
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 5 ,  NO. 6, DECEMBER 1989 765 

Planning Sensing Strategies in a Robot Work Cell 
with Multi-Sensor Capabilities 

Abstract-ln this paper, we describe an approach to planning sensing 
slralegies dynamically, based on the system’s current best information 
about the world. Our approach is for the system to automatically propose 
a sensing operation, and then to determine the maximum ambiguity 
which might remain in the world description if that sensing operation 
were applied. The system then applies that sensing operation which 
minimizes this ambiguity. To do this, the system formulates object 
hypotheses and assesses its relative belief in those hypotheses to predict 
what features might be observed by a proposed sensing operation. 
Furthermore, since the number of sensing operations available to the 
system can he arbitrarily large, we group together equivalent sensing 
operations using a data structure that is based on the aspect graph. 
Finally, in order to measure the ambiguity in a set of hypotheses, we 
apply the concept of entropy from information theory. This allows us to 
determine lhe ambiguity in a hypothesis set in terms of the number of 
hypotheses and the system’s distribution of belief amongst those 
hypotheses. 

I. INTRODUCTION 

ITH CURRENT TECHNIQUES in geometric 
modeling, it is possible to create very detailed 

representations of objects, containing a large number of 
features, and expressing a large number of relationships 
between those features. Likewise, the current state of com- 
puter vision (both 2-D and 3-D) and tactile sensing make it 
possible to extract large feature sets from sensory data. 
Unfortunately, for the purpose of object recognition and 
localization, large feature sets can require exponential compu- 
tational resources. Furthermore, it is often the case that the set 
of features extracted by a single sensor will yield ambiguous 
results. For these reasons, a sensing system should be able to 
choose which sensing operations to apply, so that it extracts 
the minimum number of features required to uniquely identify 
the object and its pose. Furthermore, the system should base 
its decisions on its current hypotheses about the identity and 
pose of the object. This implies that the system should be able 
to dynamically assess its hypotheses about object identities and 
poses, and select a sensing operation which will yield the 
greatest reduction in the ambiguity in that information. 

Previous work in planning sensing strategies has been 
divided into two distinct areas. One of these is concerned with 
sensor placement, that is, placing the sensor so that it can best 
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observe some feature (which is predetermined) or region of 3- 
space. The other is choosing a sensing operation which will 
prove the most useful in object identification and localization. 

Research on optimum sensor placement has been reported 
by Connolly in [3], Kim et al. in [ 191, and Cowan and Kovesi 
in [4]. In [3] ,  a system is described which builds up a complete 
model of a scene by filling in an octree data structure. Since no 
single viewpoint can observe an entire scene, a sequence of 
viewpoints is chosen. In [19] a system is described which 
determines successive camera viewpoints so that the most 
distinguishing features ofthe object can be observed. By using 
the object’s aspect graph, the selection of viewing direction is 
reduced to finding which node in the graph corresponds to the 
best view of the desired feature. Note, that in this system, the 
best distinguishing feature is predetermined, and the problem 
is merely determining the best viewpoint from which to 
observe this feature. A similar problem has been discussed in 
[4], where sensing strategies are selected based on object and 
camera models such that a number of constraints are simulta- 
neously satisfied, for example, the spatial resolution must be 
better than some minimum value, the surface to be viewed 
must lie within the camera’s field of view. The region of 
viewpoints in 3-space which satisfies each constraint is 
determined, and the intersection of these regions defines the 
set of allowable viewpoints. 

Work on automatically determining optimal sensing strate- 
gies has been reported by Ikeuchi 1171, Hanson and Henderson 
[ I l l ,  Magee and Nathan [21], and Hager and Mintz [lo]. 
Ikeuchi’s work is based on the automatic synthesis of 
interpretation trees which are used to guide feature selection. 
In his approach, the higher level nodes in the interpretation 
tree yield the aspect of the object, and then the lower level 
nodes are used for computing the precise pose of the object. 
This scheme makes use of the fact that for most objects the set 
of features useful for discriminating between aspects differs 
from the set of features useful for determining the exact pose 
once the aspect has been determined. 

In the work reported by Hanson and Henderson, a set of 
filters is used to select the best identifying features (based on 
rarity, robustness, cost, etc.) for each aspect. These features 
and their associated aspects are compiled into a strategy tree 
which, in purpose, is similar to Ikeuchi’s interpretation tree. 
The strategy tree has two levels. Each node at the first level 
allows aspect hypotheses to be invoked on the basis of certain 
features and their values. For each hypothesis at a first level 
node, there exists a Corroborating Evidence Subtree, which is 
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used to guide the search for evidence that supports that 
hypothesis and for carrying out the computations for determin- 
ing the object’s pose. 

The work reported by Magee and Nathan describes a system 
which is capable of selecting disambiguating features. The 
method is based on model differencing. With this approach, a 
potential disambiguating feature is tested to see if it could be 
instantiated in more than one candidate object model. If not, it 
is selected as a disambiguating feature, and the sensor is 
repositioned to observe that feature. The limitation to this 
approach is that the disambiguating feature is chosen based on 
its ability to discriminate between only two sets of hypotheses: 
one set containing a single candidate model (to which the 
disambiguating feature belongs), and the other set containing 
the remaining candidate models. This system does not appear 
able to select features which could simultaneously discriminate 
between more than two sets of hypotheses. 

In the work reported by Hager and Mintz decision theoretic 
techniques are applied to the problem of selecting optimum 
sensing strategies. Their methods are aimed at finding the 
value of some parameter associated with the object. They 
accomplish this by treating sensors as noisy information 
sources, and then associating a risk function with each sensing 
operation. Selection of a sensing operation is achieved by 
minimizing the risk function. This work assumes that the 
identity of the object being viewed is known and that the value 
of the parameter is known a priori to lie within some 
confidence interval. 

In this paper, we present the work that we have done in 
dynamic sensor planning, which extends the work cited above 
in a number of directions. First, we give the system the ability 
to choose sensing strategies based on current hypotheses about 
the identity and position of an object which is being examined. 
It is possible that each such hypothesis will correspond to a 
different object. Furthermore, the choices of sensing strategies 
are not limited by the use of a single type of sensor. The sensor 
types currently incorporated in the system include a 3-D range 
scanner, 2-D overhead cameras, a manipulator held 2-D 
camera, a force/torque wrist-mounted sensor, and also the 
manipulator fingers for estimating the grasp width. The vision 
sensors can be used to examine objects from arbitrary 
viewpoints, while the manipulator and forceltorque sensor can 
be used to measure other features such as weight, depth of 
occluded holes in the object, etc. 

It is important to realize that with these additional sensory 
inputs, we can discriminate between object identities, aspects, 
and poses that would otherwise appear indistinguishable to just 
a fixed viewpoint vision-based system. Our system is capable 
of dynamic viewpoint selection if that is what is needed for 
optimum disambiguation between the currently held hypothe- 
ses. 

We attack the problem of viewpoint and sensor-type 
selection as follows. Once the system has developed a working 
set of object hypotheses, candidate sensing operations are 
automatically proposed and evaluated with regard to their 
potential effectiveness. (In our system, an object hypothesis is 
merely a set of matches between sensed and model features. 
This will be explained in more detail in the remainder of the 

1 a 

3 c:, C d 

Fig. 1. Two 2-D object models 

paper.) This evaluation is performed as follows. For each 
hypothesis in the current hypothesis set, the system determines 
the set of features that would be observed by the candidate 
sensing operation if that hypothesis were correct. Using these 
predicted features, the system determines the hypothesis set 
that would be formed if these features were actually found by 
some sensing operation. The ambiguity of this predicted 
hypothesis set is calculated and noted. This is repeated for 
each hypothesis in the hypothesis set, and the maximum value 
of the ambiguities is associated with the proposed sensing 
operation. The sensing operation which minimizes this maxi- 
mum ambiguity is then selected for application. 

In the remainder of the paper, we will describe each of the 
above steps in some detail. First, in order to give the reader a 
clear understanding of the problem, in Section I1 we present an 
example with 2-D objects. In Section ID, we introduce our 
object representation. This representation is used both to 
quantize the space of sensing operations and to predict the 
features which would be observed by a candidate sensing 
operation. Section IV describes how our system generates and 
refines hypothesis sets, as well as how evidential reasoning is 
implemented in the system. In Section V ,  we define the 
measure of ambiguity which our system uses. The measure 
that we describe is based on entropy from information theory. 
Section VI contains a discussion of how object position 
hypotheses are generated, and how these are used (in 
conjunction with the aspect graph of the object) to generate a 
set of predicted features for a particular viewpointisensor 
combination. In Section VII, we describe the types of sensors 
our system uses, and the types of features that they can detect. 
Section VIII brings together the previously discussed concepts 
and presents a formal algorithm for selecting the next best 
sensing operation. Finally, in Sections IX and X, we describe 
some of our experimental results and provide a summary of 
the contributions made. 

II. AN ILLUSTRATION OF. THE PROBLEM 

This section of the paper introduces a simple two-dimen- 
sional (2-D) example which will be used throughout the paper 
to illustrate the various aspects of our approach to sensor 
planning. In this example, it is assumed that the sensory 
system is capable of observing a 2-D object from an arbitrary 
viewpoint in 2-space. Such an observation will yield the set of 
edges in the scene which are visible from that viewpoint. The 
information reported by the sensory system for a particular 
edge includes the location, orientation, and length of the edge, 
each of these quantities being subject to experimental error. In 
our example, we assume that there are two possible objects, 
which are shown in Fig. 1. In the interest of clarity, the edges 
of the left model object have been assigned the integer labels 1 
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Fig. 2.  Two edges, as observed from viewpoint Vl. 
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Fig. 3 .  Edges visible from viewpoint V1, and corresponding hypothses. 

through 4, while the edges in the right model object have been 
assigned the alphabetic labels CI through f. 

Assume that an arbitrary viewpoint V1 is selected for the 
first sensing operation, and that the edges observed from this 
viewpoint are as shown in Fig. 2. By matching the two 
observed edges (S1 and S2) to edges in the two model objects, 
and then using the relational constraints in the models to prune 
away impossible pairs of matches (this process will be 
described in greater detail in Sections IV and VII), four 
possible hypotheses are derived, as shown in Fig. 3. Note, a 
hypothesis about the identity and position of an object in the 
scene is represented by a set of matches between sensed and 
model features, since such a set of matches contains an explicit 
hypothesis about the identity of the sensed features (and 
therefore of the object) and an implicit hypothesis about the 
position of the object. For example, the first hypothesis in Fig. 
3 is denoted by { S1/ 1, S 2 / 2 } ,  meaning that sensed edge S1 is 
matched to model edge 1, and sensed edge S2 is matched to 
model edge 2, both model edges belonging to the left object in 
Fig. 1. 

Since there are four possible hypotheses about the identity 
and position of the object in the scene, a second sensing 
operation is required for disambiguation. In this example, the 
problem is selecting a viewpoint from which the set of features 
that are observed will uniquely identify the object and its 
position, regardless of which of the four hypotheses in Fig. 3 
is correct. Figs. 4 and 5 illustrate two possible viewpoints. In 
each of these figures, the edges that would be observed for 
each of the four hypotheses are indicated, as are the edges 
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Fig. 4. Edges 
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visible from proposed viewpoint V2, and possible resulting 
hypotheses. 
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Fig. 5 .  
hypotheses. 

which have already been observed (from Vl). If the viewpoint 
in Fig. 4 is chosen, the observed edges will not be sufficient to 
distinguish between the third and the fourth hypotheses, since, 
if either the third or fourth hypothesis is correct, a single new 
edge will be observed, at an angle of 45" from S2.  However, 
if the viewpoint shown in Fig. 5 is chosen the observed edges 
will uniquely identify the object and its orientation, regardless 
of which hypothesis is actually correct. Therefore, the 
viewpoint shown in Fig. 5 is a better choice. 

III. OBJECT REPRESENTATION 

The object representation used in our system plays two key 
roles. First, it allows us to quantize the space of sensing 
operations. This is a result of the fact that the representation 
groups together sets of object features which can be viewed 
from a single viewpoint (such a set of features is referred to as 
an aspect). This, in turn allows us to group together 
viewpoints which observe the same aspect. Second, the 



768 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. VOL 5, NO 6. DECEMBER IOW 

Fig. 6. Aspect graph of the rightmost object of Fig. 1 .  

representation allows us to easily determine the features of an 
object which will be observed by a particular sensor from a 
particular viewpoint relative to the object. This is done by 
determining which aspect will be observed from the view- 
point, and then looking up the object features which are 
associated with that aspect. In this section we will describe the 
aspect graph representation and how aspect graphs are derived 
by our system. 

The aspect graph was originally developed by Koenderink 
and van Doom [20] (who referred to it as the visual potential) 
to characterize the visual stimulus produced by an object when 
viewed from different relative positions. This function is 
defined in terms of the invariant properties of the object and 
the relative positions of the viewer and the object. The local 
behavior of the function is defined in terms of the deformation 
of the retinal images through changing perspective. The global 
behavior of the function is defined in terms of its singularities. 
Two types of singularities have been considered: point 
singularities, which determine a system of protrusions facing 
the observer, and line singularities, which correspond to the 
curve on an object that divides its surface into visible and 
nonvisible regions. An aspect is characterized by the structure 
of these singularities for a single view. From most vantage 
points, an observer may execute small movements without 
affecting the aspect. When an observer’s movement causes the 
structure of the singularities to change, an event is said to have 
occurred, and a new aspect is brought into view. An aspect 
graph is created by mapping aspects to nodes and mapping the 
events that take the viewer from one aspect to another to arcs 
between the corresponding nodes. 

We are interested in features which can be observed by 
various sensors. Thus we characterize aspects, not in terms of 
the singularities in the function which defines the visual 
inflow, but in terms of observable features. In particular, we 
define an aspect to be a set of features which can be observed 
simultaneously from a single viewpoint. When a change of 
viewpoint causes a previously visible feature to no longer be 
visible, or a new feature to come into view, an event occurs. 
We use the aspect graph to group viewpoints that see the same 
aspect into equivalence classes. Associated with a node in the 
aspect graph is the set of viewpoints from which that aspect 
can be observed. Arcs in the graph connect nodes with 
adjacent viewpoints. Also, with each node in the aspect graph, 
we associate a principal viewpoint. 

As an example, Fig. 6 shows the aspect graph for the 2-D 

Fig. 7. Regions which view the different aspects of the rightmost object of 
Fig. 1. 

contains features c, d, and e. Since the regions which view 
aspects B and P are adjacent, there is an arc between B and P 
in the aspect graph. 

Aspect graphs for objects can be generated analytically or 
by exhaustive examination of the object. Analytic techniques 
have been reported by Castor and Crawford [ I ] ,  Stewman and 
Bowyer [28], and Gigus and Malik [SI. In [ 11, two algorithms 
are briefly described which generate aspect graphs for 2 112-D 
solids. Aspect graphs for concave solids are generated by first 
finding the aspect graph for the convex hull of the solid. The 
convex hull is then deformed to recover the original object. A 
corresponding transformation to the aspect graph produces the 
aspect graph of the original object. In [28] the aspect graph of  
a convex planar object is constructed using its boundary 
surface representation. This is done by using the object’s 
bounding planes to segment 3-space into viewing cells. Nodes 
in the aspect graph are established by determining which faces 
of the object are visible from each viewing cell. A face is 
visible from a viewing cell if the cell lies to the outside of the 
bounding plane for that face (where the inside of the plane i s  
the side of the plane on which the object lies). In [8]. a method 
for constructing aspect graphs of polyhedral objects under 
orthographic projection is described. Aspects are defined in 
terms of the qualitative structure of the line drawing of an 
object, and a catalog of all visual events which can occur for 
polyhedral objects is provided. 

We generate our aspect graphs exhaustively. This is done by 
creating a CAD model of the object, centered within a 
tessellated viewing sphere. The geometric modeler is then 
used to view the object from the center point of each tessel, 
and the set of visible features is recorded. Using this 
information, it is a simple matter to generate the aspect graph. 
Tessels from which the same feature set is observed are 
grouped together into nodes. The arcs between nodes are 
generated using tessel adjacency (i.e., if two tessels are 
adjacent, and correspond to distinct aspects, an arc is added 
to the aspect graph connecting the two corresponding nodes). 
Finally, each aspect i s  assigned a principal viewpoint, which is 
defined as the average location of the centers of the viewing 
tessels associated with the aspect, with the constraint that i t  lies 
within a tessel that observes the aspect. 

IV. GENERATING OBJECT HYPOTHESES 

object on the right in Fig. 1. Fig. 7 shows the object, and the 
regions of 2-D space from which each aspect can be observed. 
For example, aspect B contains features a and b, and aspect I 

As we mentioned in Section 11, a set of feature matches 
defines an object hypothesis, in that i t  contains an explicit 
hypothesis about the identity of the object, as well as an 
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implicit hypothesis about the position of the object. The 
example of Section 11, however, made a number of simplifica- 
tions from real-world problems, perhaps the most severe being 
that all matches between sensed and model features were 
considered to be of equal quality, and therefore all object 
hypotheses were treated as being equally likely. In the system 
described in this paper, belief is assigned to an object 
hypothesis based on quality of feature matches, object 
consistency, similarity of relations in sensed data to relations 
in model objects, and aspect consistency. 

A number of approaches to reasoning with partial evidence 
have been proposed in the literature. These include Bayesian 
methods, fuzzy set theory, certainty factors, and the Demp- 
ster-Shafer (DS) theory. For our application, the DS theory 
appears to be the best choice, for a number of reasons. First, in 
many cases we will need to express ignorance with regard to 
specific choices for the identity of a feature observed in a 
scene (for example, when several model features are identical 
in appearance). The DS theory is particularly well suited to 
this, allowing belief to be assigned not only to single 
propositions, but also to sets of propositions. Second, our 
system will have no a priori probabilities. The DS theory does 
not need these. Finally, as new features are found (by invoking 
additional sensing operations) new object hypotheses will be 
generated. These new hypotheses will be extensions of the old 
hypotheses, created by adding new matches between sensed 
and model features to those old hypotheses. This process 
corresponds nicely to the concept of refining a frame of 
discernment in the DS theory. 

One of the primary objections to the DS theory is that the 
worst case time complexity for the implementation of Demp- 
ster’s combination rule (the mechanism used to combine belief 
from two separate sources of evidence) is exponential in the 
size of the hypothesis set. Fortunately, the characteristics of 
the object hypotheses generated by our system allow for a 
polynominal time implementation of the combination rule. 

In the remainder of this section, we elaborate the process of 
formulating, and assigning belief to, object hypotheses. For 
the sake of those not well acquainted with the DS theory, 
Section IV-A provides an introduction to the theory, and an 
explanation of how it is applied in our domain. A thorough 
explanation of the DS theory can be found in [25].  In Section 
IV-B, we describe how sensory measurements are converted 
to object hypotheses. Finally, in Section IV-C, we show that 
our implementation of Dempster’s combination rule has 
polynomial time complexity. 

A .  The Dempster-Shafer Theory 
The reasoning process used by our system requires a 

formalism for representing beliefs in hypotheses about an 
object’s identity and position. Furthermore, since these beliefs 
will come from a number of independent sources, the 
formalism must include a method of combining beliefs from 
distinct sources to obtain a set of aggregate beliefs. The 
Dempster-Shafer (DS) theory provides such a formalism. In 
this section. we will provide the reader with an introduction to 
the DS theory and develop a connection between the terminol- 
ogy of the DS theory and that used in the context of this paper. 

1) A n  Introduction to the Dempster-Shafer Theory: In 
the DS theory, the set of all possible outcomes in a random 
experiment is called the frame of discernment (FOD), 
usually denoted by 0. For example, if we roll a die, the set of 
outcomes could be described by a set of statements of the 
form: “the number showing is i,” where 1 5 i I 6 ;  
therefore, 8 = { 1, 2, 3, 4, 5 ,  6) .  The 21e1 subsets of 0 are 
called propositions and the set of all propositions is denoted by 
2e. In the die example, the proposition “the number showing 
is even” would be represented by the set (2, 4, 6) .  

In the DS theory, probability masses are assigned to 
propositions, i.e., to subsets of 0. This is a major departure 
from the Bayesian formalism in which probability masses can 
be assigned only to singleton subsets (i.e., elements) of 8. The 
interpretation to be given to the probability mass assigned to a 
subset of 8 is that the mass is free to move to any element of 
the subset. Under this interpretation, the probability mass 
assigned to 0 represents ignorance, since this mass may move 
to any element of the entire FOD. When a source of evidence 
assigns probability masses to the propositions represented by 
subsets of 8, the resulting function is called a basicprobabil- 
ity assignment (bpa). Formally, a bpa is function m:2O + 

[0,1] where 

0.05m(*)11.0 m(@)=O 

and 

m ( X ) =  1.0. (1) 
XE e 

Subsets of 8 which are assigned nonzero probability mass 
are said to be focal elements of m(.). The core of m( ) is the 
union of its focal elements. 

A belief function, Bel(X), over 0 is defined by 

Bel ( X ) =  m(Y) .  (2) 
YEX 

In other words, our belief in a proposition X is the sum of 
probability masses assigned to all the propositions which 
imply X (including X itself). 

Dempster’s rule of combination states that two bps’a, ml (.) 
and m 2 ( - ) ,  corresponding to two independent sources of 
evidence, may be combined to yield a new bpa m( * )  via 

m ( X ) = K  m,(~,>m,(x,> (3) 
x, n x, = x 

where 

K-’= 1 - m,(X,)m2(X,). (4) 
x,nx,=a 

This formula is c~mmonly called Dempster’s rule or Demp- 
ster’s orthogonal sum. In this paper, we will also use the 
not at i o n 

m=ml 8 m2 ( 5 )  

to present the combination of ml ( a )  and m2( .). 
Since Dempster’s rule may only be applied to bpa’s which 

have the same domain (i.e., bpa’s which discern the same 
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frame), if m l ( . )  and m2(.)  discern different frames (i.e., 8, 
# e,), they must be mapped to a common frame before they 
can be combined. As will be clear from the next section, each 
sensory operation will have a unique frame of discernment. 
Therefore, before beliefs in pose/identity hypotheses can be 
modified by combining the results of different sensory 
operations, their individual frames of discernment must be 
mapped to a common frame. The process of mapping disparate 
frames of discernment to a common frame is called refining 
by Shafer, and the common frame thus obtained is called a 
refinement. 

Refining the frames of discernment el ,  02,  * * to a 
common frame Q is accomplished by specifying the mapping 
functions 

w, : 29,+20 (6) 

which must possess the following properties: 

w , ( { e } ) # @ ,  for all 8 E 8, (7) 

~ ~ ( { e } )  n ~, ({8’})=  0, for 8 # 0 ’  (8) 

(9) 

Equation (7) states that any proposition that is discerned in 8, 
must be discernible in Q .  Equation (8) requires that the 
mapped propositions in Q be disjoint. Finally, (9) specifies that 
if Q is a refinement of 8;, then no proposition in 0 can be 
outside the range of mappings corresponding to the different 
propositions in 8;. 

To assess belief in a proposition in Q, the beliefs represented 
by mi( . )  must be mapped to beliefs in subsets of Q. This is 
accomplished using 

m ,‘ (U, (A 1) = m, (A 1 (10) 

where the bpa m,‘ (.) maps m,(-)’s belief in a subset of 8, to 
belief in the corresponding subset of Q .  

2) Object Hypotheses and their Representation Using 
DS Terminology: In our application, an experiment consists 
of extracting features from sensory data and matching those 
sensed features to features of model objects. The possible 
outcomes of such an experiment are sets of possible matches 
between sensed and model features. For example, if N sensed 
features, S1 SN,  have been extracted, the possible 
outcomes are of the form 

where the j t h  element of 0, indicates that the sensed feature S, 
is matched to model feature f f  . In other words, f f  denotes the 
model feature which is matched to sensed feature S, in object 
hypothesis 8,. For example, the four hypotheses shown in Fig. 
3 are represented by { S l / l ,  S2/2},  { S l /a ,  S2/b} ,  { S1/4, 
S 2 / l } ,  and { S l / f ,  S2/a}.  

In our system, such a set of feature matches defines an 
object hypothesis. This representation for an object hypothesis 
is explicit about the identity of the object-the model features 
matched in the hypothesis must belong to the object-and is 

implicit about the pose of the object, assuming, of course, that 
hypothesis contains a sufficient number of feature matches to 
estimate the object’s pose (this will be discussed in Section 
VI). 

A frame of discernment will be the set of all possible object 
hypotheses for a particular set of sensed features. 

e=(el, 02,  -1. (12) 

Clearly, if there is only a single sensed feature, say S A ,  the 
frame of discernment reduces to 

e = w , u : i ,  {s,/f;i, e - ,  v w f ; ~  (13) 

where each element of 8 indicates a possible match of sensed 
feature Sk to some model feature fi. In the case of a single 
sensed feature, we simplify this notation to the form 

(14) 

To illustrate, consider the example discussed in Section 11. 
Assume that the two sensed edges, S1 and S2, correspond to 
the edges 1 and 2, as shown in the upper left of  Fig. 3. 
Further, assume that belief is assigned to feature matches For 
the two edges based on the difference in lengths of the sensed 
and model edges. Since the model features 1 ,  a ,  and e are of 
same length, there is no evidence that discriminates between 
them; in other words, we are ignorant about which one O F  
these three might actually be in the scene. The three must 
therefore be grouped together into a single proposition- 
something that would not be allowed in a Bayesian formalism 
but is easily accomplished in the DS formalism. Similarly, the 
features 2, 4, b, c, d, and f are identical and must be 
incorporated in a single proposition. Therefore, a reasonable 
bpa for S1 is 

e = { S,/fL, s,/ f ’k, . . . , S k /  f ; 1.  

ml(A 1) = 0.5 

ml(A2) = 0.45 

ml(A3) = 0.05 

where 

A ,  = { S l / l ,  S l / a ,  S l / e }  

A z = { S 1 / 2 ,  S1/4,  S l / b ,  Sl/c, Sl/d, Sl/f} 

A3={S1 /3} .  

Similarly, for S2 a likely bpa is 

m2(B1> = 0.45 

m2(B2) = 0.5 

m2(B9 = 0.05 

where 

B, = { S2/1,  S2/a, S2 /e )  

B2= { S2/2,  S2/4, S2/b,  S ~ / C ,  S2/d,  S2/f  } 

B3 = { S2/3}.  (18) 

(16) 
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In this example, the focal elements of ml ( . )  are A l ,  AZ, 
andA3. Thecoreofml( . ) i sAl  U A2 U A3.Thebeliefinthe 
proposition represented by A I  U A 2  is equal to 0.95 (the sum 
of the basic probability masses for A l  and A2),  and the belief 
in the proposition represented by { Sl/a} is 0, since no subset 
of { S l / a }  is assigned a nonzero basic probability mass. At 
first glance, this may seem unusual, since { S l / a }  is a subset 
of A , ,  and A I  has a positive belief value. However, the bpa 
m I ( .) does not give us any evidence for { S l / a }  as the correct 
assignment for S1. It merely says that the assignments { S l / l ,  
S l / a ,  Sl/e} are equally valid, and that there is no evidence 
available to discriminate between the three. 

In order to combine mi( . )  and m2(.), their respective 
frames of discernment must be mapped to a common frame. 
This is done by specifying tu70 mapping functions, U, (-) and 
a?(.), which satisfy (7)-(9). For this example, a valid 
refinement can be obtained by collecting every pair of matches 
for S1 and S2, i.e., 9 could be defined as 

or 

D = ( { S l / l ,  S2/1}, { S l / l ,  S2/2), { S l / l ,  S2/3}, 

{Sill, S2/4), {Sill, S ~ / U ) ,  - 0 .  

{S1/2, S2/1), {S1/2, S2/2), {S1/2, S2/3), 

{ S1/2, S2/4), { S1/2, S2/a) ,  . . . 
{Sl/f, S2/d}, {Sl/f, S2/e}, {Sl/f, S2/f}). 

Included in D are object hypotheses that would be impos- 
sible for the case of single object recognition; for example, the 
hypothesis { S1/2, S2/a} is of this type since model features 2 
and a do not belong to the same object. Later we will show 
how such unlikely hypotheses can be pruned away by 
enforcing appropriate constraints. 

The mapping functions w I  (.) and 0 2 ( * )  that produce the 
common refinement of (19) would be given by 

where 0 is a feature match from 0i and D is defined by (19). 
For example, the belief assigned by ml(.) to the match S1/3 
would be mapped to the subset of 9 

WI({  S m}) = { { S1/3, S2/1}, { S1/3, S2/2}, 

(S1/3, S2/3), {S1/3, S2/4}, 

{S1/3, S2/a}, {S1/3, S2/b}, 

{ S1/3, S 2 / c } ,  { S1/3, S2/d},  

{S1/3, S2/e), {S1/3, S2/f}}. (21) 

That is, the belief assigned to the match S1/3 by m l ( * )  in the 
frame 0, will be mapped to the subset of s2 which contains all 
of the propositions that match sensed edge SI to model edge 3. 
Similarly, the belief assigned by m2(*)  to the match S2/3 

would be mapped to the subset of D 

wz({S2/3})= { { S l / l ,  S2/3}, {S1/2, S2/3}, 

{ S1/3, S2/3}, { S1/4, S2/3}, 

{ S l / a ,  S2/3}, { S l / b ,  S2/3}, 

{ Sl / c ,  S2/3}, { S l / d ,  S2/3}, 

{Sl /e ,  S2/3}, {Sl/f, S2/3}}. (22) 

Now the combination rule can be used to find combined belief 
in a proposition in s2. For example, since 

the belief in the proposition {{S1/3, S2/3}} obtained by 
combining mi(.)  and m2(*)  is found to be 

= ml({ S1/3})m2({ S2/3}) = 0.0025. (24) 

Note that the normalizing constant K is unity in this example, 
since w 1 ( A j )  n wZ(Bj) f 0 for any i, j .  

B. Generating and Refining Hypothesis Sets 

In our earlier work [ 161, hypothesis generation and subse- 
quent refinement did not use an evidential reasoning scheme. 
Each sensed feature was matched to all feasible model features 
(where feasibility was determined by the similarities of the 
attributes of the sensed and model features). These matches 
were then pruned by enforcing object consistency, relational 
constraints, and aspect consistency. Object consistency en- 
sured that all model features participating in an object 
hypothesis belonged to the same model object. Relational 
consistency was determined by examining the similarity of the 
relationships between the sensed features and the correspond- 
ing relationships between the matched model features. If the 
similarity was below some quantitative threshold, the hypothe- 
sis was discarded. Aspect consistency ensured that prominent 
object features were matched if they could be observed by the 
performed sensing operation. If they were not matched, the 
corresponding hypothesis was discarded. 

Our current system retains feature matches, object consist- 
ency, relational consistency, and aspect consistency as the four 
measures of an object hypothesis’ credibility, but, threshold- 
ing has been replaced by evidential reasoning. Now, a 
hypothesis is assigned belief which reflects how well the four 
criteria are satisfied. We use four bpa’s: m,-( a ) ,  m,(.), m,(.), 
and m,(.) to assign beliefs to object hypotheses based on the 
quality of the feature matches, object consistency, relational 
consistency, and aspect consistency. We combine these using 
Dempster’s rule of combination to determine the aggregate 
belief in an object hypothesis. Thus, when the sensing system 
extracts a set of features, a set of object hypotheses is 
constructed by deriving m,-(.), m,(.), m,(.), and ma(.), and 
combining them. If a set of object hypotheses already exists, 
the new belief function must be combined with the belief 
function for the existing hypothesis set to produce the revised 
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Fig. 8. Block digram of hypothesis generationirefinement system. 

hypothesis set and the associated beliefs. Fig. 8 shows a block 
diagram of the hypothesis generationirefinement system. 

1) Consistency of Feature Matches: When a set of features 
is extracted from sensory data, the first step in generating a 
hypothesis set (or refining the current hypothesis set, if it 
exists) is to match those sensed features to model features and 
derive a belief function which expresses the belief in each 
object hypothesis that can be derived from those matches. We 
do this in two steps. First, individual belief functions are 
derived for each sensed feature. These belief functions define 
the possible matches between sensed and model features and 
the corresponding evidence which supports those matches. 
These individual belief functions are then combined to form 
object hypotheses which represent possible combinations of 
the feature matches. 

The process of assigning belief to individual feature matches 
consists of comparing attributes of the sensed features to 
attributes of the model features. It is possible that a number of 
model features will have attributes that are exactly the same. 
For example, edges 2,4, b,  c, d ,  andfof the objects shown in 
Fig. 1 are exactly the same. Our system groups together model 
features which appear equivalent, each such grouping corres- 
ponding to one unique model feature. Each unique model 
feature is given a label. For example, the edges 2 ,  4, b, c, d ,  
and f of the objects shown in Fig. I could be grouped together 
and assigned the label M u [ .  The set of labels for all unique 
model features is denoted by U. The set of all model features is 
denoted by M.  A function, u:U + 2M is used to map unique 
model features onto the appropriate subsets of M. 

For each sensed feature Si,  we construct a bpa mi( . )  which 
represents the system’s belief in the possible matches for SI.  
This bpa is constructed as follows. If u ( F )  = {MI, . . ., 
Mk}, then for 

8 = { S 1 / M , ,  * . a ,  S,/Mk} (25) 

we define 

Y E  U 

where C ( F ,  SI) is the confidence value associated with 
matching unique model feature F to sensed feature S, . 

As an example, for the unique feature M,,,, U (hf I l~ 1 = ( 2 .  
4, b, c, d, f ] .  Then, for sensed edge S1, we derive one value 
o f m , ( . )  by 

l9= (S1/2, s1/4, S l / b ,  S l / C ,  Sl/d,  Sl/j-) 

and 

C(&IL,l, SI) 
m,(O> = 

C(x, SI) ‘ 
r E  ii 

Examples of the methods used to calculate the value of C ’ 1 
will be presented in Section VII-A. 

Once bpa’s have been assigned to represent belief in 
individual feature matches, the next step is to combine the 
feature matches to create object hypotheses. and to combine 
the bpa’s to determine the belief in those object hypotheses. 
Unfortunately, as discussed in Section IV-A, this cannot ht: 
done by simply invoking Dempster’s combination rule, since 
the individual bpa’s do not discern the same frame. Recall, for 
each sensed feature Si, we have a bpa m,(.), which discerns 
an FOD O i ,  whose structure is shown in (14). To remind the 
reader, g i  only includes propositions about the i th  sensed 
feature and, therefore, mi( * ) only discerns propositions about 
the ith sensed feature. In order to combine these individual 
bpa’s, we must create an FOD which is common to all the 
features sensed so far. 
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Given N sensed features, we construct Q as follows: 

In keeping with the discussion in Section IV-A2, each element 
of Q is a collection of feature matches, and each possible 

We want m,(-) to place all of its belief in the subset of 
hypotheses which contain only consistent matches, and no 
belief in any hypothesis which contains an inconsistent match. 
A hypothesis contains an inconsistent match if any two sensed 
features are matched to model features from different objects. 
Thus for a hypothesis set Q ,  we define 

for the largest 4 G 
mo(4)= [i: otherwise. 

s.t. 4 contains no inconsistent matches 
(34) 

combination of feature matches (for the N sensed features) is 
represented in Q .  

We can also define U , ( * ) ,  the refining from 8, to Q as 

~,({WM,1)={414 E Q and WM, E 41 (28) 

for singleton subsets of e,, and 

w , ( A ) =  U w({0}> (29) 
BEA 

for A C 8. In other words, U,({ S, /M,} )  is the subset of D that 
contains all object hypotheses which match sensed feature SI to 
model feature M, . 

Now, we can apply Dempster’s rule 

mf=m; @ m; m; (30) 

where m,‘ ( - )  is computed as in (10). 
The method used for refining an existing hypothesis set 

given a new sensed feature is similar to the process just 
described. Denote the existing hypothesis set by (where k 
is the number of sensed features which have been encountered 
thus far), and the new sensed feature by &. First, we find 
mk(.) ,  which defines the set of beliefs in possible feature 
matches for sensed feature &. Next, we create a common 
refinement off&- and 0, (where Qk is the frame discerned by 
m k ( . ) ) .  This refinement is defined by 

U = { +  U {8}\4 E Qk-1 and0 E e,}. (31) 

Note that each element of Q k -  will be an object hypothesis 
which is represented as a set of feature matches. Therefore, 
4 U { e }  in the equation above is a new object hypothesis, 
which contains the feature matches from one object hypothesis 
in Qk - and one of the feature matches for S,. The mappings 
from Q k -  and ek to Q are analoguous to those defined in (28) 
and (29). In particular 

w n k - l ( P ) = { 4 \ 4  E O a n d  P 41 (32) 
and 

Ok({Sk /M})={$bI$J  E Q and Sk/M E b}. (33) 

2) Object Consistency: It is quite likely that some of the 
hypotheses in the frame discerned by mr(.) will match sensed 
features to model features that are not in the same object. Since 
we do not currently deal with occluding objects, we do not 
allow such matches. (This restriction will be removed if we 
later allow for occlusion.) This constraint is enforced by 
combining the bpa m f ( - )  with m,(.). 

3) Relational Consistency: Further pruning of the set of 
object hypotheses can be achieved by enforcing relational 
constraints. An example of a relational constraint would be the 
equality of the dihedral angles between planar features in the 
scene and the corresponding model features in an object 
hypothesis. Most previous approaches to robot vision have 
treated such constraints in a deterministic manner, meaning 
that a relational constraint is considered either satisfied or not 
satisfied depending upon whether or not the value of the 
relation between the scene features is within a prescribed 
range (which depends on the value of the relation in the 
model). The system presented in this paper is more general, in 
that the belief it associates with a given object hypothesis is 
made to depend on the degree of similarity between the scene 
relations and their corresponding model object relations. 

We enforce relational constraints by constructing a new 
bpa, m,(.), which is a combination of a number of bpa’s, one 
for each type of relation. For example, one component of 
m,(.) is the bpa m,(-),  which assigns beliefs on the basis of 
the similarity of the angle between the surface normals for two 
planar scene features and the angle between their correspond- 
ing model features. In Section, VII-A we will give examples of 
bpa’s used to compute m,. 

When such an m,(-) is combined with mf CB m,, the result 
is a weakening or elimination of object hypotheses in which 
the relations between sensed features do not match well with 
the relations between the corresponding model features. 

4) Aspect Consistency: The final bpa used to evaluate the 
quality of an object hypothesis is based on the fact that, once a 
position transformation has been derived for the hypothesis, 
the system can determine which object features should be 
observed from a particular viewpoint. The bpa mu( . )  is 
derived by accumulating positive evidence when expected 
features are matched in the hypothesis, the exact degree of 
belief being a function of the quality of the feature match and 
the likelihood that the feature will be extracted. 

As we will discuss in Section VI, it is possible to derive a 
position transformation for an object hypothesis which con- 
tains a sufficient number of feature matches. This transforma- 
tion is used by the function A (0, V ) ,  to determine the aspect 
of the object which would be observed from a certain 
viewpcint V for a particular hypothesis 0. The function F,(x)  
returns the set of features visible in aspect x.  Thus Fu(A(t9, 
V ) )  returns the set of features which should be visible from a 
viewpoint V,  given the object hypothesis represented by 8. 
Associated with each aspect of an object is a set of weights 
which reflect the prominence of each feature in the aspect. The 
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function wA ( x ,  y )  returns the weight assigned to model feature 
x in aspect y. 

To determine the quality of the match for model feature f in 
object hypothesis 8, the system first determines which sensed 
feature Si is matched to model feature f in 8. Then mi( 0 )  (the 
bpa which assigns belief to feature matches for the ith sensed 
feature) is invoked to determine how much belief is placed in 
the proposition which includes the match of Si to f .  This is 
expressed by the function q ( * )  

which our system creates allows for a special implementation 
of Dempster’s rule. In this section, we prove that our use of 
Dempster’s rule can be achieved in polynoniinal time (in the 
size of the hypothesis set). 

In order to show this, we will introduce a class of belief 
functions which we will call disjoint belief functions. All 
belief functions that are created by our system belong to this 
class (which will be evident once the definition of disjoint 
belief functions is stated). We will then show that the 

for Si/f E 8, where Si / f  E d, and Si was observed from I/ 
q ( f ,  8, v)= { r i ( + ) ,  otherwise ( 3 5 )  

which returns the quality of the match for model feature f in 
object hypothesis 8. Note that if feature Si were not observed 
from viewpoint V ,  or iff were not matched in 8, q ( * )  would 
equal 0. 

We define the aspect confidence in an object hypothesis to 
be 

cu(e, U =  w A ( f ,  ~ ( 8 ,  V m u ,  8, VI. (36) 
fEF,(A(o, v)) 

This equation states that aspect consistency is evaluated by 
summing the product of a feature’s likelihood of being 
extracted from sensory data with the quality of the match for 
that feature, for each feature that we expect to find in the 
hypothesized aspect. We construct mu(. ) by normalizing 
CO(*).  (See Note Added in Proof.) 

A slight complication arises when an object hypothesis 
contains sensed features that were observed from different 
viewpoints. In such cases, each sensory operation contributes 
its own mi (*), based only on the features that it extracted. 
These individual mi (*)’s are then combined to form mu(.). 

To illustrate the calculation of aspect consistency, consider 
again the example of Section 11. Suppose that the current 
object hypothesis 8 is { S l / a ,  S 2 / b } ,  and the viewpoint Vl is 
as shown in Fig. 3. This implies that the aspect being viewed is 
aspect B (see Fig. 7), i.e., A (8, V1) = B,  and that Fu(A (8, 
V l ) )  = { a ,  b } .  Now, if the weights for edges a and b in 
aspect B are set to 0.55 and 0.45, respectively, the equation 
for C,,(8, V l )  becomes 

C,(8, V l ) = w A ( a ,  B)q(a ,  { S l / a ,  S 2 / b } ,  V1) 

+ wA(b, B)q (b ,  { S l / a ,  S 2 / b } ,  V l )  

= 0.55 ml(A1) + 0.45 mz(B2) 

where A I  and B2 are as defined in Section 11, since S l / a  E 
A I ,  S l / a  E 8 ,  S2/b E B2, S2/b E 8, and both SI and S2 
were observed from Vl. 

C.  A Polynomial Time Implementation of the 
Combination Rule 

It is well known that a brute-force implementation of 
Dempster’s combination rule has worst case behavior that is 
exponential in the size of the frame of discernment (or the size 
of the hypothesis set), since all subsets of the frame must be 
examined. Fortunately, the structure of the belief functions 

combination of two disjoint belief functions produces a disjoint 
belief function. Thus all belief functions that are encountered 
by our system, whether created directly from sensory mea- 
surements or by combining two existing belief functions, will 
belong to the class of disjoint belief functions. Finally. we will 
show that the combination of any two disjoint belief functions 
can be performed in polynominal time. 

Def: We will say that a belief function, Bel, over the frame 
of discernment 8 is disjoint if its corresponding bpa is 
such that for all A ,  B g 8, if m ( A )  > 0, m ( E )  > 0, 
andA # B,  thenA fl B = 0. 

This condition is equivalent to the statement that the subsets 
of 8 with positive basic probability masses form a disjoint 
partition of the core of Bel. (Remember that the core of Bel is 
the union of its focal elements, and that X i s  a focal element of 
Bel iff m ( X )  > 0.) It is clear that all belief functions derived 
by our system are disjoint belief functions, since the corres- 
ponding bpa’s are constructed by assigning confidence values 
to disjoint subsets of a frame of discernment and then 
normalizing those confidence values. The system never 
constructs a bpa that assigns positive probability numbers to 
two nondisjoint subsets of the frame of discernment. 

For convenience, we introduce one further definition. 

Def: Given two belief functions with corresponding bpa’s 
ml and m2, we say that A and 3 form a supporting pair 
of C i f A  n B = Cand m l ( A )  > 0, m z ( E )  > 0. 

This definition is a consequence of the fact that, in the 
combination rule, two subsets, A and E ,  contribute to the 
belief in exactly the subset C iff A n B = C, m I  ( A )  > 0, 
and m 2 ( B )  > 0. 

We now state and prove a lemma which will be used in the 
proof of our basic theorems. 

Lemma: Let Bell and Bel2 be two disjoint belief functions. 
If their combination, Bel, has the corresponding 
bpa m, then if m ( C )  > 0 , there is exactly one 
supporting pair of C. 

Let A , B ,  and C be such that A,B is a supporting 
pair of C and C is nonempty. Now, also suppose 
that X, Y is a supporting pair of C. Since A , B  is a 
supporting pair of C, then A f l  B = C which 
implies that C is a subset of A .  Likewise, C must 
also be a subset of X .  But, since Bel, is dkjoint, 

Proof: 
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A n X = 0 (by the definition of disjoint belief 
functions, and since both A and X are focal 
elements of Bel). Thus since C is contained in both 
A and X,C = 0, which is a contradiction since 
m (C) > 0 implies that C # 0. 

Q.E.D. 
We now state our first theorem. 

Thm: If two belief functions are disjoint, then their 
combination is also disjoint. 

We will prove the theorem by showing that, if Bel 
is the combination of two disjoint belief functions 
with corresponding bpa m ,  if m ( X )  > 0 and 
m ( Y )  > O t h e n X n  Y = 0. 
If m ( X )  > 0, then by the lemma, there is exactly 
one supporting pair for X. Call this pair A, ,  BJ. 
Similarly, if m( Y )  > 0,  Y will have exactly one 
supporting pair, say A k ,  B, .  Now, by the defini- 
tion of disjoint belief functions and supporting 
pairs (in particular that any two nonidentical focal 
elements of a disjoint belief function have a null 
intersection and that both elements of a supporting 
pair are focal elements of their respective belief 
functions) we can assert that either A,  = A k ,  or 
A ,  n Ak = 0, and either B., = BI ,  or B., fl 
B/ = 0. To see this, we examine the intersection 
of X and Y.  

Proof: 

Since set intersection is both associative and 
commutative 

x n Y=(A,  n A ~ )  n (B, n B ~ ) .  

If A ,  # A k ,  this intersection is empty since A,  n 
Ak = 0. Similarly, if BJ # Bl, the intersection is 
empty. If A ,  = A k  and B, = B,, then X = Y. 
Thus if m ( X )  > 0 and m(  Y )  > 0 eitherX = Y 
or X n Y = 0, and therefore Bel is disjoint. 

Q.E.D 
An important consequence of this theorem is that, provided 

the system creates only disjoint belief functions, all belief 
functions which it derives by combining two existing belief 
functions will also be disjoint. Thus all applications of 
Dempster’s rule in our system will be to combine disjoint 
belief functions. The following theorem states that such 
combinations can be achieved in time polynominal in the size 
of the frame of discernment. 

0 By the lemma, m ( C )  > 0 implies that there is 
exactly one supporting pair for C. We can find all 
C = A fl B with m ( C )  > 0 by examining every 
pair A,B  such that m l ( A )  > 0 and m 2 ( B )  > 0. 
There are at most 18 1 such pairs, since Bel, and Bel? 
are disjoint. Therefore, the focal elements of Bel can 
be enumerated in polynominal time. 

0 In order to show that m ( C )  can be found in 
polynominal time for any focal element of Bel, 
consider the form of the combination rule. We can 
evaluate the numerator by examining all pairs A,B 
such that ml ( A )  > Q and m z ( B )  > 0 in order to find 
the supporting pair of C. As above, this leads to at 
most 18 I set intersections. For the denominator, we 
mush examine all pairs A,B such that A fl B = 0 
and m , ( A )  > 0 and m 2 ( B )  > 0. Again, this can be 
accomplished in at most 18 I set intersections. 

Q.E.D. 
V. MEASURING THE AMBIGUITY IN A SET OF HYPOTHESES 

Now that we have described how sets of objects hypotheses 
are generated and subsequently refined to admit new evidence, 
we need a means ~f characterizing the ambiguity in a 
hypothesis set. In our earlier work 1161, the ambiguity in a 
hypothesis set was trivially defined to be the number of 
hypotheses in the set. Of course that approach will not work 
once an evidential reasoning scheme is put into place. 
Consider, for example, a case in which no initial hypothesis is 
ever completely discounted although eventually a single 
hypothesis accrues enough evidence to emerge as the obvious 
choice. Clearly a more sophisticated measure of ambiguity is 
needed. 

Before defining our measure of ambiguity, we enumerate 
the qualities that it should possess. If we have a set of 
hypotheses, with an associated bpa m ( - ) ,  we want to 
characterize the amount of choice that the system would be 
required to exercise in order declare a single hypothesis as 
valid. The more choice required, the higher the amount of 
ambiguity. Thus our measure of ambiguity should be highest 
when a11 hypotheses are equally likely. Stated another way, 
given PWO hypothesis sets, the set whose belief function shows 
the greater dispersion should have more ambiguity (by 
dispersion, we mean the degree to which a belief function 
resembles a uniform distribution). Furthermore, if all hypoth- 
eses are equally likely, the ambiguity should increase with the 
number of hypotheses. Of course, if a hypothesis set has a 
single element, then its ambiguity should be zero. 

Another desirable quality for a measure of ambiguity is that 

Thm: If Bel, and Be,2 are disjoint belief functions, then the 
basic probability numbers for every focal element of 
their combination, Bel, can be calculated in time 
polynominal in the size of the frame of discernment 
n 

it be consistent across levels of a hierarchical hypothesis 
space. In particular, if we establish hypothesis sets in a 
hierarchy, then the ambiguity in a hypothesis set at one level 
should be equal to a weighted sum of the ambiguity in its 
descendants. For example, if the top level hypothesis set Ho is 

W .  
the set { A , B ) ,  with m o ( ( A } )  = 0.3, and & ( { B } )  = 0.7, 
and we split A and B to obtain two new hypothesis sets HI  = 
{ al , a2 1, and H2 = { bl , b 2 } ,  then the ambiguity in Ho should 
be equal to the sum of 0.3 times the ambiguity in H I  and 0.7 
times the ambiguity in H2. 

Proof: We prove this theorem by showing that we can 
enumerate the focal elements of Bel in polynominal 
time and that we can find m ( A )  in polynominal time, 
for each A which is a focal element of Bel. 
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The only continuous function satisfying these requirements 
is of the form 

A ( Q ) =  -X Pr (0) log Pr (0) (37) 
BE0 

where K is some positive constant, and Pr (0) is a measure of 
the certainty that 8 is the correct hypothesis. A proof of this 
can be found in [26]. The form of A ( . )  is not totally 
unfamiliar. It is the form of the entropy measure from 
information theory. This is no mere coincidence, since 
information theorists use entropy to measure the freedom of 
choice available in selecting a message, provided that the 
probabilities associated with the choices are known. 

Other work on characterizing the entropy in a hypothesis set 
has been done by Stephanou and Lu /27],  Yager (291, and 
Higashi and Klir [13]. The measure described in [27] does not 
suit our purposes because it awards equal entropy to hypothe- 
sis sets with different numbers of elements in the case of total 
ignorance (i.e., the belief function assigns belief of 1 .Q to the 
total frame, and no belief to any subset of the frame). The 
measure developed in [29] fails to meet our criteria because if 
any two focal elements have a nonernpty intersection, the 
entropy is zero. Finally, the entropy measure described in [13] 
fails to satisfy our condition that the entropy be consistent over 
levels in a hierarchy of hypothesis spaces. 

Note that in (37) we did not use m(.> to represent the 
likelihood that a particular hypothesis was correct. This is 
because there will be situations in which m ( e )  assigns belief to 
nonsingleton subsets of O 3  and no belief to individual 
hypotheses. In such cases, we must stili be able assess the 
likelihood of the individual hypotheses. For this purpose, we 
calculate Pr (0) as follows: 

In this way, when m ( - )  assigns belief to a nonsingleton subset 
of Q ,  for the purpose of calculating ambiguity, we treat the 
individual elements of that subset as being equally likely. 

In order to apply this measure of ambiguity to the problem 
of selecting a best next sensing operation, we predict the 
hypothesis sets which might occur if a particular sensing 
operation were applied. We then find the ambiguity associated 
with each of these possible hypothesis sets, and use the worst 
case value as a measure of the effectiveness of that sensing 
operation. We will use the symbol ALax to refer to the 
maximum ambiguity associated with a proposed ith sensing 
operation. The goal of the system is then to choose a sensing 
operation which minimizes the value of A Ldy. 
VI. PREDICTING THE POSSIBLE RESULTS OF SENSING OPERATIONS 

In order to determine which sensing strategy will minimize 
we must be able to predict the possible results of 

candidate sensing operations. Consider Figs. 4 and 5 .  The 
ability to determine the best viewpoint depended on the ability 
to predict the set of edges that would be observed from the 
various viewpoints. This amounted to being able to predict the 
geometry of the line segments that would be observed from 
various viewpoints relative to the edges in the four object 

hypotheses. In the general case, predicting sensor readings 
depends on the ability to determine the features that will be 
observed by a particular sensor from a particular viewpoint for 
each object hypothesis in the current hypothesis set. 

In order to have this predictive power. the system must be 
able to derive the position transformations implicitly contained 
in an object hypothesis (which is composed of a set of feature 
matches). This can be done once the position (location in 3- 
space and orientation) of any of the sensed features has been 
completely determined. Generally, if only one sensed feature 
has been observed, it is not possible to accurately determine 
both the location and orientation of that feature due to 
segmentation errors, occlusion of surfaces, noisy edge detec- 
tion, etc. For example, if a planar surface is observed, i t  is 
possible to robustly 'determine the normal to the surface, but 
not necessarily the rotation of the surface about the normal, 
since this depends on the ability to robustly determine the 
locations of the edges of the surface. After two features have 
been observed, the chances of accurately determining the 
position transformation are much better. For example, once 
two adjacent planar faces have been found, their two surface 
nonnals fix the object's orientation; this formed the basis of 
the pose transformation procedure reported in [ 161 using the 
algorithm of[7]. It is our intention to incorporate in the systern 
more sophisticated methods for position transformation calcu- 
lations, such as those presented in 121, which are based on the 
principles introduced by Hebert and Faugeras 161. 

Once a position transformation has been computed for I I  

hypothesized object, it is a simple matter to determine the set 
of features which should be observed by a sensing operation 
from a particular viewpoint (provided that the object hypothe- 
sis is correct). This is done as follows. First, the position 
transformation Tobj is used to determine the tessel on the 
viewing sphere from which the object will be observed. The 
viewing tessel is the tessel intersected by the vector T, i ;  V 
(where V is the viewpoint in world coordinates). The set of 
features visible from this tessel is then intersected with the set 
of features which can be observed by the particular sensor. 
This determines the set of features visible to the sensor from 
the specified viewpoint. 

We now turn our attention to the features themselves. In 
particular, we will now describe what features are used by the 
system for each of the sensing modalities and how those 
features are derived from sensory data. 

vI1[. OBSERVABLE FEATURES 

In this section, we describe the features which can be 
observed by each of the sensors. Currently, the sensors in our 
work cell include a structured light scanner to obtain 3-D 
information about the scene, overhead and a manipulator held 
cameras to obtain 2-D information about the scene, a force/ 
torque sensor mounted on the robots's wrist, and a manipula- 
tor which can be queried to find the distance between its 
fingers. 

A. 3-D Features 
The richest set of features available to the system comes 

from range data. Range data are gathered for a set of  points in  
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the scene using a single stripe. structured light range scanner 
which the robot manipulates. This initial data are converted to 
x, y ,  z data. Subsequent processing of these x, y, z data 
produces a list of surfaces. attributes of those surfaces, and 
relations between the surfaces. The types of attributes proO- 
vided by rang? data processing include surface area, orienta- 
tion. location, surface type, etc. Relations include adjacency, 
coplanarity. etc. The methods used to determine 3-D features 
are documented in [ 5 ] ,  [ 141, [30]. 

Confidence in matches between model surfaces and surfaces 
extracted from range data are based on the similarity of the 
area and 3-D shape attributes of the surfaces. Specifically, we 
calculate the confidence in a 3-D surface match using the 
equation 

C(F,  S , )=  CS(F,  Si)CA(S;; Si). (39) 

'Ihe value used for Cs(F,  SI> is the value o f p ( X 1  a), which is 
determined by the 3-D shape classifier described in [14], 
where a is the 3-D shape of the unique model feature F,  and X 
is the feature vector computed for the sensed surface Si. The 
value for C., is based on the difference between the areas of 
the sensed surface and unique model feature, and is calculated 
by 

C,(F, S l ) = e - i ( ' A F - A S I I ' A F )  6401 

where A F  is the area of the unique model feature F,  Asi is the 
area of sensed feature Si ,  and 7 is a weighting factor which is 
chosen empirically. 

As we mentioned in Section IV-B2, for features extracted 
irom 3-D sensory data, we use the bpa's mn(.) and m,(.> to 
construct m,( .). We will now briefly describe how these are 
derived. 

The bpa mi,)(.) is based on the angles between surfaces. In 
particular. since range data processing produces an average 
surface normal for each surface in the sensed data, and since 
each surfxe in the object model has an associated surface 
normal, we can compare the angle between the surface 
normals of sensed surfaces to the angle between the corres- 
ponding model surfaces. In order to do this, we need to define 
two additional functions. For a feature match 4, n.x(q5) returns 
the surface normal of the sensed feature matched in 4, and 
n,$,(@) returns the surface normal of the model feature matched 
in 4. Note that C$ corresponds to a feature match in a 
hypothesis (i.e.. each element of Q corresponds to a single 
object hypothesis which contains a number of matches 
between sensed and model features). Using these ~ W Q  func- 
tions. we can compute the magnitude of the difference in dot 
products of sensed and model surface normals as 

i C ) =  . ns(iC)-n.d4) ~ M ( $ P I  (41) 

for 4 and $ in 0, and 0 E 0. Since E ( e )  is the magnitude of 
the difference in two values which are in the interval [O, 11, its 
value will lie in the interval [O. 21, with E ( e )  = 0 
corresponding to an exact match: and E (.I = 2 corresponding 
to the worst possible error. In order to capture the notion of 
conjunction. for a particular object hypothesis 0 which 

contains Nfeature matches (i.e., 8 = . . . +,$), we define 
Cn(%) as 

N-i N 

1=1  j = i + l  

, we transform Cn(.  ) into a valid bpa by normalization 

(43) 

The bpa m,(.) is derived using the fact that we can 
determine the correct location of a feature once a position 
transformation To,,, for the object has been computed. We use 
To,,, to derive the quality of a match between sensed and model 
features based on the proximity of the sensed feature to the 
location at which we expect to find it. For a particular feature 
match 4, the function Ls(+) returns the location of the sensed 
feature matched in +, and LM(+) returns the location of the 
model feature matched in 4. Therefore, the distance between 
the points Ls(4) and TobJLM(4) is a measure of the quality of 
the match expressed in 4. Since this distance is essentially 
unbounded, we place it in the exponent of a decaying 
exponential function to obtain 

(44) ~ ( 4  = e- '1 I LS (6 - L M ( +  ) I  . 

We combine the c(.)'s to obtain a confidence in the 
proposition 0 by taking their product over the feature matches 
in 0 

(45) 
"EO 

We obtain ml(*) by normalizing C , ( . ) .  

B. 2-0 Features 
The features which are visible to the 2-D camera are not 

nearly as robust as those visible to the range scanner. In 
particular, surface types typically cannot be determined from 
2-D data, edge detection is not as good (since only gray-level 
edge detection can be used), and relationships between 
surfaces cannot be measured (except for adjacency). The 
primary advantage of 2-D vision is that it is computationally 
less expensive than 3-D vision. Also, since our range scanner 
is held by the robot, and one robot move is required for each 
projected light stripe, using 2-D vision reduces the number of 
required manipulations from the large number required to scan 
a scene to the much smaller number required to grasp the 
hand-held camera and position it at the appropriate viewpoint. 

The local features (i.e., features that are confined to local 
areas of the o0ject, such as a single surface or edge) that we 
can obtain from 2-ID image processing include holes in the 
object, surface texture, and intensity edge information. In our 
current experiments, the object surfaces are all smooth, 
containing little or no surface texture informatioc. Therefore, 
the primary 2-ID features that we consider are holes and gray- 
level edges. 

Alth~ugh gray level-edge detection is not as robust as the 3- 
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D edge detection, it is generally much faster. Furthermore, 
using object hypotheses to guide the application of the edge 
detector, the problem is reduced from edge detection to edge 
verification. In particular, once we have an object hypothesis 
which includes a position hypothesis, we can predict the set of 
edges visible to the 2-D camera. If we know the camera 
transformation, we can predict where these edges will be 
found in the image plane. The image obtained from the camera 
can then be used to verify the presence of the edge. This edge 
verification is done using the Dempster-Schafer formalism 
applied to a binary frame of discernment (i.e., edge-present/ 
edge-not-present) [24]. Currently, our object models do not 
contain edge information, and so edges are not used at this 
time. 

In addition to using the hand-held 2-D camera to derive 2-D 
features, our system also uses an overhead, supervisory 
camera to guide the initial application of the range scanner. 
The supervisory camera is used in the preprocessing as 
follows. First, an image of the work cell is digitized. This 
image is subtracted from a reference image of the work cell, 
and the result is thresholded. This binary image is then 
subjected to a component labeling process. Then, the center of 
mass and principal axis of each of the components is 
computed. The center of mass is used as input to an inverse 
perspective transformation, which gives an approximate world 
location of the center of mass of the object. The inverse 
perspective transform is performed using the two-plane 
method of camera calibration [ 2 2 ] .  Each of these operations is 
fairly common in the field of computer vision, therefore, we 
will not describe them here. The interested reader can find the 
details in a variety of references, including 1181, [ 2 3 ] .  

C .  Force/Torque Sensed Features 
The last type of sensing that our system can perform is 

active sensing of the environment using the robot manipulator. 
The manipulator can be used in either of two ways. Its fingers 
can be closed on an object to measure its width, or, the 
manipulator fingers can be closed, and used as a probe. When 
in the latter mode, forceitorque (f/t) sensing is used to execute 
a guarded move toward an object feature to precisely measure 
its height. Using these techniques, we can precisely (to within 
the known error of the manipulator position) measure features 
on the objects in the world. Like range scanning, using this 
type of sensing requires the active participation of the robot, 
thus incurring the additional overhead of planning and 
executing robot motions. 

The utility of measuring object widths becomes evident 
when we have competing object hypotheses, and the difference 
in sizes of visible features of the two objects is less than what 
can be perceived by the 3-D or 2-D vision systems. Of course 
2-D vision is very imprecise due to the use of the inverse 
perspective transform using an estimate for the world 2 
coordinate. Using our current range scanner, precision in 3-D 
data is a function of (among other things) the baseline distance 
between the camera and the stripe projector [ 5 ] .  Furthermore, 
the smallest feature which can be detected using the range 
scanner is a function of the distance between projected light 
stripes. To compensate for these inaccuracies, the manipulator 

can be used to perform the more precise measurements only 
when they are required 

Measuring the height of objecr surfaces becomes partiLu- 
lady useful when those surfaces are obscured from the view (I t  

the vision systems. When cases like this arise. the vision 
systems are unable to observe the distinguishing features of  the 
object. In such cases, the manipulator can be used '15 a probe to 
resolve the ambiguities. Manipulator probing can dI\o be u\ed 
to determine the existence of protrusions from object \iirt,ice\ 
especially when these protrusions are obscured from thl: view 
of the vision sensors (e g. ,  when the work piece is po\itioneii 
such that it occludes the surface which has the protruiion) 

Viewpoints, for both 2-D and 3-D vision sensor\, lend 
themselves to quantization by the use ot a\pect graph\ 
However, fit sensing is not amenable to such reprexntation 
Furthermore, when predicting features that will be observied 
by the vision sensors from a particular viewpoint. the system 
merely uses the viewpoint in conjunction with the hypothe- 
sized pose transformation of the object to determine which 
aspect will be viewed When gripping is used. the \y\teni 
would need to invoke a modeling system to prediLt the width 
of the object based on the manipulator's position "J the 
hypothesized object transformation For these redsons. we 
have not yet integrated the fit  sensor with the system 

VIII. CHOOSIUG THE BEST SEYSI\G S I R - \ T F . G l  

In this section. we will describe the algorithm\ that our 
system uses to choose a sensing strategy In essence, th i \  15 

search problem. The search space coniist'; o f  the pojsible 
sensing operations from the possible viewpoints GuI \tdte\ 

are recognized using A t , ,  Since the space ot loutions C x  he 
arbitrarily large (consider that the manipulator c m  he u\ed 
anywhere in the robot's work envelope). we mu\t devise \ o m  
heuristic to guide the search through the c p a ~ e  of po\\iblc 
sensor applications In order to accomplish an efficient vxrch 
of this space, we use the concept of the aspect graph 

As described In Section 111, an aspect is a set of fedtiire\ 
which can be observed simultaneously from a single v ie%-  
point. Therefore, for the purposes of observmp fe&ire\. for 'I 

particular object, there are only as many unique viewpoint\ 
there are aspects This allows us to define the spaLe ot pos\ible 
sensing operations as the set of sensing operations applied 
from the principal viewpoints of the aspects of the poi<ihle 
objects. 

Our algorithm for determining the best next sen\ing 
operation searches over this space of possible sensing operci- 
tions as follows. First the viewpoint (expressed in the world 
coordinate frame) which corresponds to the principal view- 
point of some aspect of an active hypothesis I\ Lomputed 
Then, for each active hypothesis, we predict the set of feature\ 
which w d d  be observed from this viewpoint For each ot 
these, we determine the hypothesis set which would result i f  

those features were actually found by the bensing system. ,incl 
calculate the corresponding ambiguity The maximum of thew 
ambiguities is noted and associated with the proposed sensing 
operation. The viewpointisensor pair that minimize\ the 
maximum ambiguity is chosen as the next sensing oper'ition 

There are three basic components to the algorithm First. 
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pr~ct-ambiguity(VP,Rr-~ ,S,sensor) 
R t refine-hypset(L2-1 ,S) 
A t 0  
foreach 0 E C2 

A + A - pr(0) log pr(0) 
return(A) 

Fig. 9. The algorithm for predict-ambiguity 

max-ambiguity(Rk_l .VP,sensor) 
max t 0 
foreach 0 E C2k-l 

S t predicted sensed values for 0, VP and sensor 
A c predict-ambiguity(VP,Rk-, ,S,sensor) 
if (A > max) then 

m a x t A  
return(A) 
Fig. 10. The algorithm for max-ambiguity. 

choose-next-view(Rr-1) 
Amax t 100 
foreach h E 

T t compute-uansform(h) 
Node-list t get-aspect-graph-nodes(h) 
foreach S E sensors 

foreach node E Node-list 
VP t node.princple-view 
W-VP t T VP 
NAmax t max-ambiguity(Q-l ,W-VP,S) 
if (NAmax < Amax) then 

Amax t NAmax 
Sensor t S 
v t w-VP 

return(Amax,V,Sensor) 

Fig. 11. The algorithm for choose-next-view. 

the predict-ambiguity function computes the predicted ambi- 
guity for a specified view point, hypothesis set, sensor, and set 
of predicted feature values. The first step in predict-ambiguity 
is to use the procedure described in Section IV to refine the 
hypothesis set using the predicted feature values. Once this is 
done. the ambiguity is calculated and returned. This algorithm 
is shown in Fig. 9. 

The function max-ambiguity uses predict-ambiguity to find 
the maximum possible ambiguity for a candidate sensing 
operation. This is done by successively calling predict- 
ambiguity with S set to the set of features visible for each of 
the active hypotheses. The predicted feature values are 
computed based on the hypothesis set, sensor, and proposed 
viewpoint, as discussed in Section VI. The maximum of these 
values is returned as the maximum ambiguity. This algorithm 
is shown in Fig. 10. 

Finally, the top level function used to determine the next 
sensing operation is choose-next-view, shown in Fig. 11. This 
function iterates over the nodes in the aspect graphs for each 
object hypothesis for each possible sensor. 

IX. EXPENMENTAL RESULTS 

I n  order to demonstrate the utility of the methods that we 
have described. in this section we will present the results of 
two experiments. For the first experiment, we describe how 

Fig. 12. CAD rendering of the experimental object, with surfaces labeled. 

TABLE I 
NODE INFORMATION FROM THE ASPECT GRAPH FOR THE OBJECT 

SHOWN IN FIG 12 
~ ~- 

Node Tessels Visible Faces Principal 

Node- 1 
Node- 2 
Node- 3 
Node- 4 
Node- 5 
Node- 6 
Node- 7 
Node- 8 
Node- 9 
Node- 10 
Node- 1 1 
Node- 12 
Node- I3 
Node- I4 
Node- 15 
Node- 1 6 
Node- 17 
Node- 18 
Node- 19 
Node-20 
Node-2 1 
Node-22 
Node-23 
Node-24 
Node-25 
Node-26 
Node-27 

1,46,50 
2 

3,14 
4 
5 

6,7,10 
8,20 

9 
11,12,15 

13 
16,18,31 

17,36,37,38,40 
P9,26,27,28,30 

21,24,25,47 
22 
23 
29 
32 

33,58 
34 
35 
39 

41,45 
42,43,44 

48,49 
51.52,53,54,55 

56,57,59,60 

8,81,9,3 
7,9,3 
9,lO 

10,9,5 
9,5,3,6 

5,6,9,10 
5,lO 

10,5,6 
9,10,7 

10,7 
2,lO 

10,2,7 
10,2,6,5 

5,6,3,8,81,9 
9 S , 6  
5 4  

5,6,2 
2,3,7 

2,3,8,81 
2,3,5,8,81 

2,3,5,6, 
2,7 
9,7 

8,81,3,9,7 
8,81,3 

8,81,3,2,5,6 
8,81,3,2,7 

46 
2 
3 
4 
5 
6 
8 
9 
11 
13 
18 
36 
27 
25 
22 
23 
29 
32 
33 
34 
35 
39 
41 
43 
48 
55 
60 

the system develops its initial hypothesis set, and distributes 
belief among the hypotheses. The purpose of this is to further 
illustrate the hypothesis generation system described in Sec- 
tion IV. After an initial set of hypotheses has been derived, the 
algorithms described in Section VIII are applied to choose a 
next sensing operation. 

A CAD model of the object which was used is shown in Fig. 
12. The bottom face is M l o ,  the face opposite M2 is M9,  and 
the face opposite Ms is M7. The face M7 has no hole, and is 
therefore distinct from M 5 .  Note that faces M2 and M9 are 
identical, and thus correspond to a single unique model 
feature, as do faces and M I .  Further, note that, unless one 
end of the object is visible (i.e., either M5 or M 7 ) ,  the pose 
transformation of this object cannot be uniquely determined. 
An aspect graph for this object was created by using the 
PADL2 system [12] to automatically view the CAD model of 
the object from each of 60 viewpoints (which correspond to 
the centers of the 60 tessels on a tessellated sphere), and then 
grouping together viewpoints which observed the same set of 
features. Table I shows the relevant information for each node 
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Fig. 13. Composite light-stripe image from the first experiment 

Fig 

.. 

, 14. Segmented image for object as shown in Fig. 13 

in the aspect graph for the object shown in Fig. 12. Feature 
weights were then assigned to each feature of each aspect 
based on the visible area of the feature in the aspect. Range 
data for the two experiments were acquired using a single- 
stripe structured light scanner. 

In the first experiment, the object was placed so that the 
range scanner could not observe either end of the object, and 
therefore could not make a unique hypothesis about the pose. 
The corresponding composite light-stripe image is shown in 
Fig. 13, and the results of segmentation are shown in Fig. 14. 
Four surfaces were found (excluding the surface of the work 
table), and the corresponding m,(.)’s are shown in Table 11. 
When these individual feature matches were combined, the 
resulting common refinement contained 686 possible hypothe- 
ses. After applying object consistency, the number was 
reduced to 420. This was subsequently reduced to 4 hypothe- 
ses using the location and dot product consistencies (note that 
in the experiments, we deleted hypotheses whose belief 
dropped below 1 percent of the maximum belief assigned to 
any hypothesis). The resulting m,(.> is shown in Table IHI. 
Finally, aspect consistency was applied. In this particular 
experiment, aspect consistency did not provide any real 
improvement. The resulting ma(*) is shown in Table. IV. The 
final bpa is shown in Table V. Note that the two hypotheses 
which account for better than 96 percent of the system’s 
committed belief correspond to the two correct hypotheses 
which are indistinguishable from this viewpoint. 

{ S3/M3) 
{ S3/M6) 

._ . 

{ S4/M2,S4/M9} 
{ S4/M8,S4/M1} 

[S4/M7\ 
{ S4/M5} 

0 957309 
0 042891 I 

0 0991155 
0 236474 
0.278756 
0 278756 

(S4/Mld} 0. I069 

{ s 1 /M1 , s 2 / ~ 9 , s 3  /M3 ,S4/M8 } 0.481687 
{ Sl/M8,S2/M2,S3/iM3 ,S4/M1} 0.481653 

0.01833 1 
{ S1 / M l  ,S2/M9,S3/M3 ,S4/M7) 0.0 I83302 
{ S1 /M8,S2/M2,S3/M3 ,S4/Mj} 

TABLE IV 
bpa ma( . )  FOR THE OBJECT AS SHOWN Ih FIGS 13 A’1D 14 

~~ ~~ ~~ 

{ S l / M l  ,S2/M9,S3/M3,S4/M8} 0,274548 
{ S1 /M8 ,S2/M2 ,S3 /M3 ,S4/&11} 0.274548 
{ S~/M~,S~/M~,S~/IM?,S~/M~} 0.225452 
{ Sl/Ml,S2/M9,S3/M3,S4/M7) 0.225452 

TABLE V 
FINAL bpa FOR THE OBJECT AS SHOWh IN FIGS i i AC’D 14 

~~ -~ ~. ~~ 

8 m ( 8 )  

{ SI/Ml ,S2/M9,S3/M3,S4/M8) 0.482252 
{ SP/M8,S2/M2,S3/M3,S4/MI} 0,482219 
{ S1 /M8 ,S2/M2,S3/M3 ,S4/iW ) 0.0177653 
{ Sl/Ml , S ~ / M ~ , S ~ / M ~ , S ~ / I W I }  0 0177646 

For practical reasons, since more than 96 percent of the 
belief was assigned to the first two hypotheses, we only used 
these two hypotheses to generate a list of candidate senring 
operations. However, we retained all four hypotheses in the 
hypothesis set which was used to predict ambiguities Table VI 
shows the maximum ambiguities for the 2-D camera for the 
viewpoints generated using the aspect graph for the first 
hypothesis. Note that although the aspect graph5 for the two 
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TABLE VI 
MAXIMUM AMBIGUITIES FOR VlEWPOINTS CHOSEN USING THE FIRST 

HYPOTHESIS. IN THE FIRST EXPERIMENT 
_ _ _ _ ~  ~~ 

__ __ 

~ 

Viewing Location 
~ ~ _ _ ~  ~ _ _ ~ . . ~ _ _ _  

14.2305. 34.3345, -4.09151 
16.1961, 26.4864, - 15.2748 
14.9075, 28.3377, -23.3033 
9.45419, 34.637, -23.6519 
7.37281, 36.6786, - 15.8389 

10.2462, 40.0579, -28.9101 
19.265, 47.4922, -35.6511 
14.6084, 52.6477, -31.0379 
28.277, 25.8246, -25.6415 
29.6839, 35.4568, - 34.9851 
37.7903, 53.2806, - 30.2827 
42.7963, 40.6989, - 27.6067 
25.9384, 60.1724, -28.6844 
9.22447, 46.9162, -6.76749 
7.13906, 49.9121, - 19.7573 
10.6317, 56.5486, - 16.1111 
22.5702, 63.4762, - 16.0431 
44.6479, 50.9364, - 18.5353 
42.5666, 52.978, - 10.7223 
37.1133, 59.2774, - 11.0709 
35.8247, 61.1287, - 19.0993 
44.8817, 37.7029, - 14.6169 
29.4506, 24.1389, - 18.3311 
26.0824, 27.4427, -5.68983 
19.8818, 45.0731, - 1.80867 
31.3556, 59.5927, -6.13011 
42.9865, 35.5622, -7.50256 

~~ ~~ ~. 

60 1’ 2 

0.8466 14 
1.17139 

0.760302 
1.04442 
0.95498 
0.728456 
0.930758 
0.926031 
0.872521 
2.02616 
1.23105 
1.36688 
0.842919 
0.7 1644 1 
0.638637 
0.8466 14 
0.8466 14 
1.41959 
0.746736 
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Fig. 15. Five best next viewpoints, as found for the first experiment. 

hypotheses have the same structure (because they are the same 
object), since the two object hypotheses have different position 
transformations, they will generate a unique set of world 
viewpoints. Fig. 15 shows the five viewpoints with the 
smallest values for A,,,. Note that in this figure, the 
viewpoints have been projected onto the X-  Y plane. 

Fig. 16. Composite light-stripe image from the second experiment 

Fig. 17. Segmented image for object as shown in Fig. 16. 

In the second experiment, the object was positioned so that 
one end was visible. The corresponding composite light-stripe 
image is shown in Fig. 16, and the segmented image in Fig. 
17. In this experiment, three surfaces were found (excluding 
the surface of the work table). The common refinement of the 
m,(.)’s contained 343 hypotheses, which were reduced to 42 
after the application of object and relational consistency. In 
this experiment, aspect consistency was more important, since 
one of the ends of the object was visible. In the interest of 
brevity, these bpa’s are not shown in tabular form. They can 
be found in [IS]. In this experiment, the hypothesis awarded 
the greatest belief, was the correct hypothesis. The second 
highest belief was given to the hypothesis which had the object 
turned 180” (i.e., with the other end visible). The remaining 
two hypotheses (after discarding all hypotheses with total 
belief less than 1 percent of the maximum belief for any 
hypothesis) each had the object on its side. This is reasonably 
credible, because the areas of the bottom and side surfaces are 
very close (within 4 in2), and the relational constraints for 
these two poses are very similar to the relational constraints 
for the first two hypotheses (due to a high degree of object 
symmetry). 

Again, there was a clear division between the most credible 
hypotheses and those which were awarded an insignificant 
portion of the system’s belief. Again, to select the next sensing 
operation, only the four most credible hypotheses were used. 
The five best viewpoints are illustrated in Fig. 18, Again, the 
actual viewpoints are projected onto the X -  Y plane. 
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Fig. 18. Five best next viewpoints, as found for the second experiment. 

X. CONCLUSIONS 

In this paper, we have addressed the issue of planning 
sensing strategies dynamically, based on an active set of 
hypotheses. Our algorithm uses the aspect graphs of the 
hypothesized objects to propose candidate sensing operations. 
Then, using the pose transformation and object model which 
are associated with each hypothesis we predict the feature sets 
which would be observed upon application of the candidate 
sensing operation. Given these predictions, we are also able to 
predict the resulting set of hypotheses which would remain 
active. By repeating this process for different viewpoints and 
sensing operations, we are able to choose the sensing 
operation which minimizes the maximum ambiguity in these 
sets, thereby minimizing the amount of ambiguity which can 
remain after the next sensing operation is applied. 

Note Added in Proof (see Section IV-B4) 
Since the individual sensory measurement bpa’s m, enter the 

calculation of both the composite feature match bpa mf and the 
aspect consistency bpa mu, the reader might wonder if the 
latter two are indeed independent. If by independence is meant 
lack of predictability, we believe mf and m, as defined are 
independent owing to the multiplication by weight factors 
wA’s in the calculation of mu. If we use the metaphor that mi’s 
are supplied to us by a “geometry expert,” whose sole 
capability lies in being able to tell us how similar a scene 
feature is to each of the unique model features, then the 
determination of the weight factors is outside the purview of 
this expert. In other words, the criteria for judging the 
“detectability” of a model feature from a given viewpoint are 
independent of the criteria that tell us how similar or dissimilar 
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