC&SH and 23D suffer negligible camera motion
while experiencing slight increases as noise increases, and
2% D shows a dlight increase as rotation approaches 180°.

4.2. Simulation: Trandation Along the Optical Axiswith
Noise

There are no stability issues for trandation along the optical
axis, and the systems perform very similarly for most perfor-
mance metrics. Indeed, IBVS and 23D share the same func-
tion to generate trandation velocity, so we expect them to
operate nearly identically. Distinguishing results include the
convergencerate of PC& SH whichisnot symmetric for nega
tive and positive trandlation distance and KD’s large increase
in pixel error and iterations as noise increases.

4.2.1. Remaining Pixel Error

Graphs of remaining pixel error, as seen in Figure 10, have
a similar appearance for al systems. IBV'S shows a slight
positivecorrelation with increasing noise, but no correlationto
trand ation distance or direction. The 2% D system has amost
identical performancewith the presenceof afew spikesduring

iterations vs meters of z translation for HVS

iterations vs meters z translation from goal for IBVS

iterations.

iterations.

translation

iterations vs meters z translation from goal for PC&SH

iterations.

translation

Fig. 11. Average iterations until convergence versus meters
of translation versus noise variance.

higher noise. Thisis hardly surprising as 2% D usestheIBVS
translation Jacobian.

HV Sshowsnoreal correlation to noiseor theamount of ro-
tation, thegraphisflat except for thenatural dip at 0mof trans-
lation. KD appears to only have correlation with increasing
noise, although pixel error increases much more steeply than
with the other systems. PC& SH appears to perform dlightly
better versus noise than IBVS and 2§D, with the exception
of a spike at —1 m trandation and 0.2 pixel variance white
noise. Thisislikely due to the presence of an outlier.

4.2.2. Number of Iterations Until Convergence or Failure

The graphs for the number of iterations are very similar for
each system, asseenin Figure 11. For low noiselevelsIBV'S,
HVS, KD, and Z%D al revea aroughly inverse exponential
increase as distance from goal increases. Additionally, the
number of iterations as a function of distance appears to be
symmetric for both positive and negative trandations. Each
of these systems has an increase in iterations as the amount
of noise increases.

HV S seemsto betheleast affected by noise. For the others,
the effects of noise eventually dominate any dependence on
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trandation distance. KD, by far, suffers the worst increase
in iterations as noise levels increase, exhibiting an apparent
exponential relation. The 22D system appears to have only a
dlight average increase with rising noise, but there are several
spikes at higher noise levels, indicating occasional runs that
required alarger number of iterations.

PC& SH a one has anon-symmetric graph. Negativetrans-
lations (camera retreats) require more iterations to zero. Ad-
ditionally, negative trandlations suffer more from increasing
noise as far as the number of iterationsis concerned. This be-
cause the function governing z-tranglation in PC& SH is not
perfectly symmetric about zero, i.e. the rate of change of the
polygonal areaof thefeature points changes at adifferent rate
for advancement and retreat of the camera. Using alogarith-
mic function of the areas lessens this effect, as would using
different gains for forward or backward motion.

4.3. Simulation: Rotation About an Axis Perpendicular to
the Optical Axiswith Noise

It is important to note that this experiment could not be per-
formed with a real-world system, as large rotations without
corresponding translation would remove the feature points
from areal camera’simaging surface. However, it does shed
light on the systems' abilitiesto zero errors corresponding to
large rotation.

IBVSis known to perform poorly when the initial image
is far separated from the goal image, and indeed tends to
fail completely for rotations over 35°. PBVS is regarded to
perform well when alarge motion separatesthe goal from the
current position, so we expect HV S to perform fairly well.

By decoupling the translation and rotation components of
motion, 2§D and KD are able to achieve superior perfor-
mance. The 23D system remains stable as rotation increases,
while KD performsvery well up to about 75°, after which the
system becomes unstable. PC& SH will experience problems
as large rotation alter the feature points and the relative po-
sitions, causing false motions aong the optical axis. While
PC& SH remains stable over the whole range, it generally has
alarger error than other systems for the same amount of ro-
tation (assuming they are still stable as well).

4.3.1. Remaining Pixel Error

The average remaining pixel error isseenin Figure12. IBVS
is able to zero the error until about 35°, at which point the
pixel error becomes erratic but generally very high, indicating
the presence of a large number of outliers and unstable, un-
bounded outputs. There is ho noticeable correlation to noise.

HV'S experiences a slight increase as the noise levels in-
crease, but with the exception of one outlier, no discernible
relation to the angle of rotation.

The 22D system can zero the error up to 50°, with aslight
increase as hoise increases for these smaller rotations. After

remaining pixel err vs degrees of camera y rotation for HVS

remaining pixel err vs degrees of camera y rotation for IBVS.

05

degrees of camera y rotation for KD

s
5]
3
2

rotation noise

Fig. 12. Average remaining pixel error versus degrees of
y-axis rotation versus noise variance.

50° the error begins to increase with rotation. However, this
system still performs quite well, with the greatest error being
under six pixels.

KD is able to zero the error for the longest range, up to
amost 75°, with no visible correlation with noise. After this
point, however, it becomes extremely unstable and the re-
maining pixel error immediately streaks upwards.

PC& SH shows good stability, with no unbounded outputs
for the entire range of rotations and noiselevels. Thisisat the
price of agenerally higher pixel error even for lower rotations
when other systems could successfully zero the error. There
isalso aspike at about 65° and zero error variance, indicating
an outlier.

4.3.2. Number of Iterations Until Convergence or Failure

The number of iterations, seen in Figure 13, mirrors the pixel
error results. IBVS starts at about 150 iterations for most er-
ror levels even for small rotation, and increases until about
35°, where it plunges to zero, indicating that the unbounded
outputs seen in the pixel error occur very early during visual
servoing.

The number of iterationsHV Srequiresincreases smoothly
as the amount of rotation increases, and also slightly as the
amount of noise increases.
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iterations vs degrees of camera y rotation for IBVS
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Fig. 13. Average iterations until convergence versus degrees
of y-axis rotation versus noise variance.

The number of iterations for KD shows a correlation upon
both rotation and noise, with the greater dependence being on
the amount of rotation. This trend continues until about 75°
where it plunges, indicating, as with IBV'S, that unbounded
output occurs very early.

The 2§D system has a rather flat region when either ro-
tations or noise levels are low, with a sharp increase as both
begin to increase together. PC& SH also has a positive de-
pendence upon both rotation and noise variance, although the
noise level dependence begins and remains higher then with
the other systems. Thereis asingle dip corresponding to the
spike in pixel error.

4.3.3. Maximum Feature Point Excursion from the Principal
Point

Thegraphsof system performancefor the metric of maximum
feature point excursion are seen in Figure 14. IBV S has min-
imal feature point excursion up to about 35°. After this point
thereisarough, but generally very large amount of excursion.
Thereis no discernible dependence on noise.

HVS, KD, 22D, and PC& SH have flat maximum feature
point excursionsupto around 40°. After thispoint theerror ex-

maximum feature point distance vs degrees of camera y rotation for IBVS maximum feature point distance vs degrees of y rotation for Hom/PBVS
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maximum feature point distance vs degrees of camera y rotation for 2.5D
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maximum feature point distance vs degrees of camera y rotation for PC&SH
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rotation noise

Fig. 14. Average maximum feature point excursion versus
degrees of y-axis rotation versus noise variance.

ponentially increases with rotation angle with no discernible
dependence on noise. These results most likely correspond
to theinitia feature point positions. As the angle of rotation
increases, the initial positions will become increasingly dis-
tant from the principal point, and the maximum feature point
excursion will increase as well.

4.3.4. Maximum Camera Trandation

For maximum camera trandlation, refer to Figure 15. IBVS
shows characteristicssimilar to earlier graphs. Valuesare con-
stant for small rotations with no noticeable dependence, but
after 35° thereis alarge increase in camera trandation, indi-
cating that the unbounded outputs and system failure manifest
themselves as large camera trand ations.

KD shows no trangdlation at al for minimal noise. In fact,
there is no noticeable dependence at al on rotation, but a
small, linear increasein trangl ation as noiseincreases. In con-
trast, HVS, 22D and PC&SH all show a slight positive de-
pendence on the amount of rotation, but none upon increased
noise.

4.4. Simulation: Rotation of Feature Points with Noise

Rotation of the feature points about the world frame results
in an image displacement requiring potentialy significant
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maximum camera translation vs degrees of camera y fotation for IBVS,

maximum camera translation vs degrees of camera y rotation for HVS
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Fig. 15. Average maximum cameratransl ation versus degrees
of y-axis rotation versus noise variance.

rotation and tranglation about al of the cameraaxes. Thisrep-
resents some of the most strenuous tasks available. The indi-
vidual systemswill be susceptibleto many of the sameissues
asthey were during camerarotation about an axis perpendicu-
lar tothe optical axis. That is, IBV Sisknown to have stability
problems when large motions are required, and PC& SH will
suffer as the polygon enclosed by the feature points changes
shape. HV S should be able to handle large motionswell, with
a potential weakness to noise effects.

4.4.1. Remaining Pixel Error

The remaining pixel error for this test is seen in Figure 16.
IBVS performs quite well; it is able to greatly reduce the
error for the entire range of motionsand for all levels of noise
variance. In general, as noise increases, the amount of pixel
error increases, but the highest value is still below 0.4 pixels.
There does not appear to be a correlation with the amount
of rotation during low noise levels. However, for higher noise
levels, adlight, positive dependence upon the rotation appears
to take hold.

HV'S has a remaining pixel error slightly above 1 pixel,
even when there isno noise. Asthe noise levelsincrease, the
remaining error increases slightly aswell in alinear manner.

remaining pixel err vs degrees of y rotation for IBVS.
remaining pixel err vs

degrees of fpt rotation for HVS

pixel error

°

05

remaining pixel err vs degrees of fpt rotation for KD

pixel error

remaining pixel err vs degrees of y rotation for PC&SH

pixel error

Fig. 16. Average remaining pixel error versus degrees of
feature point rotation versus noise variance.

KD is able to greatly reduce the amount of error up to
400, at which point the remaining error is extremely high and
irregular, indicating unbounded outputs. The graph of perfor-
mance for 22D isvery similar in appearance to that of IBVS.
Thereisapositive dependence upon noise levels, and adight
dependence upon the magnitude of the motion. The greatest
error isbelow 0.6 pixels.

PC& SH has a strong, positive correlation with increasing
feature point rotation as the feature point polygon is altered,
but adlight negative correlation with increasing noise. Thisis
certainly a curious result, but has a simple explanation. The
system is able to quickly reduce the error to a certain level,
but has trouble reducing any further. With lower levels of
noi se, the system reaches convergence and servoing is halted.
However, when noise variance is higher, the feature points
do not converge, and servoing continues and the system is
able to dightly reduce the error further. An example of this
phenomenon can be seen in Figure 17.

4.4.2. Number of Iterations Until Convergence or Failure

Theiterationsneeded for convergenceareshownin Figure 18.
IBV'S appears to have an inverse exponentia increase as the
amount of rotationsincrease, aswell asavery slight negative
correlation with increasing noise levels. HV S has a moderate
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Fig. 17. Feature point trajectories in the image plane for
PC& SH performing a large general motion under different
noise levels.

dependence on both the amount of rotation and noise levels.
At higher noise levels, it requires more iterations than the
other systems.

KD has a positive dependence upon both rotation angle
and noise variance up to 40°. After this, the number of iter-
ations quickly drops, indicating that the unbounded outputs
occur early. The 2§D system has a very dight positive de-
pendence on rotation amount, but this is overshadowed by a
stronger dependence upon noise level. PC& SH has a fairly
strong positive dependence upon both the motion and noise
variance values.

4.5. Simulation; Rotation About the Optical Axis with Dif-
fering Depth Estimation

For the most part, using different depth estimation methods
results in little change during pure rotation about the optical
axis. Thisisnot surprising asthe goal and initial distance are
the same, and thus the true depth should al so remain the same
at every iteration. Indeed, many of the plots for the differ-
ent depth estimation methods align almost perfectly and are
difficult to differentiate.

IBVS has proven difficulties when it comes to handling
large rotation angles, but the remaining error is dramatically
reduced at the expense of increased convergencerateif acon-
stant depth estimation is used rather than true depth, since
cameraretreat will berestrained. The other systemstypically
perform the same regardless of the depth estimation technique
used. KD and 2% D canzerotheerror for al rotationsbut 180°.
HV Sand PC& SH are ableto zero theerror for theentirerange
of rotation.

4.5.1. Remaining Pixel Error

Theremaining pixel error isshown in the graphs of Figure 19.
Whenusing truedepth, IBV Sfailsafter 165°. If either constant
depthisused, however, theerror iszeroed for all but 180°. The

iteration vs degrees of fpt rotation for IBVS

iterations vs degrees of fpt rotation for HVS

lterations
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iterations vs degrees of fpt rotation for 2.5D iterations vs degrees of fpt rotation for KD

rotation nolse rotation noise

iterations vs degrees of fpt rotation for PC&SH

iterations

rotation

Fig. 18. Average iterations until convergence versus degrees
of feature point rotation versus noise variance.

2% D system effectively zerostheerror for al depth estimation
methods.

The performance of KD, HVS and PC& SH is not depen-
dent upon the choice of depth estimation. While KD fails for
rotations of 180°, HVS and PC& SH are able to zero the error
over the entire range.

4.5.2. Number of Iterations Until Convergence or Failure

Graphs of the number of iterations needed for convergence
areseenin Figure 20. All systemsexhibit anonlinear increase
in iterations as the rotation angle increases. Using a constant
depth estimatefor IBV Sresultsin asystem that requiresmore
iterationsto convergence, but grantsthe ability to convergefor
rotations that fail using true depth. The 2% D system, for the
most part, requires slightly moreiterationsif using a constant
depth estimate.

The performance of KD is not affected by the choice of
depth estimation and the three plotsareindistinguishable. The
results of KD are very similar to those for IBV S using a con-
stant depth estimation, which isto be expected since they both
use the rotation portion of the image Jacobian.

HVS and PC& SH also perform identically for al depth
estimation schemes; they both show ageneral nonlinear, pos-
sibly inverse exponential increase.
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Fig. 19. Average remaining pixel error versus degrees of
z-axis rotation with differing depth estimation.

4.5.2. Maximum Camera Ttrandlation

Maximum camera tranglation is shown in Figure 21. IBVS
experiencesan exponentially increasing cameratransation as
cameraretreat becomes more prevalent at large rotations due
to the previously discussed phenomenon of camera retreat.
Using a constant for depth estimation slows the growth of
thistrandlation, allowing the system to convergefor all values
except 180°. 2% D undergoes an approximately linear increase
in camera trangdlation as task rotation increases, reaching a
maximum of about 0.225 m at 180°. Constant depth estima-
tion methods result in alarger translation for lower rotations
than using true depth and, in contrast to IBV'S, the transla-
tion performed by 23D is exclusively in the xy plane. HVS,
KD and PC& SH experience zero motion for all amounts of
rotation.

4.6. Simulation: Trandation Along the Optical Axis with
Differing Depth Estimation

In the case of apure translation al ong the optical axis, the use
of different depth estimation should have little effect other
than to scal e the vel ocity vector. Thus we expect that the only

— truez
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frﬂ m /.1 \
60 T %40 ‘
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iterations vs degrees of z rotation for PC&SH
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Fig. 20. Average iterations until convergence versus degrees
of z-axis rotation with differing depth estimation.

major difference in performance for each system should ap-
pear inthe number of iterationsto goal . Indeed, for al systems
except PC& SH using the initial depth resultsin significantly
more iterations. PC& SH does not use depth estimation when
calculating tranglation along the optical axis, thus thereis no
cost or benefit for the choice of depth estimation. Addition-
aly, HVS and KD experience a dlight increase in remaining
pixel error if initial depth is used.

4.6.1. Remaining Pixel Error

Graphsfor performance in terms of remaining pixel error are
seen in Figure 22. In genera, the remaining pixel error does
not vary much for differing depth estimation. Generally, the
amount of remaining error varies by only a few tenths of a
pixel, and often the plots overlap and are indistinguishable.
HVS and KD experience a slightly greater increase than the
others when using the initial depth as a constant depth esti-
mate, with an increased error from 0.5to 1 pixel. Initial depth
will have the effect of reducing the trandlation velocity, and
perhaps prevents these systems from reaching zero error.
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Fig. 21. Maximum camera translation versus degrees of
z-axis rotation with differing depth estimation.

4.6.2. Number of Iterations Until Convergence or Failure

In Figure 23 we present results of the number of iterations
needed for convergence. The shapes of the graphs are very
similar for al systems, athough convergence rates do vary
between systems. For IBVS, HVS, KD, and 23D, using the
initial depth as a constant depth estimate requires about twice
asmany iterationsto converge. Thisissimply becausetheini-
tial depthislarger then either the goal or instantaneous depth,
which effectively reduces the gain on the transl ation parame-
ters. PC& SH does not use depth estimation for calcul ating the
motion along the optical axis, thusit isimmune for all these
effects.

4.7. Simulation: Rotation About a Perpendicular Axiswith
Differing Depth Estimation

Since depth estimation affects only the trandlational velocity,
it is not expected to have a great effect on performance for a
pure rotation such as this. However, there are severa notable
results. Using a constant value rather than true depth extends
therange of stablerecovery for IBV Sby nearly 15°. HVSand
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Fig. 22. Average remaining pixel error versus meters of
z-axistrandation with differing depth estimation.

KD reveal amost no relation to the depth estimation method,
whichisnot surprising sincerotation iscompletely decoupled
from translation, and only translation is affected by the depth
estimation scheme.

In contrast, the use of constant depth increasesthe remain-
ing pixel error for 22D for amost all cases and causes it to
fail about 20° sooner. PC& SH does pick up afew outliers of
large motionsif a constant depth is used, particularly at large
values of initial rotation.

4.7.1. Remaining Pixel Error

The remaining pixel errorsfor each system are shownin Fig-
ure 24. For IBV Sthereislittle difference in performance for
different depth estimation methods up to about 35°. After this
point, the error when using absolute depth immediately be-
comes very high, whereas using constant depth allows good
performancefor anadditional 10°. Usingtheinitial distanceas
adepth estimate generally resultsin greater error, particularly
for larger rotations.

The 2§D system shows remarkably better error reduction
using absol ute depth asan estimate rather than constant depth.
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Fig. 23. Average iterations until convergence versus meters
of z-axistrand ation with differing depth estimation.

Either constant depth estimate will provide roughly the same
performance. HVS, KD and PC&SH performances do not
appear to be much affected by the choice of depth estimation,
although PC& SH is not able to reduce the error effectively
for any rotation.

4.7.2. Number of Iterations Until Convergence or Failure

The number of iteration to convergence are shown in Fig-
ure 25. All methods of depth estimation for IBV S show avery
rapid rise in iterations, quickly reaching the imposed ceiling
of 300 iterations. IBV'S using true depth has a sharp drop in
iteration at about 35°, mirroring the increase in pixel error,
whereas using a constant depth sees this drop in iterations
about ten pixels later.

The 2§D system has roughly similar performance for all
depth estimation for rotation below 35°. After this point, con-
stant depth estimation schemes take a brief ramp up then
plummet to just afew iterations. True depth rampsup aswell,
although this increase begins at a greater rotation angle and
continues longer, reaching a higher number of iterations.

Fig. 24. Average remaining pixel error versus degrees of
y-axis rotation with differing depth estimation.

HVS and KD are not at all affected by depth choice of
estimation scheme; both show a very slowly increasing rela
tionship with the rotation angle. PC& SH has aroughly linear
increase in iterations with increasing rotation angle, although
using a constant depth estimation method results in slightly
fewer iterations for larger rotations.

4.7.3. Maximum Feature Point Excursion from the Principal
Point

Figure 26 shows the maximum feature point excursion during
thistest. IBV'S shows a constant level of feature point excur-
sion up to 35° of rotation. After this point the system experi-
ences large amounts of feature point excursion for al depth
estimation schemes, although using the initial depth typically
causes agreater amount of excursion than either true depth or
goal depth.

The 22D systemiinitially reveals aconstant value for max-
imum feature point excursion for all methods of depth estima-
tion. When using constant depth, however, there is an enor-
mous spike, around 50° when using goa depth, and a much
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Fig. 25. Average iterations until convergence versus degrees
of y-axisrotation with differing depth estimation.

more subtle spikewhen using theinitial depth. After thisspike
the maximum excursion returnsto itsoriginal, constant value.

Once again, HVS, KD and PC& SH show no variation in
performance between depth estimation methods; all experi-
ence an exponential increase as rotation increases.

4.7.4. Maximum Camera Trandlation

The maximum cameratranslation isseenin Figure 27. IBVS
followsashallow linear increasefor al depth estimation meth-
ods until about 35°, when the tranglation drastically increases
and becomes extremely erratic for true depth. Using a con-
stant depth allows the system to continue on the original path
for an additional ten pixels or so before becoming large and
erratic itself.

HV 'S exhibits more trand ation if a constant depth estima-
tion is used, but the magnitude of this trandation is so small
asto be inconsequential.

The 22D system is indistinguishable between depth esti-
mation for values up to around 43°, before which it follows
a shallow increase with rotation angle. After this point, ini-
tial depth begins an exponential increase in trand ation. Goal
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Fig. 26. Average maximum feature point excursion versus
degrees of y-axis rotation with differing depth estimation.

depth undergoes a brief spike to high trandlation, after which
it returns low and follows the same exponential increase as
initial depth. When using true depth, 2§D becomes irregular
after 50°, but remains below 2 m.

KD initialy follows an apparent parabolic dependence
upon the rotation angle for each depth estimation method.
The parabola for true depth has dlightly higher values then
a constant depth, but peaks at only about 0.475 m. At 35°
the maximum translation immediately plunges to zero trans-
lation. The plots for both constant depth estimation schemes
are nearly identical and, like true depth, also undergo a dis-
continuity and drop to zero, in their case at 45°.

Using initial depth or true depth for PC&SH results in
identical maximum cameratranslation, aslow linear increase
with rotation angle. Using goal depth resultsin the same plot,
with the exception of a sharp spike up to 12 m tranglation
between 45° and 50°.

4.7.5. Maximum Camera Rotation

Finally, for this test, we present the maximum camera rota-
tion angle, seen in Figure 28. Each depth estimation method
increases in a linear fashion, at approximately the same rate
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Fig. 27. Average maximum cameratransl ation versus degrees
of y-axisrotation with differing depth estimation.

for IBVS for smaller rotations. At about 35° the maximum
rotation becomes erratic, oscillating between very high and
very low values. The constant depth estimation methods con-
tinue the linear increase until approximately 42° where they
leap to aroughly constant value around 260°. HV S hasno de-
pendence upon the depth estimation, and maximum rotation
issimply theinitial pose.

Similar to its performance viewing maximum translation,
2D initially follows the same linear increase for all depth
estimation methods. At 42° the system using goa depth
takes alarge spike upwards, while initial depth takes a small
downward mation. Both constant depth methods then resume
roughly the same trajectory they had earlier. About thistime,
using true depth begins to result in an erratic, although gen-
eraly lower amount of rotation.

KD also hasamaximum rotation that appearssimilar toits
maximum translation. Each depth estimation scheme follows
a parabolic path initially, switching to a linear decrease be-
tween 30° and 40°. PC& SH follows the same, roughly linear
increasein rotation for all depth estimation schemes, with the
exception of a spikein rotation when using the goal depth.
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Fig. 28. Average maximum camera rotation versus degrees
of y-axis rotation with differing depth estimation.

4.8. Simulation: Rotation of Feature Points with Differing
Depth Estimation

Zeroing the image error during this test is generally difficult
and requiresmotionsalong all degreesof freedom. Thechoice
of depth estimation will affect the rate of convergence for
translational motions. Thereis very little differencein IBVS
for various choices of depth, and it generally performs quite
well. The Z%D system notably becomes unstable and fails
regularly after 60° when a constant depth is used. Similarly,
PC& SH becomes unstable after 70° when a constant depth
is used. On the other hand, using a constant depth for KD
extends its range of stable performance by about 5°.

4.8.1. Remaining Pixel Error

Remaining pixel errors are shown in Figure 29. IBVS and
HV S show little deviation from around one pixel of error for
al methods of depth estimation. The 2§D system is able to
zero the error for all rotations using absol ute depth, but when
using aconstant depth estimation method resultsin adramatic
increasein remaining error after the feature points are rotated
approximately 60°.
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Fig. 29. Average remaining pixel error versus degrees of
feature point rotation with differing depth estimation.

Similarly, PC&SH is able to reduce the error to around
ten pixels for all rotations if true depth is used, but suffers a
dramaticincreasearound 70 if either constant method isused
to estimate depth. KD isableto reduce the error to around one
pixel for rotationsof thefeature pointsunder 35°. At thispoint,
thetruedepth method immediately spikes, then settlesto about
500 pixels of error. The constant depth methods continue to
reduce the error to one until 40°, then they spike and settle
to the same value as true depth. For each of these systems,
failure is due to extremely large camera rotations during the
early stages of visual servoing from which the systems are
unable to recover within 300 iterations.

4.8.2. Number of Iterations Until Convergence or Failure

Graphsfor the number of iterationsuntil convergence are seen
in Figure 30. IBV S quickly rises and then plateaus and even-
tually decreases for each depth estimation system. In gen-
eral, the constant depth methods have adightly lower number
of iterations. HV S apparently requires more iterations using
the constant depth estimation than either constant method.
The Z%D system initially shows all methods following alin-
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Fig. 30. Average iterations until convergence versus degrees
of feature point rotation with differing depth estimation.

ear or extremely slow growing inverse exponential increase
with rotations for each depth estimation method. Around 60°
both constant depth estimation schemes plummet to very few
iterations.

For KD, each system follows an identical exponential in-
crease in iterations for lower rotations. After about 35°, the
true depth method plunges to very few iterations, while the
constant depth methods continue to increase for another 5° of
rotation before they too drop. IBV'S experiences an erratic,
but roughly slow growing exponential increase in iterations
as the amount the feature points are rotated increases. Gener-
ally, the number of iterationsis lower when a constant depth
estimation is used.

4.8.3. Maximum Feature Point Excursion from the Principal
Point

The maximum feature point excursions are plotted in Fig-
ure 31. All depth estimation methods for IBV'S result in an
exponential increase with increasing rotation of the feature
point plane. The two constant depth estimation methods ex-
perience a larger amount of excursion than using true depth.
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Fig. 31. Maximum feature point excursion versus degrees of
feature point rotation with differing depth estimation.

On the other hand, 22D has a constant value when true depth
isused, but using either constant depth estimation schemere-
sultsinalarge spikeat 70°. KD also mostly holdsto aconstant
value, but experiences a spike for true depth at 40° and both
constant depth methods at 50°. Finally, PC& SH maintains a
constant maximum feature point excursion for all rotationsif
true depth is used, but experiences a spike for both constant
methods at 80°.

4.9. Experimental Results. Rotation About the Optical Axis
with Differing Depth Estimation

The camera was rotated about the optical axis over a range
of values. Due to kinematic limits of the robot wrist, 120°
was the largest rotation attainable, so the rangeisfrom 30° to
120° in degree increments. Perhaps the strongest conclusion
we can draw is that the effects of noise have a much greater
effect on performance than depth estimation method for this
task.

4.9.1. Remaining Pixel Error

No system shows astrong dependence on the method of depth
estimation. IBVS and KD are able to consistently zero the
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Fig. 32. Experiment: remaining pixel error versus degrees of
z-axis rotation with differing depth estimation.

feature point error. HV S and 2% D aredightly less consistent,
although they both reduce the error to within two pixels.

PC& SH failed due to losing the feature points after 70°.
For initial offsets greater than 30° PC& SH tended to have
large, erroneous rotations and translations. These motions al-
ways occur during the first one or two iterations. Returning
to eg. (17), we see that errors in the signal can generate an
erroneous Jacobian and lead to large, incorrect vector J.f . be-
ing subtracted from the feature point error. KD suffered from
similar effects, but the results were not as extreme.

4.9.2. Number of Iterations Until Convergence or Failure

Again there is no evident dependence upon the method of
depth estimation. BV S shows adependence upon the amount
of tranglation, whileHV'S, 22D, and KD do not. 23D requires
the largest number of iterations. During visual servoing 2§D
converged quickly to around two pixels of error, but had a
great deal of trouble reducing the error further, generally tak-
ing severa hundred iterations to converge to a steady error.
PC& SH wasfailed after 70° of rotation, and as seen here this
failure happened very quickly, within just afew iterations.
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Fig. 33. Experiment: iterations until convergence versus
degrees of z-axis rotation with differing depth estimation.

4.9.3. Maximum Camera Translation

Maximum translation for IBV S has a strong correlation with
the amount of rotation, as the system experiences camerare-
treat, moving up to a half meter away from the image plane
at 120°. This is close to the kinematic limits of the robot,
but IBV S always successfully completed the error. Asin the
simulations, the system retreats less using a constant depth
estimation method.

HVS, 21D KD and PC&SH show no noticeable depen-
dence upon the depth estimation method. These three sys-
temsincreasein trandlation asthe rotation increases. For 23-2L D
and PBV Sthisis generaly dueto errorsin the calibration of
the camera offset from the end-effector, and isonly afew cen-
timeters. KD and PC& SH suffersfrom the erroneous motions
described above, with PC& SH being affected far worse.

4.9.4. Maximum Feature Point Excursion

Asin the simulations, IBVS has the least amount of feature
point excursion, athough there is noticeable excursion since
the effects of calibration errors of the camera offset from the
end-effector become strong for largerotations. HV'S, 2% D and
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Fig. 34. Experiment: maximum camera translation versus
degrees of z-axis rotation with differing depth estimation.

KD surrender control of the feature point position, so have
larger feature point excursion. KD isthe worst of these three
due to the incorrect motions described earlier. PC& SH fails
due to feature point loss after 70°.

4.10. Experimental Results: Trandation Along the Optical
Axiswith Differing Depth Estimation

The systems were tested for a range of translation from
—10 cm (away from the image) to 10 cm (towards the im-
age). Maximum trandation from goa and maximum feature
point excursion from image center were practically identical
for all casesand all depth estimation methods. The maximum
tranglation was the initial offset the feature point excursion
wastheinitia image for positive optical axistranslations (to-
wardsthe feature point plane) or the goal position for negative
tranglation.

4.10.1. Remaining Pixel Error

IBVS, HVSand KD areal ableto reduce the error below one
pixel with no discernible dependence on the depth estimation
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Fig. 35. Experiment: maximum feature point excursion ver-
sus degrees of z-axis rotation with differing depth estimation.

used. 2% D hasminor trouble zeroing the error when aconstant
depth estimate is used. It converges at a rate on a par with
true depth, but once within two pixelsit cannot reduce much
further and reachesasteady error lessthan two pixels. PC& SH
shows mixed results, able to zero errors for motions starting
below 5 cm, but occasionally only reaching a steady error for
larger motions. The reason for thisremaining error isseenin
the maximum camerarotation.

4.10.2. Number of Iterations Until Convergence or Failure

IBVS, HVSand KD show similar results, again with no clear
dependence on the depth estimation. All three appear to re-
quire more iterations to zero motions towards the feature
points. Due to the fact that they sometimes could not zero
the error, but rather reduced it to low steady amount, both
2§D and PC& SH show alarger number of iterations. It is not
well reflected in this graph, but 2 % D does converge well, but
has trouble reducing below one pixel.

IBVS, HVS, 22D and KD all show very little camera ro-
tation, as expected for strict translation. Thereis no clear de-
pendence on depth estimation except for 2% D, whichismore

Fig. 36. Experiment: remaining pixel error versus meters of
z-axis trand ation with differing depth estimation.

consistent and exhibits dightly less rotation using true depth.

Similar to the resultsfor optical axis rotation, PC& SH un-
dergoes large rotations when the initial pose is far away on
the optical axis, particularly when the initial pose is farther
from the image. These rotations always occur during the first
one or two iterations when the induced trandation has alarge
component along the z-axis.

4.11. Experimental Results: Rotation of Feature Pointswith
Differing Depth Estimation

In order to preserve consistency during experiments and to
have a means to determine distance to the goal position we
could not simply rotate the feature point planefor each exper-
iment. Thus, the experiments for rotation of the feature point
plane involved finding a system of initial poses for the cam-
erathat were equivalent to rotating the feature point plane. To
accomplish this the camerawas put in its normal initial posi-
tion, the feature point plane was rotated the desired amount,
and the system was allowed to visual servo until the error was
zeroed. This position was then recorded. During the experi-
ments the camera would capture a goal image as usual, then
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Fig. 37. Experiment: iterations until convergence versus
meters of z-axis translation with differing depth estimation.

be moved to the appropriate stored position and return to its
initial position viavisua servoing.

Rotations of the feature point plane of 40° required the
robot to move very close to its joint limits, and 45° proved
impossible to achieve. Since they were so close to the joint
limits at 40°, some systems, such as IBVS, that tend to have
erroneousmotionsat start, would quickly hit thesejoint limits.

4.11.1. Remaining Pixel Error

All systems have more trouble reducing the error below one
pixel for thistask than they did for the previous systems. HVS
and 2% D areableto successfully reducetheerror for thewhole
range of motions. IBV'S, KD and Pc& SH are successful up to
30° of feature point rotation. After this, IBV Sand PC& SH hit
the joint limits as mentioned earlier. KD hits the joint limits
at 35°, and if using a constant depth estimation method loses
afeature point at 40°. IBV S may reveal ahigher pixel error if
constant depth estimation methods are used.

4.11.2. Number of Iterations Until Convergence or Failure

Once again there is little discernible dependence upon the
depth estimation method used. When successful, IBVS, HV'S,

PC&SH Z Translation(mm) Maximum rotation from goal
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\

\ /
\
\/
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Fig. 38. Experiment: maximum camera rotation versus
degrees of z-axistranglation with differing depth estimation.

KD and PC& SH performsimilarly, requiring between 150 and
200iterationsto convergeto zero theerror. 22D oftenrequires
more iterations; once again it has some trouble reducing the
error below two pixelsalthough it converges on a par with the
other systems. When IBVS, KD and PC& SH fail they do so
quickly, usually within ten iterations.

5. Conclusions

Visual servoing, and roboticsin general, isaconstantly evolv-
ing field. Asinnovations continue to be made, it becomesin-
creasingly important to explore the different methodsin order
to gain insight into the characteristics, strengths, and weak-
nesses of each. Focusing on the field of partitioned image-
based visua servo systems, we have performed several stan-
dardized tests of robustness in the face of imaging error and
system performance against difficult tasks. These data can
be used to select appropriate visua servo systems for spe-
cific tasks and conditions or to provide direction for future
research.

We were able to determine several key characteristics of
each system. IBVS has noted difficulty for severe rotations

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 8, 2010


http://ijr.sagepub.com/

980 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October—November 2003

IBVS Feature point rotation Number of iterations HVS Feature point rotation Remaining pixel error

IBVS Feature point rotation Number of iterations

200 4 200, 230,
p— — Trez
180 \ 35 GoalZ 180 \ 220 Goal Z
\ Startz \ Start Z
160 \ 160 \ 210
e \ 3 IS \
10 % \ o \/ \\ 0
120 \ 25 \ 120 \ 190 //
\ \ \ /
100 \ 2 / \ 100 \‘ 180 \ / /’
\ \ \ / /
80| \ \ 80 \ 170 \ / /
\ 15 \ \ \ / /
— Truez \ / \ — Trez \ \ /
60 Goal 2 \ \ 60 Goal Z \ 160 \ / /
Start Z ‘\ 1 / 0 Start Z ‘\ 150 \ / /
40 \ ~ \ \ / /
20 05 20| \ 140) M
— ) 0 E— 130
10 15 20 25 30 35 40 10 15 20 25 30 35 20 10 15 20 25 30 35 40 10 15 20 25 30 35 20
255D Feature point rotation Remaining pixel error KD Feature point rotation Remaining pixel error 25D Feature point rotation Number of iterations KD Feature point rotation Number of iterations
500 250
— Trez True z — Tuez
— 350 Goal Z -
35 GoalZ 450 GoalZ Startz B
StartZ Startz \
400 200) \
3 350 300 \
R T~ \\
25| 300 \ 150 ~ \
250 250 \
2 ~ AN \
200 —_ \
100 \
15 — 150 200 \
i 100 — Truez \
50 Goal Z \
50 — 150 Startz
05
o -
100 0 —
% 15 20 25 30 35 20 X0 15 20 25 30 35 20 10 15 20 25 30 35 40 10 15 20 25 30 35 40
PCSH Feature point rotation Number of iterations
PCSH Feature point rotation Remaining pixel error 200
— ez
wof | Goaz Goal
e 250 Startz
70
200
60 -\
50 150 \
w0 \
100
% \
20 50| \
10| / \
—— Q
— 10 15 20 25 30 35 40
10 15 20 25 30 35 20

Fig. 39. Experiment: remaining pixel error versus degrees of
feature point rotation with differing depth estimation.

about the optical axis due to increasing cameraretreat as the
angle of rotation increases. IBV'S also has difficulty zeroing
the error for extremely large general motions (thoseincluding
rotations and translation about an arbitrary axis), and in all
casestendsto have alarger amount of cameratranslation than
the other systems. It performs very well in the face of noise
and for smaller general motions.

The 2§D and KD systems perform well, but the perfor-
mance of both is degraded by noise to a greater extent than
either IBVSor PC& SH. Thisisdueto the susceptibility of the
homography matrix computations to noise. The performance
of KD suffers the most from the effects of signal noise since
the trandational component of the homography matrix is af-
fected by noise more than the rotational component. Neither
system experiences the camera retreat that afflicted IBVS.

PC& SH was designed to address the phenomenon of cam-
eraretreat that IBVS experiences during rotations about the
optical axis. By decoupling the optical axis maotions, camera
retreat is prevented. PC& SH avoids the use of the homogra-
phy matrix, and so performs well in the face of signal noise.
However, the z-axis rotations and translation are dependent

Fig. 40. Experiment: iterations until convergence versus
degrees of feature point rotation with differing depth
estimation.

upon the relative positions of the feature points. Thus, it per-
forms poorly when rotations about the x-axis and/or y-axis
alter the relative positions of feature points.

The method of depth estimation does not generally have
much effect on system performance. In general, the choice
of depth affects only the magnitude of the trandation. Both
KD and 2§D decouple the rotation and translation motions,
so the depth estimation truly appears as a trandlation gain
coefficient. Inthe case of IBV'S, cameraretreat isreduced and
system stability improved with the use of a constant for depth
estimation, at the expense of a slower rate of convergence.
The 2§D system, on the other hand, experienced a slightly
reduced stability when a constant depth was used and faced
with large rotations about an arbitrary axis. PC& SH and KD
experienced little difference, good or ill, from different depth
estimation methods.
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