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MULTI-ATTRIBUTE UTILITY ANALYSIS IN THE CHOICE
OF VISION-BASED ROBOT CONTROLLERS

Nicholas Gans1 and Seth Hutchinson2

1Department of Mechanical and Aerospace Engineering, University of Florida,
Gainesville, Florida, USA
2Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA

Multi-attribute utility analysis is an ideal tool for comparing the disparate performance of

multiple visual servo controllers. Its strength lies in the fact that very different metrics can

be compared and that it takes into account human preferences and risk attitudes. In this

article, multi-attribute utility analysis is used to choose between multiple visual servo con-

trollers and choices of camera lenses. The resulting visual servo controllers are suited to the

needs of a specific user for specific tasks.

1. INTRODUCTION

Robots and other automated systems are used in tasks varying from surgery to
industrial assembly to house cleaning. By performing tasks that are difficult, hazard-
ous, or tedious robots can improve human safety and health, as well as improve the
quality of consumer goods while reducing costs and prices.

Robots are designed to serve the needs of a human user or users, so design
should meet the performance needs of specific human users. Multi-attribute utility
analysis (MAUA) (Merkhofer and Keeney 1987; Keeney and Raiffa 1993) is a
method used by systems engineers to directly gauge a human’s preferences and atti-
tude toward risk. It provides a way to equate distinct system attributes, including
those that do not have a natural metric.

Additionally, MAUA can account for human preferences and attitudes toward
risk. For example, different applications can have different acceptable failure rates,
and different people using the same system may be willing to accept different failure
rates as well. MAUA can tailor system performance to specific needs.

In a design application, MAUA is performed offline during the design phase to
select among competing designs, components, gains, etc., using metrics such as fail-
ure rate, cost, speed, and even subjective measurements such as user satisfaction.
MAUA is traditionally used to evaluate economic impacts of design choices
(Thurston 1990). It can be used in technical design of a system (Diller and
Waemkessel 2001), but appears to be a little-known tool in the design of control
systems, robotics, and visual servoing.
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Visual servo control is the use of image data in the closed-loop position control
of a robot end-effector. There are two basic approaches to visual servo control:
image-based visual servoing (IBVS) and position-based visual servoing (PBVS). In
IBVS, an error signal is measured in the image and regulated to zero. The derivative
of the error signal is mapped to actuator commands required to reduce the image
error. In PBVS systems, features are detected in an image, and used to generate a
3-D model of the environment. The error is then computed in the Cartesian task
space. There are extensive resources detailing these methods (Weiss et al. 1987;
Feddema and Mitchell 1989; Espiau et al. 1992; Martinet et al. 1996; Hutchinson
et al. 1996; Chaumette and Hutchinson 2006a).

It is well known that both methods have specific strengths and shortcomings
(Chaumette 1998). IBVS methods control the image but do not explicitly control
the robot pose. Therefore, features are well regulated and unlikely to leave the field
of view but the robot may make very large, possibly damaging, motions. PBVS meth-
ods control the pose, and the robot will move along least distance paths to the goal
pose. However, features may leave the field of view, resulting in a system failure. It
can be seen that IBVS and PBVS are complimentary in their strengths and weaknesses.

Numerous approaches have been presented that combine aspects of IBVS and
PBVS (Deguchi 1998; Malis et al. 1999; Fang et al. 2005; Chaumette and Hutchinson
2006b; Hafez et al. 2007). The authors have previously proposed several switched-
system approaches to visual servoing (Gans and Hutchinson 2002; Gans and
Hutchinson 2003; Gans and Hutchinson 2007). A random switching rule can be applied
where the system randomly selects between using IBVS or PBVS at each iteration of
the control loop or at specific time intervals. As time, and the number of switches,
increases, performance is expected to be influenced by both IBVS and PBVS. Experi-
ments show that the resulting system performs reasonably in regulating both the image
and position errors, rather than extremely well in one and poorly in the other.

The switched system in Gans and Hutchinson (2003) used a binary switching
rule. At each iteration, the choice to use IBVS or PBVS was made by a binary ran-
dom process with equal probability of 0.5 of choosing either one. However, this may
not be the best switching rule for all configurations or all uses. A system that is
biased to select IBVS will provide better control of the image features, while a PBVS
biased system will better control the position. A robot with a short reach may require
strict control of pose, while a camera with a narrow field of view will require strict
control of image features. Additionally, failure of a visual control system can vary in
severity. Failure in an assembly task may cause a small increase in scrap rate, but
failure could be fatal in an medical task.

NOMENCLATURE

XðtÞ;X� current and goal pose in

SOð3Þ
uh axis=angle representation of

rotation

ep camera pose error

n camera velocity

Lp PBVS interaction matrix

s image feature vector

ei image feature error

Li IBVS interaction matrix

UiðxiÞ single-attribute utility

function

Uðx1; x2; . . . ; xnÞ multi-attribute utility

function
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For these reasons, users selecting a binary coefficient can have very different
performance goals and very different attitudes toward risk. The field of decision
theory and MAUA provides a means of selecting a binary coefficient. MAUA pro-
vides an ideal method of gaging a user’s performance needs, preferences, and attitude
toward risk (Keeney, and Raiffa 1993), and this information can be directly applied
to select a switching rule.

The internal parameters of a digital camera, including focal length, projection
center, and pixel dimensions will affect the performance of a visual servo system. A
lens with a long focal length will have a telescoping or zooming affect. This will
improve precision of a visual servo controller but decrease the camera field of view
and increase the risk of features leaving the field of view. A lens with a short focal
length will have a wide field of view, but will be less precise as the image will not
be as finely resolved. Selection of a lens for a particular system requires balancing
these tradeoffs. MAUA provides a method to select a lens that will reflect a users
preferences and attitudes toward risk.

In this article, we present two experiments in the use of MAUA to design
vision-based control systems. The first experiment selects a binary switching rule
for a switched visual servo system. This experiment is intended to give a clear
and thorough introduction to MAUA. A decision maker’s preferences and risk
attitudes toward position control, feature control, and failure rate are used to create
a three-attribute utility function. This function is then used to rate the utility of sev-
eral switched systems, each using a different probability in the binary random
switching rule.

The second experiment involves selecting between IBVS and PBVS, along with
choosing a lens. The task under consideration is an unmanned air vehicle (UAV)
refueling task, with attributes reflecting each system’s ability to correctly dock with
a fuel drogue, to keep a fuel tanker plane and drogue in the camera field of view, and
the time needed to dock.

The article proceeds as follows. Section 2 discusses image-based and position-
based visual servoing and introduce the switched system. Section 3 gives the back-
ground of MAUA while detailing an experiment into the use of MAUA to choose
a switched-system visual servoing system suited to the needs of a specific user. Sec-
tion 3 details the use of MAUA in the selection of a control system and camera
optics for a UAV refueling=docking task.

2. VISUAL SERVOING

2.1. Position-Based Visual Servoing

The task in PBVS is to regulate the error between the current camera pose and
the goal pose. Given a current camera pose XðtÞ and goal pose X� (throughout, the
superscript � denotes values at the goal configuration), the transformation relating
them is described by a translation d 2 R3 and rotation of the camera frame
R 2 SOð3Þ.

Locally, SOð3Þ can be parameterized by the three-tuple uh, in which h is an
angle of rotation about the axis defined by the unit vector u. Given a collection of
feature points in the image, there are numerous methods to extract XðtÞ and thus
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d and uh from XðtÞ (Longuet-Higgins 1981; Huang and Faugeras 1989; Faugeras and
Lustman 1988; Zhang and Hanson 1996; DeMenthon and Davis 1992).

For a PBVS system, the error ep is defined in terms of the rigid body motion
that relates X to X�

ep ¼
d

uh

� �
: ð1Þ

If the camera is moving with velocity n ¼ ðvT ;xT ÞT (in twist coordinates) the
relationship between the error derivative and the camera velocity is given by

_eep ¼
R 0
0 LxR

� �
n ¼ Lpn ð2Þ

in which (Malis et al. 1999)

Lxðu; hÞ ¼ I � h
2

u� þ 1� sinch

sinc2 h
2

 !
u2
� ð3Þ

and u� 2 R3�3 is the skew symmetric matrix associated with u. Note that by defi-
nition, sincð0Þ ¼ 1.

Since Lx is nonsingular when h 6¼ kp, k 2 Znf0g (Malis et al. 1999), camera
velocity defined by the feedback control law

n ¼ �kpL�1
p ep ð4Þ

gives the closed-loop error derivative

_eep ¼ �kpep ð5Þ

in which kp is a positive gain scalar. See Deng et al. (2002) and Chaumette and
Hutchinson (2006a) for detailed proofs of stability and robustness.

While the pose error tends monotonically to zero, there is no control over the
position of the image points. If there is any rotation present, the feature points will
move along curves as the camera undergoes rotation and translation, this is seen in
Figures 1–3. Figure 1 shows the trajectories of four feature points as the camera
moves from its initial pose to the goal pose. The points marked by a O are the fea-
tures seen when the camera is at the initial pose and the points marked with a � are as
seen when the camera is at its goal pose. A large curved path is traced out in the
image and the features are close to leaving the image. Figure 2 shows the camera
pose error vector over time; all pose error elements converge to zero. Figure 3 is
the feature point error in pixels for the four points over time. The pixel errors
initially increase before eventually converging to zero.

The limited imaging surface of a camera makes it possible for the feature points
to leave the image. In this case the system may no longer be able to reconstruct
the pose error estimate, and the task cannot be completed. For the purposes of this
article, failure of a visual servo system is defined to be any situation in which it does
not successfully zero the error.
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2.2. Image-Based Visual Servoing

In image-based visual servo control, the control law is a function of an error
that is measured in the image. If sðtÞ denotes the vector of image features that are
extracted from computer vision data, and s� is the feature vector in a goal image,

Figure 1. Example of typical trajectories for feature points in PBVS.

Figure 2. Example of typical camera pose error in PBVS.
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the error is defined in the image feature space,

eiðtÞ ¼ sðtÞ � s� ð6Þ

The relationship between camera velocity and the measured feature values is given by

_eei ¼ _ss ¼ Lin ð7Þ

in which Li is the image Jacobian (also called the interaction matrix) (Weiss et al.
1987; Feddema and Mitchell 1989; Espiau et al. 1992; Hutchinson et al. 1996).

The most common choice of image features is image points. In this case the fea-
ture vector is a concatenation of n point coordinates pj ¼ ½xj yj�T 2 R

2; j 2 1 . . . n,
such that

s ¼ ½pT
1 . . . pT

n �
T ð8Þ

and the interaction matrix is an 2n� 6 matrix given by concatenating n submatrices
Lij given by

Lij ¼

1

zj
0
�xj

zj
�xjyj 1þ x2

j �yj

0
1

zj

�yj

zj
�1� y2

j xjyj xj

2
664

3
775 ð9Þ

where zj is the depth of the jth feature point and the camera focal length is assumed
(without loss of generality) to be unity.

Figure 3. Example of typical feature point error in PBVS.
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If Lij has more than six rows (e.g., four or more points are used as features), a
stabilizing camera velocity is given by the feedback control

n ¼ �kiL
þ
i ei ð10Þ

where Lþi ¼ ðLT
i LiÞ�1LT

i is the general inverse of Li, and ki is a positive gain scalar.
Combining Eqs. (7) and (10) gives the closed-loop feature error derivative

_eeiðtÞ ¼ �kieiðtÞ ð11Þ

The closed-loop system is locally asymptotically stable. It is not globally asymptoti-
cally stable, as there exist camera positions or feature point configurations for which
Lþi is not full rank. See Espiau et al. (1992), Kelly et al. (2000), Deng et al. (2002),
and Chaumette and Hutchinson (2006a) for detailed discussions of stability and
robustness.

The feature error tends monotonically to zero. As such, the features will move
along short paths in the image to their goal coordinates and are unlikely to leave the
field of view. However, the system has no explicit control over the pose of the robot.
As described in Chaumette (1998) and Corke and Hutchinson (2001), an IBVS sys-
tem may perform large camera motions to achieve short image feature trajectories.
Most industrial robot systems have a reachable space on the order of meters. Thus,

Figure 4. Example of typical trajectories for feature points in IBVS.
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camera retreat may cause the robot to extend to its joint limits during visual servo-
ing, resulting in failure.

An example of this phenomenon can be seen is Figures 4–6. Figure 4 shows the
feature point trajectories, which move along straight lines in the image. Figure 5
shows the camera pose error vector over time; camera retreat is apparent as the
translation along the z-axis increases before eventually converging to zero. Figure 6

Figure 5. Example of typical camera pose error in IBVS.

Figure 6. Example of typical feature point error in IBVS.
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is the feature point error in pixels for the four points over time, all of which mono-
tonically decrease to zero error.

2.3. Switched-System Visual Servoing

The theory of hybrid, switched control systems (i.e., systems that comprise a
number of continuous subsystems and a discrete system that switches between them)
has received notable attention in the control theory community (Brockett 1993;
Branicky et al. 1998; Liberzon and Morse 1999; Liberzon 2003). In general, a hybrid
switched system can be represented by the differential equation

_xxðtÞ ¼ frðtÞðx; tÞ : r 2 f1 . . . ng ð12Þ

where fr is a collection of n distinct functions. The solution to Eq. (12) is a pair
fxðtÞ; rðtÞg giving the value of the state and switching variable over time. The func-
tions xðtÞ and rðtÞ are continuous from the right to insure both are locally Lipschitz.

In order to mitigate the troubling aspects of IBVS and PBVS, the authors have
previously introduced switched-system visual servo controllers (Gans and Hutchinson
2002; Gans and Hutchinson 2003, 2007). These systems switch between using IBVS
and PBVS at different points during the period of the task. Switching can be trig-
gered depending on the state of the two errors ep and ei, at specific time intervals,
or randomly.

Figure 7. Example of typical trajectories for feature points in random switched visual servoing.
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This paper focuses on random switching, using a binary random variable to pick
a system at each iteration of the algorithm. In Gans and Hutchinson (2003), a binary
random variable was used, that gave with a 50% chance of selecting IBVS or PBVS at
each iteration of the control loop. Experimental investigation demonstrated a marked
decrease in failures due to extreme robot motions or lost feature points.

An example of performance of this hybrid system is seen in Figures 7–9.
Figure 7 shows feature point trajectories. The feature point trajectory is now a slight

Figure 8. Example of typical camera pose error in random switched visual servoing.

Figure 9. Example of typical feature point error in random switched visual servoing.
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curve, as opposed to the previous large curve or straight path. Discontinuous effects
of switching are visible in in the feature point velocity. Figure 8 shows the camera
pose error vector over time. There is some noticeable chattering in the pose error,
but the effects are not strong and the pose error converges nicely to zero. Figure 9
is the feature point error in pixels for the four points over time. Some pixel error ele-
ments show a slight initial increase before eventually converging to zero.

3. MULTI-ATTRIBUTE UTILITY ANALYSIS IN THE DESIGN
OF A SWITCHED SYSTEM VISUAL SERVO CONTROLLER

As discussed in section 2.3., the authors have previously used a switching visual
servo system that had a 50% chance of selecting IBVS or PBVS at each iteration.
This resulted in fewer system failures. However, while a switched system may be
desirable to reduce the chance of failure, some tasks or configurations may be more
lenient toward extremes in camera motion than image feature motion. A binary
function that favors one system over the other will grant these results. This section
details an experiment into the use of multi-attribute utility analysis (MAUA) to
choose between multiple visual servo systems, including several binary switched sys-
tems. The steps of this experiment will help to introduce and illustrate the concepts
of MAUA.

MAUA can be applied to determine the best binary function. An attribute is
any quantity measured on a relative scale. An attribute can be objective measure-
ments, statistical data, or even subjective data such as ‘‘satisfaction’’ rated on a scale.
MAUA is a well established method for comparing options with multiple objectives.
Furthermore, it allows the inclusion of not only preference, but attitudes toward risk
(Merkhofer and Kenney 1987; Thurston 1990; Keeney and Raiffa 1993).

The person whose preferences are reflected in the system design is referred to as
the decision maker (the decision maker could be several people or a committee, but
for simplicity we refer to a single person). Typically this is someone knowledgeable in
the field and closely involved in the task at hand. A few examples of decision makers
include a project manager in charge of implementing a control system, or a customer
for whom a system is being designed. MAUA is intrinsically an individual pursuit. A
change of decision makers will require the analysis be run again.

The goal is to maximize the system’s expected utility for the decision maker.
Utility is a unitless measurement, which allows vastly different attributes to be com-
pared and incorporates the decision maker’s preference and risk aversion. Each attri-
bute is assigned a utility function UðxÞ that is monotonic with the attribute. The
utility functions can then be weighted and combined to form a multi-attribute utility
function (MAUF). If statistical data is available concerning the attributes, it can be
used to solve expected value of the MAUF for different weights and pick the system
that maximizes the expected utility. This will be elaborated upon below.

Given n attributes, x1; . . . ; xn, the multi-attribute utility function,
Uðx1; x2; . . . ; xnÞ, is defined by the equation

1þ KUðx1; x2; . . . ; xnÞ ¼
Yn

i¼1

½KkiUiðxiÞ þ 1� ð13Þ
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where Ui are individual utility functions for each attribute, ki are individual scaling
or weighting constants, and K is a normalizing constants that is the non-zero
solution to

1þ K ¼
Yn

i¼1

Kki þ 1�½ ð14Þ

There are several basic steps to the development of a MAUF, each of which
will be presented here. First a decision maker must be chosen to make value judg-
ments. Second is the choice of suitable attributes and confirmation that the decision
maker can view them independently from each other. Third is the development of the
individual utility functions and scaling constants. Finally, given information about
probable outcomes for the task, the MAUF can be used to evaluate the different
options. To gather statistical data, Monte Carlo analysis is performed by simulating
each system performing a large number of tasks.

For the purposes of this problem, the decision maker was an electrical engineer-
ing graduate student, who has been involved in vision based robot control for two
years. The first step is to determine attributes that measured non-ideal performance
of a system. In the image plane, define a line segment for each feature from the initial
feature point coordinate, p, to the goal coordinate p�. At each iteration, measure the
distance from each feature point to the line segment, and note the largest distance.
This measurement will be referred to as d2D, and is illustrated in Figure 10. IBVS is
expected to move the features along trajectories very close to these line segments, so
d2D should remain small for all but the most difficult tasks. PBVS, which offers no con-
trol over the image features, is expected to have much larger measurements of d2D.

Figure 10. Illustration of d2D.
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Similarly, define a three-dimensional line segment in the camera workspace
from the initial camera position T to the goal positions, T�. At each iteration, mea-
sure the 3-D distance from the camera’s current position to the line segment; this
measurement will be referred to as d3D. As the analysis is performed in simulation,
the 3-D distance from the camera position to the line is readily available. PBVS is
expected to have small measurements for d3D, while it will be much larger for IBVS.

For two of the attributes, we used the maximum d2D and maximum d3D seen
over the course of a visual servo task. These two attributes are denoted as x2D

and x3D. As discussed in section 2, IBVS is expected, on average, to have a small
values of x2D and large values of x3D while PBVS is expected to have a small values
of x3D and large values of x2D.

The final attribute considered is the failure rate for each system, where failure
occurs any time the system fails to reduce the image and pose errors to zero. This can
occur when a feature point leaves the field of view, the camera moves outside of a
defined boundary, or the system converges to a local minimum other than the origin.
The attribute of failure rate is denoted xfail. This gives three attributes.

To use MAUA it is necessary to insure that the decision maker can view these
attributes independently in the sense of mutual preferential independence and
mutual utility independence (Keeney and Raiffa 1993). Preferential independence
exists if a decision maker’s preference for attribute Y does not depend on attribute
X . For example, a small value of Y might always be preferred to a large value,
regardless of the value of X . Preferential independence exists for most decisions.

Utility independence is more complex. It insures that a decision maker’s prefer-
ences for an attribute Y for uncertain outcomes do not depend on X . For example,
suppose the decision maker prefers the first of two scenarios for attributes X and Y :

1. 50% chance Y ¼ Y1, 50% chance Y ¼ Y2 and X ¼ X1

2. 30% chance Y ¼ Y1, 70% chance Y ¼ Y2 and X ¼ X1

Then for mutual independence to hold, he or she must also prefer the first option of
the scenarios:

1. 50% chance Y ¼ Y1, 50% chance Y ¼ Y2 and 50% chance X ¼ X1, 50% chance
X ¼ X2

2. 30% chance Y ¼ Y1, 70% chance Y ¼ Y2 and 50% chance X ¼ X1, 50% chance
X ¼ X2

That is, a change in the probable value of X does not affect the preference. Both
independence requirements must hold for any values of the attributes, and all attri-
butes must be tested against each other.

For these attributes, the decision maker determined they were mutually inde-
pendent. The next step was to determine individual utility functions for each attri-
bute, and to build the multi-attribute utility function. The decision maker decided
that x2D ¼ 175 pixels was the maximum he would accept and x3D ¼ 1:5 meters
was the largest acceptable x3D, since he felt that exceeding these values would likely
lead to system failure. The largest failure rate the decision maker was willing to
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accept was 20%. This gives us the following utilities for the extremes of the domains,

U2Dð175Þ ¼ 0; U3Dð1:5Þ ¼ 0; Ufailð20Þ ¼ 0

U2Dð0Þ ¼ 1; U3Dð0Þ ¼ 1; Ufailð0Þ ¼ 1

Note that it is possible to have x2D and x3D larger than the decision maker’s chosen
maximums, indeed during simulations the systems often exceeded these limits. Any
value larger than these maximums is given a utility of zero.

The decision maker was queried using the certainty-equivalent and probability
methods to determine the individual utility functions (Thurston 1991). In these meth-
ods, a utility of 1 is assumed for the best outcome, which is 0 for all three attributes
here, and a utility of 0 is assumed for the worst acceptable outcome. The decision
maker is presented a series of outcomes, and asked to choose the preferred outcome.
This allows the designer to gage the decision maker’s perceived utility of each attri-
bute at several values of the attribute.

It is important to note that a utility of x 2 ð0; 1Þ often does not correspond to
the attribute value at that same percentile between the highest and lowest values of
the utility function range. For example, the point at exactly half way between the
best and worst attribute values often does not have utility of 0.5.

The chosen utility values reveal characteristics of the decision maker. A
decision maker who assigns utility x to the same percentile between the highest
and lowest values for all x (i.e., a utility of 0.25 to one quarter of the way between
best and worst attribute values, a utility of 0.5 halfway between best and worst attri-
bute levels, and so on) is said to be risk neutral and will have a linear utility function.
A tendency to assign a utility of x to a value below the risk neutral line indicates the
decision maker is risk adverse and will accept a guaranteed, mediocre performance
over an uncertain performance with high risk and high reward. The opposite
is known as risk seeking, in which the decision maker will accept the risk of bad
performance for the chance of getting good performance and prefer this chance to
a known moderate outcome. It is not unusual to show different behaviors over
different portions of the utility function range.

The decision maker was queried, and utility values were determined for several
attribute values. Polynomial functions functions were then line fitted to the data
points using Matlab. The degree of the polynomial was chosen for each function
to give the best fit (i.e., least residual error) and ensure a monotonic function. The
resulting utility functions are as follows:

U2Dðx2DÞ ¼ 3:7� 108x3
2D � 8:6� 106x2

2D � 0:0053xþ 1

U3Dðx3DÞ ¼ 0:14x2
3D � 0:87x3D þ 1

UfailðxfailÞ ¼ 2:8� 10�5:00x4
fail � :0012x3

fail þ :017x2
fail � :13x2

fail þ 1

Plots of the points and fitted functions for the nonlinear functions are seen in
Figures 11–13. They are monotonic functions, which is necessary for use in a MAUF.
The functions are also close to linear, indicating the decision maker is fairly risk neu-
tral. Note that these functions reflect the preferences of the specific decision maker.
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The decision maker is then quizzed as follows to determine the value of the
scaling constants ki in Eqs. (13) and (14) (Thurston 1991). The decision maker
assigns a utility Uchosen to the combined function Eq. (13) when two of the attributes
are at their worst and one attribute is at its best value. The ki can then be solved for

Figure 11. Utility function for 2-D.

Figure 12. Utility function for 3-D.
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the attribute at its best. Using the values found in Eq. (15), k2D is found as follows:

1þ KUðx2D; x3D; xfailÞ ¼ ½Kk2DU2Dðx2DÞ þ 1� � ½Kk3DU3Dðx3DÞ þ 1�
� ½KkfailUfailðxfailÞ þ 1�

1þ KUchosen ¼ ½Kk2DU2Dð0Þ þ 1� � ½Kk3DU3Dð1:5Þ þ 1�
� ½KkfailUfailð20Þ þ 1�

Uchosen ¼ k2D

This was repeated for all ki, which were determined to be kd2D
¼ 0:35, kd3D

¼ 0:375,
kfail ¼ 0:15. As stated, K is the non-zero solution to Eq. (14) and was determined
to be K ¼ �0:8187. This gives us enough information to use the MAUF
Uðx2D; x3D; xfailÞ as in Eq. (13). Plots of the MAUF for U vs x2D and x3D for several
values of xfail are seen in Figures 14–16.

In order to gain information on the probable performance of the visual servo
systems, Monte Carlo analysis was performed for IBVS, PBVS, and several switched
systems with differing binary functions. Specifically, three switched systems were
tested, along with IBVS and PBVS. The three switched systems had a 25%, 50%
or 75% chance of selecting IBVS at each iteration of the control loop. A six-dimen-
sional configuration space (translation and rotation about three axes) was sampled,
to acquire 30,000 unique initial camera poses where the initial image was in the
camera field of view.

Each visual servo system was tested for its ability to regulate each initial cam-
era pose to the goal pose. The attributes x2D and x3D were recorded for each visual
servo system from each initial pose. A failure was recorded if a feature point left the
field of view, the camera left the sampled space, or the system converged to a local

Figure 13. Utility function for failure rate.
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minimum other than the goal pose. The simulation was not halted if a system was
considered to have failed, thus large values of x2D and x3D are possible. Running
the simulations in Matlab took approximately sixteen hours of computer time on
a single core, Pentium 4 processor, though no efforts were made to optimize the
Matlab code for speed.

Figure 14. MAUF for varying x2D and x3D when xfail ¼ 5%.

Figure 15. MAUF for varying x2D and x3D when xfail ¼ 10%.
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The size of the sampled space was a 4 m� 4 m� 3.5 m box with the simulated
image features at the center of the bottom face. The orientations ranged from �2p
to 2p for rotation about the camera optical axis (z-axis), and �p to p for rotations
about the x- and y-axes. These two axes were more limited since a rotation with
magnitude greater than p will result in the feature points lying behind the camera.
The image was 512� 512 pixels, and the location of points in the goal images can

Figure 16. MAUF for varying x2D and x3D when xfail ¼ 15%.

Figure 17. Histograms of the sampled initial translation for the switched system design problem.
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be seen in Figures 1, 4, and 7. Histograms of the sampled translations and rotations
are seen in Figures 17 and 18, respectively. The sampling is not uniform due to
the sampling method used, a rapidly-exploring random tree (RRT) (La Valle and
Kuffner 2000).

Figure 18. Histograms of the sampled initial rotation for the switched system design problem.

Figure 19. Cumulative distribution functions for x2D for the switched system design problem.
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Figures 19 and 20 show cumulative distribution functions for x2D, x3D, respect-
ively. As expected, the probable x2D is much smaller for IBVS than PBVS. Likewise
the probable x3D is much smaller for PBVS than IBVS. The hybrid systems lie in
between. The failure rate is a discrete value, so there are no density functions. The
failure rates are given in Table 1.

This information is used with the MAUF to evaluate the visual servoing sys-
tems and choose the system with the highest utility. This information is most easily
presented in the form of a decision tree, which is presented in Figure 21. There are
five chance nodes, one for each visual servo system. In order to accurately gage the
performance of each system, while keeping the amount of data manageable, the
chance nodes have five branches corresponding to five ranges of decreasing perform-
ance. Each branch has a weighting of 0.2 corresponding to a 20% chance of that
branch being true. In effect, the first branch supposes there is a 20% chance the
system will operate somewhere in the best 20% of performance for that system.
The value of the attribute that corresponds to 0.2 in the CDF’s are then used in the
MAUF, so the utility value that results is best thought of as a lower bound. The
second branch states there is a 20% chance of performance to the 20%–40% range

Figure 20. Cumulative distribution functions for x3D for the switched system design problem.

Table 1. Failure rates for visual servoing simulations for

the switched system design problem

System Rate (%)

IBVS 19.78

PBVS 14.23

.25 IBVS 9.11

.5 IBVS 11.48

.75 IBVS 16.39
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of system performance, and gives the lower bound of utility in this range. The sub-
sequent branches continue this analysis trend. A detailed examination of the decision
tree will be presented in the section 3.1.

3.1. Results

A decision tree was created to present the results of the multi-attribute utility
analysis. It is shown in Figure 21. As previously described, this tree has a decision for

Figure 21. Decision tree for the switched system design problem.
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each of the systems being considered. Each decision node has five branches to reflect
a 20% chance of a certain performance range. At the end of each branch are seven
columns. The first column is the expected utility given by the MAUF for that per-
formance percentile and the weighting of 0.2 that each performance percentile
receives. The next six columns give the value of each attribute that the system can
expect at that performance level and the utility values of the individual attribute
functions. The weighed sum of the MAUF’s at each performance level is given in
red next to the node. The node of the system that maximizes expected utility is
denoted ‘‘TRUE.’’ The maximum expected utility is reprinted at the central node.

For the utility function and weighting functions derived here, the switched sys-
tem choosing IBVS with 25% probability comes out on top with an expected utility
of 0.617. PBVS is second with expected utility of 0.613, followed by the neutral
switched system and IBVS with expected utilities of 0.592 and 0.574, respectively.
The switched system biased toward IBVS comes in last with expected utility of
0.536. These results are collected in Table 2.

It can be seen that the expected utility is a combination of the decision maker’s
preferences and the statistical data for each system’s performance. The decision
maker considered 2-D and 3-D performance to be of nearly equal importance, as
reflected in the similar weights for the attributes x2D and x3D, and held the overall
failure rate to be more important, as seen in the higher weighting of xfail. Looking
at the distribution functions in Figures 19 and 20, it appears that IBVS and IBVS
biased switched systems have shallow distribution functions, and therefore large
values of the attribute x3D, as the cumulative probability approaches 1. In compari-
son, PBVS and PBVS biased switched systems remain more moderate in the attribute
x2D as the cumulative probability approaches 1.

Sensitivity analysis of the results shows the impact of the decision maker’s
weighting constants to the expected utilities. To examine the sensitivity of the
outcome to changes in the weighting constants, vary a single constant from 0 to 1
while keeping the others the same as chosen by the decision maker. Figures 22–24
shows the resulting utilities for each system as a function of the shifting attribute.
Examining the results when a gain is set to 0 will give insight into how analysis using
fewer attributes will affect the outcome. For example, when kfail ¼ 0, IBVS is the best
choice.

As seen in Figure 22, when varying kd2D
, IBVS would be chosen for kd2D

> 0:45.
If kd2D

¼ 0, performance in the image error is not considered and PBVS becomes the
top choice. Similarly, as seen in Figure 23, when varying kd3D

, PBVS becomes the pre-
ferred choice only when kd3D

> 0:4. If kd3D
¼ 0, IBVS is the top choice. Varying kfail,

Table 2. Expected utility for visual servoing systems for

the switched system design problem

System Expected utility

.25 IBVS 0.617

PBVS 0.613

.5 IBVS 0.592

IBVS 0.574

.75 IBVS 0.536
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it can be seen in Figure 24 that if 0 � kfail < 0:15, IBVS is the best choice, and PBVS
becomes the preferred choice if 0:15 � kfail < 0:34. Looking at all sensitivity graphs,
it seems that the switched system biased toward PBVS is generally preferred to the
other switched systems, as the weighting constants are varied.

It is important to note that these results, like those for any MAUA, are
very individualistic. They hold for a specific decision maker and for the specific set
of statistical data gathered. A different decision maker may have very different utility
functions and weighting constants, and varying the parameters of the simulations

Figure 22. Analysis of sensitivity of the MAUF to k2D for the switched system design problem.

Figure 23. Analysis of sensitivity of the MAUF to k3D for the switched system design problem.
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could generate different statistical data. MAUA is designed to tailor a specific
system to specific needs.

4. MULTI-ATTRIBUTE UTILITY ANALYSIS IN THE CHOICE OF OPTICS
AND VISUAL SERVO CONTROLLER FOR A UAV REFUELING TASK

In section 3, MAUA was introduced through an example of choosing a binary
switching rule for a switched-system visual servo control. In this section, MAUA is
applied to choose a visual servo controller and camera optics for the task of refueling
an UAV. In this scenario, a fuel tanker plane lowers a funnel-shaped fuel drogue,
and the fueling UAV must insert a probe into the drogue in order to receive fuel.
This is illustrated in Figure 25 for the case of two unmanned air vehicles with
approximately three meter wingspan. This is a variation of a docking task.

The decision maker for this task was Stephen Korn, who was centrally
involved in the design of the task scenario and Monte Carlo analysis. Mr. Korn is
the Director for Interdisciplinary Research at the University of Florida Research
and Engineering Educational Facility (UF-REEF) in Shalimar, FL, USA. He has
more than 35 years of aerospace engineering experience, including four years in sys-
tems program management in the A-10 aircraft System Program Office at Wright-
Patterson AFB, and 31 years of experience in the Air Force laboratory system devel-
oping munitions science and technology.

It was decided to test IBVS and PBVS systems using lenses with different focal
lengths. Competing performance needs were chosen for this scenario. First, it is
desired to have a small amount of residual pose error when the goal image has been
reduced, despite the presence of image noise. This favors a narrow angle lens (i.e.,
long focal length). Second, it is desirable to keep the tanker plane in the field of

Figure 24. Analysis of sensitivity of the MAUF to kfail for the switched system design problem.
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view while docking to avoid collision, which would favor a wide-angle lens (i.e.,
short focal length). Third, it is desirable to dock as quickly as possible. These per-
formance needs lead to three metrics to use in MAUA: remaining pose error when
visual servoing has stopped, remaining pose error when the tanker plane leaves
the field of view, and time until visual servoing stops. These attributes are denoted
as xerr, xFOV and xtime, respectively.

The Monte Carlo analysis was set up as follows. To allow for vision-based
docking control in a variety of light conditions, infrared (IR) light arrays can be
attached to the drogue or the fuel boom. The light array was simulated by a
0.2 m� 0.2 m square configuration of feature points. An IR array can be fixed to
the tanker fuselage as well, which was simulated a 0.4 m� 0.4 m square configuration
of feature points. The drogue points were rigidly positioned 1 m below and
1.2 m behind the tanker points. The tanker flew with constant linear velocity and
no angular velocity, but a random disturbance was added to each velocity element
at each image sample time. This disturbance was a modeled as a normally distributed
random process with zero mean and linear velocity in three dimensions with stan-
dard deviation of 1 mm=0.033 s (i.e., 1 mm per video frame) and angular velocity
of 0.0003 rad=0.033 s.

The camera was simulated with an 1024� 768 pixel array, and lenses with focal
lengths of 6 mm, 12 mm, and 25 mm. Gaussian white noise with zero mean and one
pixel standard deviation was added to the projected image points, which were then
rounded to the nearest integer to simulate quantization noise. A goal image of the
fuel drogue was taken at the docking position at 0.5 m from the drogue with no
noise. This goal image is suitable for IBVS and PBVS using the homography matrix
(Faugeras and Lustman 1988; Zhang and Hanson 1996). IBVS and homography
PBVS systems were simulated using each focal length. Ten thousand starting posi-
tions were sampled from a three dimensional sphere of radius 5 m, centered 10 m
from the drone, with roll, pitch and yaw angles sampled from �p=4 to p=4. Histo-
grams of the sampled translations and rotations are seen in Figures 26 and 27,

Figure 25. Illustration of the refueling task.
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respectively. Visual servoing was halted if the average image error was less than two
pixels or if 33 s passed.

It was ensured that all start positions had both the drogue and tanker points in
view. Different gains were used for each system and each focal length. Gains were
chosen such that each system=lens pair could complete the first 100 tasks in the same

Figure 26. Histogram of the sampled initial translation for the refueling design problem.

Figure 27. Histogram of the sampled initial rotation for the refueling design problem.
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total amount of time if no noise added to the image or velocity. Each system was
simulated from each starting pose three times, for a total of 30,000 tests for each
system=lens. Figures 28–30 shows cumulative distribution functions for xerr, xFOV,
and xtime, respectively. IBVS and PBVS perform similarly for each focal length.
As expected, a shorter focal length generally keeps the tanker in view longer, and
the longer focal length has less residual error. The short focal length tends to finish
quicker, as the courser resolution made it more likely that the average image error
was under two pixels.

It was determined that the decision maker viewed these attributes as mutually
independent. The next step was to determine individual utility functions for each
attribute, and to build the multi-attribute utility function. The decision maker decided
that xerr ¼ 0:1 m (i.e., half the width of the drogue) was the maximum final pose error
he would accept, as larger error would likely result in a failure to dock with the
drogue. Based on initial results of the simulations, a value of 15 m was selected as
the largest acceptable value for xFOV and a maximum allowable run time of 30 s
was selected for xtime. This gives us the following utilities for the extremes of the
domains,

Uerrð:1Þ ¼ 0; UFOVð15Þ ¼ 0; Utimeð30Þ ¼ 0

Uerrð0Þ ¼ 1; UFOVð0Þ ¼ 1; Utimeð0Þ ¼ 1
ð15Þ

The decision maker was queried using the certainty-equivalent and probability
methods to determine utility functions. The decision maker felt that the utility
function for xtime should be linear. Points of the utility functions were determined
for several values of kerr and kFOV, and polynomial functions were line fitted to the
points.

Figure 28. Cumulative distribution functions of xerr for the refueling design problem.
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The resulting utility functions are as follows.

UerrðxerrÞ ¼ �1:2� 106x5
err þ 2:4� 105x4

err � 1:4� 104x3
err þ 1:8� 102x2

err

�7:9xerr þ 1

UFOVðxFOVÞ ¼ :0009x3
FOV � 0:021x2

FOV þ 0:045xFOV þ 1

UtimeðxtimeÞ ¼ 1� xtime

30

Figure 29. Cumulative distribution functions of xFOV for the refueling design problem.

Figure 30. Cumulative distribution functions of xtime for the refueling design problem.
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The functions UerrðxerrÞ and UFOVðxFOVÞ are plotted in Figures 31 and 32, respec-
tively. It can be seen that the fitted function for UFOVðxFOVÞ is not quite monotonic,
but it is the function with the smallest residual error to the sample points and
deviates from monotonicity by at most 0.08.

Figure 31. Utility function for kerr.

Figure 32. Utility function for kFOV.
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Attribute gains were chosen as described in section 3. The gains were determ-
ined to be kFOV ¼ 0:8, kerr ¼ 0:65, and ktime ¼ 0:3. This matches the decision maker’s
feelings that losing sight of the tanker plane is potentially dangerous scenario and
should be avoided. He felt that a failure to dock and was not as serious a problem,
as the plane could fall back and make a second attempt. As stated, K is the non-zero
solution to Eq. (14) and was determined to be K ¼ �0:925. This gives us enough
information to use the MAUF Uðxerr; xFOV; xtimeÞ as in Eq. (13).

With the gains determined, MAUA was performed for all systems and lens
combinations. PBVS using 6 mm lens came out on top with an expected utility of
0.912. IBVS=6 mm was a close second with expected utility of 0.906. Clearly the
strong weighting kFOV ¼ 0:8 leads to choosing a wide-angle lens. All of the results
are collected in Table 3. The results of the analysis are presented in a decision tree
shown in Figure 34.

Figure 33. Analysis of sensitivity of MAUF to kFOV for the refueling design problem.

Table 3. Expected utility for visual servoing systems and lens

choice for the refueling design problem

System Expected utility

PBVS 6 mm 0.912

IBVS 6 mm 0.906

IBVS 12 mm 0.882

IBVS 25 mm 0.782

PBVS 25 mm 0.781

PBVS 12 mm 0.778
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Figure 34. Decision tree for the refueling design problem.
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Sensitivity analysis was performed by varying the values of the gains kerr, kFOV

and ktime. As seen in Figure 32, if kFOV < 0:325 keeping the tanker in the field of view
is not important, and IBVS with a 25 mm lens is the preferred method, with

Figure 36. Analysis of sensitivity of MAUF to ktime for the refueling design problem.

Figure 35. Analysis of sensitivity of MAUF to kerr for the refueling design problem.
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PBVS=25 mm lens a very close second. If 0:325 < kFOV < 0:7, balanced performance
is sought and IBVS with a 12 mm lens becomes the best choice. Varying kerr or ktime

while keeping kFOV ¼ 0:8 did not affect the choice of PBVS=6 mm as giving the high-
est expected utility, which can be seen in Figures 35 and 36.

5. CONCLUSION

We have performed multi-attribute utility analysis in an effort to choose a
vision based control system for two different tasks. The first task involved the choice
of a visual servo controller for a robot manipulator. Two general systems exist,
image-based and position-based. Each one offers strengths and weaknesses, but
recent analysis showed that a hybrid system that switched between them showed
promise. By biasing the switching toward image-based or position-based, a large
number of potential controllers are available, with a wide spectrum of performance.
The choice of a switching rule should allow the system to perform according to a
system designer’s preferences, and MAUA is a natural method to choose the rule.

IBVS is known to perform best in terms of feature point motion in the image,
and PBVS is known perform best in terms of distance-optimal robot motion. Indeed,
both of these systems are rated above any hybrid method when the feature point
motion or robot motion are the preferred performance metric to improve. The
hybrid systems have lower failure rates than IBVS or PBVS, and if the failure rate
is the attribute most heavily weighted, they are chosen. PBVS shows better perform-
ance (e.g., lower failure rate, less extreme bad performance) than IBVS in the simula-
tions, so was generally preferred to IBVS, and a switched system biased toward
PBVS were preferred to other switched systems.

The second task involves a UAV refueling by docking with a fuel drogue
attached to a tanker plane. In addition to successfully docking the fuel probe with
the drogue as quickly as possible, it is important to keep the tanker and drogue in
the camera field of view to avoid collisions. Thus, final position error, time to dock-
ing and distance to the goal when the tanker leaves the field of view were chosen as
attributes. The choice of camera lens will affect pose error and the camera field of
view, so MAUA was run for IBVS and PBVS with the choice of three focal length
lenses. The decision maker preferred to keep the tanker in the field of view over the
other two attributes, thus PBVS with a wide-angle lens was the preferred method.
Sensitivity analysis was performed on both set of results to study the effect of
preferences for one attribute over the others.
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