
 http://ijr.sagepub.com/
 

Robotics Research
The International Journal of

 http://ijr.sagepub.com/content/22/10-11/955
The online version of this article can be found at:

 
DOI: 10.1177/027836490302210011

 2003 22: 955The International Journal of Robotics Research
Nicholas R. Gans, Seth A. Hutchinson and Peter I. Corke

Servo Control
Performance Tests for Visual Servo Control Systems, with Application to Partitioned Approaches to Visual

 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 
 

 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 
 

 http://ijr.sagepub.com/subscriptionsSubscriptions: 
 

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://ijr.sagepub.com/content/22/10-11/955.refs.htmlCitations: 
 

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/22/10-11/955
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/22/10-11/955.refs.html
http://ijr.sagepub.com/


Nicholas R. Gans
Seth A. Hutchinson
Department of Electrical and Computer Engineering
The Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
405 N. Mathews Avenue
Urbana, IL 61801, USA
ngans@uiuc.edu
seth@uiuc.edu

Peter I. Corke
CSIRO Manufacturing Science and Technology
Pinjarra Hills
AUSTRALIA 4069
pic@cat.csiro.au

Performance Tests
for Visual Servo
Control Systems,
with Application
to Partitioned
Approaches to
Visual Servo Control

Abstract

Visual servoing has been a viable method of robot manipulator con-
trol for more than a decade. Initial developments involved position-
based visual servoing (PBVS), in which the control signal exists in
Cartesian space. The younger method, image-based visual servoing
(IBVS), has seen considerable development in recent years. PBVS
and IBVS offer tradeoffs in performance, and neither can solve all
tasks that may confront a robot. In response to these issues, several
methods have been devised that partition the control scheme, allow-
ing some motions to be performed in the manner of a PBVS system,
while the remaining motions are performed using an IBVS approach.

To date, there has been little research that explores the relative
strengths and weaknesses of these methods. In this paper we present
such an evaluation. We have chosen three recent visual servo ap-
proaches for evaluation in addition to the traditional PBVS and
IBVS approaches. We posit a set of performance metrics that mea-
sure quantitatively the performance of a visual servo controller for
a specific task. We then evaluate each of the candidate visual servo
methods for four canonical tasks with simulations and with experi-
ments in a robotic work cell.

KEY WORDS—visual servoing, partitioned methods, perfor-
mance, test, comparison

1. Introduction

The use of visual data for robot control has been an objective
for many years. It provides dynamic information about the
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environment but is passive unlike sonar or laser range find-
ing systems, which measure a reflected output signal. It also
enjoys the advantage of providing sensory data with which
humans are naturally familiar.

Shirai and Inoue (1973) first described the use of visual
data in a feedback loop to accurately position a robot. This
was the advent of visual servo control, the closed-loop control
of a robot end-effector through the use of image data. While
progress was initially stunted by technological limitations,
the recent decade has seen phenomenal increases in computa-
tional power and digital imaging technology. The ability now
exists to perform real-time image processing on detailed im-
ages using commercially available computers and cameras.

Employing these advances, visual servoing holds a great
deal of potential for the control of robots in changing envi-
ronments. This includes diverse applications such as indus-
trial factories, tracking systems, and steering vehicles (Corke
1993). Visual servoing is also distinctly suited to tasks where
the robot must interact or manipulate the environment rather
than merely observing.

In general, there are two basic approaches to visual
servo control: position-based visual servoing (PBVS; Weiss,
Sanderson, and Neuman 1987; Feddema and Mitchell 1989;
Martinet, Gallice, and Khadraoui 1996) and image-based vi-
sual servoing (IBVS; Sanderson and Weiss 1980; Hutchin-
son, Hager, and Corke 1996). In PBVS systems, features
are detected in an image and are used to generate a three-
dimensional (3D) model of the environment. An error be-
tween the current pose and desired pose is then computed in
the Cartesian task space, and it is this error that is used by the
control system.
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In IBVS, an error signal is measured between the image
features in two images and is mapped directly to actuator
commands. The choice between IBVS and PBVS offers many
tradeoffs. PBVS often requires a 3D CAD model of the objects
in the image. Additionally, PBVS often performs optimally in
three dimensions, i.e., the motions of the robot will typically
follow a least-distance path to the goal. However, PBVS sur-
renders control of the feature point trajectories in the image
and can often fail due to lost feature points. Lastly, methods
of estimating 3D motions from images are often slow and
typically susceptible to noise and calibration errors.

IBVS requires no 3D reconstruction of the environment,
but does require an image taken from the goal position. IBVS
performs optimally in the image space and it is a simple mat-
ter to regulate the trajectory of image features, for instance
preventing them from leaving the field of view. However, cer-
tain control tasks can lead to singularities in the image Jaco-
bian, resulting in system failure. Image-based systems also
surrender control of the Cartesian velocities. Thus, while the
task error may be quickly reduced to zero, complicated and
unnecessary motions may be performed. This is particularly
troublesome when operating in a physically limited or haz-
ardous environment. Finally, while IBVS is robust in the face
of signal noise and calibration errors, it requires an estimate of
the feature point depth, which may be unavailable or difficult
to estimate accurately.

The characteristics of PBVS and IBVS systems have led to
the creation of several partitioned methods (Malis, Chaumette,
and Boudet 1999; Deguchi 1998; Corke and Hutchinson
1999). Partitioned methods use classic, Jacobian-based IBVS
to control certain end-effector motions while using other tech-
niques to control the remaining degrees of freedom. Section 2
will provide necessary background on PBVS and IBVS, as
well as the use of epipolar geometry to determine camera mo-
tion. The partitioned systems will also be described using a
single notational framework in Section 2.

While there have been some theoretical analyses of these
systems (Chaumette 1998; Corke and Hutchinson 1999), to
date, there has been little quantitative analysis of these meth-
ods. Martinet (1999) performed an experimental investigation
of IBVS and several PBVS systems, but only tested three
different positioning tasks. We seek to evaluate numerous
systems over a wide range of motions. We present such an
evaluation for the three methods in Malis, Chaumette, and
Boudet (1999), Deguchi (1998), and Corke and Hutchinson
(1999) along with the classic PBVS and IBVS approaches.
To arrive at a meaningful evaluation, we posit a set of perfor-
mance metrics that measure quantitatively the performance of
a visual servo controller for a specific task. We then evaluate
each of the candidate visual servo methods for four canonical
tasks, under a range of experimental conditions. The metrics,
canonical tasks and the experimental conditions are described
in Section 3. The most interesting results from these tests will
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Fig. 1. Contrasting performance of IBVS and 21
2
D visual

servoing for optical axis rotation.

be presented in Section 4.1

As we detail in Section 4, each system has precise strengths
and weaknesses. However, these systems operate in fun-
damentally different ways, and were designed with differ-
ent control tasks in mind. As an example, Figure 1 shows
the performance of IBVS and 21

2
D visual servoing (Malis,

Chaumette, and Boudet 1999) for a task of rotating 60◦ about
the optical axis. Performance here is revealed in terms of fea-
ture point trajectories, the feature point error over time, and
the camera velocity over time. The systems are both able to
successfully zero the feature point error, but the performed
motions and the trajectory of the feature points differ greatly.

For this reason, it is difficult and often spurious to contrast
the systems. We do not seek to formally rate the systems;
rather the goal of this paper is to establish a basis for com-
parison and present typical system performance so that the
proper system can be chosen to suit the task at hand. Thus,
while we may truly be comparing “apples and oranges”, it

1. The entirety of the data will be available as Matlab figures at http://www-
cvr.ai.uiuc.edu/˜seth/ngans_vs.
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at least becomes possible to select a good apple over a bad
orange.

2. Background

In this section we present basic concepts involved in IBVS,
review the established methods of determining camera motion
from images using a homography matrix (a method used in
several partitioned IBVS systems, and able to provide a PBVS
method), and introduce the three partitioned IBVS systems—
those developed by Malis, Chaumette, and Boudet (1999),
Deguchi (1998), and Corke and Hutchinson (1999).

2.1. Camera Motion from a Homography Matrix

Two of the partitioned IBVS systems, and one possible PBVS
system, derive specific camera motions by computing the ho-
mography matrix relating coplanar–planar feature points in
two images. As in Figure 2, for the 3D pointsFi, i = 1, . . . , n

lying on the planeπ , we definef∗
i

and fi as the homoge-
neous coordinates of the corresponding points in two images.
Throughout this paper, variables superscripted with * will re-
fer to variables in the goal image and values accented withˆ
will refer to estimated values. These points are related by

fi = Hf∗
i
, (1)

in whichH is the 3× 3 homography matrix. This can further
be decomposed as

H = R
(

I3 − tnT

d

)
(2)

whereI3 is a 3×3 identity matrix andR andt are the rotation
matrix and translation vector, respectively, relating the two
camera coordinate frames,n is the normal of the planeπ , and
d is the distance from the second camera origin to the planeπ .

There are numerous methods for computingH given two
sets of image points. We have focused our attention on linear
solutions since visual servoing, in general, requires quicker
calculations than iterative methods may provide. The major
drawback to linear methods is that they are susceptible to
noise.

After computing the homography, it is necessary to decom-
poseH as in eq. (2). Methods to perform this decomposition
are detailed in Faugeras and Lustman (1988) and Zhang and
Hanson (1996). Decomposing the homography is not a trivial
exercise and generally cannot be solved uniquely. Additional
information or views are required to select from multiple so-
lutions. The sets of solutions for multiple views will typically
intersect at one solution. This operation is a simple matter in
visual servoing as the view from the previous iteration can be
used. However, for the first iteration, it will be necessary to
perform an extra motion to acquire a unique view.

p

n n

d
d*

R+t

f*i

Fi

fi

Fig. 2. Notation for two images of points in a plane.

2.2. Position-Based Visual Servoing

PBVS has a long history (Weiss, Sanderson, and Neuman
1987; Feddema and Mitchell 1989; Martinet, Gallice, and
Khadraoui 1996). In PBVS the error signal exists in Cartesian
space. Having stored a goal pose P∗ = [X∗, Y ∗, Z∗, θ ∗u∗]T

where θu is the vector/angle representation of the orientation
(vector/angle is traditionally used in describing the control,
but any method of representing the rotation matrix in three
variables is allowable) and � is a scalar or matrix gain coef-
ficient, we can use methods such as the homography detailed
previously or that given in DeMenthon and Davis (1992) to
determine the current pose of the robot P = [X, Y, Z, θu]T.
We can then set a proportional control law

Ṗ = −�(P − P∗). (3)

If we define the origin of the world coordinate frame as coin-
ciding with the goal camera position, this simplifies to

Ṗ = −�(P). (4)

Using this method, we can incorporate epipolar methods
such as those described above by defining the position of the
goal view as the origin. We calculate P in eq. (4) as follows:
T = [Tx, Ty, Tz]T = d̂ t, where d̂ is an estimate of d. Given
knowledge of the geometry of the feature point locations, it
is possible to accurately estimate d̂ and so determine t to
the proper scale. From the rotation matrix R, we extract the
roll, pitch and yaw angles, ωz, ωx, ωy , obtaining the velocity
screw u = k[Tx, Ty, Tz, ωx, ωy, ωz] in which k is a scalar gain
constant, or a 6 × 6 gain matrix.

We choose to explore the use of the homography in PBVS
since it shares a few characteristics with IBVS such as requir-
ing two images and depth estimation. We will refer to this
method as homographic visual servoing (HVS).
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2.3. Image-Based Visual Servoing

Let r = (x, y, z, ωx, ωy, ωz)
T represent coordinates of the

end-effector, and ṙ = (Tx, Ty, Tz, �x, ωy, �z)
T represent the

corresponding end-effector velocity. Let f = (u, v)T be the
image-plane coordinates of a point in the image and let ḟ be
the corresponding instantaneous feature point velocity. The
feature point velocity can be approximated using the first-
order differences by ḟ ≈ (u − u∗, v − v∗)T. For a stationary
collection of 3D points, the image Jacobian relationship is
given by

ḟ = J (r)ṙ, (5)

with

J =
[

λ

z
0 − u

z
− uv

λ

λ2+u2

λ
−v

0 λ

z
− v

z

−λ2−v2

λ

uv

λ
u

]
(6)

in which λ is the focal length for the camera. Derivations of
this can be found in a number of references including Es-
piau, Chaumette, and Rives (1992), Chaumette (1998), and
Hutchinson, Hager, and Corke (1996). Concatenating the ma-
trix J for three more feature points creates a matrix with full
rank.

The simplest approach to IBVS is to merely use eq. (5) to
construct the proportional feedback control

ṙ = �J −1(r)ḟ (7)

in which ḟ is the desired feature motion on the image plane,
� is a gain scalar or matrix, and ṙ is the control input, an end-
effector velocity. In the general case that the Jacobian is not
square, the pseudo-inverse, J+, is used.

IBVS provides a least-distance solution to the image error.
Thus, the feature points will tend to move in straight lines
to their goal configurations. This often results in complicated
and unnecessary camera motions.

2.4. 2 1
2
D Visual Servoing

The first group to partition the motion calculations in a visual
servo system (Malis, Chaumette, and Boudet 1999) developed
a system with the goal to correct two shortcomings of IBVS.
The first is the need for depth estimation when calculating
the image Jacobian. The second is the fact that IBVS often
does not converge to zero error when the initial position is far
removed from the goal position. Deriving the rotation R from
the homography matrix (2), and inserting it into the control
law, this system is coined 2 1

2
D visual servoing (2 1

2
D).

2 1
2
D uses a different feature point vector and image Ja-

cobian than the other IBVS systems we investigate. We
will denote the unique parameters with a ∼. The feature
point velocity vector is augmented with depth and rotation
information

˙̃f = (u − u∗, v − v∗, log ρ, θµ)T (8)

where ρ is the ratio z

z∗ , and θµ is the angle and rotation axis of
the rotation matrix R extracted from the homography matrix
as in eq. (2). Furthermore, ρ can be directly calculated from
the homography matrix as

ρ = det(H)
[f∗T , 1]n∗

[fT, 1]n . (9)

Malis, Chaumette, and Boudet (1999) define the motion con-
trol law as

ṙ = −�J̃−1(r)ḟ , (10)

J̃−1 =
[

d̂∗ρJv
−1 −d̂∗ρJv

−1Jω

0 I3

]
(11)

where Jv and Jω are the translational and rotational portions
of the standard image Jacobian (6), composed of the first three
and last three columns respectively, and d̂∗ is an estimate of the
distance between the focal point and the feature point plane.

Note that while four or more points are required to com-
pute the homography matrix, the partitioned Jacobian, and
therefore the velocity, are determined using only one point.
In the presence of noise or quantization error, this may cause
motions that would not be present in a least-squares solution.

Given its embedded depth estimation, we expect the 2 1
2
D

system to perform well given little or no external data on the
distance to goal. Additionally, using motion estimation meth-
ods to compute rotations should allow it to perform well in
the face of extreme rotations. However, reliance on H also
appears to be an Achilles’ heel, adding a great deal of com-
plexity to calculate and decompose, as well as a susceptibility
to noise, as discussed in Section 2.1.

2.5. The Method of Deguchi

Deguchi (1998) addresses the fact that only the translation
portion of the Jacobian is dependent upon the distance to the
goal. Similar to 2 1

2
D, Deguchi’s method (which we will refer

to as KD) partitions the system into translational and rotational
components. Solving the planar homography, as in eq. (2),
delivers the scaled translation T

d
. The translational velocity of

the end-effector is then computed as

ṙv = [TxTyTz]T = d̂(
T
d

) (12)

where d̂ is an estimate of the distance from the camera goal
position to the plane containing the image features. The equa-
tion for the rotational velocities becomes

ṙω = [ωxωyωz]T = J+
ω
(ḟ − Jv ṙv) (13)

with Jω and Jv the same as eq. (10).
Continuous depth estimation is no longer required since

the distance d̂ is a constant and needs to be generated only
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once. Additionally, d̂ appears simply as a gain factor to the
translational motion component; thus, it is not necessary that
the estimate be highly accurate.

We expect that KD will have similar strengths and weak-
nesses to 2 1

2
D. It does not require explicit depth estimation;

however, the use of the homography matrix adds complexity
and increased noise susceptibility.

2.6. The Method of Corke and Hutchinson

The method of Corke and Hutchinson (1999) (referred to as
PC&SH) was designed to avoid the task problem due to large
rotations about the optical axis. As IBVS systems proceed, the
feature points converge to their goal configuration in straight
lines. Thus, rotation about the optical axis will be accompa-
nied by a backwards translation, a phenomenon referred to
as camera retreat (Chaumette 1998; Corke and Hutchinson
1999).

As the rotation approaches 180◦, this retreat approaches
infinity. To counter this, Corke and Hutchinson decouple the
optical axis components of translation and rotation (Tz and ωz)
from the Jacobian, and calculate these motions using simple
image features.

To calculate Tz, σ is defined as the square root of the area
of the regular polygon enclosed by the feature points. Here
we take a departure from the technique described in Corke
and Hutchinson (2000). Rather than defining

Tz = γTz
(σ ∗ − σ) (14)

we define

Tz = γTz
ln(

σ ∗

σ
) (15)

where ∗ indicates a feature in the goal image, and γTz
is a scalar

gain coefficient. This delivers a Tz which varies linearly with
motion along the optical axis.

Regarding ωz, the variable θ is defined as the angle be-
tween the horizontal axis of the image and the line segment
connecting two points in the image. This leads to

ωz = γωz
(θ ∗ − θ). (16)

Defining a vector ṙz consisting of the translation and rota-
tion along the optical axis, the equation for x and y motions
is

ṙxy = [Tx, Ty, ωx, ωy]T = �J+
xy

(ḟ − Jzṙz) (17)

where Jxy and Jz are matrices built from the x and y com-
ponents of the image Jacobian and the z components of the
image Jacobian, respectively.

3. Descriptions of Canonical Tasks, Performance
Metrics, Test Conditions and the Methodology of
Simulations

When comparing a diverse set of visual control systems, it is
extremely important to avoid inadvertent bias. Thus, a rigid
set of standards must be determined and applied throughout
testing. Towards this goal, we have formulated a series of
control tasks which typify common visual servo operations.
In addition, we have a set of quantitative metrics with which
to evaluate performance. We have also categorized work con-
ditions that visual servo systems often experience difficulty
handling.

3.1. Tasks

Many of the approaches to visual servoing have been devel-
oped in response to specific problems that are task-dependent.
Therefore, to evaluate the various methods, we have selected a
set of four tasks that we believe represent the most interesting
tasks encountered by visual servo systems.

• Task 1: Optical axis rotation. The first task that we
consider corresponds to a pure rotation about the optic
axis. The difficulty of this task for IBVS systems was
first noted in Chaumette (1998). By testing the systems
over a large range of initial rotations, we can easily see
how different systems perform. We evaluated perfor-
mance over rotations ranging from 30◦ to 210◦, specif-
ically to gain insight into performance into rotations
greater than 180◦.

• Task 2: Optical axis translation. The second task is
a pure translation along the optic axis, with initial po-
sitions ranging from 1 m retreated from goal to 1 m
advanced through the goal. We have chosen to isolate
this direction of motion, since visual servo systems are
intrinsically dependent upon depth estimation. Transla-
tion perpendicular to the optical axis does not typically
prove difficult for visual servo systems and is of little
practical interest, thus is not considered as a separate
control task.

• Task 3: Camera yyy-axis rotation. The third task cor-
responds to a pure rotation of the camera about the
y-axis of the camera coordinate frame. These results
should be indicative of rotation about any axis parallel
to the image plane. The initial values range from 10◦

to 80◦ of rotation. While pure rotations of just a few
degrees will remove features from the CCD array of a
standard camera, in simulation we can allow ourselves
an infinite image plane to perform this test.

• Task 4: Feature point rotation/general motion. The
final task is to rotate the 3D feature points about an
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axis perpendicular to the optical axis and lying in the
feature point plane. The visual servo system will need
to perform rotation and translation in order to zero the
image error. The feature points will be rotated through a
range of positions from 10◦ to 80◦. After 80◦ the feature
points in the image plane become nearly collinear, and
visual servoing becomes impossible.

Examples of the initial and goal positions for each task can
be seen in Figure 3.

3.2. Performance Metrics

Before a quantitative evaluation can be performed, it is neces-
sary to posit a set of performance metrics that can be quantita-
tively evaluated. We have chosen the following performance
metrics for our analysis.

• Number of iterations to convergence. Visual servo-
ing was considered successful and halted if the average
feature point error was less than one pixel. If the aver-
age error varied less than 0.1 pixels for five iterations
the system was considered to have converged to a con-
stant value and servoing was halted. The number of
iterations can obviously be increased or decreased by
altering the coefficients of the gain matrix. Thus, the
number of iterations itself is not extremely meaningful
but proves insightful when comparing the performance
of multiple systems or a system versus task errors.

• Error at termination. At the halt of visual servoing,
the remaining pixel error of each point from its goal po-
sition was calculated. Visual servoing was halted if the
error was successfully zeroed or converged to steady
state, as discussed above. Additionally, if over 300 it-
erations had been performed without convergence vi-
sual servoing was halted. Finally, visual servoing was
halted if the camera had retreated more than 10 m from
the goal, advanced through 0 m depth, or if the fea-
ture points moved to more than 3000 pixels from the
principle point.

• Maximum feature excursion. At each iteration while
visual servoing, the current norm of each feature point
to the principle point (center of image) was calculated.
The maximum value, in pixels, attained over the entire
process was then reported.

• Maximum camera excursion. At each iteration, the
current Cartesian distance of the camera from its goal
position was calculated. The maximum value attained
was reported.

• Maximum camera rotation. Maximum camera rota-
tion can be difficult to track as singular positions can
give rise to enormous angle measures (roll/pitch/yaw

Fig. 3. Typical feature point motions during IBVS optical
axis rotation.

angles, for instance) while resulting in little or no ac-
tual camera rotation. To gain a useful measure we trans-
formed the rotations into single axis/angle form and
tracked the magnitude of the angle of rotation. The max-
imum value obtained was reported.

3.3. Test Conditions

There is an extremely broad set of test conditions that
can affect performance of visual servo systems. These in-
clude signal noise, camera calibration error, robot kinematic
error and quantization effects. We have selected two ex-
tremely important test conditions and performed simulations
of several visual servo systems under our prescribed testing
methodology.

• Noise in measured pixel coordinates. Signal noise
will cause an erroneous offset in the location of feature
points. This will naturally generate errors into the calcu-
lated camera motion. To measure the effects noise can
have on different systems, we simulated signal noise
in feature detection by adding an offset to the image
feature coordinates. This offset is a two-dimensional
(2D), zero-mean Gaussian random variable with vari-
ance being ranging from 0 to 0.8 pixels. Since noise is
a random process, the experiment was performed for
the full range of motions and variance 100 times the
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results averaged in order to smooth the results and re-
duce the effect of outliers. These results are presented
as 3D graphs with variance and the rotation/translation
appropriate for the task as independent parameters.

• Method of depth estimation. As mentioned above,
image-based approaches require some estimate of
depth. Several methods have been previously investi-
gated, including using a constant depth value (often the
depth value for the goal configuration), using an esti-
mation scheme to reconstruct the depth, or, in the case
of simulations, using the exact depth. The method of
depth estimation is an input parameter for our simula-
tions. The results of these tests are 2D graphs showing
the performance of each system for each task using the
three different depth estimation methods with the ap-
propriate rotation/translation as independent variable.

3.4. Simulation Methodology

All of our experiments were conducted in simulation us-
ing Matlab and the Machine Vision Toolbox and Robotics
Toolbox (Corke 1996), which are publicly available at
http://www.cat.csiro.au/cmst/staff/pic/. For each simulation,
feature points consist of the corner points of a square in three
dimensions. The square was simulated as 0.1 × 0.1 m2, and
the camera was positioned 1.4 m from the plane. The use of
homography in three of the visual servo systems requires that
the features be planar. While the placement of feature points
in this plane should have little effect on system performance,
using the corners of a square for feature points allows for uni-
formity of results that an oddly shaped configuration might
not.

Images were projected using a simulated camera with
0.00001 m2 pixels and a focal length of 0.0078 m2. The cam-
era plane was allowed to be infinite. However, if a feature
point strayed more then 3000 pixels from the principal point,
visual servoing was halted to prevent the presence of extreme
outliers in the data set. Additionally, if a system had not ze-
roed the error or converged to steady-state error within 300
iterations, visual servoing was halted. The feature point loca-
tions were represented by floating point numbers and were not
rounded, thus the effects of quantization error were ignored.

The gain for each system was a 6 × 6 diagonal matrix,
allowing for the individual tuning of each degree of Cartesian
freedom. The gains were selected in order to zero an error
for the corresponding degree of freedom in approximately 30
iterations, while motion in the remaining degrees of freedom
was held at zero. This is significantly faster than visual ser-
voing systems are typically run, but represents a realistic goal
of zeroing an error in 1 s of video signal.

Under several conditions detailed below, visual servoing
will be halted. If the error was successfully zeroed or con-
verged to steady state, the system will be considered to have

Fig. 4. Typical feature point motions during IBVS optical
axis rotation.

been successful; otherwise, visual servoing will be considered
to have failed. In the case that certain metrics are exceeded,
visual servoing will be halted. Since these excessive results
indicate an unbounded output, the system will be considered
to have become BIBO unstable.

3.5. Experiment Methodology

We performed experiments to verify the simulated results for
different depth estimation. It is not practical to experimentally
verify the reaction to increased noise since this would involve
adding artificial offsets to the feature point locations, which is
little different than what was done in the simulations. Further-
more, the time necessary to perform Monte Carlo analysis of
the random effects of noise is extravagant.

The experiments were performed on a PUMA 560 robot
arm, which has six degrees of freedom. The camera was a
Sony V-500 with a 1.2 mm focal length lens. The images con-
sisted of four colored dots on a black background, arrayed at
the corners of in a 5.08 cm square. The feature points consisted
of the centers of these dots, and could generally be isolated to
within 0.1 pixels. The image was centered to within one pixel
in the image. The goal position was approximately 60 cm
above the feature point plane. The camera was coarsely cal-
ibrated using the methods detailed in Tsai (1987) and Lenz
and Tsai (1989). No averaging was done to reduce the effects
of signal noise, but obvious outliers were not included in the
final results.

An example of the initial and goal images can be seen in
Figure 4.

Visual servoing proceeded until all feature points were
within one pixel of their goal positions (zeroed the error),
the average pixel error had not deviated more than within 0.5
pixels for more than ten iterations (steady state), more than
500 iterations were performed (timeout), the robot reached its
joint limits (failure) or a feature point was lost (failure).

4. Results

In this section we present the data collected for each of the
four systems in Section 3: classic IBVS; 2 1

2
D visual servoing

(2 1
2
D) of Malis, Chaumette, and Boudet (1999); the method
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(KD) of Deguchi (1998); and the method (PC&SH) of Corke
and Hutchinson (2000). Each system was tested for the four
control tasks described and test conditions detailed in Sec-
tion 3. Each division of this section will detail one control
task under one of the test conditions. At the beginning of
each division, we briefly present notable results, followed by
separate subdivisions for each performance metric detailing
individual system performance.

Graphs are presented in groups of four, one for each sys-
tem. They are ordered, in clockwise fashion, as IBVS, KD,
PC&SH, and 2 1

2
D. Tests conducted under the effects of ad-

ditive white noise are presented as 3D graphs with the noise
variance increasing along the right-most axis while the inde-
pendent variable (amount of rotation or translation) increases
along the left axis. The dependent variable (the performance
metric) detailed in each section increases along the vertical
axis. Tasks performed under differing depth estimation meth-
ods are 2D graphs with overlaid plots for each method. The in-
dependent variable increases along the horizontal axis, while
the dependent variable under consideration increases with the
vertical axis. Note that results for each system can vary to
such a degree that the dependent variable is often plotted on
a different scale.

IBVS has noted difficulty for severe rotations about the
optical axis and when the current view is far removed from
the goal position. We thus expect it to have difficulty for most
extreme motions. Both 2 1

2
D and KD decouple the rotation and

translation motion and generally perform well, but both suffer
worse from the effects of noise than the other systems due to
the susceptibility of the homography matrix computations to
noise.

The fact that the translational component of the homog-
raphy matrix is affected by noise worse than the rotational
component causes KD to suffer the worse detriment. PC&SH
was designed specifically to address the difficultly IBVS ex-
periences during large rotations about the optical axis. The
z-axis rotations and translation are dependent upon the rela-
tive positions of the feature point, which will cause problems
when rotations about the x-axis and/or y-axis deform the lo-
cations of feature points. We expect its performance to suffer
during these motions.

Both KD and 2 1
2
D were also designed to remove explicit

dependence upon depth estimation for control, so we ex-
pect good performance under a variety of depth estimation
schemes, including the use of constant depth. KD does per-
form quite well for all depth estimations, while 2 1

2
D typically

shows solid performance for constant methods but markedly
better when using true depth. It is somewhat misleading to
claim that IBVS and PC&SH are dependent upon depth in-
formation. While the current depth does explicitly appear in
the Jacobian, any chosen value will merely have the effect of
scaling the translation. A poor choice of depth estimation may
indeed result in failure, but convergence will be possible for
an astute choice.

Fig. 5. Typical feature point trajectories during IBVS optical
axis rotation.

For the tests conducted under the effects of additive white
noise, the noise variance increases along the right-most axis
while the independent variable (amount of rotation or trans-
lation) increases.

4.1. Simulation: Rotation About the Optical Axis with Noise

Rotation about the optical axis presents a classical problem
for IBVS for large values of the rotation angle. Since IBVS
attempts to zero the error of each feature point in a least-
distance manner (a straight line) the camera will retreat then
move forward again as it rotates. Feature point trajectories
resulting from initial positions corresponding to a moderate
and a large optical axis rotation are shown in Figure 5.

For large rotations the camera will theoretically experience
an infinite retreat resulting in a Jacobian singularity. In real-
ity, the camera will usually reach the limits imposed by the
particular kinematics of the robotic system used. HVS, being
a PBVS system, should not suffer any unnecessary motions.
The partitioned systems we are considering decouple the ro-
tation from the translation motions, they will not suffer from
camera retreat and are expected to succeed for a full range of
motions.

4.1.1. Remaining Pixel Error

We begin with the remaining pixel error, as seen in Figure 6.
IBVS is able to zero the remaining pixel for rotations under
approximately 160◦, even under the effects of increasing lev-
els of noise, as described in Section 3.3. There is an extremely
sharp increase in error after 160◦. At this point the camera re-
treat has essentially brought the feature points to the principle
point and cannot zero the error. These cases also show a slight
increase in pixel error as noise levels increase.

HVS shows moderate dependence upon noise levels, but
no dependence upon the angle of rotation. KD is able to reduce
the pixel error to zero for all rotations except those extremely
close to 180◦. Pixel error increases rapidly with noise for these
failed cases.

The system 2 1
2
D shows a slightly more complicated result.

It is able to zero the error for all rotations under low noise.
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Fig. 6. Average remaining pixel error versus degrees of z-axis
of rotation versus noise variance.

However, there is an increase in pixel error as noise levels
increase. Under higher noise levels, pixel error begins to show
a dependence on the angle of rotation as well. The greatest
error is below seven pixels, much lower than the failed cases
of IBVS or KD. The jagged appearance of this graph suggests
the presence of outliers.

Finally, PC&SH is able to greatly reduce the pixel error
for all rotations, with no increase as rotation increases. There
is a slight increase as noise increases but of only a few pixels.
This indicates that the system converges to constant error for
all levels of rotation.

4.1.2. Number of Iterations Until Convergence or Failure

We now turn our attention to the average number of iterations
until convergence or failure, as seen in Figure 7. IBVS under-
goes an increase in iterations as noise increases. At peak noise
it requires about four times as many iterations to converge as
for zero noise. There is also a shallow increase in iterations
as rotation angle increases. After about 160◦ (mirroring the
sharp increase in remaining pixel error) the number of iter-
ations drops immediately to a negligible number, indicating
that failure generally occurs very quickly.
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Fig. 7. Average iterations until convergence versus degrees
of z-axis of rotation versus noise variance.

The number of iterations for HVS slightly increases as the
rotation angle increases. Additionally, noise levels over 0.5
pixels cause a sharp increase in the iterations required for
convergence.

KD shows an extreme increase in iterations as noise lev-
els increase, requiring about twelve times as many iterations
under high noise. There is a shallow increase in iterations as
rotation increases, with a brief spike towards zero very near
180◦.

The 2 1
2
D system shows positive dependence upon both

noise and rotation. These increases are fairly shallow if only
one of the independent variables is large; however, under large
rotation and high noise levels the number of iterations rises
dramatically, up to about ten times greater than the lowest
value.

PC&SH shows a very slight increase in iterations as rota-
tion approaches 180◦ and a sharper increase as noise levels
grow, requiring perhaps four times as many iterations under
high noise levels than at zero noise.

4.1.3. Maximum Feature Point Excursion from the Principal
Point

The maximum excursions of feature points from the principal
point during this test are shown in Figure 8. Since this test
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Fig. 8. Average maximum feature point excursion versus
degrees of z-axis rotation versus noise variance.

involves rotation of the camera about the optical axis, and
since the feature points are symmetric about the principle
point in the goal image, we expect the graphs to normally
be very flat as the maximum feature point excursions should
correspond with the initial and final positions. At the goal con-
figuration, the distance of the feature points from the principal
point is 79 pixels.

IBVS is very flat for lower rotations, showing only a slight
increase with increasing noise levels. At approximately 160◦

it takes a sharp increase followed by a sharp decrease.
The graph for HVS is flat for no noise, but for higher noise

levels the amount of feature point excursion increases as the
amount of rotation increases.

KD is extremely flat for almost the entire range of rotations,
and any dependence upon noise is obscured by the large scale
of this graph. For values very near 180◦ and significant noise,
there is a ridge of extremely high feature point excursion, as
high as several thousand pixels. This indicates an unbounded
output as the cause of failure.

The 2 1
2
D system undergoes a steady increase in maximum

feature point excursion as the amount of rotation increases;
this indicates that the feature points are undergoing large mo-
tions in the image plane.
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Fig. 9. Average maximum camera translation versus degrees
of z-axis rotation versus noise variance.

PC&SH has little excursion for the entire range of rotations
when noise levels are low. However, as noise levels increase,
there is a sharp increase in the feature point excursion for
rotations over 100◦.

4.1.4. Maximum Camera Translation

During pure rotation about the optical axis, the maximum
camera translation is arguably the most interesting feature.
Plots for this metric are seen in Figure 9.

As expected, IBVS has a substantial amount of camera re-
treat. The maximum camera translation increases in a roughly
exponential fashion as the camera rotation increases and cam-
era retreat becomes more significant. At about 165◦ the cam-
era retreat exceeds 10 m from the goal, and visual servoing is
halted.

HVS has minimal camera translation, as would be expected
for a PBVS method. There is a slight increase as noise levels
cause erroneous motions.

KD has one extremely sharp point of camera motion at
180◦ of rotation and 0.8 pixel standard deviation white noise.
This is when the most strenuous conditions are experienced
and, likely, an outlier results from an unbounded output.
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Fig. 10. Average remaining pixel error versus meters of
translation versus noise variance.

Both PC&SH and 2 1
2
D suffer negligible camera motion

while experiencing slight increases as noise increases, and
2 1

2
D shows a slight increase as rotation approaches 180◦.

4.2. Simulation: Translation Along the Optical Axis with
Noise

There are no stability issues for translation along the optical
axis, and the systems perform very similarly for most perfor-
mance metrics. Indeed, IBVS and 2 1

2
D share the same func-

tion to generate translation velocity, so we expect them to
operate nearly identically. Distinguishing results include the
convergence rate of PC&SH which is not symmetric for nega-
tive and positive translation distance and KD’s large increase
in pixel error and iterations as noise increases.

4.2.1. Remaining Pixel Error

Graphs of remaining pixel error, as seen in Figure 10, have
a similar appearance for all systems. IBVS shows a slight
positive correlation with increasing noise, but no correlation to
translation distance or direction. The 2 1

2
D system has almost

identical performance with the presence of a few spikes during
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Fig. 11. Average iterations until convergence versus meters
of translation versus noise variance.

higher noise. This is hardly surprising as 2 1
2
D uses the IBVS

translation Jacobian.
HVS shows no real correlation to noise or the amount of ro-

tation, the graph is flat except for the natural dip at 0 m of trans-
lation. KD appears to only have correlation with increasing
noise, although pixel error increases much more steeply than
with the other systems. PC&SH appears to perform slightly
better versus noise than IBVS and 2 1

2
D, with the exception

of a spike at −1 m translation and 0.2 pixel variance white
noise. This is likely due to the presence of an outlier.

4.2.2. Number of Iterations Until Convergence or Failure

The graphs for the number of iterations are very similar for
each system, as seen in Figure 11. For low noise levels IBVS,
HVS, KD, and 2 1

2
D all reveal a roughly inverse exponential

increase as distance from goal increases. Additionally, the
number of iterations as a function of distance appears to be
symmetric for both positive and negative translations. Each
of these systems has an increase in iterations as the amount
of noise increases.

HVS seems to be the least affected by noise. For the others,
the effects of noise eventually dominate any dependence on
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translation distance. KD, by far, suffers the worst increase
in iterations as noise levels increase, exhibiting an apparent
exponential relation. The 2 1

2
D system appears to have only a

slight average increase with rising noise, but there are several
spikes at higher noise levels, indicating occasional runs that
required a larger number of iterations.

PC&SH alone has a non-symmetric graph. Negative trans-
lations (camera retreats) require more iterations to zero. Ad-
ditionally, negative translations suffer more from increasing
noise as far as the number of iterations is concerned. This be-
cause the function governing z-translation in PC&SH is not
perfectly symmetric about zero, i.e. the rate of change of the
polygonal area of the feature points changes at a different rate
for advancement and retreat of the camera. Using a logarith-
mic function of the areas lessens this effect, as would using
different gains for forward or backward motion.

4.3. Simulation: Rotation About an Axis Perpendicular to
the Optical Axis with Noise

It is important to note that this experiment could not be per-
formed with a real-world system, as large rotations without
corresponding translation would remove the feature points
from a real camera’s imaging surface. However, it does shed
light on the systems’ abilities to zero errors corresponding to
large rotation.

IBVS is known to perform poorly when the initial image
is far separated from the goal image, and indeed tends to
fail completely for rotations over 35◦. PBVS is regarded to
perform well when a large motion separates the goal from the
current position, so we expect HVS to perform fairly well.

By decoupling the translation and rotation components of
motion, 2 1

2
D and KD are able to achieve superior perfor-

mance. The 2 1
2
D system remains stable as rotation increases,

while KD performs very well up to about 75◦, after which the
system becomes unstable. PC&SH will experience problems
as large rotation alter the feature points and the relative po-
sitions, causing false motions along the optical axis. While
PC&SH remains stable over the whole range, it generally has
a larger error than other systems for the same amount of ro-
tation (assuming they are still stable as well).

4.3.1. Remaining Pixel Error

The average remaining pixel error is seen in Figure 12. IBVS
is able to zero the error until about 35◦, at which point the
pixel error becomes erratic but generally very high, indicating
the presence of a large number of outliers and unstable, un-
bounded outputs. There is no noticeable correlation to noise.

HVS experiences a slight increase as the noise levels in-
crease, but with the exception of one outlier, no discernible
relation to the angle of rotation.

The 2 1
2
D system can zero the error up to 50◦, with a slight

increase as noise increases for these smaller rotations. After
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Fig. 12. Average remaining pixel error versus degrees of
y-axis rotation versus noise variance.

50◦ the error begins to increase with rotation. However, this
system still performs quite well, with the greatest error being
under six pixels.

KD is able to zero the error for the longest range, up to
almost 75◦, with no visible correlation with noise. After this
point, however, it becomes extremely unstable and the re-
maining pixel error immediately streaks upwards.

PC&SH shows good stability, with no unbounded outputs
for the entire range of rotations and noise levels. This is at the
price of a generally higher pixel error even for lower rotations
when other systems could successfully zero the error. There
is also a spike at about 65◦ and zero error variance, indicating
an outlier.

4.3.2. Number of Iterations Until Convergence or Failure

The number of iterations, seen in Figure 13, mirrors the pixel
error results. IBVS starts at about 150 iterations for most er-
ror levels even for small rotation, and increases until about
35◦, where it plunges to zero, indicating that the unbounded
outputs seen in the pixel error occur very early during visual
servoing.

The number of iterations HVS requires increases smoothly
as the amount of rotation increases, and also slightly as the
amount of noise increases.
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Fig. 13. Average iterations until convergence versus degrees
of y-axis rotation versus noise variance.

The number of iterations for KD shows a correlation upon
both rotation and noise, with the greater dependence being on
the amount of rotation. This trend continues until about 75◦

where it plunges, indicating, as with IBVS, that unbounded
output occurs very early.

The 2 1
2
D system has a rather flat region when either ro-

tations or noise levels are low, with a sharp increase as both
begin to increase together. PC&SH also has a positive de-
pendence upon both rotation and noise variance, although the
noise level dependence begins and remains higher then with
the other systems. There is a single dip corresponding to the
spike in pixel error.

4.3.3. Maximum Feature Point Excursion from the Principal
Point

The graphs of system performance for the metric of maximum
feature point excursion are seen in Figure 14. IBVS has min-
imal feature point excursion up to about 35◦. After this point
there is a rough, but generally very large amount of excursion.
There is no discernible dependence on noise.

HVS, KD, 2 1
2
D, and PC&SH have flat maximum feature

point excursions up to around 40◦. After this point the error ex-

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

2

4

6

8

10

12

x 10
4

noise

maximum feature point distance vs degrees of camera y rotation for IBVS 

rotation

ex
cu

rs
io

n

0

0.5

1

0
20

40
60

80
400

600

800

1000

1200

maximum feature point distance vs degrees of y rotation for Hom/PBVS

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

1000

2000

3000

4000

noise

maximum feature point distance vs degrees of camera y rotation for 2.5D 

rotation

ex
cu

rs
io

n

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

1000

2000

3000

4000

noise

maximum feature point distance vs degrees of camera y rotation for KD   

rotation

ex
cu

rs
io

n

0
0.2

0.4
0.6

0.8
1

0

20

40

60

80
0

1000

2000

3000

4000

noise

maximum feature point distance vs degrees of camera y rotation for PC&SH

rotation

ex
cu

rs
io

n

Fig. 14. Average maximum feature point excursion versus
degrees of y-axis rotation versus noise variance.

ponentially increases with rotation angle with no discernible
dependence on noise. These results most likely correspond
to the initial feature point positions. As the angle of rotation
increases, the initial positions will become increasingly dis-
tant from the principal point, and the maximum feature point
excursion will increase as well.

4.3.4. Maximum Camera Translation

For maximum camera translation, refer to Figure 15. IBVS
shows characteristics similar to earlier graphs. Values are con-
stant for small rotations with no noticeable dependence, but
after 35◦ there is a large increase in camera translation, indi-
cating that the unbounded outputs and system failure manifest
themselves as large camera translations.

KD shows no translation at all for minimal noise. In fact,
there is no noticeable dependence at all on rotation, but a
small, linear increase in translation as noise increases. In con-
trast, HVS, 2 1

2
D and PC&SH all show a slight positive de-

pendence on the amount of rotation, but none upon increased
noise.

4.4. Simulation: Rotation of Feature Points with Noise

Rotation of the feature points about the world frame results
in an image displacement requiring potentially significant
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Fig. 15. Average maximum camera translation versus degrees
of y-axis rotation versus noise variance.

rotation and translation about all of the camera axes. This rep-
resents some of the most strenuous tasks available. The indi-
vidual systems will be susceptible to many of the same issues
as they were during camera rotation about an axis perpendicu-
lar to the optical axis. That is, IBVS is known to have stability
problems when large motions are required, and PC&SH will
suffer as the polygon enclosed by the feature points changes
shape. HVS should be able to handle large motions well, with
a potential weakness to noise effects.

4.4.1. Remaining Pixel Error

The remaining pixel error for this test is seen in Figure 16.
IBVS performs quite well; it is able to greatly reduce the
error for the entire range of motions and for all levels of noise
variance. In general, as noise increases, the amount of pixel
error increases, but the highest value is still below 0.4 pixels.
There does not appear to be a correlation with the amount
of rotation during low noise levels. However, for higher noise
levels, a slight, positive dependence upon the rotation appears
to take hold.

HVS has a remaining pixel error slightly above 1 pixel,
even when there is no noise. As the noise levels increase, the
remaining error increases slightly as well in a linear manner.
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Fig. 16. Average remaining pixel error versus degrees of
feature point rotation versus noise variance.

KD is able to greatly reduce the amount of error up to
40◦, at which point the remaining error is extremely high and
irregular, indicating unbounded outputs. The graph of perfor-
mance for 2 1

2
D is very similar in appearance to that of IBVS.

There is a positive dependence upon noise levels, and a slight
dependence upon the magnitude of the motion. The greatest
error is below 0.6 pixels.

PC&SH has a strong, positive correlation with increasing
feature point rotation as the feature point polygon is altered,
but a slight negative correlation with increasing noise. This is
certainly a curious result, but has a simple explanation. The
system is able to quickly reduce the error to a certain level,
but has trouble reducing any further. With lower levels of
noise, the system reaches convergence and servoing is halted.
However, when noise variance is higher, the feature points
do not converge, and servoing continues and the system is
able to slightly reduce the error further. An example of this
phenomenon can be seen in Figure 17.

4.4.2. Number of Iterations Until Convergence or Failure

The iterations needed for convergence are shown in Figure 18.
IBVS appears to have an inverse exponential increase as the
amount of rotations increase, as well as a very slight negative
correlation with increasing noise levels. HVS has a moderate
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Fig. 17. Feature point trajectories in the image plane for
PC&SH performing a large general motion under different
noise levels.

dependence on both the amount of rotation and noise levels.
At higher noise levels, it requires more iterations than the
other systems.

KD has a positive dependence upon both rotation angle
and noise variance up to 40◦. After this, the number of iter-
ations quickly drops, indicating that the unbounded outputs
occur early. The 2 1

2
D system has a very slight positive de-

pendence on rotation amount, but this is overshadowed by a
stronger dependence upon noise level. PC&SH has a fairly
strong positive dependence upon both the motion and noise
variance values.

4.5. Simulation: Rotation About the Optical Axis with Dif-
fering Depth Estimation

For the most part, using different depth estimation methods
results in little change during pure rotation about the optical
axis. This is not surprising as the goal and initial distance are
the same, and thus the true depth should also remain the same
at every iteration. Indeed, many of the plots for the differ-
ent depth estimation methods align almost perfectly and are
difficult to differentiate.

IBVS has proven difficulties when it comes to handling
large rotation angles, but the remaining error is dramatically
reduced at the expense of increased convergence rate if a con-
stant depth estimation is used rather than true depth, since
camera retreat will be restrained. The other systems typically
perform the same regardless of the depth estimation technique
used. KD and 2 1

2
D can zero the error for all rotations but 180◦.

HVS and PC&SH are able to zero the error for the entire range
of rotation.

4.5.1. Remaining Pixel Error

The remaining pixel error is shown in the graphs of Figure 19.
When using true depth, IBVS fails after 165◦. If either constant
depth is used, however, the error is zeroed for all but 180◦. The
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Fig. 18. Average iterations until convergence versus degrees
of feature point rotation versus noise variance.

2 1
2
D system effectively zeros the error for all depth estimation

methods.
The performance of KD, HVS and PC&SH is not depen-

dent upon the choice of depth estimation. While KD fails for
rotations of 180◦, HVS and PC&SH are able to zero the error
over the entire range.

4.5.2. Number of Iterations Until Convergence or Failure

Graphs of the number of iterations needed for convergence
are seen in Figure 20. All systems exhibit a nonlinear increase
in iterations as the rotation angle increases. Using a constant
depth estimate for IBVS results in a system that requires more
iterations to convergence, but grants the ability to converge for
rotations that fail using true depth. The 2 1

2
D system, for the

most part, requires slightly more iterations if using a constant
depth estimate.

The performance of KD is not affected by the choice of
depth estimation and the three plots are indistinguishable. The
results of KD are very similar to those for IBVS using a con-
stant depth estimation, which is to be expected since they both
use the rotation portion of the image Jacobian.

HVS and PC&SH also perform identically for all depth
estimation schemes; they both show a general nonlinear, pos-
sibly inverse exponential increase.
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Fig. 19. Average remaining pixel error versus degrees of
z-axis rotation with differing depth estimation.

4.5.2. Maximum Camera Ttranslation

Maximum camera translation is shown in Figure 21. IBVS
experiences an exponentially increasing camera translation as
camera retreat becomes more prevalent at large rotations due
to the previously discussed phenomenon of camera retreat.
Using a constant for depth estimation slows the growth of
this translation, allowing the system to converge for all values
except 180◦. 2 1

2
D undergoes an approximately linear increase

in camera translation as task rotation increases, reaching a
maximum of about 0.225 m at 180◦. Constant depth estima-
tion methods result in a larger translation for lower rotations
than using true depth and, in contrast to IBVS, the transla-
tion performed by 2 1

2
D is exclusively in the xy plane. HVS,

KD and PC&SH experience zero motion for all amounts of
rotation.

4.6. Simulation: Translation Along the Optical Axis with
Differing Depth Estimation

In the case of a pure translation along the optical axis, the use
of different depth estimation should have little effect other
than to scale the velocity vector. Thus we expect that the only
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Fig. 20. Average iterations until convergence versus degrees
of z-axis rotation with differing depth estimation.

major difference in performance for each system should ap-
pear in the number of iterations to goal. Indeed, for all systems
except PC&SH using the initial depth results in significantly
more iterations. PC&SH does not use depth estimation when
calculating translation along the optical axis, thus there is no
cost or benefit for the choice of depth estimation. Addition-
ally, HVS and KD experience a slight increase in remaining
pixel error if initial depth is used.

4.6.1. Remaining Pixel Error

Graphs for performance in terms of remaining pixel error are
seen in Figure 22. In general, the remaining pixel error does
not vary much for differing depth estimation. Generally, the
amount of remaining error varies by only a few tenths of a
pixel, and often the plots overlap and are indistinguishable.
HVS and KD experience a slightly greater increase than the
others when using the initial depth as a constant depth esti-
mate, with an increased error from 0.5 to 1 pixel. Initial depth
will have the effect of reducing the translation velocity, and
perhaps prevents these systems from reaching zero error.
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Fig. 21. Maximum camera translation versus degrees of
z-axis rotation with differing depth estimation.

4.6.2. Number of Iterations Until Convergence or Failure

In Figure 23 we present results of the number of iterations
needed for convergence. The shapes of the graphs are very
similar for all systems, although convergence rates do vary
between systems. For IBVS, HVS, KD, and 2 1

2
D, using the

initial depth as a constant depth estimate requires about twice
as many iterations to converge. This is simply because the ini-
tial depth is larger then either the goal or instantaneous depth,
which effectively reduces the gain on the translation parame-
ters. PC&SH does not use depth estimation for calculating the
motion along the optical axis, thus it is immune for all these
effects.

4.7. Simulation: Rotation About a Perpendicular Axis with
Differing Depth Estimation

Since depth estimation affects only the translational velocity,
it is not expected to have a great effect on performance for a
pure rotation such as this. However, there are several notable
results. Using a constant value rather than true depth extends
the range of stable recovery for IBVS by nearly 15◦. HVS and
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Fig. 22. Average remaining pixel error versus meters of
z-axis translation with differing depth estimation.

KD reveal almost no relation to the depth estimation method,
which is not surprising since rotation is completely decoupled
from translation, and only translation is affected by the depth
estimation scheme.

In contrast, the use of constant depth increases the remain-
ing pixel error for 2 1

2
D for almost all cases and causes it to

fail about 20◦ sooner. PC&SH does pick up a few outliers of
large motions if a constant depth is used, particularly at large
values of initial rotation.

4.7.1. Remaining Pixel Error

The remaining pixel errors for each system are shown in Fig-
ure 24. For IBVS there is little difference in performance for
different depth estimation methods up to about 35◦. After this
point, the error when using absolute depth immediately be-
comes very high, whereas using constant depth allows good
performance for an additional 10◦. Using the initial distance as
a depth estimate generally results in greater error, particularly
for larger rotations.

The 2 1
2
D system shows remarkably better error reduction

using absolute depth as an estimate rather than constant depth.
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Fig. 23. Average iterations until convergence versus meters
of z-axis translation with differing depth estimation.

Either constant depth estimate will provide roughly the same
performance. HVS, KD and PC&SH performances do not
appear to be much affected by the choice of depth estimation,
although PC&SH is not able to reduce the error effectively
for any rotation.

4.7.2. Number of Iterations Until Convergence or Failure

The number of iteration to convergence are shown in Fig-
ure 25. All methods of depth estimation for IBVS show a very
rapid rise in iterations, quickly reaching the imposed ceiling
of 300 iterations. IBVS using true depth has a sharp drop in
iteration at about 35◦, mirroring the increase in pixel error,
whereas using a constant depth sees this drop in iterations
about ten pixels later.

The 2 1
2
D system has roughly similar performance for all

depth estimation for rotation below 35◦. After this point, con-
stant depth estimation schemes take a brief ramp up then
plummet to just a few iterations. True depth ramps up as well,
although this increase begins at a greater rotation angle and
continues longer, reaching a higher number of iterations.
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Fig. 24. Average remaining pixel error versus degrees of
y-axis rotation with differing depth estimation.

HVS and KD are not at all affected by depth choice of
estimation scheme; both show a very slowly increasing rela-
tionship with the rotation angle. PC&SH has a roughly linear
increase in iterations with increasing rotation angle, although
using a constant depth estimation method results in slightly
fewer iterations for larger rotations.

4.7.3. Maximum Feature Point Excursion from the Principal
Point

Figure 26 shows the maximum feature point excursion during
this test. IBVS shows a constant level of feature point excur-
sion up to 35◦ of rotation. After this point the system experi-
ences large amounts of feature point excursion for all depth
estimation schemes, although using the initial depth typically
causes a greater amount of excursion than either true depth or
goal depth.

The 2 1
2
D system initially reveals a constant value for max-

imum feature point excursion for all methods of depth estima-
tion. When using constant depth, however, there is an enor-
mous spike, around 50◦ when using goal depth, and a much
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Fig. 25. Average iterations until convergence versus degrees
of y-axis rotation with differing depth estimation.

more subtle spike when using the initial depth. After this spike
the maximum excursion returns to its original, constant value.

Once again, HVS, KD and PC&SH show no variation in
performance between depth estimation methods; all experi-
ence an exponential increase as rotation increases.

4.7.4. Maximum Camera Translation

The maximum camera translation is seen in Figure 27. IBVS
follows a shallow linear increase for all depth estimation meth-
ods until about 35◦, when the translation drastically increases
and becomes extremely erratic for true depth. Using a con-
stant depth allows the system to continue on the original path
for an additional ten pixels or so before becoming large and
erratic itself.

HVS exhibits more translation if a constant depth estima-
tion is used, but the magnitude of this translation is so small
as to be inconsequential.

The 2 1
2
D system is indistinguishable between depth esti-

mation for values up to around 43◦, before which it follows
a shallow increase with rotation angle. After this point, ini-
tial depth begins an exponential increase in translation. Goal
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Fig. 26. Average maximum feature point excursion versus
degrees of y-axis rotation with differing depth estimation.

depth undergoes a brief spike to high translation, after which
it returns low and follows the same exponential increase as
initial depth. When using true depth, 2 1

2
D becomes irregular

after 50◦, but remains below 2 m.
KD initially follows an apparent parabolic dependence

upon the rotation angle for each depth estimation method.
The parabola for true depth has slightly higher values then
a constant depth, but peaks at only about 0.475 m. At 35◦

the maximum translation immediately plunges to zero trans-
lation. The plots for both constant depth estimation schemes
are nearly identical and, like true depth, also undergo a dis-
continuity and drop to zero, in their case at 45◦.

Using initial depth or true depth for PC&SH results in
identical maximum camera translation, a slow linear increase
with rotation angle. Using goal depth results in the same plot,
with the exception of a sharp spike up to 12 m translation
between 45◦ and 50◦.

4.7.5. Maximum Camera Rotation

Finally, for this test, we present the maximum camera rota-
tion angle, seen in Figure 28. Each depth estimation method
increases in a linear fashion, at approximately the same rate
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Fig. 27. Average maximum camera translation versus degrees
of y-axis rotation with differing depth estimation.

for IBVS for smaller rotations. At about 35◦ the maximum
rotation becomes erratic, oscillating between very high and
very low values. The constant depth estimation methods con-
tinue the linear increase until approximately 42◦ where they
leap to a roughly constant value around 260◦. HVS has no de-
pendence upon the depth estimation, and maximum rotation
is simply the initial pose.

Similar to its performance viewing maximum translation,
2 1

2
D initially follows the same linear increase for all depth

estimation methods. At 42◦ the system using goal depth
takes a large spike upwards, while initial depth takes a small
downward motion. Both constant depth methods then resume
roughly the same trajectory they had earlier. About this time,
using true depth begins to result in an erratic, although gen-
erally lower amount of rotation.

KD also has a maximum rotation that appears similar to its
maximum translation. Each depth estimation scheme follows
a parabolic path initially, switching to a linear decrease be-
tween 30◦ and 40◦. PC&SH follows the same, roughly linear
increase in rotation for all depth estimation schemes, with the
exception of a spike in rotation when using the goal depth.
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Fig. 28. Average maximum camera rotation versus degrees
of y-axis rotation with differing depth estimation.

4.8. Simulation: Rotation of Feature Points with Differing
Depth Estimation

Zeroing the image error during this test is generally difficult
and requires motions along all degrees of freedom. The choice
of depth estimation will affect the rate of convergence for
translational motions. There is very little difference in IBVS
for various choices of depth, and it generally performs quite
well. The 2 1

2
D system notably becomes unstable and fails

regularly after 60◦ when a constant depth is used. Similarly,
PC&SH becomes unstable after 70◦ when a constant depth
is used. On the other hand, using a constant depth for KD
extends its range of stable performance by about 5◦.

4.8.1. Remaining Pixel Error

Remaining pixel errors are shown in Figure 29. IBVS and
HVS show little deviation from around one pixel of error for
all methods of depth estimation. The 2 1

2
D system is able to

zero the error for all rotations using absolute depth, but when
using a constant depth estimation method results in a dramatic
increase in remaining error after the feature points are rotated
approximately 60◦.
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Fig. 29. Average remaining pixel error versus degrees of
feature point rotation with differing depth estimation.

Similarly, PC&SH is able to reduce the error to around
ten pixels for all rotations if true depth is used, but suffers a
dramatic increase around 70◦ if either constant method is used
to estimate depth. KD is able to reduce the error to around one
pixel for rotations of the feature points under 35◦. At this point,
the true depth method immediately spikes, then settles to about
500 pixels of error. The constant depth methods continue to
reduce the error to one until 40◦, then they spike and settle
to the same value as true depth. For each of these systems,
failure is due to extremely large camera rotations during the
early stages of visual servoing from which the systems are
unable to recover within 300 iterations.

4.8.2. Number of Iterations Until Convergence or Failure

Graphs for the number of iterations until convergence are seen
in Figure 30. IBVS quickly rises and then plateaus and even-
tually decreases for each depth estimation system. In gen-
eral, the constant depth methods have a slightly lower number
of iterations. HVS apparently requires more iterations using
the constant depth estimation than either constant method.
The 2 1

2
D system initially shows all methods following a lin-
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Fig. 30. Average iterations until convergence versus degrees
of feature point rotation with differing depth estimation.

ear or extremely slow growing inverse exponential increase
with rotations for each depth estimation method. Around 60◦

both constant depth estimation schemes plummet to very few
iterations.

For KD, each system follows an identical exponential in-
crease in iterations for lower rotations. After about 35◦, the
true depth method plunges to very few iterations, while the
constant depth methods continue to increase for another 5◦ of
rotation before they too drop. IBVS experiences an erratic,
but roughly slow growing exponential increase in iterations
as the amount the feature points are rotated increases. Gener-
ally, the number of iterations is lower when a constant depth
estimation is used.

4.8.3. Maximum Feature Point Excursion from the Principal
Point

The maximum feature point excursions are plotted in Fig-
ure 31. All depth estimation methods for IBVS result in an
exponential increase with increasing rotation of the feature
point plane. The two constant depth estimation methods ex-
perience a larger amount of excursion than using true depth.
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Fig. 31. Maximum feature point excursion versus degrees of
feature point rotation with differing depth estimation.

On the other hand, 2 1
2
D has a constant value when true depth

is used, but using either constant depth estimation scheme re-
sults in a large spike at 70◦. KD also mostly holds to a constant
value, but experiences a spike for true depth at 40◦ and both
constant depth methods at 50◦. Finally, PC&SH maintains a
constant maximum feature point excursion for all rotations if
true depth is used, but experiences a spike for both constant
methods at 80◦.

4.9. Experimental Results: Rotation About the Optical Axis
with Differing Depth Estimation

The camera was rotated about the optical axis over a range
of values. Due to kinematic limits of the robot wrist, 120◦

was the largest rotation attainable, so the range is from 30◦ to
120◦ in degree increments. Perhaps the strongest conclusion
we can draw is that the effects of noise have a much greater
effect on performance than depth estimation method for this
task.

4.9.1. Remaining Pixel Error

No system shows a strong dependence on the method of depth
estimation. IBVS and KD are able to consistently zero the
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Fig. 32. Experiment: remaining pixel error versus degrees of
z-axis rotation with differing depth estimation.

feature point error. HVS and 2 1
2
D are slightly less consistent,

although they both reduce the error to within two pixels.
PC&SH failed due to losing the feature points after 70◦.

For initial offsets greater than 30◦ PC&SH tended to have
large, erroneous rotations and translations. These motions al-
ways occur during the first one or two iterations. Returning
to eq. (17), we see that errors in the signal can generate an
erroneous Jacobian and lead to large, incorrect vector Jzṙz be-
ing subtracted from the feature point error. KD suffered from
similar effects, but the results were not as extreme.

4.9.2. Number of Iterations Until Convergence or Failure

Again there is no evident dependence upon the method of
depth estimation. IBVS shows a dependence upon the amount
of translation, while HVS, 2 1

2
D, and KD do not. 2 1

2
D requires

the largest number of iterations. During visual servoing 2 1
2
D

converged quickly to around two pixels of error, but had a
great deal of trouble reducing the error further, generally tak-
ing several hundred iterations to converge to a steady error.
PC&SH was failed after 70◦ of rotation, and as seen here this
failure happened very quickly, within just a few iterations.
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Fig. 33. Experiment: iterations until convergence versus
degrees of z-axis rotation with differing depth estimation.

4.9.3. Maximum Camera Translation

Maximum translation for IBVS has a strong correlation with
the amount of rotation, as the system experiences camera re-
treat, moving up to a half meter away from the image plane
at 120◦. This is close to the kinematic limits of the robot,
but IBVS always successfully completed the error. As in the
simulations, the system retreats less using a constant depth
estimation method.

HVS, 2 1
2
D KD and PC&SH show no noticeable depen-

dence upon the depth estimation method. These three sys-
tems increase in translation as the rotation increases. For 2 1

2
D

and PBVS this is generally due to errors in the calibration of
the camera offset from the end-effector, and is only a few cen-
timeters. KD and PC&SH suffers from the erroneous motions
described above, with PC&SH being affected far worse.

4.9.4. Maximum Feature Point Excursion

As in the simulations, IBVS has the least amount of feature
point excursion, although there is noticeable excursion since
the effects of calibration errors of the camera offset from the
end-effector become strong for large rotations. HVS, 2 1

2
D and
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Fig. 34. Experiment: maximum camera translation versus
degrees of z-axis rotation with differing depth estimation.

KD surrender control of the feature point position, so have
larger feature point excursion. KD is the worst of these three
due to the incorrect motions described earlier. PC&SH fails
due to feature point loss after 70◦.

4.10. Experimental Results: Translation Along the Optical
Axis with Differing Depth Estimation

The systems were tested for a range of translation from
−10 cm (away from the image) to 10 cm (towards the im-
age). Maximum translation from goal and maximum feature
point excursion from image center were practically identical
for all cases and all depth estimation methods. The maximum
translation was the initial offset the feature point excursion
was the initial image for positive optical axis translations (to-
wards the feature point plane) or the goal position for negative
translation.

4.10.1. Remaining Pixel Error

IBVS, HVS and KD are all able to reduce the error below one
pixel with no discernible dependence on the depth estimation
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Fig. 35. Experiment: maximum feature point excursion ver-
sus degrees of z-axis rotation with differing depth estimation.

used. 2 1
2
D has minor trouble zeroing the error when a constant

depth estimate is used. It converges at a rate on a par with
true depth, but once within two pixels it cannot reduce much
further and reaches a steady error less than two pixels. PC&SH
shows mixed results, able to zero errors for motions starting
below 5 cm, but occasionally only reaching a steady error for
larger motions. The reason for this remaining error is seen in
the maximum camera rotation.

4.10.2. Number of Iterations Until Convergence or Failure

IBVS, HVS and KD show similar results, again with no clear
dependence on the depth estimation. All three appear to re-
quire more iterations to zero motions towards the feature
points. Due to the fact that they sometimes could not zero
the error, but rather reduced it to low steady amount, both
2 1

2
D and PC&SH show a larger number of iterations. It is not

well reflected in this graph, but 2 1
2
D does converge well, but

has trouble reducing below one pixel.
IBVS, HVS, 2 1

2
D and KD all show very little camera ro-

tation, as expected for strict translation. There is no clear de-
pendence on depth estimation except for 2 1

2
D, which is more

150 100 50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IBVS  Z Translation  Remaining pixel error

True Z
Goal Z
Start Z

150 100 50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
HVS  Z Translation  Remaining pixel error

True Z
Goal Z
Start Z

150 100 50 0 50 100 150
0

0.5

1

1.5

2

2.5
2.5D  Z Translation  Remaining pixel error

True Z
Goal Z
Start Z

150 100 50 0 50 100 150
0

0.5

1

1.5
KD  Z Translation  Remaining pixel error

True Z
Goal Z
Start Z

150 100 50 0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
PC&SH  Z Translation(mm)  Remaining pixel error

True Z
Goal Z
initial Z

Fig. 36. Experiment: remaining pixel error versus meters of
z-axis translation with differing depth estimation.

consistent and exhibits slightly less rotation using true depth.
Similar to the results for optical axis rotation, PC&SH un-

dergoes large rotations when the initial pose is far away on
the optical axis, particularly when the initial pose is farther
from the image. These rotations always occur during the first
one or two iterations when the induced translation has a large
component along the z-axis.

4.11. Experimental Results: Rotation of Feature Points with
Differing Depth Estimation

In order to preserve consistency during experiments and to
have a means to determine distance to the goal position we
could not simply rotate the feature point plane for each exper-
iment. Thus, the experiments for rotation of the feature point
plane involved finding a system of initial poses for the cam-
era that were equivalent to rotating the feature point plane. To
accomplish this the camera was put in its normal initial posi-
tion, the feature point plane was rotated the desired amount,
and the system was allowed to visual servo until the error was
zeroed. This position was then recorded. During the experi-
ments the camera would capture a goal image as usual, then
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Fig. 37. Experiment: iterations until convergence versus
meters of z-axis translation with differing depth estimation.

be moved to the appropriate stored position and return to its
initial position via visual servoing.

Rotations of the feature point plane of 40◦ required the
robot to move very close to its joint limits, and 45◦ proved
impossible to achieve. Since they were so close to the joint
limits at 40◦, some systems, such as IBVS, that tend to have
erroneous motions at start, would quickly hit these joint limits.

4.11.1. Remaining Pixel Error

All systems have more trouble reducing the error below one
pixel for this task than they did for the previous systems. HVS
and 2 1

2
D are able to successfully reduce the error for the whole

range of motions. IBVS, KD and Pc&SH are successful up to
30◦ of feature point rotation. After this, IBVS and PC&SH hit
the joint limits as mentioned earlier. KD hits the joint limits
at 35◦, and if using a constant depth estimation method loses
a feature point at 40◦. IBVS may reveal a higher pixel error if
constant depth estimation methods are used.

4.11.2. Number of Iterations Until Convergence or Failure

Once again there is little discernible dependence upon the
depth estimation method used. When successful, IBVS, HVS,
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Fig. 38. Experiment: maximum camera rotation versus
degrees of z-axis translation with differing depth estimation.

KD and PC&SH perform similarly, requiring between 150 and
200 iterations to converge to zero the error. 2 1

2
D often requires

more iterations; once again it has some trouble reducing the
error below two pixels although it converges on a par with the
other systems. When IBVS, KD and PC&SH fail they do so
quickly, usually within ten iterations.

5. Conclusions

Visual servoing, and robotics in general, is a constantly evolv-
ing field. As innovations continue to be made, it becomes in-
creasingly important to explore the different methods in order
to gain insight into the characteristics, strengths, and weak-
nesses of each. Focusing on the field of partitioned image-
based visual servo systems, we have performed several stan-
dardized tests of robustness in the face of imaging error and
system performance against difficult tasks. These data can
be used to select appropriate visual servo systems for spe-
cific tasks and conditions or to provide direction for future
research.

We were able to determine several key characteristics of
each system. IBVS has noted difficulty for severe rotations
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Fig. 39. Experiment: remaining pixel error versus degrees of
feature point rotation with differing depth estimation.

about the optical axis due to increasing camera retreat as the
angle of rotation increases. IBVS also has difficulty zeroing
the error for extremely large general motions (those including
rotations and translation about an arbitrary axis), and in all
cases tends to have a larger amount of camera translation than
the other systems. It performs very well in the face of noise
and for smaller general motions.

The 2 1
2
D and KD systems perform well, but the perfor-

mance of both is degraded by noise to a greater extent than
either IBVS or PC&SH. This is due to the susceptibility of the
homography matrix computations to noise. The performance
of KD suffers the most from the effects of signal noise since
the translational component of the homography matrix is af-
fected by noise more than the rotational component. Neither
system experiences the camera retreat that afflicted IBVS.

PC&SH was designed to address the phenomenon of cam-
era retreat that IBVS experiences during rotations about the
optical axis. By decoupling the optical axis motions, camera
retreat is prevented. PC&SH avoids the use of the homogra-
phy matrix, and so performs well in the face of signal noise.
However, the z-axis rotations and translation are dependent
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Fig. 40. Experiment: iterations until convergence versus
degrees of feature point rotation with differing depth
estimation.

upon the relative positions of the feature points. Thus, it per-
forms poorly when rotations about the x-axis and/or y-axis
alter the relative positions of feature points.

The method of depth estimation does not generally have
much effect on system performance. In general, the choice
of depth affects only the magnitude of the translation. Both
KD and 2 1

2
D decouple the rotation and translation motions,

so the depth estimation truly appears as a translation gain
coefficient. In the case of IBVS, camera retreat is reduced and
system stability improved with the use of a constant for depth
estimation, at the expense of a slower rate of convergence.
The 2 1

2
D system, on the other hand, experienced a slightly

reduced stability when a constant depth was used and faced
with large rotations about an arbitrary axis. PC&SH and KD
experienced little difference, good or ill, from different depth
estimation methods.
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