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A prerequisite for
intelligent behavior
is the ability to
reason about actions
and their effects.
This ability is the
essence of the classi-
cal AI planning
problem in which
plans are constructed
by reasoning about
how available actions
can be applied to
achieve various
goals. For this rea-
soning process to
occur, the planner
must be aware of its
available actions, the
situations in which
they are applicable,
and the changes
affected in the world
by their execution.
Classical AI planners
typically use a high-
level, symbolic rep-
resentation of actions
(for example, well-formed formulas from
predicate calculus). Although this type of rep-
resentational scheme is attractive from a com-
putational standpoint, it cannot adequately
represent the intricacies of a domain that
includes complex actions, such as robotic
assembly (consider, for example, that any
geometric configuration of the robotic
manipulator is a rather complex function of
six joint angles). To further complicate mat-
ters, there are often uncertainties in the plan-
ner’s description of the work cell. Therefore,
the planner must also be able to reason about
the uncertainties in its description of the
world and how these uncertainties affect the
execution of the actions. For these reasons,
classical AI planning methods alone prove
inadequate in the domain of robotic assembly.

Spar (simultaneous planner for assembly
robots) is a working planner that extends clas-
sical AI planning methods to create plans for
automated assembly tasks that are to be exe-
cuted in uncertain environments. In its cur-
rent implementation, when provided with a
description of the initial state of the world
and a rudimentary motion-planning algo-
rithm, Spar is able to create plans at a suffi-
ciently detailed level to allow their execution
in an actual robotic work cell (a number of
the plans that have been created and execut-
ed in our lab using a Puma 762 robot arm are

presented in Experi-
mental Results).
These plans include
the geometric speci-
fications of assembly
operations (for exam-
ple, the relative des-
tination positions of
objects that are to be
assembled), geomet-
ric descriptions of
grasping configura-
tions (that is, the
position and orienta-
tion of the robotic
manipulator relative
to the object that is
to be grasped), and
geometric descrip-
tions of how objects
must be placed in
the world (for exam-
ple, when the robot
is used to move an
object to some desti-
nation position, Spar
determines the desti-

nation orientation of
the object). Spar also plans manipulations to
reposition objects if they are initially in posi-
tions that are unsuitable for the assembly
operations and actions to regrasp an object if
the object’s initial position does not allow the
planned grasping operation to be performed
(for example, if one of the object faces to be
grasped is in contact with the table, the
object must be placed in an intermediate
position from which the grasp can be per-
formed). Finally, Spar uses its knowledge
about the uncertainty in the world description
to assess the possibility of run-time errors.
This information is used to add sensing to the
plan to reduce uncertainties or, if the result-
ing uncertainty is still too large, to post verifi-
cation sensing operations and error-recovery
plans. We should note that in the current
implementation, Spar’s knowledge of the
uncertainties in the world description is based
on rough estimates of the actual uncertainties
because we have not yet performed a rigorous
precision analysis of either the sensing system
or the manipulator position control.

To create the type of plan described, Spar’s
approach is to create a plan containing high-
level operations (for example, pickup part-1)
and then add constraints on the way these
operations are executed so that geometric
goals are satisfied. It is also possible for opera-
tions to be added to the plan to satisfy geo-
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In this article, we present Spar (simultaneous
planner for assembly robots), an implemented
system that reasons about high-level operational
goals, geometric goals, and uncertainty-reduc-
tion goals to create task plans for an assembly
robot. These plans contain manipulations to
achieve the assembly goals and sensory opera-
tions to cope with uncertainties in the robot’s
environment. High-level goals (which we refer to
as operational goals) are satisfied by adding
operations to the plan using a nonlinear, con-
straint-posting method. Geometric goals are sat-
isfied by placing constraints on the execution of
these operations. If the geometric configuration
of the world prevents this, Spar adds new opera-
tions to the plan along with the necessary set of
constraints on the execution of these operations.
When the uncertainty in the world description
exceeds that specified by the uncertainty-reduc-
tion goals, Spar introduces either sensing opera-
tions or manipulations to reduce this uncertainty
to acceptable levels. If Spar cannot find a way to
sufficiently reduce uncertainties, it augments the
plan with sensing operations to be used to verify
the execution of the action and, when possible,
posts possible error-recovery plans, although at
this point, the verification operations and recov-
ery plans are predefined.
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and the configuration used to place it on 
the table, but it does not plan the motions
required to move the manipulator from the
first position to the second. (In our experi-
ments, a rudimentary approach to motion
planning was implemented, but this approach
is not sufficient for planning motions in
complex environments.) Spar also lacks a
fine-motion planner. As a result, in some situ-
ations where compliant motion could be
used to robustly perform an assembly task,
Spar pessimistically declares that uncertain-
ties are too great to guarantee successful
assembly and that error-detection sensing
should be used at execution time. Research is
being done in our lab on compliant motion
planning (Gottschlich and Kak 1989) that at
some future time could be integrated with
Spar to address this problem.

A second limitation to Spar is the method
used to efficiently deal with the geometric
aspects of assembly planning. As is described
in Constraints at the Geometric Level of Plan-
ning, geometric configurations (for example,
grasping configurations) are grouped into
equivalence classes, and these classes are
assigned labels. This approach allows Spar’s
constraint-manipulation system (CMS) to
treat plan-variable assignment as an instance
of the consistent labeling problem. Of course,
our goal is to define equivalence groups that
preserve the salient distinctions between geo-
metric configurations and ignore distinctions
that are not relevant to the assembly plan-
ning process. However, this goal is often diffi-
cult to achieve, especially because which
distinctions are important depends on the
task to be performed.

Finally, at this point in time, Spar must
know a priori about the locations and orien-
tations of all the objects that participate in
the assembly. Therefore, to be used in a real
assembly cell, Spar must be augmented with a
sensing system capable of determining the
positions of the objects to be manipulated.
The development of such a system is the
objective of a number of research efforts in
our lab; see, for example, the work described
by Chen and Kak (1989) and Hutchinson and
Kak (1989).

The limitations enumerated here, particu-
larly the first two, might cause the reader to

metric goals, for example, if a work piece
must be repositioned so that an insertion
operation can be performed.  To satisfy uncer-
tainty-reduction goals, Spar evaluates the
uncertainty in its world description. If this
uncertainty is too large to ensure successful
execution of an action in the plan, sensing
operations or manipulations are added to the
plan in an attempt to reduce the uncertainty
to acceptable levels. If this attempt fails,
rather than abandon the plan, Spar adds
sensing operations to verify the execution of
the action and, when possible, adds precom-
piled recovery plans. By planning at these
three levels, Spar is able to start with a high-
level set of assembly goals and to develop
assembly task plans that include geometric
descriptions of the actions and sensing opera-
tions to reduce uncertainty and verify actions
that might not succeed.

These three types of goals (operational,
geometric, and uncertainty-reduction) define
a three-level planning hierarchy. At the oper-
ational level, only a coarse description of the
world is used to formulate a high-level plan.
As Spar moves down the hierarchy, the detail
in the world description increases, first to
include the geometric aspects of the world
description and finally to include the uncer-
tainty in the world description. Although
these levels in Spar bear names that are relat-
ed to the domain of robotic assembly, we feel
that they capture a natural division that
could be applied to many planning problems.
The top level effectively determines a set of
operations that must be performed. The
second level constrains how these operations
will be performed in the context of domain-
specific requirements (in the case of robotic
assembly, this performance amounts to con-
straining the geometric configurations of the
robot). Finally, once complete plans have
been developed for an ideal world, the uncer-
tainties in the planner’s world description are
considered.

There are certain limitations to Spar’s plan-
ning abilities in its current implementation.
First, Spar only considers the end points of
actions. Thus, if the plan calls for grasping an
object and moving it to another place on the
work table, Spar determines a set of constraints
on the configuration used to grasp the object
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Spar is a working planner that extends classical AI 
planning methods to create plans for automated assembly
tasks that are to be executed in uncertain environments. 



ask why we should even attempt to use classi-
cal AI planning techniques for robotic assem-
bly planning. Would it not be more effective,
for example, to use a specialized module to
derive a high-level task plan from a computer-
aided design (CAD) model of the assembly
and then use another specialized module to
construct motion plans for these actions? Our
answer to this question is that to effectively
deal with a dynamic world, a planning system
must be able to reason about goals and how
the actions in a plan work to achieve these
goals. For example, if certain goals are already
satisfied in the world state, the planner
should use this knowledge and not plan for
their achievement. Furthermore, plans
derived offline (using a CAD model of the
assembly) will not always be applicable in an
arbitrary world state. Finally, to respond to
problems that might arise during plan execu-
tion, the planner must possess some knowl-
edge of the purpose that the actions serve,
that is, the goals that they are to accomplish.
For these reasons, we chose to start with a
domain-independent planner and add com-
ponents to deal with some of the domain-
specific issues relevant to robotic assembly
planning.

In this article, we present an overview of
Spar. Reports of this work can be found in
Hutchinson and Kak (1988). The remainder of
the article is organized as follows: In Related
Research, we review some of the research rele-
vant to the development of Spar. In Planning
in Spar, we overview the system, including
the top-level search strategy used to satisfy
system goals. In Representational Issues in
Spar, we describe the representations that
Spar uses for uncertainty, plans, actions, and
goals. Goal Satisfaction is a description of
how Spar satisfies individual goals and
includes discussions on the satisfaction of
high-level operational goals, geometric goals,
and uncertainty-reduction goals. In Con-
straint Manipulation, we discuss how Spar
represents and manipulates constraints. A
Task Planning Example brings the first sec-
tions of the article together with a detailed
example of Spar constructing an assembly
plan. Experimental Results includes descrip-
tions of the assembly experiments that have
been performed using Spar as the task plan-
ner. Finally, Conclusions contains a summary
and allusions to future efforts.

Related Research
Research applicable to robotic assembly plan-
ning can be broadly divided into two groups:
(1) problems that are specifically related to

robotic assembly (Donald 1987; Hwang and
Ahuja 1988; Liu and Popplestone 1989;
Lozano-Perez, Mason, and Taylor 1984) and
(2) domain-independent planning (Chapman
1987; Fikes and Nilsson 1971;  Sacerdoti 1977;
Stefik 1981; Wilkins 1983). The former group
includes planners that generate task sequences,
planners that automatically derive geometric
specifications of assemblies from CAD
descriptions, motion planners, and error-
recovery planners. The latter group contains
the classical AI planners, where the emphasis
is placed on the domain-independent aspects
of the reasoning process used to develop
plans. Neither of these planning approaches
has yet produced a planner capable of creat-
ing complete assembly plans from high-level
specifications of assembly goals. The domain-
independent planners lack the ability to
reason about geometric concerns and uncer-
tainties in the work cell, and the task-specific
planners typically have a narrow focus and
deal only with limited aspects of assembly
planning. In the paragraphs that follow, we
summarize some of the recent research on the
various task-specific problems related to
robotic assembly planning. Then, we describe
some of the limitations of classical AI planners
and how Spar overcomes these limitations to
effectively deal with assembly planning.

One of the basic problems specific to robot-
ic assembly is the derivation of an ordered
sequence of actions that can be used to per-
form the assembly task. Two approaches to
this problem have been investigated. The first
approach, discussed in Homem de Mello and
Sanderson (1989), uses a graph representation
that explicitly contains relationships between
subassemblies. A decomposition of the assem-
bly corresponds to a cut set of this graph. Fea-
sible decompositions are used to create an
AND/OR graph that represents all valid
assembly sequences. A similar approach is
described in Huang and Lee (1989), but the
end representation of the precedence knowl-
edge is a set of predicates: MP (must precede)
and NL (no later than) instead of AND/OR
graphs.

A second approach to sequence generation
uses a CAD representation for the assembly.
With this type of representation, a disassem-
bly sequence is derived, which, when reversed,
provides a valid assembly sequence. In this
approach, an assembly sequence is generated
by first finding mating features of the assem-
bly (see, for example, Liu and Popplestone
1989) and then determining which disassem-
bly operations are valid by using a path-plan-
ning approach such as the one described in
Hoffman (1989).
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Daneshmend 1987; Gini et. al. 1985;
Gottschlich and Kak 1989; Nof, Maimon, and
Wilhelm 1987; Smith and Gini 1986; Srinivas
1978). Consideration of uncertainty in fine-
motion planning was discussed in Brost
(1985), Donald (1986), and Erdmann (1984).
A number of schemes for representing uncer-
tainty in robotic systems have been described
(Donald 1987; Durrant-Whyte 1988; Smith
and Cheeseman 1986), but these are not cur-
rently part of a planning system.

We are aware of two systems that have a
somewhat larger scope than those listed pre-
viously: Twain (Lozano-Perez and Brooks
1985) and Handey (Lozano-Perez et. al. 1987).
These planners begin with a high-level task
plan and then add motion plans for the indi-
vidual actions in this plan. Twain is a con-
straint-posting planner that can also add
sensory operations to the plan to reduce
uncertainties. Handey is an integrated system
that includes a sensory system to determine
the initial world state. One of Handey’s main
strengths is its ability to plan grasping opera-
tions when the objects are in cluttered envi-
ronments (Tournassound and Lozano-Perez
1987). It should be noted, however, that nei-
ther Twain nor Handey is capable of reason-
ing about the effects of actions and how they
might be used to achieve goals.

The planner we describe in this article com-
bines domain-independent planning tech-
niques with a number of modules containing
task-specific knowledge. This arrangement
allows Spar to use a nonlinear constraint-
posting approach as its top-level control
structure and domain-specific knowledge to
evaluate constraints during planning. Using a
constraint-posting approach, Spar seeks to
satisfy a goal by first examining all the actions
and constraints previously generated to see if
the goal can be satisfied by merely adding a
new constraint (where a constraint can be
viewed as a specification or a restriction on
an action). If this strategy fails, a new action
is added to the plan. Nonlinear planning
allows actions to be added to the plan with-
out imposing a strict ordering on the set of
actions.

One of the primary drawbacks of tradition-
al domain-independent planners, for exam-
ple, Sipe (Wilkins 1983) and Tweak (Chapman
1987), is that the representations used must
be domain independent. Thus, these planners
use high-level symbolic constructs to repre-
sent the world and the effects of actions. For
example, both Sipe and Tweak use well-
formed formulas (WFFs) from predicate calcu-
lus to represent the effects of actions. In a
complex domain, such as robotic assembly,

To generate task sequences, a geometric
description of the assembly is required. Rapt
(Ambler and Popplestone 1975; Popplestone,
Ambler, and Bellos 1978) is a system that
automatically derives geometric specifications
from symbolic assembly descriptions. The
process begins with a set of high-level rela-
tionships that must hold in the goal state (for
example, faces of two objects are coplanar).
Rapt then manipulates the equations that
correspond to these relationships to derive a
set of homogeneous transformations that 
represent the goal relationships between the
manipulator and the objects to be manipulated.

A blackboard-based sequence planner is
described in Liu (1987). The input to this
system is a set of assembly instructions, and
the output is a sequence of commands that
could be executed by a lower-level controller.
The blackboard has three levels. The top level
is essentially a metaplanning level that focus-
es the system’s attention on specific goals.
The middle level deals with solving goals,
posting subgoals, and managing constraints.
Finally, the lowest level deals with the domain-
specific issues of robotic assembly planning
(for example, finding candidate pairs of
mating features).

For a robot to execute a sequence of actions,
it must be provided with motion commands
that will affect these actions. In general,
motion planning deals with determining a
path in free space along which an object can
be moved from its initial position to a desired
destination. One approach to this problem is
based on configuration space (see, for exam-
ple, Lozano-Perez 1987). With a configuration
space approach, the world representation is
transformed by expanding the obstacles and
shrinking the object to be moved. This
approach transforms the motion-planning
problem into the problem of moving a single
point through the transformed space. Anoth-
er approach to the problem uses artificial
potential fields (Hwang and Ahuja 1988).
With this approach, the manipulator moves
in an artificial field of forces from its initial
position to its destination (which is repre-
sented by an attractive pole in the field),
always avoiding obstacles (which are repre-
sented by repulsive fields). An overview of
the various approaches to motion planning
can be found in Schwartz and Sharir (1988).

There are basically two approaches to deal-
ing with uncertainties in the planner’s descrip-
tion of the world. The planner can attempt to
anticipate and avoid errors (Brooks 1982;
Pertin-Troccaz and Puget 1987), or the plan-
ner can ignore uncertainties and concentrate
its efforts on error recovery (Boyer and

. . . motion
planning

deals with
determining a

path in free
space along

which an
object can be
moved from

its initial
position to a

desired 
destination. 

Articles

34 AI MAGAZINE



this type of high-level representation is not
sufficient to represent all relevant aspects of
the world. For example, although it is possi-
ble to represent a number of spatial relation-
ships with WFFs (for example, on(block1,
block2)), there would be no way to describe
the reachable configurations of the robot arm
with such a high-level representation because
the reachable configurations are defined by a
subset of an N-dimensional continuous space
(for a robot with N joints). Therefore,
although Sipe easily solves high-level blocks
world problems (such as “put some blue block
on the top of some green block”), it is not
capable of solving the lower-level details of
these problems (for example, determining the
joint angles that must be used to position the
robot arm to perform the stacking operation).

To cope with these problems, Spar extends
the planning beyond higher-level symbolic
goals (which we refer to as operational goals)
to include geometric and uncertainty-reduc-
tion goals. To plan with these additional
goals, we added CMS that contains domain-
specific knowledge (including the kinematics
of the robot, object models, and sensing oper-
ations). This domain knowledge is used by
CMS to determine whether constraints on
such elements as robot arm configurations
can be satisfied.

It should be noted that a number of domain-
independent planners allow for a hierarchical
representation of the world (for example,
Sipe); however, it is our contention that the
lowest levels of representation in these plan-
ners are still not capable of representing all
the relevant details of complex domains, such
as robotic assembly (as we described earlier).
We maintain that Spar’s three-level hierarchy
(operational, geometric, and uncertainty-
reduction) is a natural division for many
domains. The highest level is useful for creat-
ing plans that do not account for the intrica-
cies of the low-level domain constraints. At
the second level, the domain constraints not
amenable to symbolic representation are
taken into account (geometric constraints in
our domain) by using domain-specific com-
ponents of CMS to assess constraint satisfia-
bility. Finally, a third level is used to take into
consideration the uncertainties in the world

representation. At this point, we should note
that Spar is not conceptually limited to three
levels. Any of the levels could be expanded to
include multiple levels of abstraction if this
expansion were appropriate for the domain
(for example, the top level could be broken
into a number of levels corresponding to a
hierarchical organization of operations).

Planning in Spar
To create complete assembly plans, we
extended the planning that is done in tradi-
tional constraint-posting planners, such as
those described in Chapman (1987) and
Wilkins (1983), to include both geometric
planning and uncertainty-reduction plan-
ning. By geometric planning, we mean the
planning that determines the actual geomet-
ric configurations that will be used during 
the assembly process. These configurations
include the configurations of the manipula-
tor, the positions in which parts are placed,
and the grasping configurations that are used
to manipulate objects. Uncertainty-reduction
planning involves first determining whether
the uncertainty in the planner’s description
of the world (for example, the possible error
in part locations) is sufficiently small to allow
plan execution to succeed. If the uncertainties
are too large, then sensing operations or
manipulations are added to the plan in an
attempt to reduce the uncertainty to an
acceptable level. If this approach fails, verifi-
cation actions and local recovery plans are
added to the plan. These can be used during
plan execution to monitor the robot’s success
and recovery from possible run-time errors.
We call Spar a simultaneous planner because
all three levels of planning influence one
another.

When designing a nonlinear constraint-
posting planner, the degree to which con-
straint posting is used is an issue that must be
considered. A pure constraint-posting planner
would make no variable instantiations until
all its goals had been satisfied, at which time
CMS would determine the variable instantia-
tions that simultaneously satisfied all the con-
straints. The advantage to this approach is a
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of planning into two phases, this approach is
not possible. In such cases, Spar would declare
that uncertainties in the world description
could not be sufficiently reduced to guaran-
tee successful execution of the plan, and veri-
fication sensing and a local recovery plan
would be added.

It should be noted that Spar is capable of
adding actions to the plan in the second
phase of planning but only single, special-
purpose actions. Although these actions have
preconditions, no planning is done to achieve
these preconditions. If they are not satisfied
by the plan handed down from the first
phase of planning, then the uncertainty-
reduction action cannot be used.

Spar’s planning process begins with a null
plan and a set of goals that the user supplies.
This null plan is then refined until all goals
are satisfied. As described earlier, this process
occurs in two phases. First, a constraint-post-
ing approach is used to satisfy all operational
and geometric goals. Then, a second phase of
planning is used to satisfy the uncertainty-
reduction goals.

In the first phase of planning, Spar itera-
tively refines the current partial plan so that
it satisfies some pending goal. This refine-
ment of the current partial plan is done by
either constraining the execution of an
action that is already in the plan or introduc-
ing a new action into the plan. In the latter
case, Spar adds the new action’s geometric
and operational preconditions to appropriate
goal stacks and checks each currently satisfied
goal, noting those that are possibly undone
by the new action and placing them on the
appropriate goal stack. The first phase of
planning terminates when there are no more
pending operational or geometric goals.

In the second phase of planning, Spar does
not use the constraint-posting approach.
Instead, the uncertainty-reduction precondi-
tions are considered for specific plan instances.
To create these plan instances, Spar invokes
its CMS to find consistent solutions for the
plan’s constraint network. These solutions are
then used to instantiate the variables in the
plan actions. Specific plan instances are
examined until one is found in which all
uncertainty-reduction goals can be satisfied.
If no such instance can be found, the
instance that contained the fewest unsatisfied
uncertainty-reduction goals is selected. This
plan instance is augmented with sensing veri-
fication actions and potential recovery plans
for anticipated possible errors.

Figure 1 shows a block diagram of Spar. To
the left are the goal stacks and a set of satis-
fied goals that are used to track planning

decrease in the amount of backtracking,
which results from avoiding arbitrary choices
that could lead to failure. The disadvantage
to a pure constraint-posting approach is that
maintaining the constraint network can
become more expensive than backtracking
during planning. Therefore, in many cases, a
combination of constraint posting and back-
tracking is appropriate, the exact combina-
tion being determined by the complexities of
the constraints and the cost of backtracking.

In Spar, because of the complexities
involved with the representation and evalua-
tion of uncertainty-reduction goals, only the
operational and geometric goals are satisfied
using the constraint-posting method (we
elaborate on these complexities in Satisfying
Uncertainty-Reduction Goals). Therefore,
Spar performs its planning in two phases. In
the first phase, constraint posting is used to
construct a family of plans that satisfy all
operational and geometric goals. In the
second phase, specific plan instances (gener-
ated by instantiating the plan variables so
that the constraints are satisfied) are used as
input for the uncertainty-reduction planning.
We should note that the constraint-posting
paradigm is conceptually able to handle all
three goal types; however, for the reasons of
complexity that we just mentioned, it is not
expedient to force uncertainty-reduction
planning into the constraint-posting mold.
Furthermore, it would not be advantageous
to abandon constraint posting for the opera-
tional and geometric planning because the
cost of maintaining the constraint network
associated with these two types of goals is sig-
nificantly less than the cost of a backtracking
search algorithm.

The computational savings achieved by
dividing Spar’s planning into two phases
comes at the expense of completeness. It is
possible that during the second phase of
planning, situations will arise in which the
uncertainty in the world description can not
be sufficiently reduced without the addition
of higher-level plan segments. Consider, for
example, a situation in which the robot is to
grasp a single object that is located near the
center of a number of objects whose positions
are known. Furthermore, suppose there is
some uncertainty in the position of the target
object, such that this uncertainty will not
permit the object to be grasped without the
possibility of a collision between the manipu-
lator and one or more of the surrounding
objects. In such cases, it would be desirable
for Spar to invoke the top-level planner to
devise a plan to systematically remove the
cluttering objects. With our current division
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progress. The dashed box at the
top represents Spar’s knowledge
about the possible actions. This
knowledge includes the tem-
plates that are used to represent
actions, a set of rules for instanti-
ating these templates, a set of
actions to be used to reduce
uncertainty in the world, and a
set of procedures that are used to
construct the uncertainty-reduc-
tion preconditions for actions in
the plan. To the right, enclosed
by a dashed box, is the con-
straint system. This system
includes the actual CMS and a
number of domain-dependent
modules that are used to evaluate
constraints. These modules
include routines to find upper
and lower bounds on symbolic
expressions (SUP/INF), an alge-
braic simplifier (SMP), and rou-
tines to solve the inverse
kinematics of the robot (IKS).
The constraint system also
includes a constraint network
that is used to organize the plan’s
constraints. Finally, the bottom
of the figure depicts the output
of the planner: the verification
sensory operations and local
recovery plans (used when uncer-
tainty-reduction goals cannot be
satisfied) and the set of actions in
the plan.

Representational Issues 
in Spar

One of the important issues that must be
addressed when designing a planning system
is the choice of representation schemes. 
These representations determine the power
that the planner will have in terms of its abili-
ty to adequately model the world and the
possible actions that can be performed to
alter the world. In this section, we describe
how Spar represents actions, uncertainty,
plans, and goals.

Representation of Actions

Currently, Spar plans with three actions: pickup,
putdown, and assemble.1 These actions are
represented by action templates, each of
which has the following five components: (1)
action id, an identifier that Spar uses to refer-
ence a particular instance of the action; (2)
action, the name of the action and its argu-

ments; (3)  preconditions, the operational,
geometric, and uncertainty-reduction precon-
ditions that must be met prior to executing
the action; (4) add list, a list of conditions
that will be true in the world after the execu-
tion of the action; and (5) delete list, a list of
conditions that will no longer be true in the
world after the execution of the action.

Figure 2 shows the action templates for the
three actions. The meanings of the various
preconditions are made clear in subsequent
sections of the article. We should also note
that the actions currently implemented allow
the manipulation of a single object or the
assembly of two objects. To facilitate the
simultaneous assembly of more than two
objects (for example, inserting a cylindrical
object into a hole and simultaneously
through a washer), additional action tem-
plates would have to be added. This restric-
tion does not prohibit Spar from planning
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action templates, Spar is able to use a small
set of generic robot operations and instanti-
ate these operations to specific actions based
on the objects that will be manipulated by
these actions.

In some cases, when an action is added to
the plan, an initial set of constraints on the
plan variables is also added. For example, the
rule shown in figure 3 specifies the initial
constraint that Grasp be one of the possible
grasps for Object. (We discuss how grasps,
stable poses, and so on, are represented in
Constraint Manipulation.) Specification of a
set of constraints to be satisfied by a plan
variable amounts to assigning an initial label
set to a node in the constraint network (also
discussed in Constraint Manipulation). When
initial constraints are added, there is no need
to invoke CMS to see if they are consistent
with the current constraint network because
the variables that will be constrained by these
initial constraints did not previously exist in
the plan and, thus, did not occur in the con-
straint network.

assemblies with more than two components,
only from planning assembly operations in
which more than two components are required
to participate in a single assembly step.

When Spar adds an action to the plan, it
instantiates the template for this action so
that it will accomplish the particular goal
that caused the action’s addition. This process
consists of instantiating the various identi-
fiers in the action to unique labels (for exam-
ple, the ActionId and the Gi’s in figure 2) and
then either instantiating or constraining the
plan variables in the action so that it achieves
the goal. Spar uses a set of rules to determine
the proper variable instantiations for an action
template, given the goal that the action is to
achieve. Figure 3 shows an example of the
rule that instantiates a pickup action tem-
plate to achieve the goal holding(Object,
Grasp). (Note that the uncertainty-reduction
preconditions do not appear in the instantiated
template because in Spar’s current implemen-
tation, they are actually encoded as proce-
dures.) By using this approach to instantiating
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Figure 2. Action Templates.

The action template for the pickup action is shown in figure
2a. The variables in the template are instantiated by the plan-
ner using the rule shown in figure 3.

Figure 2b shows the action template for the assemble action. 



The Representation of 
Uncertainty in Spar

To create assembly plans that are to be exe-
cuted in an uncertain environment, Spar
must have a suitable representation for the
uncertainty in its world description, an
understanding of how much uncertainty in
this description can be tolerated before an
action can no longer be guaranteed to succeed,
and a knowledge of how the various assembly
actions affect the uncertainty in the world
description. In this subsection, we address
each of these three issues.

Representing Uncertain Quantities. In our
current implementation of Spar, we chose to
limit the number of quantities that are con-
sidered uncertain. For an object resting on the
work table, the X,Y,Z location of the object
(that is, the object’s displacement) and the
rotation about an axis through the origin of
the object’s local frame and perpendicular to
the table are considered uncertain. This
choice reflects our assumption that objects

resting on the work table will be in stable
poses, which fix two rotational degrees of
freedom of the object (this assumption is dis-
cussed further in Constraint Manipulation).
For the manipulator, we consider the X,Y,Z
location of the tool center, and the rotation
about the Z axis of the manipulator’s local
frame to be uncertain.

All uncertainties in Spar are expressed in
terms of uncertainty variables. The possible
values for an uncertainty variable are defined
using bounded sets. We represent the uncer-
tainty in the position of an object by a homo-
geneous transformation matrix whose entries
are expressed in terms of uncertainty vari-
ables.2 By combining the ideal position of an
object (that is, the position of the object if all
uncertainty is eliminated) with the uncertain-
ty in this position, we obtain the possible
position of an object. This possible position
will be a homogeneous transformation matrix,
with some or all of its entries expressed in
terms of uncertainty variables. Any matrix
that can be obtained by substituting valid
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Figure 2 (continued). Action Templates.

Figure 2c shows the action template for the putdown action.

Figure 3. Rule to Instantiate an Action Template.



Similarly, let the transformation TrO repre-
sent the ideal X,Y,Z position of the object. We
obtain the possible displacement of the
object’s local frame by combining the two:

TrO + ∆ = Tr∆O TrO  .
Now, because the rotational uncertainty is

about the world Z axis translated to the
origin of the object’s local frame, it can be
represented by postmultiplying the possible
object displacement by a rotation about the
Z axis, RDO, where

Finally, by defining the matrix RO to denote
the ideal orientation of the object, we obtain
the possible position of the object (which
includes both displacement and rotation
uncertainties) as

TO + ∆ = Tr∆O TrO R∆O RO  . (2)

Derivation of Uncertainty-Reduction
Goals. To illustrate the construction of the
uncertainty-reduction preconditions, in this
section, we derive the uncertainty-reduction
preconditions for the pickup action. We
derive these preconditions by examining the
possible locations of the manipulator fingers
and their relationship to the possible loca-
tions of the contact points on the object to
be grasped (that is, the points on the object
that the fingers will contact in the grasping
operation). These preconditions should guar-
antee that the two contact points will lie
between the fingers of the manipulator, even
when worst-case uncertainties occur. To

values for the uncertainty variables will repre-
sent one possible position of the object.

Given these assumptions, we define the
transformation that represents the uncertain-
ty in the position of the manipulator relative
to the manipulator’s local frame to be

Again, note that the values ∆Xg, ∆Yg, ∆Zg,
and ∆θg are bounded symbolic variables.
Therefore, the matrix T∆M represents all the
transformations that could be obtained by
substituting valid numeric values into the
matrix in place of the symbolic variables. The
bounds on these variables are stored in Spar’s
database and retrieved when needed.

Given that T∆M represents the uncertainty
in the manipulator’s position relative to the
manipulator’s own local frame, we can com-
pute the possible position of the manipulator
(that is, the combination of ideal position
and possible error) using the composition

TM + ∆ = TM T∆M  , (1)
where TM represents the ideal position of the
manipulator.

The expression for the possible position of
an object resting on the work table is a bit
more complicated because of the rotational
component in the uncertainty. In particular,
the axis of this rotation is not defined by the
local frame of the object or the world frame
but by the world Z axis, translated to the
origin of the object’s local frame. We, there-
fore, separately consider the uncertainty in
the displacement of the object and the rota-
tional uncertainty. For the displacement, let
the transformation Tr∆O be a transformation
that defines the uncertainty in the X,Y,Z loca-
tion of the object relative to the world coordi-
nate frame:
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. . . SPAR does its planning in two phases. . . a constraint-
posting approach is used to satisfy operational and 
geometric goals; . . . specific plan instances are examined
to find plans that satisfy uncertainty-reduction goals.
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derive these preconditions, we first derive the
possible local coordinate frames for each
finger. We then derive the possible locations
of the contact points on the object. Finally,
we transform the possible contact points so
that they are expressed in the local finger
frames and check that they each lie between
the fingers.

To find the possible local frames of the
manipulator fingers, we find the possible
location of the manipulator’s local frame and
perform a translation of ±1/2Wm along the Y
axis of this frame (where Wm is the distance
between the two fingers) (figure 4). Using
equation 1, we find

P1 = TM + ∆ trans(0,-1/2Wm ,0)
P2 = TM + ∆ trans(0,+1/2Wm ,0) ,

where trans(X,Y,Z) indicates a transformation
of the form

In this case, the possible position of the
manipulator is obtained by using equation 1
but replacing TM by the composition of the
object position (TO) and the grasping configu-
ration TG (which expresses the position of the
manipulator’s coordinate frame relative to the
object’s local frame).

To determine the two possible contact
points, C1 and C2 , we first find the possible
position of the object. Relative to the object’s
possible local frame, the contact points are
obtained using the grasping transformation,
TG, in conjunction with a translation along
the Y axis of the manipulator frame (that is,
the axis that defines the direction of finger
opening and closing). Using equation 2, we
find

C1 = Tr∆O TrO R∆O RO TG trans(0,+1/2Wg,0)[0,0,0,1]t

C2 = Tr∆O TrO R∆O RO TG trans(0,-1/2Wg,0)[0,0,0,1]t ,

where Wg is the width of the object at the
grasp point. Note that we are not interested
in the coordinate axes at the contact points,
only the displacement.

To see if the contact points lie between the
fingers, we transform the locations of C1 and
C2 to be defined in terms of the coordinate
frames P1 and P2 and check to see that the Y
components of these locations are on the pos-
itive Y axis for P1 and the negative Y axis for
P2 for all possible values of the uncertainty
variables. Therefore, the four uncertainty-
reduction preconditions for the pickup action
are

and

Again, note that all the matrix multiplica-
tions shown must be performed symbolically.
That is, the numeric computations will not
actually be performed because some of the
entries in the expressions will not have specif-
ic numeric values (for example, the value of
the variable ∆X might only be known to lie
somewhere in the interval [-0.5,0.5]).

The Propagation of Uncertainty by Actions.
To illustrate how actions propagate uncertain-
ty, in this subsection, we describe how the
pickup action affects the uncertainties in the
position of the object to be grasped. In gener-
al, the pickup action has the effect of reduc-
ing the uncertainty in the position of the
object to be grasped. Uncertainty is reduced
because the new uncertainty in the object’s
position will be defined in terms of the
manipulator uncertainty, which is normally
less than the uncertainty in positions that are
determined by the sensing system. Specifical-
ly, the pickup action has the effect of trans-
forming the object’s displacement uncertainty
into the manipulator coordinate frame and
then reducing the Y component of this uncer-
tainty to the uncertainty in the Y component
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Figure 4. Possible Finger Coordinate Frames and Contact Points 
for the Pickup Action.

0<[0,1,0,0]P-1C1, 0<[0,1,0,0]P-1 C21 1

0>[0,1,0,0]P-1C1,  0>[0,1,0,0]P-1 C22 2



Clearly, the representation of plans must be
different for these two phases.

The plans developed by Spar during the
first phase of planning are not simple linear
sequences of actions. Instead, these plans
consist of an unordered set of actions and a
separate set of constraints on how and when
these actions are to be executed. These con-
straints are stored in Spar’s constraint net-
work. The constraints on how actions are
executed are actually constraints on possible
values that can be assigned to plan variables.
For example, if the action is to grasp an
object, constraints on the variable used to
indicate the grasping configuration will effec-
tively constrain how the grasping action is
performed. Table 1 lists the constraints Spar
currently uses in the first phase of planning.

With this type of representation, a plan
developed by Spar during the first phase of
planning actually corresponds to a family of
plans. A specific plan instance is derived by
finding a consistent instantiation for the plan
variables (that is, a set of values for the plan
variables that satisfies the constraints in the
constraint network) and performing this
instantiation on the plan actions.

In the second phase of planning, Spar uses
specific plan instances, which are augmented
to contain verification sensory actions, local
recovery plans, and an error count. The verifi-
cation sensory actions and local recovery plans
are added when the uncertainty-reduction
preconditions for an action cannot be satisfied.
The error count is incremented each time the
uncertainty-reduction goals for an action in
the plan instance cannot be satisfied. This
error count is used to determine which plan
instance has the greatest chance of success.

Representation of Goals
In this subsection, we describe Spar’s repre-
sentation of goals. Because a previous section
dealt with Spar’s representation of uncertain-
ty and uncertainty-reduction goals, we do not
discuss the uncertainty-reduction precondi-
tions of actions here.

Goals in Spar have three relevant attributes:
a type (either operational, geometric, or
uncertainty-reduction), a condition that must
be satisfied (that is, the actual goal), and an
action identifier. The action identifier is used
to indicate when the goal must be satisfied,
in particular, that it must be satisfied prior to
the execution of the action specified by the
action identifier. We use the terms goal and
precondition to refer to either the condition
part of the goal or the entire structure. Which
of these is meant should be evident from the
context.

of the manipulator. The pickup action also
reduces the uncertainty in the object’s orien-
tation to be equal to the uncertainty in the
orientation of the manipulator.

To derive an expression for the reduced
uncertainty, let Tr∆O be the displacement
uncertainty in the object’s position just prior
to the execution of the pickup action. There-
fore, as described in Representing Uncertain
Quantities, this uncertainty is defined relative
to the world coordinate frame. We need to
obtain a displacement error Tr’∆O such that

RM Tr’∆O = Tr∆O  ,  
where RM is the transformation that repre-
sents only the orientation of the manipulator
(that is, it has a null displacement vector). In
other words, Tr’∆O expresses the displacement
error relative to the manipulator frame after
the object is grasped. If we define RO to be the
transformation that represents the orientation
of the object and RG to be the transformation
that represents the orientation of the manipu-
lator relative to the local frame of the object
(that is, the rotational part of TG), we find

Tr’∆O = (RO RG)-1Tr∆O  ,
given that

RM = RO RG
and, therefore,

RM[(RO RG)-1Tr∆O] = Tr∆O .
Now, we define the vector that represents the
uncertainty in the object’s displacement rela-
tive to the manipulator frame by

[Dx,Dy,Dz,1]t = (RO RG)-1Tr∆O [0,0,0,1]t .
Finally, by combining this displacement with
the uncertainty in the position of the manip-
ulator, we obtain

Note that the uncertainty in the Y compo-
nent of the displacement uncertainty has
been limited to the uncertainty in the Y com-
ponent of the location of the manipulator’s
tool center. Further, note that the rotational
uncertainty is the same as the rotational
uncertainty in the orientation of the manipu-
lator.

Representation of Plans

As described earlier, Spar does its planning in
two phases. During the first phase, a constraint-
posting approach is used to satisfy operational
and geometric goals; during the second phase,
specific plan instances are examined to find
plans that satisfy uncertainty-reduction goals.

Goals in 
Spar have

three 
relevant

attributes: 
a type . . . 

a condition
that must be 
satisfied . . .

and an 
action 

identifier. 
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Spar’s operational goals are similar to the
high-level goals used in traditional domain-
independent planners (for example, Strips or
Tweak). One difference is our inclusion of
plan variables that can be used to link the
operational and geometric goals. For example,
one operational precondition of the assemble
action is

op(G1, ActionId, holding(Obj1, Grasp))  .
The plan-variable Grasp is not used in the
operational planning but serves the purpose
of linking the operational and geometric
planning. The variable ActionId is used to
indicate the time at which the goal must be
satisfied. In particular, it must be satisfied just
prior to the execution of the action whose
action identifier is ActionId.

Geometric goals are slightly more complex,
with two main components. The first is a geo-
metric constraint, and the second is a set of
operational goals. The meaning of this pair is
that the planner is to establish the opera-
tional goals in such a way that the geometric
constraint is satisfied. For example, one geo-
metric precondition of the putdown action is

geo(G2, ActionId, 
reachable(Grasp, Pos), 
holding(Obj, Grasp))  ,

where holding(Obj,Grasp) is the single opera-
tional goal, and reachable(Grasp,Pos) is the
geometric constraint.

Goal Satisfaction
In this section, we discuss the methods that
Spar uses to satisfy operational, geometric,
and uncertainty-reduction goals. We fre-
quently allude to the role of CMS in the pro-
cess of goal satisfaction, but we leave a
detailed discussion of CMS for Constraint
Manipulation. For the purposes of this sec-
tion, it is sufficient to assume that CMS is
capable of determining if a new constraint is
consistent with the current constraint set.

Satisfying Operational Goals

In Spar, ensuring the satisfaction of an opera-
tional goal proceeds in two steps: finding an
action that establishes the goal and dealing
with actions that could violate (or undo) the
goal.

To find an action that establishes an opera-
tional goal, Spar first looks at the add lists of
the actions that are already in the partially
developed plan. If any element of the add list
of such an action can be unified with the
operational goal, then this unification is per-
formed, and the action is declared to have
established the goal. If Spar succeeds in find-

ing such an action, this action is constrained
to take place prior to the time at which the
goal must be satisfied. If CMS determines that
this new ordering constraint is not consistent
with the current constraint network, the con-
straint addition fails, and Spar backtracks in
an attempt to find another action in the plan
that establishes the goal.

If Spar fails to find an action in the plan
that can establish the goal, it adds a new
action. Adding a new action consists of
instantiating an action template, adding the
action to the plan, and constraining the new
action to occur prior to the time at which the
goal must be satisfied. Any time Spar adds an
action to the plan, it is possible that the new
action might violate goals that have already
been satisfied. For this reason, when a new
action is added to the plan, Spar examines the
list of satisfied goals and transfers any of
those that could be violated by the new
action to the appropriate pending goal stack.

Once an operational goal is established,
Spar examines each action in the current par-
tial plan to see if it could possibly violate the
goal. An action can violate an operational
goal if any element in the action’s delete list
can be unified with the goal. There are three
ways to deal with a potential goal violation:
(1) the violating action can be constrained to
occur after the time at which the goal must
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Table 1. The Constraints That Are Used in the First Phase of Planning.



variables are introduced that can be con-
strained by the geometric level of planning to
determine how an action is executed. The
geometric preconditions are expressed in
terms of these variables. For example, a tradi-
tional Strips-type action is pickup(Object).
Spar’s equivalent action is pickup(Object,
Grasp). The variable Grasp is used to define
the geometric configuration that will be used
by the manipulator in grasping the object. At
the operational level, the variable Grasp is
primarily ignored, but its presence gives Spar
a method of constraining how the pickup
operation is actually performed, thus linking
distinct levels of planning.

As was discussed in Representation of
Goals, geometric goals consist of a set of
operational goals and a geometric constraint
that is to be applied to the actions that
achieve the operational goals. Each opera-
tional goal that is associated with a geometric
precondition of an action is also separately
listed as an operational precondition of the
action. Therefore, because Spar only consid-
ers geometric goals when the operational goal
stack is empty, the operational goals associat-
ed with a geometric goal are guaranteed to be
satisfied by the current partial plan. There-
fore, to satisfy a geometric goal, Spar first
finds the actions that establish its associated
operational goals and attempts to constrain
the execution of these actions so that the
geometric constraint is satisfied. This is done
by instructing CMS to add the geometric con-
straint to the constraint network. If the added
constraint is consistent with the other con-
straints in the network, the goal is satisfied
and moved to the list of satisfied goals.

If CMS determines that the geometric con-
straint is not consistent with the current con-
straint network, then one or more new actions
must be added to the plan. These new actions
are chosen based on the operational goals
associated with the geometric goal. The
instantiation of the actions’ templates pro-
ceeds as described in Representation of
Actions. Once the actions have been added,
the appropriate geometric constraint is also
added to the constraint network. This con-
straint will automatically be consistent with
the constraint network because the new
action will contain new plan variables that
have not yet been constrained. Note that the
addition of actions to the plan will introduce
new operational goals and, therefore, effec-
tively transfer control back to operational
planning.

There is no need for Spar to check for
actions that might violate geometric con-
straints because the constraint network has

be satisfied (promotion of the goal), (2) the
goal can be constrained not to unify with any
clause in the violating action’s delete list 
(separation), and (3) an action can be used to
reestablish the goal. A reestablishing action
can either be an action that is already in the
plan or a new action that is specifically added
for the purpose of reestablishing the violated
goal.

In Spar, it is difficult to add separation con-
straints to the plan because the unification is
done using Prolog’s internal unification algo-
rithm, which will not take into account con-
straints in Spar’s constraint network.
Therefore, it is difficult to implement a con-
straint that says an element in the delete list
of an action, for example, holding(part1,
Grasp), should not be instantiated so that it
matches a particular goal, for example, hold-
ing(part1,grasp1). For this reason, we omitted
separation as a possible means of protecting
goals in Spar.

Promotion of the goal is the first option
that Spar tries when protecting goals from
violation. When an action, C, can violate a
goal required to be true during the execution
of a certain action, S, Spar attempts to add a
constraint of the form prior_to(S,C), which
specifies that the potential violating action
should not be executed until after action S
has been executed.

Using an action to reestablish a goal is
identical to establishing the goal, with the
additional condition that the action must
occur after the potential violating action. As
such, this process proceeds exactly as the
establishment process described previously,
but when a candidate action is found, the
additional constraint prior_to(C,A) is added
to the constraint network (where C is the
action identifier of the violating action, and
A is the action identifier of the new action).
Earlier, we mentioned the possibility of con-
straining the violating action to occur before
the establishing action. This process is the
same as allowing the establishing action to
also act as the reestablishing action.

Satisfying Geometric Goals
In Spar, geometric goals are satisfied by con-
straining the way in which plan actions are
performed. For example, if a geometric goal
specifies that the manipulator should be
holding an object in a particular grasping
configuration, the way to satisfy this goal is
to place a constraint on how the manipulator
performs the grasping action. Thus, Spar
needs to link the operational and geometric
levels of planning. For this purpose, when
planning to satisfy operational goals, plan

In Spar, 
geometric
goals are 

satisfied by
constraining

the way in
which plan
actions are
performed.
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no sense of temporal ordering. The entire net-
work must be consistent at all times. There-
fore, if any constraint in the network had the
effect of violating the new geometric con-
straint, this violation would have been detect-
ed by CMS when attempting the constraint
addition.

Satisfying Uncertainty-
Reduction Goals
When there are no remaining operational or
geometric goals, Spar begins the second phase
of planning, which deals with uncertainty-
reduction goals. There are two fundamental
differences between this phase and the first
phase of planning. First, uncertainty-reduc-
tion planning does not use the constraint-
posting method. Second, if no plan instance
can be found that satisfies all uncertainty-
reduction goals, Spar does not backtrack to
the geometric and operational levels of plan-
ning. Instead, it prepares for possible failures
by adding verification steps and potential
local recovery plans.

As we mentioned earlier, we do not use
constraint posting to satisfy uncertainty-
reduction goals because of the complexities
involved with their representation and evalu-
ation. The high cost of representing uncertain-
ty-reduction goals compared to operational or
geometric goals is in part because the geomet-
ric and operational effects of actions typically
do not propagate through more than one
action, but uncertainties can propagate
through many actions. For example, consider
the following sequence of actions:

action1: pickup(part1,grasp1) 
action2: putdown(part1,position1) 
action3: pickup(part1,grasp2) .
After the execution of action2, part1 will be

in a particular position (which is represented
by the variable position1) regardless of where
it was prior to the execution of action1. How-
ever, the uncertainty in the location of part1
after the execution of action2 will be a func-
tion of many variables, including the uncer-
tainty in the position of the manipulator
during the execution of action1 and action2,
how the particular grasping configuration
used in action1 affects the uncertainty in the
location of part1, and the uncertainty in the
location of part1 prior to the execution of
action1. Therefore, although the geometric
preconditions of action3 can be expressed in
terms of two plan variables (position1 and
grasp2), the uncertainty preconditions
depend on every action prior to action3 that
involved part1.

The fact that uncertainties can propagate
through an indefinite number of actions also

affects the complexity of evaluating the
uncertainty-reduction constraints. As described
in The Representation of Uncertainty in Spar,
Spar uses symbolic algebraic expressions to
represent uncertainty. Each time a plan action
affects the uncertainty in some quantity, in
the worst case, there is a multiplicative
increase in the number of terms in the corre-
sponding symbolic expressions. Therefore,
the number of terms in an expression for an
uncertain quantity is, in the worst case, expo-
nential in the number of actions in the plan.
Because CMS uses upper and lower bounding
routines to evaluate uncertainty-reduction
constraints, and the time complexity of these
routines is a function on the number of terms
in the input expression, the worst-case time
complexity for the evaluation of an uncer-
tainty-reduction constraint is exponential in
the number of actions in the plan. In con-
trast, constraints associated with operational
and geometric goals can, in the worst case, be
evaluated in time that is polynomial in the
number of actions in the plan. In the best
case, the time is constant (for example, in
evaluating constraints on the robot’s joint
angles).

There are two reasons for not backtracking
into the first phase of planning. First, because
Spar represents uncertainty in the world using
bounded sets (for example, the X location of
an object would be represented as X ± ∆X),
even though uncertainty-reduction goals
cannot be satisfied, it is quite possible that
the actual errors in the world description will
be small enough that the plan can be execut-
ed without failure. Therefore, Spar adds verifi-
cation sensory actions and local recovery
plans to offending plan instances in anticipa-
tion of possible execution error. Second, by
using the constraint-posting approach in the
first phase of planning, Spar attempts to
develop the most general plan that will satisfy
the operational and geometric goals. There-
fore, it is not likely that a great deal could be
gained by backtracking into the first phase of
planning, although, as discussed in Planning
in Spar, there are certain cases where such
backtracking would be beneficial.

The top level of uncertainty-reduction plan-
ning consists of a loop in which specific plan
instances are generated and tested until one is
found in which all uncertainty-reduction
goals can be satisfied. If all possible plan
instances have been generated, and none are
without violated uncertainty-reduction goals,
the instance with the fewest violations is
selected for execution.

The uncertainty-reduction planning for a
particular plan instance begins with the cre-
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pute the symbolic expressions for the failed
uncertainty-reduction goal.

If the sensing operations fail to reduce the
uncertainty to acceptable levels, Spar
attempts to introduce manipulations into the
plan that can reduce the uncertainty. Cur-
rently, the only manipulation that is used for
this purpose is squeezing an object between
the manipulator fingers. The reduction in
uncertainty for this action is the same as the
reduction in uncertainty for the pickup
action, as described in The Propagation of
Uncertainty by Actions. Because the opera-
tional and geometric preconditions for this
action are the same as for the pickup action, it
can always be spliced into the plan instance
just prior to the execution of some existing
pickup action; however, the uncertainty in
the world description must satisfy the uncer-
tainty-reduction preconditions for the uncer-
tainty-reduction pickup action.

If the sensing operations and manipula-
tions fail to sufficiently reduce uncertainties,
Spar prepares for possible execution error.
First, the error count for the augmented plan
instance is incremented. Second, a sensing
verification action and a local recovery plan
are added to their respective lists in the aug-
mented plan instance. We should point out
that the process of instantiating verification
strategies and local recovery plans is in its for-
mative stages. At this point, methods tend to
be ad hoc, based on the programmer’s evalua-
tion of possible errors and likely recovery
plans. We hope that future work will enable
us to link CAD modeling systems with Spar’s
descriptions of worst-case world error to auto-
matically predict the types of errors that
could occur and automatically prescribe veri-
fication strategies and recovery plans.

Constraint Manipulation
In Spar, the bulk of the domain knowledge
resides in CMS, which allows the top-level
planning to proceed without any need to
understand the domain of automated assem-
bly. The action descriptions include precondi-
tions on geometric configurations and the
tolerable uncertainties in the world descrip-
tion, but to satisfy these preconditions, the
top-level planner merely requests that CMS
add constraints to the constraint database. It
is the task of CMS to determine whether
these new constraints are consistent with the
current constraints in the plan, which, in
turn, requires a certain amount of domain-
specific knowledge.

Spar currently uses three types of con-
straint. In operational planning, ordering con-

ation of an augmented plan instance that
contains four components: (1) the instantiat-
ed list of plan actions (obtained by instantiat-
ing the actions from the partial plan that was
developed in the first phase of planning so
that all constraints in the constraint network
are satisfied), (2) an error count (initially set
to zero), (3) a list of sensory verification
actions (initially set to the empty list), and (4)
a list of local error-recovery plans (also initial-
ly set to the empty list). Once this augmented
plan instance has been constructed, Spar
sequentially examines each individual action
in the instantiated action list and attempts to
satisfy its uncertainty-reduction precondi-
tions. After an action has been considered, its
add and delete lists are used to update the
world state to reflect the effects of the action.
This updating has the effect of propagating
the uncertainty in the world description for-
ward, thereby defining the uncertainty in the
world when the next action in the sequence
will be executed.

The first step in satisfying an uncertainty-
reduction goal for an individual action is the
construction of the symbolic algebraic
inequality associated with this goal. Such
algebraic inequalities are derived by perform-
ing an appropriate combination of symbolic
matrix multiplications, matrix inversions,
and so on, as determined by the actual goal.
It should be noted that many of the quanti-
ties that enter into these operations will be
defined in the world state (for example, the
part locations, uncertainties in the part 
locations).

If the uncertainty in the world description
exceeds that which is specified by an uncer-
tainty-reduction goal, Spar introduces sensing
operations into the plan in an attempt to
reduce the offending uncertainties. Sensing
actions have the same representation as
manipulations. The add and delete lists of a
sensing action template contain elements
that describe how the uncertainties in the
world description are reduced by the action.
Once the sensing actions have been inserted
into the plan instance, these add and delete
lists are used to update the world state. The
resulting world state is then used to recom-
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straints are used to ensure that actions are per-
formed in the proper sequence (and that
goals are satisfied at the appropriate times). In
geometric planning, binary constraints
between object positions and manipulator
configurations are used to ensure that the
robot will be able to perform the required
manipulations. Finally, at the uncertainty-
reduction level, symbolic algebraic inequalities
are used to express the maximum uncertainty
that can exist in the world description prior
to the execution of an action.

Throughout the previous sections of the
article, we referred to CMS maintaining a
constraint network. In actuality, there is not a
single, uniform constraint network. A directed
graph is used for ordering constraints, a binary
constraint network is used for the geometric
constraints, and algebraic inequalities
(expressed in terms of bounded symbolic vari-
ables) are used for the uncertainty-reduction
constraints. This separation does not interfere
with determining the consistency of the con-
straint set because the three types of con-
straints do not interact. For example, even
though operational planning might influence
the choice of which geometric constraint to
add in the course of satisfying a particular
geometric goal, once this geometric constraint
is chosen, it will be expressed solely in terms
of geometric quantities. Therefore, in the con-
straint database, there will be no interaction
between distinct types of constraints.

In this section, we describe the constraints
that are used in Spar, their semantics, and
how CMS determines whether new con-
straints are consistent with the current con-
straint set. At this point in time, Spar’s CMS is
not complete in the sense that it is possible
that a constraint set will be determined to be
inconsistent when it really isn’t. The reason is
that the quantities that enter into the con-
straints in Spar are complex, and often, exact
solutions are only approximated. For exam-
ple, characterizing the space of reachable
grasps for a robot entails partitioning a six-
dimensional space into reachable and un-
reachable regions. In Spar, we devised a
representation of grasping configurations that
approximates the true situation. This arrange-
ment simplifies the process of constraint
manipulation but adds the possibility that
Spar might overlook certain solutions.

Ordering Constraints in 
Operational Planning

In the first phase of planning (used to satisfy
operational and geometric goals), Spar oper-

ates as a nonlinear planner, so there is not a
total ordering of the actions in the plan.
Instead, the time of an action’s execution is
specified by a set of ordering constraints.
Each such constraint specifies whether the
action should be executed before or after
some other action in the plan. Although it is
possible that the set of ordering constraints in
a plan will define a total ordering of the plan
steps, more often it will only define a partial
ordering.

Spar’s CMS uses a directed graph (which we
refer to as the ordering graph) to track order-
ing constraints. All actions in the plan are
represented in the ordering graph. Any time a
new action is added to the plan, a new node
is created in the ordering graph, with the
action’s identifier as the node’s label. An
ordering constraint of the form prior_to
(Action1,Action2) is represented by an arc
directed from the node for Action1 to the
node for Action2. Consistency of the ordering
constraints is guaranteed as long as the order-
ing graph contains no cycles because the only
type of inconsistency that might arise is if an
action is constrained to occur both prior to
and after some other action in the plan.

Constraints at the Geometric 
Level of Planning

All the geometric constraints in Spar are
either binary constraints between plan vari-
ables representing object positions and
manipulator positions or unary constraints
on plan variables. Furthermore, both object
poses (that is, possible orientations of objects
not including displacement information) and
grasping configurations have been quantized
and assigned labels, so that each of these can
be represented by a single, symbolic variable
rather than a continuous variable in six-
dimensional space. Because of these qualities,
it is straightforward to represent the geomet-
ric constraints using a binary constraint net-
work. By using a binary constraint network,
when CMS is instructed to add a new con-
straint, the consistency of this constraint with
the current set of constraints can be deter-
mined by adding an arc to the constraint net-
work and checking the new network for
consistency.

We begin this subsection with an introduc-
tion to binary constraint networks and an
explanation of how such a network is used to
represent Spar’s geometric constraints. Then,
we describe each type of geometric constraint
included in Spar and the mechanisms used to
evaluate these constraints.
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When CMS is instructed to add a unary
constraint to the network, it updates the label
set of the appropriate node and then updates
each arc connected to this node by deleting
pairs that are no longer valid given the node’s
new label set. Finally, the new network is
checked for consistency. When CMS is
instructed to add a new binary constraint to
the network, it adds an arc between the
appropriate nodes (creating the nodes if they
do not already exist in the network) and then
checks for network consistency.

Set Membership. To restrict the label set of a
plan variable, Spar uses the constraint
member(Variable,Labels). If there is no node
in the geometric constraint network for Vari-
able, CMS adds one and assigns its initial
label set to contain the elements of Labels. If
a node is already in the constraint network
for Variable, CMS takes two steps to ensure
that the new constraint on Variable’s label set
will not result in an inconsistent network.
The first step ensures node consistency (that
is, that the node for Variable will have at least
one possible label), and the second ensures
network consistency. To ensure node consis-
tency, the set Labels is intersected with Vari-
able’s current label set. If the intersection is
empty, then the new member constraint is
not consistent with the current constraint
set. If the intersection is not empty, then it is
assigned as Variable’s new label set. To ensure
network consistency, all arcs leaving the node
corresponding to Variable are updated by
deleting pairs that assign Variable a value that
is not in its new label set. The new network is
then checked for consistency. If both node
and network consistency are satisfied, CMS
returns success.

Stable Poses and Position Classes. For the
purpose of assembly operations, the exact
position of an object is not always important.
What is important is that the object be ori-
ented in a way that allows the mating fea-
tures of the object to be accessible. For
example, if the assembly operation is to
insert a peg into a hole in a block, it is not
important how the block is oriented as long
as the hole is positioned so that the peg can
be inserted. Thus, we characterize object posi-
tions using equivalence classes. These classes
are based on the object’s stable poses, that is,
orientations of the object that allow it to rest
naturally on the work table. For example, a
cube has six stable poses.

The use of stable poses to quantize the
space of object positions serves two purposes.
First, it provides a method for easily deter-

The Geometric Binary Constraint Network.
This subsection includes a cursory introduc-
tion to constraint networks. A more thorough
introduction can be found in Davis (1987) or
Dechter and Pearl (1987). We begin our dis-
cussion with the following definitions: 
Definition: The label set for a plan variable is
the set of possible values that can be assigned
to this variable.  
Definition: A unary constraint on a variable is
a restriction of the variable’s label set.  
Definition: A binary constraint on two variables,
Vi and Vj, is a relation, Cij Li x Lj where Li is
the label set of Vi, and  Lj is the label set of Vj.

Definition: A binary constraint network is an
undirected graph whose nodes represent con-
strained variables and whose arcs represent
constraints between variables.

Spar’s CMS uses depth-first search with
backtracking to determine network consisten-
cy. For each level in the search, one node in
the network is selected that has not yet been
assigned a value; a value is assigned that is
consistent with all assignments that have pre-
viously been made in the search (note that
for the first node, there will have been no
previous assignments, so any value from the
node’s label set can be chosen). The algo-
rithm is similar to that described in Dechter
and Pearl (1987).

To represent Spar’s geometric constraints
using a binary constraint network, each geo-
metric plan variable (for example, grasp con-
figurations, positions) is represented by a
node in the network. When a new variable is
introduced into the plan, a node is added to
the network and assigned an initial label set.
This label set is merely the set of values that
can be assigned to this variable (determined
by the action template instantiation rules dis-
cussed in Representation of Actions). For
example, if the variable represents a grasping
configuration for a particular object, then the
initial label set for its node in the constraint
network will contain the labels of all the
grasping configurations for this object (grasp-
ing configurations are described in Reachabil-
ity of Grasps).

Binary constraints between plan variables
are represented by arcs between the corre-
sponding nodes in the network (these arcs are
not directed). Each arc in the network con-
tains a set of pairs of values that indicate the
valid pairs of labels for the connected nodes.
Determining the valid pairs of labels requires
a semantic understanding of the domain, but
once the pairs have been assigned, no
domain knowledge is required to check for
network consistency.

Stable poses
provide a

method of
specifying 

destination
positions in

terms of 
the object’s 

orientation . . .
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mining which of an object’s features will be
obscured by the work table. Second, when the
plan calls for an object to be placed in some
position (by the putdown action), most often
the displacement of the object is not impor-
tant. Stable poses provide a method of speci-
fying destination positions in terms of the
object’s orientation, without regard to the
actual X,Y,Z position. Clearly, in a cluttered
work cell, objects will not always be found in
one of their stable poses. However, because
stable poses are only used to determine a list
of occluded features and specify destinations
of held objects, an object not being in a stable
pose will not be a problem as long as the sen-
sory system is capable of determining by
inspection the object’s occluded features.

With this representation for object posi-
tions, geometric goals about object locations
can be expressed in terms of set membership.
That is, the planner can determine the set of
stable poses that are allowable for a certain
assembly operation and constrain the object’s
position to correspond to one of these poses.
For this purpose, Spar uses the constraint
in_position_class(Position,Plist). This con-
straint indicates that the orientation specified
by Position must correspond to one of the
stable poses in Plist.

If Position is instantiated to a homogeneous
transformation that represents both the ori-
entation and displacement of an object (for
instance, if the position of the object has
been ascertained by the sensing system), then
this constraint cannot be evaluated by a simple
membership test. In this case, Spar must
determine (in one of two ways) which stable
pose of the object corresponds to Position. If
the object is resting on the table, it is a simple
matter to compare the rotational component
of Position to the rotations specified by the
various stable poses of the object to deter-
mine in which stable pose the object is rest-
ing. If the object is not resting on the table
(for example, if it is leaning against some
other object in the work cell), then the sens-
ing system must be used to determine the set
of object features that are occluded. Position
is then determined to correspond to the stable
pose that obscures the same set of features.

Aside from the situation described in the
previous paragraph, CMS handles the addi-
tion of an in_position_class constraint in the
same way that it handles the member con-
straint. It restricts Position’s label set, updates
the arcs that are connected to Position’s node,
and then checks for network consistency.

Reachability of Grasps. Whenever the plan-
ner inserts a manipulation action into the

plan, it must ensure that all the configura-
tions required to perform this manipulation
will be physically realizable. To guarantee this
physical realizability of manipulation, Spar
uses two constraints:

reachable(Grasp,Position)
and

mate_reachable(Grasp,Position,Ta)  .
The first of these constraints indicates that if
the object to be manipulated is in the position
specified by the variable Position, and the
configuration used to grasp the object is spec-
ified by Grasp, then this combination must
be physically realizable. This constraint is
used in both grasping and placing objects.
The second constraint is used for mating
operations, where Ta is a homogeneous trans-
formation that represents the destination
position of the grasped object relative to the
coordinate frame specified by Position.

For specific values of Grasp and Position,
two conditions must be met for the reachable
constraint to be satisfied.  First, the faces of
the grasped object that come into contact
with the manipulator fingers must not be in
contact with the table (or any other object)
when the object is located in Position.  Second,
the robot must be able to perform the grasp
without exceeding any of its physical joint
limits and contacting the work table.

For the mate_reachable condition, only the
second condition is used. However, the posi-
tion that the manipulator must reach is not
Position, as in the reachable constraint, but
TO Ta, where TO is the homogeneous transfor-
mation corresponding to Position.

To verify the first condition, the system
must invoke the object modeling system to
determine which features of the object will be
in contact with the table when the object is
in Position and which features of the object
will be in contact with the manipulator when
the object is grasped in the configuration
specified by Grasp. (We should note that the
modeling system used in Spar is not a con-
structive solid geometry modeler. A number
of object representations are included in an
object model, including a grasping model, a
table of the stable poses, and a great deal of
geometric information that is used by the
sensing system for object recognition and
localization.) If Position corresponds to one
of the object’s stable poses, a simple table
lookup operation is used to determine which
features are in contact with the table. If Posi-
tion is an absolute position, then the system
must determine the set of occluded features,
as discussed in Stable Poses and Position
Classes.

For specific values of Grasp and Position,
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check fails, CMS signals failure, and the old
network is restored. Otherwise, CMS signals
success and retains the new network.

Exhaustive enumeration of pairs of posi-
tions and grasps is not as difficult as it might
seem. First, as we described earlier, a finite
number of possible stable poses are associated
with any object (if the object is in a known
location determined by the sensing system,
then there is only one position to consider).
Usually, this number is fairly small. Second,
we quantize the space of grasping operations
based on the features of the object that are
obscured by the grasp and the features of the
object that come into contact with the manip-
ulator fingers in the grasp. This approach is
similar to that described in Pertin-Troccaz (1987)
and Tournassound and Lozano-Perez (1987).

By making this type of quantization of the
space of grasping configurations, we replace
exact descriptions of grasping configurations
with approximations. Thus, it is possible that
Spar will occasionally errantly determine that
a reachability constraint is not consistent
with the current constraint set. In general, we
do not expect such a result, except when the
manipulations that are to be performed
require the robot to operate near the bound-
aries of its work envelope.

Constraints at the Uncertainty-
Reduction Level of Planning

As we described previously, when the planner
considers the uncertainty-reduction goals, it
does so for a particular plan instance. As a
consequence, at the time of their evaluation,
the uncertainty-reduction goals (which are
expressed as symbolic algebraic inequalities)
will be expressed in terms of specific bounded
symbolic variables. Therefore, determining if
an uncertainty-reduction goal is satisfied con-
sists of a single evaluation (rather than a
series of evaluations, as was required in the
geometric constraints). In particular, because
the uncertainty-reduction goals are expressed
as inequalities of the form expr1 < expr2 and
because at least one of these expressions is
always a single constant, if we find the maxi-
mum value for expr1 and the minimum value
for expr2 (under the constraints contained in
the world description), we can determine
whether the uncertainty-reduction goals are
met simply by checking to see if max(expr1) <
min(expr2).

To find upper and lower bounds on sym-
bolic expressions, we have implemented a
system similar to the SUP/INF system that
was introduced by Bledsoe (1975), then
refined by Shostak (1977) and later by Brooks

the second condition is verified by invoking
routines that compute the inverse kinematic
solution for the robot’s joint angles given an
absolute position of the end effector, as fol-
lows: A particular grasp has associated with it
a homogeneous transformation that defines
the coordinate frame of the robot manipula-
tor relative to the frame of the object. We
refer to this transformation as the grasp trans-
formation, or Tg. If Position is an absolute
position (that is, it has a specific X,Y,Z loca-
tion as well as a specified orientation) speci-
fied by the homogeneous transformation TO,
we compute T, the transformation represent-
ing the manipulator’s coordinate frame rela-
tive to the world frame, by T = TO Tg. In the
mate_reachable case, T = TO Ta Tg. This trans-
formation is used as the input to the inverse
kinematics program. The joint angles that are
found by this program are then tested to
ensure that they are within the robot’s limits.
Currently, our lab is using a Puma 762 robot
for manipulation experiments. Descriptions
of the kinematic and inverse kinematic solu-
tions for this type of robot can be found in
Lee and Ziegler (1983). At this time, to pre-
vent collision with the work table, Spar
simply forces the Z axis of the manipulator to
roughly point in the direction of the negative
world Z axis, which prevents the robot from
attempting to reach up through the table to
grasp an object.

If Position corresponds to a stable pose
(that is, it specifies an orientation of the
object but no absolute X,Y,Z position), CMS
assumes that condition 2 can be satisfied by
some suitable choice of X,Y,Z. That is, we
assume that for any arbitrary orientation of
the robot manipulator, there will be some
location in the work space where this orienta-
tion can be physically performed (by orienta-
tion, we mean that the coordinate frame for
the grasp has axes whose origin is not speci-
fied but whose orientation relative to the
world frame is specified).

When CMS is instructed to add either a
reachable or mate_reachable constraint to the
constraint network, the two conditions previ-
ously described are used to determine all
valid pairs of values for Grasp and Position
(note that Ta will always be instantiated to a
constant homogeneous transformation). The
valid pairs are found by exhaustively pairing
every value from the label set for Grasp with
every value from the label set for Position
and recording all pairs that satisfy the two
conditions. These pairs are then used to con-
struct a new arc connecting the nodes for
Grasp and Position. Finally, a network consis-
tency check is performed. If the consistency

In our system,
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(1981) for his Acronym system. The functions
SUP and INF each take two arguments, a sym-
bolic expression and a set of variables, and
return upper and lower bounds on the expres-
sion in terms of the variables in the variable
set. The method SUP/INF uses is to recursively
break down expressions into subexpressions,
find bounds on these subexpressions, and
then combine the bounds using rules from
interval arithmetic. Obviously, this approach
works for linear expressions where superposi-
tion holds. When expressions are nonlinear,
however, it is quite possible that the bounds
on the individual subexpressions will be
looser than the bounds on the subexpressions
when considered in the context of the whole
expression. Thus, it is possible that SUP/INF
will sometimes find bounds that are not exact.

In spite of this disadvantage, the policy of
recursively finding bounds on subexpressions
and then combining these bounds guarantees
that the algorithms will terminate, as shown
by Shostak for his version of SUP/INF and
later by Brooks for his modified versions. Fur-
thermore, even though it is possible that
SUP/INF will not return exact bounds, it has
been shown (again by Shostak and Brooks)
that the calculated bounds are conservative,
in that SUP always returns a value that is
greater than or equal to the maximum, and
INF always returns a value less than or equal
to the minimum. The fact that SUP/INF
sometimes only approximates solutions is not
a severe problem for Spar because failure to
satisfy uncertainty constraints has the worst-
case result of adding sensing actions to the
plan. That is, if CMS determines that the
uncertainty constraints cannot be satisfied, it
does not backtrack. It merely prepares for pos-
sible failure.

A Task Planning Example
In this section, we illustrate Spar’s flow of
control with an assembly example. Consider
the task of mating the two objects shown in
figure 5. The assembly goal is to have the peg
inserted into the block so that the small hole
in the block is aligned with the hole in the
peg’s base. The user specifies with a goal of
the form

assembled( peg,
block,
[[7,8],[7,8]],
tm([[-1,0,0], [0,1,0], [0,0,-1], 

[3,0,3.25]]),
[-4,0,0])  ,

where peg and block are the two objects to be
assembled (the peg is the held object, and the
block is stationary), the third argument con-

tains a list of the mating features for the peg
and the block (here, both the peg and the
block have surfaces 7 and 8 as mating fea-
tures), the fourth argument is a homogeneous
transformation that expresses the destination
position of the peg relative to the local coor-
dinate system of the block (for example, the
X axis of the peg’s local coordinate system
will be parallel to the vector [-1,0,0] in the
block’s local coordinate system), and the final
argument is the mating vector (that is, the
vector along which the mating motion will
occur) expressed in the block’s local coordi-
nate frame.

To satisfy this goal, Spar examines its possi-
ble actions and selects the assemble action. Of
course, the assemble action has both opera-
tional and geometric preconditions that must
now be considered, so the planner pushes
these onto the appropriate goal stacks. The
goal stacks and plan action list are shown in
figure 6.

At this point, a word about the meaning of
the preconditions is in order. The assemble
action has a precondition of the form

geo(GoalId1,ActionID, 
in_position_class(Position,PositionList),
part_location(Obj2,Position))  .

As we discussed in Constraint Manipulation,
Spar associates a set of stable poses with each
object. When two objects are to be mated,
Spar imposes two constraints on the pose of
the stationary object. First, none of the
object’s mating features can be obscured in
this pose. Second, the mating vector must
point into the object’s friction cone. The set
of stable poses that satisfies the first condition
is easily determined by comparing each stable
pose’s set of occluded faces with the set of
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object features that are obscured by the grasp
(as discussed in Reachability of Grasps).
Therefore, it is a simple matter to determine
which grasping configurations do not obscure
the mating features of an object. When the
planner adds the assemble action to the plan,
it instantiates the variable GraspList to be this
set of grasping configurations (because there
are many of these, we do not explicitly list
them here).

Figure 6 shows the instantiated versions of
the preconditions for the assemble action, as
they appear on the goal stacks. Note that the
variables used to identify the preconditions
and the action to which the preconditions
correspond have also been instantiated.

The first operational goal specifies that the
gripper be holding the peg in some valid
grasp (remember that at the operational level,
Spar is not concerned with the geometric
aspects of the grasping configuration).
Because it is not possible to merely add a con-
straint to the plan to achieve this goal
(because there is no existing action in the
plan whose execution can be constrained so
that it results in the manipulator holding the
peg), Spar inserts the action pickup(peg,
grasp_1) into the plan, with the constraint
that the pickup action must occur prior to
the mating action. This constraint results in
the addition of an arc to the ordering graph,
directed from action2 to action1. The precon-
ditions of the pickup action are then pushed
onto the appropriate goal stacks. The result-
ing goal stacks are shown in figure 7. Note
that when Spar adds this action, it instanti-
ates the variable Grasp to the label grasp_1
and that this instantiation affects all appear-
ances of Grasp on the goal stacks.

The remaining operational goals are trivial-
ly satisfied by the initial world state, so the
planner moves them to the satisfied goal list
and turns to its geometric goals. (Note that
when these goals are satisfied, instances of
the variable Pos_1 and Pos_2 on the goal
stack are instantiated to init_pos1 and
init_pos2. The corresponding label sets are
constrained to contain single elements that
are labels for the homogeneous transforma-
tions representing the initial positions of the
block and peg.) The top goal on the geomet-
ric goal stack, goal_8, is for the pickup action,
and it specifies that the manipulator configu-
ration used to pick up the peg, grasp_1, be
physically realizable by the robot. To satisfy
this goal, Spar attempts to add a constraint
on the way in which grasp_1 is chosen so
that the configuration will be reachable. Spar,
therefore, instructs CMS to add the constraint
reachable(grasp_1,init_pos2) to the constraint

mating features. The set of stable poses that
satisfies the second condition is found by
transforming the mating vector (which is
expressed in the stationary object’s coordi-
nate system) into world coordinates and
examining the Z component of the resulting
vector. The set of permissible stable poses for
the stable object is found as the intersection
of these two sets. Note that for this example,
there is only one stable pose of the block that
satisfies both these conditions—the pose with
the block resting on its back (this particular
stable pose is denoted by the pose label BP5).
Therefore, when the planner adds the assem-
ble action to the plan, it instantiates the vari-
able PositionList to the list [BP5]. (We should
note that such a list of stable poses is actually
a list of pose labels that are used to access the
data structures for the stable poses.)

This same kind of instantiation takes place
for the precondition

geo(GoalId2,ActionId,
member(Grasp,GraspList),
holding(Obj1,Grasp))  .

In our system, grasping configurations specify
not only the geometric configuration that is
used to grasp the object but also the set of
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network, as described in Reachability of
Grasps. For our example, we assume that this
constraint is consistent with the constraint
network.

The next goal on the geometric goal stack,
goal_3, specifies that grasp_1 must not
obscure any of the mating features of the peg.
This requirement of nonobscuration is
expressed as a member constraint, that is, a
restriction on the label set for the plan-vari-
able grasp_1. Again, the planner invokes CMS
to add the member constraint to the con-
straint network. Again, for the example, let us
suppose that the new member constraint is
consistent with the network. Note that if
adding this constraint resulted in an inconsis-
tent constraint set, Spar would be forced to
insert additional manipulations.

To this point in the example, Spar has been
able to satisfy geometric goals by merely
adding constraints on operations already in
the plan. In some cases, it is not possible to
satisfy geometric goals this way, and an alter-
native approach must be used, as is the case
for the geometric precondition goal_4, which
constrains the possible positions of the block.
As mentioned previously, there is only one
permissible stable pose for the block, with the
label BP5. When goal_2, part_location(block,
Pos_1) is satisfied by the initial world state,
the in_position_class goal fails (because the
block is not initially resting in stable pose
BP5). Spar cannot add a constraint on the
block’s initial position because it is a constant
value that is defined by the initial world state.
Furthermore, because no action currently in
the plan manipulates the block, Spar cannot
constrain the execution of a plan action to
achieve the goal. Therefore, backtracking
must be used to find some alternative method
to satisfy goal_2.

Remember that goal_2 was originally satis-
fied by the initial world state. On backtrack-
ing, Spar will try to find some other action in
the plan to satisfy goal_2. Finding none, Spar
adds the action putdown(block,pos_1). With
this action added, when Spar reconsiders
goal_4, the value of pos_1 will be constrained
so that no mating features of the block are in
contact with the table, and the mating vector
will point into the object’s friction cone,
which is the same as constraining pos_1 to be
the block’s stable pose BP5. In addition, Spar
adds the constraint prior_to(action_3,action
_1) to the ordering graph because the block
must be placed in pos_1 prior to the assemble
action. Of course, the addition of this action
introduces new goals, so additional planning
must be done. This planning, however, is very
similar to the planning that must be done to

pick up the peg appropriately, so we do not
discuss it here.

The final result of the first phase of plan-
ning is shown in figures 8, 9, and 10. Figure 8
shows the four actions that are in the plan.
The top of figure 9 shows the geometric
binary constraint network, which can be
interpreted as follows. The grasping configu-
ration grasp_2 is used to pick up the block
and then place it on the table. Therefore,
both init_pos_1 and pos_1 must be reachable
using grasp_2, a requirement indicated by the
arcs connecting grasp_2 to init_pos_1 and
pos_1. Similarly, grasp_1 is used to pick up
the peg and then assemble the peg to the
block (which is now located in pos_1). The
possible pairs of values for each of these arcs
are shown in figure 10, as are the label sets for
the nodes. The possible pairs of values for
each arc in the network are determined by
examining each possible pair of values from
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Figure 7. Goal Stacks and Plan Actions after the 
Addition of the Pickup Action.



+ sin(thetagr)*dxgr +  
-1.0*cos(thetagr)*sin(theta_o) + -1.5*cos
(thetagr) + -3.0*sin(thetagr)*sin(theta_o) + 
-1.0*cos(theta_o)*sin(thetagr) + 
-1.0*sin(thetagr)*dy_o + 
-1.0*cos(thetagr)*dygr

Note that thetagr, dxgr, dygr, and dzgr repre-
sent the uncertainties in the gripper configu-
ration and that theta_o, dx_o, dy_o, and dz_o
represent the uncertainties in the object posi-
tion. Also, for this particular plan instance,
Wp was three inches, and Wm was four
inches. The complexity of this expression
illustrates the reasons we outlined in Satisfy-
ing Uncertainty-Reduction Goals for applying
uncertainty-reduction planning to specific
plan instances instead of using a constraint-
posting approach.

Similar expressions are found for the
remaining terms, but we omit these here.
Using the SUP and INF routines with the
bounds on the uncertainties listed in table 2,
we find the lower bound on this expression
to be 3.2793, which indicates that the con-
straint was satisfied. The remaining three
constraints are similarly evaluated.

If the uncertainty-reduction goals are not
satisfied in the world description, Spar attempts
to add a sensing operation to the plan.
Because it is impossible to predict the results
of a sensing action, the add-delete lists for
sensing actions merely describe the uncertainty
in the object’s location after the application
of the sensing operation. If this reduction is
sufficient, the sensing operation is inserted
into the plan. If Spar cannot sufficiently
reduce the uncertainty in the peg’s location,
it augments the plan instance with verifica-
tion sensing operations and local recovery
plans. Examples of sensing verification and
local recovery plan templates are given in fig-
ures 11 and 12. The verification template in
figure 11 is used to test the width of the grip-
per opening to ensure that the object was
successfully grasped. If the gripper is not

the label sets of the connected nodes and col-
lecting those that meet the conditions out-
lined in Reachability of Grasps. In the figure,
we represented stable poses by symbols of the
form xPy, where x is used to indicate the
object (the peg is indicated by x = P, the block
by x = B), and y is used to indicate the specific
stable pose for the object. Symbols represent-
ing grasping configurations have a similar
interpretation.

The bottom of figure 9 shows the ordering
graph. Note that in the ordering graph, in
addition to the arcs we mentioned previously,
there is an arc from action_3 to action_2.
This arc is added to the graph because the
action used to pick up the block (action_4)
violates the gripper(open) operational goal
for the action used to pick up the peg
(action_2). To remedy this, action_3 is con-
strained to come between action_4 and
action_2 to reestablish the gripper(open) goal.

Once the operational and geometric goals
are satisfied, Spar considers the uncertainty-
reduction goals. As we described earlier, Spar
chooses a specific instance of the plan (which
satisfies the constraint network) and propa-
gates uncertainties forward through the plan
actions to determine if the uncertainty-reduc-
tion goals are satisfied. For this example, we
only consider the uncertainty-reduction goals
for the first pickup action, which were dis-
cussed in The Representation of Uncertainty
in Spar.

To evaluate the constraints associated with
these goals, Spar invokes the procedure that
constructs and evaluates the relevant algebra-
ic expressions for the goal. The resulting
expression for the Y component of  P-1C1 is1

-2.0 + 3.0*cos(thetagr)*cos(theta_o) 
+ cos(thetagr)*dx_o + sin(thetagr)  
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Figure 8. Plan Actions Solve the Assembly Task Shown in Figure 5.

Table 2. Bounds on Uncertainty Variables Used
in the Example in Constraint Manipulation.

Bounds on Uncertainty Variables

Variable Lower Bound Upper Bound
dxgr –0.001 0.001
dxgr –0.001 0.001
dxgr –0.001 0.001

thetagr –0.001 0.001
dx_o –0.11 0.11
dy_o –0.11 0.11
dz–o –0.11 0.11

theta–o –5.5 5.5



opened to the correct width, an error is sig-
naled. The recovery template of figure 12 is
used to respond to the possible errors. If
error1 is signaled (that is, no object is
grasped), then a local groping strategy is used
to find the part. If error2 is signaled, the user
is summoned.

Experimental Results
We have used Spar to plan a number of
assembly tasks. The resulting assembly plans
were then executed in a robot work cell
equipped with a Puma 762 robot. Each of
these tasks involved assembling the two objects
described in A Task Planning Example. By
varying the initial positions of the objects,
Spar was forced to develop distinct plans for
the individual tests, even though the assembly
goals were the same.

Figures 13, 14, 15, and 16 illustrate a
number of the experiments that have been
performed. Each figure includes a photograph
of the initial world situation and a listing of
the plan that is output by Spar. For example,
in figure 13, the block is initially face down,
and the peg is resting on its side. To perform
the assembly, the robot must first reposition
the block so that the face containing the hole
is accessible. This assembly requires two
manipulations: one to place the block on its
side (an intermediate position) and one to
then place the block on its back. Once the
block is repositioned, the peg is picked up,
and the assemble action is performed. Figure
17 contains a sequence of photographs of the
Puma 762 executing this plan. Note that in
this sequence, the end points of each action
are shown.

To have the robot perform the plans devel-
oped by Spar, each plan step is converted into
a Lisp function call. The individual function
calls that correspond to the actions in the
plan are then collected into a list and written
to a command file. This command file is used
by the Lisp execution module that controls
the robot. Table 3 describes the Lisp functions
that are used to perform each of the actions
used by Spar. Table 4 describes some of the
Lisp functions that make up the interface to
the robot. Note that the order of the actions
shown in the lists in figures 13, 14, 15, and
16 reflects the order in which the actions
were added to the plan. The index associated
with an action (the first item in the sublist)
indicates the order of action execution.

Because in its current implementation, Spar
does not include a motion-planning module,
the Lisp functions that execute the actions
use a simple strategy to avoid collisions
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Figure 9. Constraint Network for the Assembly Plan 
to Solve the Task Shown in Figure 5.

Table 3. Lisp Functions to Execute Spar Actions.



characterized the uncertainties in the sensors
and robotic manipulator. Second, the current
set of recovery plans lacks robustness and
generality. These two areas are the subjects of
ongoing research.

Conclusions
This article describes the move toward a plan-
ning system that can create assembly plans
given as input a high-level description of
assembly goals, geometric models of the
assembly components, and a description of
the capabilities of the work cell (including
the robot and the sensory system). The result-
ing planner, Spar, reasons at three levels of
abstraction: operational (where high-level
operations are planned), geometric (where
geometric configurations of the actions are
planned), and uncertainty-reduction (where
world uncertainties are taken into account).

At the first two levels of planning, we
extended the constraint-posting approach
used to date in domain-independent plan-
ning by adding geometric preconditions to
the actions, linking these to operational goals
using plan variables, and expanding CMS to
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Figure 10. The Arcs and Label Sets for the Constraint Network 
Shown in Figure 9.

Figure 11. Template for a Sensory 
Verification Action.

Figure 12. Template for a Local Recovery Plan.

during the assembly process. The basic strate-
gy is to move the end effector to a position
above its destination and then use straight-
line motion (in Euclidean space) to move to
the destination. For example, the Lisp func-
tion for the pickup action is shown in figure
18. This function first moves the end effector
to a position above the object to be grasped
and then uses straight-line motion to move
to the grasping position. The gripper fingers
are then closed, and the sequence is reversed
to raise the object to a position above the
table. After the action is executed, the execu-
tion module’s world model is updated to
reflect the changes affected by the action.

Finally, we should note that although the
uncertainty-reduction planner has been
implemented, it has not yet been integrated
with the execution system for two reasons.
First, we have not yet fully and accurately
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Figure 13. Plan to Assemble Two Objects with
the Block Face Down in the Initial State.

Figure 14. Plan to Assemble the Two Objects
with the Block and the Peg Initially 

on Their Sides.



deal with geometric constraints. At the uncer-
tainty-reduction level of planning, we
expressed uncertainties in the world in terms
of homogeneous transformations whose ele-
ments are defined in terms of symbolic
uncertainty variables. We then expressed
limits on tolerable uncertainties in terms of
operations on transformations. When the
uncertainty-reduction goals cannot be satis-
fied, rather than abandon the plan, our
system augments the plan with sensing oper-
ations for verification and, when possible,
with local error-recovery plans.

At this point, a number of areas in our
system are either ad hoc or require input
from the user. For example, the local error-
recovery plans must be entered by the user
and associated with the uncertainty-reduc-
tion goals a priori. One goal of our work is to
automate this process by employing geomet-
ric reasoning about possible errors and error
recovery. Another shortcoming of Spar is the
lack of a motion-planning module. Incorpo-
rating a motion planner into the current
system is another goal.
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Figure 16. Plan to Assemble the 
Two Objects with the Block on Its Back and 

the Peg Face Up in the Initial State.

Figure 15. Plan to Assemble Two Objects with
the Block Face Up in the Initial State.
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Figure 17. The Puma Robot Executing the Plan.
Figure 17a shows the two objects to be assembled.  In the goal configuration, the peg will be inserted into the block so that the two small holes are
aligned. Figure 17b shows the initial world state for the assembly plan shown in figure 13. Note that the block is face down and, therefore, must be
inverted prior to assembling the two parts. As shown in figure 13, inverting the block requires two pickup-putdown action pairs, the first to place the
block in an intermediate position, the second to place the block on its back. Figure 17c shows the robot grasping the block to begin the first pickup

block action. Figure 17d shows the robot placing the block on the table
in the first putdown block action.  Note that the block is placed on its
side so that it can be grasped and repositioned on its back. Figure 17e
shows the robot grasping the block to begin the second pickup block
action. Figure 17f shows the robot placing the block on the table in the
second putdown block action. Note that the block is now resting on its
back, and the two parts can now be assembled. Figure 17g shows the
robot grasping the peg to begin the pickup peg action. Figure 17h shows
the robot poised for the execution of the assemble-objects peg block
action. Figure 17i shows the completion of the assemble-objects peg
block action.

Figure 18. The Lisp Procedure to Execute the Pickup Action.
The function az is used to move the manipulator to a specified height,
move-robot moves the manipulator to the specified position (given as
a homogeneous transformation matrix), and move-robot-at-safe-height
moves the robot to a destination position and keeps the manipulator
at a specified position above the work table.
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Notes
1. There is only a limited repertoire of actions that
can be carried out by a single robot arm, and the
three listed here represent those that are used most
often. Actions such as threading and fixturing
could be considered more specialized forms of the
assemble action presented here, the specialized
forms being obtained by adding more geometric
and uncertainty-reduction constraints.

2. An introductory treatment of homogeneous
transformation matrixes can be found in Paul (1981).
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