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Abstract

In this paper, we address the problem of surveillance in an environment with obstacles. We consider the problem in
which a mobile observer attempts to maintain visual contact with a target as it moves through an environment containing
obstacles. This surveillance problem is a variation of traditional pursuit—evasion games, with the additional condition
that the pursuer immediately loses the game if at any time it loses sight of the evader. We analyze this tracking problem
as a game of kind. We use the method of explicit policy to compute guaranteed strategies for surveillance for the observer
in an environment containing a single corner. These strategies depend on the initial positions of the observer and the
target in the workspace. Based on these strategies a partition of the visibility polygon of the players is constructed. The
partitions have been constructed for varying speeds of the observer and the target. Using these partitions we provide a
sufficient condition for escape of a target in a general environment containing polygonal obstacles. Moreover, for a given
initial target position, we provide a polynomial-time algorithm that constructs a convex polygonal region that provides an
upper-bound for the set of initial observer positions from which it does not lose the game. We extend our results to the
case of arbitrary convex obstacles with differentiable boundaries. We also present a sufficient condition for tracking and
provide a lower-bound on the region around the initial position of the target from which the observer can track the target.
Finally, we provide an upper bound on the area of the region in which the outcome of the game is unknown.
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1. Introduction from the target (Tekdas et al. 2009). The observer may also
be monitoring the target for quality control, verifying that
the target does not perform some undesired behavior, or
ensuring that the target is not in distress. In applications
that involve automated processes that need to be monitored,
such as in an assembly work cell, parts or sub-assemblies
might need to be verified for accuracy or determined to be
in correct configurations. Visual monitoring tasks are also
suitable for mobile robot applications (Briggs and Donald
1996). In home-care settings, a tracking robot can follow
elderly people and alert caregivers of emergencies (Hsu
et al. 2008). Target-tracking techniques in the presence of
obstacles have been proposed for the graphic animation
of digital actors, in order to select the successive view-

Surveillance is monitoring of behavior, activities, or other
information in an environment, often carried out in a sur-
reptitious manner. An important problem in surveillance is
target tracking. It involves maintaining knowledge of the
current location of a target. In the case of visibility-based
target tracking, an observer must constantly maintain a line
of sight with a target. A challenging problem in this sce-
nario is to plan motion strategies for the observer in the
presence of environmental occlusions. In this work, we
address the problem of a mobile observer trying to main-
tain a line of sight with a mobile target in the presence of
obstacles in the environment. Both the observer and the tar-
get are holonomic and have bounded speeds. The observer

has no knowledge about the future actions of the target. In
this scenario, we address the following problem: given an
initial position of the observer and the target, is it possible
for the observer to track the target forever and in case it can
do so, what should be its strategy?

Apart from surveillance applications, a mobile robot
might be required to continuously follow and monitor at a
distance a target performing a task not necessarily related
to the target tracking game, such as relaying signals to and

points under which an actor is to be displayed as it moves
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in its environment (Li et al. 1997). In surgical applica-
tions, controllable cameras could keep a patient’s organ or
tissue under continuous observation, despite unpredictable
motions of potentially obstructing people and instru-
ments. In wildlife monitoring applications, autonomous
underwater vehicles use target-tracking algorithms to nav-
igate in cluttered environments while tracking marine
species.

Target-tracking using sonar and infrared sensors has been
studied traditionally in the field of automatic control for
naval and missile applications (Sung and Um 1996). With
the emergence of computer vision, a combination of vision
and control techniques were used to design control laws
to track a target using vision sensors (Espiau et al. 1992;
Hutchinson et al. 1996; Malis et al. 1999; Marchand et al.
1999). A major drawback of pure control approaches is
that they are local by nature and it is difficult to take into
account the global structure of the environment such as the
configuration of workspace obstacles.

In the case of a completely predictable target, the prob-
lem can be addressed using techniques from optimization.
Such techniques have been used by Efrat et al. (2003) and
LaValle et al. (1997) to provide algorithms for an observer
to track a predictable target among obstacles. In the case
of an unpredictable target the hardness of the problem
increases due to the lack of information about the current
as well as the future strategies of the target. A plausible
way to reduce the hardness of the problem is to solve the
problem for specific environments. For instance, Cheung
(2005) solved the problem of target-tracking around a
regular polygonal obstacle for a specific initial position of
the observer and the target. In a similar vein, in this work
we have shown that for an environment having a single
corner, the problem is completely decidable (Sipser 1997).
Although many computationally intensive approximation
techniques (Hsu et al. 2008) have been used to address
the target-tracking problem, the decidability in a general
environment still remains an open problem.

In the past, various techniques have been proposed to
devise strategies for an observer that optimizes a local cost
function based on the current configuration of the target and
observer in the environment. Gonzalez-Banos et al. (2002)
and Bandyopadhyay et al. (2004, 2006, 2009) formulate
a risk function that takes into account the position of the
target and the observer with respect to the occluding ver-
tices of the environment. The strategy for the observer is to
move in a direction that minimizes the risk function at every
instant. Fabiani and Latombe (1999) designed a planner for
target tracking that takes into account the positioning uncer-
tainty of an observer that has a map of the environment.
The observer tries to minimize a utility function that max-
imizes the probability of future visibility of the target and
minimizes the uncertainty in its own position. Murrieta-Cid
et al. (2002) obtained a motion strategy for the observer
by maximizing the target’s shortest distance to escape from
the observer’s field of view. Owing to the greedy nature of

the above techniques, the completeness or optimality of the
resulting strategies cannot be guaranteed for the observer.

Maintaining visibility of a moving target can also be cast
as a connectivity problem on a graph that encodes a per-
tinent cell decomposition of the workspace. Murrieta-Cid
et al. (2007) drew the similarity between the target-tracking
problem and piano-mover’s problem. They extended the
three-dimensional cellular decomposition of Schwartz and
Sharir (1987) to represent the four-dimensional configu-
ration space of an observer trying to maintain a fixed
distance from a target. They reduced the problem to a recur-
sive update and reachability problem on a graph that is
constructed using the cellular decompositions. Murrieta-
Cid et al. (2008) introduced the notion of strong mutual
visibility and accessibility. Using these two notions, they
modeled the problem of maintaining visibility of a moving
evader by means of a pair of graphs. They showed that the
decision problem of whether a pursuer is able to maintain
strong mutual visibility of the evader is NP complete. In this
work, we present a complete cell decomposition of the free
workspace around a single corner and extend these decom-
positions to general environments. Hence, we feel that the
underlying theme of our work belongs to this category.

There have been some efforts in the past to address the
target-tracking problem in the scenario where multiple
observers try to track multiple targets. Parker (2002) pre-
sented a method of tracking several targets with multiple
observers. Unlike our work, they did not view the problem
from the perspective of computing geometric visibility.
Instead they investigated the power of a weighted force
vector approach distributed across robot teams in simple,
uncluttered environments that are either obstacle free or
have a random distribution of simple convex obstacles.
Jung and Sukhatme (2002) addressed the problem of
tracking multiple targets using a network of commu-
nicating robots and stationary sensors. A region-based
approach is introduced which controls robot deployment
at two levels, namely, a coarse deployment controller and
a target-following controller. Kolling and Carpin (2006,
2007) presented a behavior-based solution to the problem
of observing multiple targets using multiple robots. They
proposed a distributed behavior-based control system
where robots share workload by assuming responsibilities
concerning the observation of certain targets. Tang and
Ozguner (2005) investigated the scenario in which the
number of trackers is strictly less than the number of
targets. A gradient-approximation algorithm is proposed
to generate paths for mobile agents to traverse a sequence
of target points. Luke et al. (2005) proposed centralized
algorithms for many mobile agents to stay within an
‘observation range’ of as many targets as possible in the
absence of sensing constraints. The algorithms are based
on K-means clustering and hill-climbing algorithms. None
of the previous authors (except Jung and Sukhatme (2002))
considered the effect of occlusion in visibility due to the
presence of obstacles.
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Target tracking is related to the game of pursuit—evasion.
The goal of the pursuer is to maintain a line of sight to the
evader that is not occluded by any obstacle. The goal of
the evader is to escape the visibility polygon of the pur-
suer (and break this line of sight) at any instant of time.
Pursuit—evasion games are mainly classified into two cate-
gories based on the nature of the cost function. In a game
of kind, there are only two possible outcomes at the end of
the game. The pursuer favors one of the possible outcomes
and the evader favors the other possible outcome. The set
of initial positions of the players that leads to a favorable
outcome for the pursuer is called the capture set. The set of
initial positions of the players that leads to a favorable out-
come for the evader is called the escape set. On the other
hand, in a game of degree, there is a continuum of possible
outcomes. The objective of one player is to maximize the
outcome and the other player wants to minimize it. In our
previous work (Bhattacharya et al. 2009; Bhattacharya and
Hutchinson 2010), we modeled target tracking as a game
of degree with the terminal time as the payoff function of
the game. Using techniques from differential game theory
(Basar and Olsder 1995), the necessary and sufficient condi-
tions for escape were presented in terms of the saddle point
strategies of the players. From these strategies, trajectories
were obtained that are optimal in the vicinity of termina-
tion situations. In order to predict the outcome of the game
from any given initial position of the players, a complete
construction of the optimal trajectories is required. Despite
some recent progress towards characterizing the optimal
trajectories (Bhattacharya et al. 2011), a complete solution
to the problem of constructing the optimal trajectories is
still unknown for general environments. In contradistinc-
tion, this paper poses the target-tracking problem as a game
of kind. We provide a complete spatial decomposition of the
workspace for a simple environment based on the method
of explicit policy (Isaacs 1965). In the method of explicit
policy, strategies are provided for one player to ensure a
favorable outcome for it irrespective of the other player’s
strategies. Extending these strategies to a general environ-
ment provides us with a lower bound on the size of the
escape set and the capture set (Lewin 1994).

This work is an extension of our previous work (Bhat-
tacharya et al. 2007; Bhattacharya and Hutchinson 2008).
The contributions of this work are as follows. First, we show
in Section 2 that in an environment with one corner, the
target-tracking problem is completely decidable. Second,
we prove in Section 3 that in an environment containing
obstacles, the initial positions of the pursuer from which
it can track the evader is bounded. Although this result is
trivially true for a bounded workspace, for an unbounded
workspace it is intriguing. Third, while the general prob-
lem of deciding whether the evader can escape or the pur-
suer can track the evader forever in any arbitrary polygonal
environment is still, as far as we know, an open problem,
we offer partial solutions to it. In Section 3, we provide
polynomial-time approximation schemes to bound the set of
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Fig. 1. The pursuer and the evader in an environment having a
single corner. The region shaded in a brick-like pattern is the semi-
infinite obstacle. The region shaded in gray is the part of the free
space that lies out of the visibility polygon of the pursuer.

initial positions of the pursuer from which it might be able
to track successfully. If the initial position of the pursuer
lies outside this region, the evader escapes. The size of the
region depends on the geometry of the environment and the
ratio of the maximum evader speed to the maximum pur-
suer speed. Fourth, in Section 4, we address the problem of
target tracking in an environment containing non-polygonal
obstacles. In the past, researchers (LaValle and Hinrichsen
2001) have addressed the problem of searching an evader
in non-polygonal environments. However, we do not know
of any prior work that addresses the problem of tracking an
evader in non-polygonal environments. Fifth, in Section 5,
we present a sufficient condition for tracking. Based on this
sufficient condition we provide a region around the initial
position of the evader from which the pursuer can track the
evader. Finally, in Section 6, we provide an upper bound on
the size of the region from which the outcome of the game
cannot be decided from the aforementioned approximation
schemes in environments containing multiple obstacles. In
addition to the ratio of the maximum speeds of the players,
the bound depends on the geometry of the environment and
the initial position of the evader.

2. Analysis of a corner

In this section, we address the problem of target track-
ing in a simple environment containing one corner. The
workspace contains a semi-infinite obstacle with one corner
that restricts pursuer and evader motions and may occlude
the pursuer’s line of sight to the evader. Without loss of
generality, this corner is placed at the origin and one of
the sides lies along the —x-axis as shown in Figure 1.
A mobile pursuer and evader exist on a plane and move
with velocities vp(#) and v.(7), respectively. Their speeds



1712

The International Journal of Robotics Research 30(14)

are bounded by v, and V., respectively. The positions of
the pursuer and the evader are expressed in polar coor-
dinates as p(7)=(r,(2),dp(1)) and e(1) = (r.(1), de(1)),
respectively. They can also be expressed in Cartesian coor-
dinates as p(7) =(x,(1),y,(1)) and e(?) = (xe(1),y(1)),
respectively. Let the initial position of the pursuer and the
evader be denoted by po and e(. The tangential velocities of
the pursuer and the evader are denoted as u,(#) and v,(¢),
respectively. The tangential velocities are considered to be
positive in the direction shown in the figure. Here u,(7) and
v,(f) describe the radial velocities of the pursuer and the
evader, respectively. The radial velocities are considered to
be positive if they point away from the origin. In Figure 1,
the radial velocities of the pursuer and the evader are in the
negative direction. The pursuer and the evader know each
other’s current position as long as they can see each other.
Moreover, the pursuer knows the evader’s current velocity.
The initial position of the pursuer and the evader is such
that they are visible to each other. Both of the players have
a complete map of the environment.

The unshaded region is the visibility region of the pur-
suer. Visibility extends uniformly in all directions and is
only terminated by workspace obstacles (omnidirectional,
unbounded visibility). To prevent the evader from escaping,
the pursuer must keep the evader in its visibility polygon,
V(p(?)). The visibility polygon of the pursuer is the set
of points from which a line segment from the pursuer to
that point does not intersect the obstacle region. The evader
escapes if at any instance of time it can break the line of
sight to the pursuer.

The two obstacle edges meeting at this corner are consid-
ered to extend for an infinite length, so that there is no other
geometry that the evader can hide behind in the workspace.
The two sides of the obstacle form an angle «. If « > 7
then every point in the free workspace is visible to every
other point and the pursuer will trivially be able to track the
evader indefinitely. Thus, we only consider obstacles where
T >oa>0.

Analogous to a star domain (de Berg et al. 1997) in com-
putational geometry, we define the star region associated
with a vertex as the region in the free workspace bounded by
the lines supporting the vertex of the obstacle. The shaded
region in Figure 2 shows the star region associated with the
vertex v.

The concept of a star region is only applicable for a con-
vex vertex (a vertex of angle less than ). As can be seen
in Figure 1, in the case of a semi-infinite obstacle having
a single corner, the star region extends outward from the
corner of the obstacle. It is semi-infinite and bounded by
the ray / and the x-axis. In the case of a single corner, the
entire free space is visible from any point in the star region.
If the pursuer can enter the star region before losing sight
of the evader, it will trivially be able to track the evader at
all future times.

In this setting, we address the following problem. Given
Po, €0, V. and v, does there exist a policy for the evader to

Fig. 2. Star Region associated with the vertex.

Fig. 3. The partition of the visibility polygon of the pursuer based
on the strategies of the players shown in Table 1.

Fig. 4. The geometrical parameters associated with the partitions
shown in Figure 3.
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escape the visibility region of the pursuer in finite time or
does there exist a policy for the pursuer to track the evader
for all time. In the following sections, we present a partition
of the workspace for an environment having a single corner
so that we can answer the above question depending on the
ratio v, /vy, po and e.

2.1. Pursuer-based partition

We now present a decomposition of V' (pg), the visibility
region of the pursuer at an initial position, into regions in
which the evader may lie based on the outcome of the game.
These partitions can be constructed at any time during the
game with the current knowledge of the pursuer’s position.
Depending on the partition in which the evader lies cur-
rently, we present instantaneous strategies for the winner of
the game.

The number of partitions and their geometry depend on
the initial position of the pursuer. If the initial position of
the pursuer is in the star region of the corner, the pursuer
can see the entire workspace at all times. Hence, for any
initial position of the evader, the pursuer wins the game. In
the remaining section, we consider the initial positions of
the pursuer in which it does not lie inside the star region.
Owing to symmetry of the environment, the analysis is the
same if the initial position of the pursuer lies below the x-
axis or if it lies in the left half-space of /. Without loss of
generality, we analyze the former situation.

Let us first consider the case of a corner for which
a < m/2 and po = (7,(0),¢,(0)) is such that ¢,(0) €
[—m/2,0). Define a = v,/v, and let d,( f) denote the mini-
mum distance of the pursuer from x-axis. Letd = d,( ) |,=o.
For x = (x,y) € R?, we define the minimum distance from
X to a segment, ray or line as d(x, £) = minyeg [|[X — yll2,
where E denotes an edge, ray or line. Here £ is the edge
of the obstacle that lies along the x-axis. The ray forming
the free boundary of the visibility region of the pursuer is
denoted by Ej.

Figure 3 shows the partition of V(p(f)) and Figure 4
shows the geometry of the partitions. Here V(p(?)) is
decomposed into the following regions.

1. Region 1 = {x | d(x,E\) < ad,(1)}.
Region 2 = {x | d(x, E2) > ad,(1)}.

3. Region 3 = {x | d(X,E2) < ady(1),|Ix|l2 = ary(1),
X < —ary(1)}.
4. Region 4 = {x | d(x,E2) < ady(1), ||x[2 < ary(1),

d(x,E1) = ady(1)).
5. Region 5 = {x | d(x, E;) < ad,(1t),x < —ary(1)}.

Further, we define Region 6 as the set of points in the free
workspace not belonging to V(p(t)). Before we give a set
of theorems that define the winning strategy for each region
in the partition, these strategies are summarized in Table 1.

Theorem 1. If the evader lies in Region 1 of V(po) and
follows Policy A, no pursuer policy exists that can prevent
the escape of the evader.

Table 1. Strategies that define the winning strategy for each
region in the partition.

Evader  Evader Region Control Law

Policies

A land ¢e € [0 —,7/2]  Fe(B)= —Ve
land ¢e € [7/2,7m + ¢p]  ye()= —Ve

Pursuer  Evader Region Control Law
Policies
B 2,4 p()=vp
C 3 </j)p(t) = ’¢e( Z) |

. ).

ip(t)= 70 [Fe(?)
D 5 (D= ks

PR 1 (0)

Proof. 1f the evader lies in Region 1, the maximum time
required by the evader to reach £ by following Policy A
is t, < ad/v, = d/v,. The minimum time required by the
pursuer to reach x-axis with any policy is at least £, > d/v,.
Since #, > t. the evader reaches £ before the pursuer can
reach the x-axis. If the evader lies on £} and the pursuer
has not yet reached the x-axis the evader will be outside the
visibility region of the pursuer. Hence, the evader escapes.

O

Theorem 2. [fthe evader lies in Region 2 of V(po) and the
pursuer follows Policy B, no evader policy exists that can
escape the visibility region of the pursuer.

Proof. The time required by the pursuer to reach the x-
axis by following Policy B is t, = d/v,. If the evader lies
in Region 2, the minimum time required by the evader to
reach £, is t. > ad/v. = d/v,. Thus, t, > t,. If the
pursuer follows Policy B, V(po) C V(p(?)) |0, i.€. the
visibility region for the pursuer is monotonically increas-
ing during the execution of this policy. Since the evader
cannot reach £, the only free boundary of V' (py), before
the pursuer reaches the boundary of the star region, e(?) €
V(p(t)), VYt € [0,1,]. Once the pursuer reaches the x-
axis, the entire free workspace belongs to V' (p(#,)) and
the evader remains in sight of the pursuer for all future
times. O

Theorem 3. For all initial positions of the evader in
Regions 3 and 4 of V(py), the pursuer can track the evader
by following a reactive motion and switching between
Policies B, C and D appropriately.

Proof. In order to prove the theorem, we need Lemmas 1, 2
and 3.

Lemma 1. [fthe evader lies in Region 3 of V(p(t)) and the
pursuer follows Policy C, for every evader policy the evader
can either stay in Region 3 or move to Region 2 or Region

5of V(p(1)).
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Proof. 1f the pursuer follows Policy C, then it follows both
the radial and angular movements of the evader. According
to the control law of the pursuer in Region 3, |vp(?)| =
[Ve( 1) |:’;—((2. The maximum speed of the evader is v, and the
geometry of Region 3 is such that r,(£)/r.(¢) < 1/a. Hence,
[Vp(1)| < Ve/a = V,. Thus, the pursuer velocities of Policy
C are always attainable in Region 3.

If order to keep the evader in the visibility polygon of the
pursuer and prevent it from entering Region 6, the follow-
ing inequality must hold at all times before the pursuer can
enter the star region.

be() =¢p(1) < 7.

If the evader lies in Region 3, from the geometry of Region
3 we can see that ¢.(7) > ¢,( 7). The angular speeds of the
players obey the following control law:

()] = d(1).

Integrating both sides of the equation gives us the follow-
ing equations and further using the fact that ’ fot be( 1) dt‘ <

fot |e( £) | dt, we obtain the following equation:

fdw) dr 5/ dol1) dt
0 0
S 16D —e(0)| < $y(1)—(0).

Since ¢e( t) _¢e( 0) = |¢e( t) _¢e( 0) |
= ¢e( t) _¢e( 0) < d’p( t) _¢p( O) 5
= Pe(1) =Pp(1) = ¢Pe(0) —$p(0).

From the assumption that the pursuer and the evader are
visible to each other at the beginning of the game, we obtain
the following:

$e(0) =¢(0) < 7.

This leads to the following inequality:

be(1) =pp(t) < 7.

Hence, the evader cannot escape the visibility region of
the pursuer if the pursuer follows Policy C. The radial
component of the velocities obeys the following equation:

()| _ (1)
re(1) (1)
. Fe(1) . (1)
re(t) — (1)
re( 1) > 7.(0) > a.
rp( 1) rp( 0)
Thus, the evader cannot enter Region 4. Hence, for any pol-

icy the evader can either stay in Region 3 or it can enter
Region 2 or Region 5 of V(p(?)). ]

Fig. 5. The geometry of Region 4 in the partition for a given
pursuer position.

Lemma 2. [fthe evader lies in Region 4 of V(p(t)) and the
pursuer follows Policy B, for every evader policy the evader
can either stay in Region 4 or move to Regions 2 or 3 of

V(p(1).

Proof. Refer to Figure 5. If the pursuer follows Policy B, all
points on segment HF move with velocity av, = V. towards
the edge E;. Similarly, all points on the arc FG move with
radial velocity v, toward O. In order to enter Region 1 from
Region 4, the evader must move toward the boundary of
Region 1 with a velocity greater than the velocity at which
the boundary is receding away from the evader. That is not
possible since the boundary of Region 1 moves with veloc-
ity v,, the maximum possible evader velocity, away from
the evader. Hence, the evader cannot enter Region 1 from
Region 4. Hence, for all evader policies, the evader can only
reach Region 3 or Region 2 from Region 4. O

Lemma 3. For all initial positions of the evader in Region
5 of V(po), the pursuer can track the evader by following
Policy D.

Proof. Refer to Figure 6. After time ¢, the evader lies in
the closure of a circle of radius V.t centered at e;. Let OL
denote the tangent from the origin to the circle. A sufficient
condition for the pursuer to keep the evader in sight for all
future times is to keep the magnitude of the angular velocity
of the line of the sight, OP, to be greater than the magnitude
of the angular velocity of the line tangent to the growing
circle, OL, for all future time until the pursuer reaches the
star region. The pursuer moves in a circle of radius 7,(0)
with tangential velocity of v, while it follows Policy D.
Hence, the magnitude of the angular velocity of the line OP
is given by w, = v,/r,(0). The magnitude of the angular
velocity of OL is given by wg;, = —v./OL. Here wg, is
maximum when the radial distance of L is minimum. This
happens when the circle touches the edge OA. This length
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Fig. 6. The pursuer’s policy and the resulting path when the evader
lies in Region 5 of the partition.

is given by r.( 0) cos( ¢.( 0) ). Hence, the maximum value of
wor is given by wf,, = —V./r.(0)cos(¢.(0)). Solving for
wp, > wy,; leads to the following condition:

ar,(0)
cos(p.(0))’

Since cos( ¢.(0)) < 0, we obtain the following condition

xe(0) = —ary(0)

re(0)> —

which is satisfied for all points in Region 5. O

Now we return to the proof of Theorem 3. If the evader
starts in Region 3, it can either stay in the same region or
leave it while the pursuer follows Policy C. If the evader
remains in Region 3 forever, then the pursuer can keep the
evader in sight for all future times since Region 3 lies in the
visibility polygon of the pursuer. Based on the connectivity
of the cells, we can conclude that the evader lies in one of
the Regions among 2, 4, 5 and 6 once it leaves Region 3.
The following statements provide an argument that the pur-
suer eventually keeps the evader in its sight for the scenario
in which the evader leaves Region 3.

e Lemma 1 proves that the evader cannot enter Regions 6
and 4 if the pursuer follows Policy C.

e If the evader enters Region 2, Proposition 2 proves
that the pursuer can track the evader by switching to
Policy B.

e If the evader enters Region 5, Lemma 3 proves that the
pursuer can keep track of the evader by switching to
policy D.

Finally, we consider the case in which evader starts in
Region 4. There are two following possibilities. Either the
evader stays in Region 4 forever in which case the pursuer
can keep the evader in sight for all future times since Region

s

C @®>

Fig.7. A finite automaton that models the transitions of the evader
based on partition in which it lies and the policies followed by the
pursuer.

4 lies in the visibility polygon of the pursuer. Otherwise, the
evader can lie in one of the Regions among 1, 2, 3 and 6
since they share a boundary with Region 4. The following
statements provide an argument that the pursuer eventually
keeps the evader in its sight for the scenario in which the
evader leaves Region 4.

e Lemma 2 proves that the evader cannot enter Regions 1
and 6 if the pursuer follows Policy B.

e If the evader enters Region 2, Proposition 2 proves
that the pursuer can track the evader by switching to
Policy B.

e If the evader enters Region 3, then the previous argu-
ment proves that the pursuer can track the evader by
switching to Policy C.

This concludes the proof of the theorem. O

Figure 7 summarizes Theorems 2 and 3. Each state is
a 2-tuple. The first element is the region in the partition of
V(p(?)) in which the evader lies. The second element is the
policy followed by the pursuer when the evader occupies
the corresponding region. The arrows show the allowable
transitions of the evader under the respective policy of the
pursuer. Hence, given the initial position of the pursuer and
the evader, we can construct the partition of V'(py) and use
Figure 7 to obtain the instantaneous strategy of the pursuer
if it can track the evader.

From Table 1, we can conclude that the control laws are
discontinuous along the boundary of the regions. Let us first
consider the case in which the evader lies on the boundary
shared by two regions in which the pursuer has a winning
strategy. In this case, the pursuer has the freedom to choose
between the two strategies that are valid in the regions form-
ing the boundary. This follows from the fact that the proofs
of Theorems 2 and 3, as well as Lemmas 1, 2 and 3 pro-
vide control laws that lead to winning strategies for the
pursuer on the boundary of the respective regions. Now, let
us consider the case in which evader lies on the boundary of
Region 1 except on E,. The winning strategy for the evader
in Region 1 requires it to travel for a time 7, strictly less
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Fig. 8. The partition of V'(p(¢)) when ¢p( 1) < —1/2.

than d/v,. Therefore, the evader cannot win if it lies on the
boundary by following its winning strategy in Region 1. On
the other hand, Theorem 2 as well as Lemma 2 hold true
even if the evader is on the boundary of Region 1. There-
fore, the pursuer has a winning strategy if the evader lies on
the boundary of Region 1.

The above analysis was for the case when ¢,(0)e
[—7/2,0). For the case when ¢,(0) < —m/2, the analysis
still holds. The only changes are that Region 1 expands, the
area of Region 4 is reduced to zero and Region 5 ceases to
exist. Figure 8 shows the partition of the visibility region of
the pursuer in this case.

The analysis we have presented so far assumed that o €
[0, r/2]. Refer to Figure 1. If a € [r/2, 7], then ¢,( 0) must
lie in the fourth quadrant and hence ¢,(0) must be greater
than —m/2. Hence, it reduces to the problem we analyzed
in this section.

We now provide a decomposition of V(ey) into regions
in which the pursuer may lie based on the outcome of the
game.

2.2. Evader-based partition

In the previous section, a partition of V(pg) has been given
based on the policies used by the players to win the game. In
this section, we use the same policies as used by the players
in Table 1. We fix the position of the evader and compute the
boundaries across which the policies of the winner changes.
These curves partition V' ( ep) into regions in which the pur-
suer may lie depending on the policy of the winner. The
geometry of the partitions is a function of the velocity ratio
between the pursuer and the evader.

To determine the partition of V(ey), we must consider
three cases depending on whether (a) the closest point to
the evader on the obstacle lies on the corner (b) the closest
point belongs uniquely to one of the sides (c) the evader lies
inside the star region. Figure 9 shows the partition of V'( ey)

Fig. 9. The evader is nearer to the side of the obstacle than the
corner.

for the case when the closest point to the evader on the
obstacle belongs to the side AO. In the rest of this section,
we analyze this case.

Since we are computing the partitions by fixing the ini-
tial position of the evader while retaining the policies of the
players, the geometry of the regions in this case is differ-
ent from that given in Table 1. Moreover, in the previous
section, we saw that the result of the game depends on the
initial position of the pursuer and the evader. Hence, the
configuration variables in this section denote their values at
the beginning of the game.

First, let us consider the case in which the pursuer lies
in the star region. In this case, the entire free workspace is
visible to the pursuer and it can track the evader by remain-
ing stationary. Hence, if the pursuer lies in the star region,
it wins the game and its policy is to remain stationary. Now
we present the derivation of each region of the partition in
the remaining part of V' (ep).

Region 1 From the previous section, Region 1 consists of
all of those points in V'(pg) from which the evader wins the
game irrespective of the pursuer’s policy.

First, let us consider the case in which the pursuer lies
below the x-axis. The strategy of the evader is to move
directly towards the obstacle so that it can reach AO before
the pursuer can reach the boundary of the star region which
is the x-axis in this case. Since we are considering the
case where the closest point to the evader on the obstacle
belongs to side AO, the evader lies in Region 1 of V' (py) if
d. <ad, = d, > d,./a.

Now let us consider the case in which the pursuer lies
above the x-axis and outside the star region. In this case,
the evader wins the game if the time taken by the evader
to reach the corner is less than the time taken by the pur-
suer to reach the star region. Let d, denote the perpendicular
distance of the evader from the edge AO. Hence, Region 1
consists of points such that 7, < ad, = d, > r./a.
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Fig. 10. Distance of the evader from the line of sight of the
pursuer

Region 2 Let us first consider the case in which the pur-
suer lies below the x-axis. From Figure 10, we can see
that the shortest distance of the evader from line OB is
re sin( ¢, —@,). Refer to Figure 4. We can see that the evader
lies in Region 2 of V(py) if the shortest distance of the
evader from line OB is greater than ad,. This leads to the
following inequality:

—ar, sing, < resin( g, — ¢,).
Since ¢, < 0, the above inequality can be written as
7 sin( ¢, —
< _Tesin( =)
asin ¢,

7. sin ¢ ( cot ¢, — cot
I $e( cOt P ¢p).
a

Now let us consider the case when the pursuer lies above
the x-axis and outside the star region. From Figures 4 and 8§,
we can conclude that the evader lies in Region 2 of V(py)
ifr, > amin{r,,d,} = r./a > min{r,,d,}.

Region 3 Refer to Figure 4. The evader lies in Region 3
of V(po) if r, > ar,, x, > —ar, and least distance of the
evader from line OB is less than ad,,. This implies that r,, <
re/a, r, > —x./a and r, > r./asing.(cotg, — cotgy,).
Hence, max{—x./a,r./asin¢.(cotp, — cotg,)} < r, <
re/a.

Region 4 From Figure 4, we see that the evader lies in
Region 4 of V(po) if r. < ar,, min{d,,r.} > ad, =
min{d,,r.} > —ar,sing, and the shortest distance of the
evader from line OB is less than ad,. This leads to the
following condition:

min{d,, r.}

Ve .
. > 1, > max {—,re sin ¢( cot ¢, — cot ) } :
asin g, a

Region 5 From Figure 4, we see that the evader lies in
Region 5 of V(py) if x, < —ar, = r, < —x./a.

All of the above partitions are shown in Figure 9. Figure
11(a) shows the partition of V'(ey) when the nearest point
of the obstacle to the evader is corner O but the evader is
outside the star region and Figure 11(b) shows the partition
of V' (ey) when the evader is in the star region.

Based on the partition of V(ej), we present a sufficient
condition of escape for the evader in the next section that is
used to bound the set of initial position of the pursuer from
which it might win the game.

3. Approximation schemes for a polygonal
environment

In the previous section, we provided a partition of V(ey)
to decide the outcome of the target tracking game. From
the previous section, we can conclude that if the pursuer
lies in Region 1 of V(ey), then the evader has a strategy to
win irrespective of the pursuer’s strategy. The presence of
other obstacles does not affect this result. This leads to the
following sufficient condition for escape of the evader in
any general environment.

Sufficient condition If the time required by the pursuer
to reach the star region associated with a vertex is greater
than the time required by the evader to reach the vertex,
the evader has a strategy to escape the pursuer’s visibility
region.

The relation between the time taken by the pursuer and
evader can be expressed in terms of the distances traveled
by the pursuer and the evader and their speeds. In a general
environment, if d, is the length of the shortest path of the
evader from a corner, d, is the length of the shortest path of
the pursuer from the star region associated with the corner
and a is the ratio of the maximum speed of the evader to that
of the pursuer, the sufficient condition can also be expressed
in the following way:

SC: If d, < ad,, the evader wins the game.

For convenience, we refer to the sufficient condition as
SC in the rest of the paper. Using the SC, we show that
in any environment containing polygonal obstacles, the set
of initial positions from which a pursuer can track the
evader is bounded. First, we prove the statement for an
environment containing a single convex polygonal obstacle.
Then we extend the results to a general polygonal environ-
ment containing multiple obstacles. This leads to our first
approximation scheme.

Consider an evader in an environment with a single con-
vex polygonal obstacle having » edges e}, ez, . . ., e,. Every
edge e; is a line segment that lies on a line [, in the
plane. Let {;}] denote a family of lines, each given by the
equation /;(x,y,ep,a) = 0. The presence of the terms e
and « in the equation imply that the equation of the line
depends on the initial position of the evader and the speed
ratio respectively. Each line /; divides the plane into two
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Fig. 11. (a) Evader outside the star region and (b) evader inside the star region.

Star region

Fig. 12. Proof of Lemma 4.

half-spaces, namely, &7 = {(x,»)| hi(x,,ep,a) > 0} and
hy = {(x,»)| hi(x,y,e9,a) < 0}. Now we use the SC to
prove a property related to the edges of the obstacle.

Lemma 4. For every edge e, there exists a line h; paral-
lel to e; and a corresponding half-space h such that the
pursuer loses the game if po € hi'.

Proof. Consider an edge e; of a convex obstacle as shown
in Figure 12. Since the obstacle is convex, it lies in one of
the half-spaces generated by the line /,,. Without loss of
generality, let the obstacle lie in the half-space below the
line /. Let d. and d; be the length of the shortest path
of the evader from vertices ¢ and b of the edge e; respec-
tively. Since the obstacle lies in the lower half-space of
lo;, the star region associated with vertices ¢ and b are in
the upper half-space of /,, as shown by the green shaded
region. Let /. and /, be the lines at a distance of d./a and
dp/a, respectively, from the line /,,. If the pursuer lies at
a distance greater than min(d,/a,ds/a) below the line /,,
then the time taken by the pursuer to reach the line /, is
t, > 1/v,min(d./a,dy/a). The minimum time required
by the evader to reach corner ¢ or b, whichever is nearer,
is given by t, = 1/V, min(d,,d,). From the expressions

of 7, and ¢, we can see that #, > f,. Hence, the pursuer
will reach the nearer of the two corners before the evader
reaches line /,,. Hence, from SC, we conclude that if the
pursuer lies below the line /; parallel to e; at a distance
of min(d./a,dy/a), then the evader wins the game by fol-
lowing the shortest path to the nearer of the two corners.
In Figure 12, since dp > d, the line A; coincides with
line /. ]

Given an edge e; and the initial position of the evader,
the proof of Theorem 4 provides an algorithm to find the
line 4; and the corresponding half-plane /; as long as the
length of the shortest path of the evader to the corners of an
edge is computable. For example, in the presence of other
obstacles, the length of the shortest path of the evader to the
corners can be obtained by Dijkstra’s algorithm.

Now we present some geometrical constructions required
to prove the next theorem. Refer to Figure 13. Consider a
convex obstacle. Consider a point ¢ strictly inside the obsta-
cle. For each vertex v;, extend the line segment v;c to infinity
in the direction v;c to form the ray c¢v]. Define the region
bounded by rays cv; and cv;, | as sector vicv;, . The sectors
possess the following properties.

1. Any two sectors are mutually disjoint.
2. The union of all the sectors is the entire plane.

We use this construction to prove the following theorem.

Theorem 4. In an environment containing a single convex
polygonal obstacle, given the initial position of the evader,
the set of initial positions of the pursuer from which it can
win the game is a bounded subset of the free workspace.

Proof. Refer to Figure 14. Consider an edge e; of the con-
vex obstacle with end points v; and v, . Without loss of
generality, the obstacle lies below /,,. Let ¢ be a point strictly
inside the convex polygon. Extend the line segments v;c and
vir1c to form sector viev: +1- Using Lemma 4, given the ini-
tial position of the evader, we can construct a line /; parallel
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Fig. 14. Proof of Proposition 4.

to e; such that if the initial pursuer position lies below 4;, the
evader wins the game. In case the line 4; intersects sector
vicvi, 1, as shown in Figure 14(a), the evader wins the game
if the initial pursuer position lies in the shaded region. In
case the line /; does not intersect sector vicv; 41> as shown
in Figure 14(b), the evader wins the game if the initial pur-
suer position lies anywhere in the sector. Hence, for every
sector, there is a region of finite area such that if the ini-
tial pursuer position lies in that region then it might win
the game. Every edge of the polygon has a corresponding
sector associated with it. Since each sector has a region of
finite area such that if the initial pursuer position lies in it,
the pursuer might win the game, the union of all of these

regions is finite. Hence, the theorem follows. O

In the proof of Theorem 4, we generate a bounded set for
each convex polygonal obstacle such that the evader wins
the game if the initial position of the pursuer lies outside this
set. Figure 15 shows the evader in an environment contain-
ing a single hexagonal obstacle. The polygon in the center
bounded by thick lines shows the region of possible pursuer
win. In a similar way, we can generate a bounded set for a
non-convex obstacle. Given a non-convex obstacle, we con-
struct its convex hull. We can prove that Lemma 4 holds for

Fig. 15. B set for an environment consisting of a regular hexago-
nal obstacle and a = 0.5.

the convex hull. Finally, we can use Theorem 4 to prove the
existence of a bounded set.

From the previous discussions, we conclude that any
polygonal obstacle, convex or non-convex, restricts the set
of initial positions from which the pursuer might win the
game to a bounded set. Moreover, given the initial position
of the evader and the ratio of the maximum speed of the
evader to the pursuer, the bounded set can be obtained from
the geometry of the obstacle by the construction used in
the proof of Theorem 4. For any polygon in the environ-
ment, let us call the bounded set generated by it the B set. If
the initial position of the pursuer lies outside the B set, the
evader wins the game. For an environment containing mul-
tiple polygonal obstacles, we can compute the intersection
of all B sets generated by individual obstacles. Since each B
set is bounded, the intersection is a bounded set. Moreover,
the intersection has the property that if the initial position
of the pursuer lies outside the intersection, the evader wins
the game. This leads to the following theorem.

Theorem 5. Given the initial position of the evader, the
set of initial positions _from which the pursuer might win the
game is bounded for an environment consisting of polygonal
obstacles.

Proof. The bounded set referred to in this theorem is the
intersection of the B sets generated by the obstacles. If the
initial pursuer position does not lie in the intersection it
implies that it is not contained in all of the B sets. Hence,
there exists at least one polygon in the environment for
which the initial pursuer position does not lie in its B set.
By Proposition 4, the evader has a winning strategy. Hence,
the theorem follows. O

However, we still do not know the result of the game
for all initial positions of the pursuer inside the intersec-
tion. However, we can find better approximation schemes
and reduce the size of the region in which the result of the
game is unknown. In the next section, we present one such
approximation scheme.
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Fig. 16. B set and U set for an environment containing a regular
hexagonal obstacle and @ = 0.5. The polygon bounded by thick
lines is the B set and the polygon bounded by thin lines is the U
set

3.1. Uset

Now we present an approximation scheme that gives a
tighter bound on the initial positions of the pursuer from
which it might win the game. From Lemma 4, the evader
wins the game if py € 4, for any edge. We can conclude
that if pp € J._, h;, the evader wins the game. Since
(UL = NLi(hHe= N, h;, where S¢ denotes
the complement of set S, if py lies outside ﬂ:’:l h;, the
evader wins the game. Hence, the set of initial positions
from where the pursuer might win the game is contained in
(M A7 . We call (_, A; the U set. An important point to
note is that the intersection can be taken among any number
of half-spaces. If the intersection is among the half-spaces
generated by the edges of an obstacle, we call it the U set
generated by the obstacle. If the intersection is among the
half-spaces generated by all of the edges in an environment,
we call it the U set generated by the environment.

The next theorem proves that the U set generated by a
single obstacle is a subset of the B sef and hence a better
approximation.

Theorem 6. For a given convex obstacle, the U set is a
subset of the B set and hence bounded.

Proof. Consider a point ¢ that does not lie in the B set. From
the construction of the B set, ¢ must belong to some half-
plane h]+ Ifg € h/’L, theng ¢ hy = q ¢ N_h; . This
implies that the complement of the B set is a subset of the
complement of the U set. This implies that the U set is a
subset of the B set. O

Figure 16 shows the B set and U set for an environment
containing a regular hexagonal obstacle. In the appendix,
we present a polynomial-time algorithm to compute the U
set for an environment with polygonal obstacles. The over-
all time complexity of this algorithm is O( n* log n) where n

Boundary of U set
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N

Fig. 17. U set for a general environment.
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Fig. 18. U set for a various speed ratios of the evader to that of
the pursuer.

is the number of edges in the environment. Figure 17 shows
the evader in a polygonal environment. The region enclosed
by the dashed lines is the U set generated by the environ-
ment for the initial position of the evader. The U set for any
environment having polygonal obstacles is a convex poly-
gon with at most # sides. Figure 18 shows the U set for an
environment for various ratio of the maximum speed of the
evader to that of the pursuer. In Figure 18, it can be seen
that as the speed ratio between the evader and the pursuer
increases, the size of the U set decreases. The size of the
U set diminishes to zero at a critical speed ratio. At speed
ratios higher than the critical ratio, the evader has a winning
strategy for any initial position of the pursuer.

Before we proceed to the next theorem, we prove the
following lemma.

Lemma 5. For a < 1, the evader lies inside the U set.

Proof. Fora < 1,v, > v,. If the pursuer lies at the same
position as the evader, its strategy to win is to maintain the
same velocity as that of the evader. Hence, if the pursuer
and the evader have the same initial position, the pursuer
can track the evader successfully. Since all of the initial
positions from which the pursuer can win the game must
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Fig. 19. A polygon in free space. The shaded Region 1 is obtained
by using Lemma 4. The shaded Region 2 is added by using a better
approximation scheme.

be contained inside the U set, the evader position must also
be inside the U set. U

The following theorem provides a sufficient condition for
escape of the evader in an environment containing obstacles
using the U set.

Theorem 7. If the U set does not contain the initial posi-
tion of either the pursuer or the evader, the evader wins the
game.

Proof. From the definition of the U set, if the pursuer lies
outside the U set, it loses. If the evader lies outside the U
set, Lemma 5 impliesa > 1. Ifa > 1, v, > v,. If v, > ¥,
the evader wins the game in any environment containing
obstacles. Its winning strategy is to move on the convex hull
of any obstacle. O

3.2. Discussion

In the previous sections, we have provided a simple approx-
imation scheme for computing the set of initial pursuer
positions from which the evader can escape based on the
intersection of a family of half-spaces. A slight modifica-
tion to the proposed scheme leads to a better approximation.
In the proof of Lemma 4, we presented an algorithm to
find a half-space for every edge of the polygon such that if
the initial position of the pursuer lies in the half-space, the
evader wins the game. All of the points in the half-space
are at a distance greater than d./a from /,,. By imposing the
condition that the minimum distance of the desired set of
points from /,, in the free workspace should be greater than
d./a, we can include more points in the decidable regions
as shown in Figure 19. The figure shows an obstacle in free
space. From the proof of Lemma 4, we obtain the half-
space above /;. By adding the new condition, Region 2 is
included. When we repeat this for every edge, the set of ini-
tial positions from which the pursuer might win the game

Fig. 20. An example to show that the SC is not a necessary
condition for escape.

is reduced and leads to a better approximation. The bound-
ary of the shaded region consists of straight lines and arcs
of circles. The boundary of the desired set is obtained by
computing the intersections among a collection of rays and
arcs of circles generated by each edge. In this case a better
approximation comes at the cost of expensive computation.

None of the approximation schemes we have suggested
so far restrict the initial position of the pursuer to be in the
evader’s visibility region. This condition can be imposed by
taking an intersection of the output of the approximation
algorithm with the visibility polygon at the evader’s initial
position. Efficient algorithms exist for computing the visi-
bility polygon of a static point in an environment (Goodman
and Rourke 1997).

If pg lies outside the U set, then the evader has at least
one strategy to win the game. There might exist additional
strategies for the evader to win the game. Since we are
only concerned about the final outcome of the game, the
evader is free to choose any of the strategies that leads to a
favorable outcome.

The SC is not a necessary condition for escape. Figure 20
illustrates a scenario in which the evader breaks the line of
sight with the pursuer even when SC is not satisfied. Con-
sider the evader strategy in which it moves along the line
perpendicular to line 4B with speed v,. For the pursuer to
keep the evader in sight , the pursuer must reach the vertex
A before the evader can reach the point C. The minimum
time required by the pursuer to reach 4 is /,/v,. The time
required for the evader to reach C is €l,/(Ven/€2 + w?).
Therefore, in order to break the line of sight, the evader
must satisfy the following condition

€l, Iy
- P
Vo e:+w? W
w
= €< .
zo 1
azlg

From the above inequalities, we can conclude that we can
choose an € small enough for the evader to break the line of
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Fig. 21. A circular obstacle in the plane. The shaded region
denotes the initial positions of the pursuer from which the evader
can win the game by breaking the line of sight at the point 7.

sight with the pursuer irrespective of the value of 2—‘) There-

fore, the evader can win the game even if % is large enough
to violate the SC. Since the SC is not a necessary condition
for escape, the U set provides an upper bound on the size
of the capture set. In Section 5, we derive a lower bound
on the size of the capture set from a sufficient condition for
tracking.

In the next section, we present the construction of the U
set for non-polygonal environments.

4. U set for specific environments

In the real world we encounter many non-polygonal obsta-
cles in the environment. One of the common obstacles in an
environment are circular columns and pillars that project to
a disk in a plane. In this section we compute the U set for
a disc in a plane and then extend the procedure to compute
the U set for obstacles whose boundary have a well defined
tangent at each point.

4.1. Disk in a plane

Consider an environment consisting of an obstacle in the
shape of a disk of radius 7 in free space. Refer to Figure 21.
Let C denote the boundary of the obstacle. Let ey denote
the initial position of the evader. Let O be the center of the
circular obstacle. The distance between O and e is dy. O
is also the origin of the world reference frame. The x-axis
of the world reference frame passes through e, and O. Let
t be a point on the boundary of the obstacle such that Ot
makes an angle 6 with the x-axis. Let d' denote the dis-
tance between ¢ and ey. Let T denote the tangent to the
circle at the point z. Let /, be a line at a distance of d’/a
from 7 in the same half-space of T as the obstacle. By SC,
the evader will win the game if the pursuer lies in the half-
space shown by the shaded region. The equation of line /;
is y + xcot0—(r — d'/a)csc® = 0. For each point ¢ on
the circle, we can find such a line /, and the corresponding

half-space /;". The U set is defined as (), /; . If the ini-
tial position of the pursuer lies outside the U set, the evader
wins the game. Let /(x,y,6) denote the family of lines /;
generated by all points ¢ lying on C. Owing to symmetry
of the environment about the x-axis, the U set is symmet-
ric about the x-axis. We construct the part of the U set
generated as 6 increases from 0 to 7.
Let B denote the boundary of the U set.

Theorem 8. The boundary B is the envelope of the family
of lines I( x,y,0).

Proof. Consider any point ¢ on B. The point ¢ belongs to
some line in the family of lines /( x, y, 0) since it belongs to
the boundary. Let that line be /,. Here /, has to be tangent to
the boundary B or otherwise there is a neighborhood around
g in which B lies in both the half-spaces generated by /,.
Since ¢ is any point on B, it is true for all points g on B that
the tangent to B at g belongs to the family of lines /( x, y, 0).
A curve satisfying this property is the envelope to the family
of lines /(x,y, 0). O

We can find the envelope of a family of lines /( x, y, 0) by
solving the following equations simultaneously

d/

I(x,y,0)=y+xcotd—(r — —)csch =0, )
a

al

30

The distance d’ as a function of 6 is given by

0. (2

Jr 4 & — 2rdycost if6 <6,

aoy= V- ,
1/61’0—7"2—i-7"(9—9()) if 0 > 6,

where 6y = cos™!(r/d)

4.1.1. Case 1 (8 < 6;) Substituting Equation (1) into
Equation (2) gives us

\/,,2 + d% — 2rdy cos 6

x=|r— cosf
a
rdy sin® 6
a\/r2 + d} — 2rdy cos 6
\/,,2 +d3 — 2rdy cos 6
y=\|r— sinf

a

rdy sinf cos 6

a\/r2 +d5 — 2rdy cos 0

4.1.2. Case 2 (8 > 6,) Substituting Equation (1) into
Equation (2) gives us
sin6

JdE =12 +7(0 —6)
cosf + —,

a a

x=\|r—
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Fig. 22. (a) A disk-like obstacle with the initial position of the
evader. The smaller circle is the evader. (b)—(d) The boundary of
the U sets for the obstacle with increasing distance between the
evader and the center of the disk. In (b), (c) and (d), the black
boundary is for the case when @ = 0.5, the cyan boundary is for
the case when ¢ = 1 and the red boundary is for the case when
a = 10.
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Jdo =+ (6 —6o)
sinf — .

a a
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Since B is symmetrical about the x-axis, the other half
of B is obtained by reflecting the above curves about the x-
axis. Figure 21 shows the boundary of the U set for a disk
of radius 3 units. Figures 22(b)—(d) show the boundary of
the U set for varying distance between the evader and the
obstacle. In each of these figures, the boundary of the U set
is shown for three different values of a. We can see that for
a < 1, the evader lies inside the U set.

The above procedure can be used to construct the U set
for any convex obstacle whose boundary has a well-defined
tangent at every point. If the boundary is given by the equa-
tion f(x,y) = 0 where f(x, ) is such that df /dx and df /dy
exist for all points, the procedure to generate the boundary
of the U set is as follows.

1. Given any point ¢ on the boundary, find the equation of
the line /, as defined above.

2. Find the family /(x,y,0) of lines generated by /; as ¢
moves on the boundary of the obstacle. 6 is a parameter
that defines 7.

3. The envelope of the family /(x,y, ) is the boundary of
the U set. This is true since the proof of Proposition 8
does not depend on the shape of the obstacle and hence
Proposition 8 is true for any obstacle.

Fig. 23. The shaded portion of the disk centered at the initial
position of the evader shows the region in which the pursuer can
capture the evader and therefore maintain line of sight forever. The
radius of the disk depends on the ratio of the maximum speeds
between the pursuer and the evader and the distance between the
evader and the nearest convex vertex.

In the next section we present an approximate bound on
the initial positions of the pursuer from which it can track
the evader.

5. Sufficient condition for surveillance

In this section we present a sufficient condition for a pursuer
to track the evader. If v, > v,, the evader wins the game for
any initial position of the pursuer. So a necessary condition
for successful tracking is v, < v,. A plausible strategy for
the pursuer to track the evader would be to catch the evader
in a finite time and then move with the same velocity as that
of the evader. The latter is possible since we assumed that
the pursuer knows the instantaneous velocity of the evader
at all times. Using the above ideas, we obtain the following
sufficient condition of tracking.

Sufficient condition for tracking. Let d,, denote the dis-
tance to the nearest convex vertex from ey and d,, = ||ep —
poll (Figure 23 shows an example). A sufficient condition
for tracking is

dep

. 1—a 1
min s > .
a ey

Proof. The minimum time required by the evader to reach
the nearest convex vertex is t, = d,,/V.. Let R,, denote the
set of points in the free workspace reachable by the evader,
starting at ey, in time /., i.e. R;, consists of points x € R?
such that || x — ey|| < d.,. Here R,, is convex since it cannot
contain any convex vertex of the environment in its interior
as t, is the time required by the evader to reach the nearest
convex vertex. Hence, any motion of the pursuer that keeps
it inside R,, until time ¢, ensures that it can see the evader
until time #, due to convexity of R,,. This leads to the fol-
lowing condition at the beginning of the game: d,,/d., < 1.
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Therefore, if the pursuer has a strategy to remain inside R,,
until it catches the evader, it can win the game. Consider a
strategy for the pursuer in which it moves directly towards
the evader with speed v,. At any time ¢ < t,, the following
holds:

IP(?) —eoll = lIp(#) —e(?) || + lle(7) —eoll
< Vel + doy—(V, — Vo) 1

= dep+( Zve - vp) te

dey
=< dep+( 233 - vp) v_"

2a — 1
—d,+ @a-b,
1 — 2a — 1
LU, b,
a a
= dev- (3)

Hence, at all times ¢ < t,, the pursuer remains inside R,,
which ensures that the pursuer can see the evader until
time .. If the pursuer follows the strategy to move directly
towards the evader with speed v, the time required by the
pursuer to catch the evader is 1, < d,,/(V, — Vo). If 1, <
te(=(1 —a)/a > d,/d.), the pursuer remains inside R;,
until it catches the evader. This ensures that the pursuer can
see the evader for all times before catching it while follow-
ing the strategy. Therefore, the two conditions needed to
be satisfied for the above strategy to work are d,,/d,, < 1
and (1 —a)/a > dg/d.,. Hence, the sufficient condition
follows. O

From the sufficient condition, we can conclude that if the
pursuer lies within a disk of radius min{( 1 — a)d,,/a,d,,}
centered on the initial position of the evader, the pursuer can
track the evader for all times. We can see that as @ — 1, the
radius of the disk tends to zero. Moreover, for any a < 0.5,
the radius of the disk is d.,.

6. Bounds on the capture region

Given the initial position of the evader, we presented the
construction of the U set in Section 3 that provides an upper
bound on the set of initial positions of the pursuer from
which it can track the evader. In the previous section, we
presented the construction of a region that provides a lower
bound on the size of the initial positions of the pursuer from
which it can capture the evader and track it forever. In this
section, we propose a measure to quantify the gap between
the upper and the lower bound and, further, compute it.

Let A% denote the area of the U set generated by the
obstacles in the environment. Let 4" denote the area of the
capture region presented in the previous section. Let p be
defined as the following quantity

4
o= A_{, 4)
From the above definition, the value of p cannot be less

than one. If p = 1, the outcome of the game is completely

i i L i y+1 /
l; ei
ti ¢
. d; / . ,‘
y aj h, By Faf¥e
g a ' ikl Y
A C
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Fig. 24. The sector associated with an edge e;. In (a), the edge
e; contributes to the area of the B set. In (b), the edge does not
contribute any area to the B set.

known for all initial positions of the pursuer. As p increases,
the gap between the upper and lower bound grows larger.
Therefore, the quantity p — 1 is a measure of the effective-
ness of the approximation scheme. In the rest of the section,
we present an analysis to compute an upper bound for p
based on the initial position of the evader and the geometry
of the obstacles present in the environment.

From Section 3, we know that the U set generated by all
of the obstacles is a subset of the U set generated by a single
obstacle. From Theorem 6, we know that for a single obsta-
cle, the area of the B set is an upper bound on the area of
the U set. Therefore, computing the area of the B set gen-
erated by a single obstacle provides an upper bound on the
area of the U set generated by all of the obstacles in the
environment, A%

In order to compute the area of the B set for a single
obstacle, we consider a convex obstacle in the environment.
Let the vertices of the obstacle be denoted as vy, ..., v, and
the edges be denoted as ey, . . ., e,. Let (x;, ;) be the coordi-
nates of the vertex v; and y = m;x+ ¢; be the equation of the
edge e; with respect to a coordinate axes in the plane. Let 4;
be the line parallel to e; at a distance d;/a as defined in Sec-
tion 3. The results in Section 3 hold for any arbitrary point
c chosen inside the obstacle. In the subsequent analysis, we
choose ¢ to be the centroid of the polygon. The coordinates
of ¢ are given by the following expression

1 « 1 &
Xe = ; Xl:xi, Ye = ; 2)’1%
= 1=

Refer to Figure 24. Let ¢; be the perpendicular distance
from ¢ to e;. Therefore, the perpendicular distance of 4;

from c is |% — t;]. Let 4; and 4} denote the area of Acv;viy

i11» respectively. Since 4; ~ A}, 4; = Ai[% —17%

If ¢ lies between A; and e; then A} contributes to the area of
the B set. This case is shown in Figure 24(a). On the other
hand, if %, lies between ¢ and e; then e; does not contribute
any area to the B set. This case is shown in Figure 24(b). In
either case, the maximum area contributed by e; to the B set
is equal to A}. Therefore, by construction, the area of the B

and Acvy
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set is bounded from above by the following expression

The area of the entire polygon 4 is related to 4; by the rela-
n

tion, ZAi = A. Therefore, an upper bound on the area of
i=1
the B set is given by the following expression

n d 2
4; < 2] )4
IR CAFRINE
Jj=1
[ d;
< <max — = 1] )ZA/
_d 2
< <max —_— = 1] )A
i |at;
-
< (mlax 2t21| + I)A
< (1 4 maxid?)A )
- @ min; 7 )
The perpendicular distance of a point (x’,)) from the

line y = m;x+ ¢; is given by the following expression Beyer
(1987)

V —mx' —¢

,/1~|-m12

Since c¢ is chosen as the centroid of the polygon and all
of the vertices of a convex polygon lie on the same side of
le;, ti 1s given by the following expression

n
; 1 Vi — MiX — C;
i = -

e 1+ m?

The above expression is the average distance of all of the
vertices of the polygon from e; and, therefore, is positive
for all edges. This implies that min; #; > 0 because the
minimum is computed over a finite set of positive real num-
bers. From the above discussion, we can conclude that A7 is
bounded from above by the following expression:
1 max; d2>

At <A1+ —=
- ( a® min;

(6)

Since min; #; > 0, the right-hand side is finite for all
values of @ > 0. From the previous section, we can also
conclude the following:

AL > knd, (7)

where k = [min{( 1 — a) /a, 1}]>. From Equations (4), (6)
and (7), an upper bound for the quantity p is given by the

following expression
1 max; di2
l+—5—7F1)4
a* min; £;

<
P =22,

A similar bound can be computed for a polygon that is
non-convex by repeating the above analysis for the convex
hull of the polygon. All of the quantities in the bound are
parameters of the environment and the ratio of the maxi-
mum speed of the evader to that of the pursuer. For values
of a near to zero, the term ( 1+( 1/a?) (max; d?/min; 7))
dominates the right-hand side. For values of a near to
one, the term 1/ andezp dominates the right-hand side. The
above bound has been computed for a single obstacle.
Therefore, it can be made tighter by computing the expres-
sion on the right-hand side for all of the obstacles in the
environment and choosing the minimum value.

7. Conclusion and future research

In this paper we have addressed the problem of visibility-
based target tracking in an environment with obstacles.
Prior work in this area has mainly focused on obtaining
tracking strategies by using different techniques to opti-
mize a metric that partially encodes the effect of environ-
mental occlusion due to obstacles. In this work, we have
viewed this problem as a pursuit—evasion problem and used
purely algorithmic techniques to analyze it. For an envi-
ronment having a single corner, we have shown that the
target-tracking problem is completely decidable. We have
presented a partition of the visibility region of the observer.
Depending on the cell of the partition in which the target
lies, we have provided strategies for the target to escape
the visibility region of the pursuer or for the observer to
track the target for all future time. Given the initial position
of the target, we also presented the solution to the prob-
lem of computing the positions of the observer for which
the target can escape the visibility region of the observer.
These results have been provided for varying speeds of the
observer and the target. Based on these partitions we pre-
sented a sufficient condition for escape of the target and a
polynomial time algorithm to approximate the escape set. In
addition, we have presented an extension of the approxima-
tion schemes to obstacles with smooth boundaries. We have
also provided a sufficient condition for tracking that leads
to a region around the target from which the observer can
catch the evader and track it. Finally, we provided an upper
bound on the area of the region from which the outcome
of the game is unknown using the proposed approximation
schemes.

Given the complete map of the environment, our results
depend only on the initial position and the maximum speeds
of the pursuer and evader. Hence, our results hold for
various settings of the problem such as an unpredictable
or predictable evader (LaValle et al. 1997) or localization
uncertainties in the future positions of the players (Fabiani
and Latombe 1999). Although the bounds presented in this
paper are conservative for all of the above cases.

This work unfolds many research directions for our
future work and we would like to highlight some of them.
One direction of future research is to take into account the
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constraints in the motion and visibility of the observer. In
this work we assume a kinematic system for the observer.
A more appropriate approach is to include dynamics in the
motion model of the observer. Another direction of research
deals with tracking a target in environments for which
the observer has local or limited information. In the past,
researchers have addressed the problem of minimizing the
time to enter the star region for a robot without any knowl-
edge about the geometry of the corner (Icking et al. 1993).
As a future work, it might be possible to extend the results
for the case in which a mobile target is present in the envi-
ronment. Finally, in real-time systems, actuation takes place
at discrete moments in time but the dynamics of the system
are continuous in time. Such systems lie in the category of
hybrid systems or discrete-event dynamic systems. These
areas provide an entirely new set of techniques for analysis.
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Appendix: Algorithm for generating the U set

Algorithm CONSTRUCTUSET(S, a, (x., y.))

Input: A set S of disjoint polygonal obstacles, the evader
position r, =(x,,.), ratio of maximum evader speed to
maximum pursuer speed a

Output: The coordinates of the vertices of the U set

1. For every edge e; in the environment with end points
ai, b;

2 I} = DUKSTRA(VG(S),r., a;)

3 I, = DUKSTRA(VG(S),r., b;)

4 d, = o)

5 Find the equation of 4; using Lemma 4.
6. INTERSECTHALFPLANES(A{,...,h,).

The subroutine VG(S), computes the visibil-
ity graph of the environment S. The subroutine
DIJKSTRA(G,LLF) computes the shortest distance
between nodes I and F in graph G. The subroutine
INTERSECTHALFPLANES(%,...,h,) computes the

intersection of the half planes Ay,..., A, (de Berg et al.
1997). The time complexity of the above algorithm
is O(n*logn), where n is the number of edges in the
environment.
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