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Abstract
We present a simultaneous localization and mapping (SLAM) algorithm that uses Bézier curves

as static landmark primitives rather than feature points. Our approach allows us to estimate

the full six degrees of freedom pose of a robot while providing a structured map that can be

used to assist a robot in motion planning and control. We demonstrate how to reconstruct the

three-dimensional (3D) location of curve landmarks from a stereo pair and how to compare

the 3D shape of curve landmarks between chronologically sequential stereo frames to solve

the data association problem. We also present a method to combine curve landmarks for map-

ping purposes, resulting in a map with a continuous set of curves that contain fewer landmark

states than conventional point-based SLAM algorithms. We demonstrate our algorithm's effec-

tiveness with numerous experiments, including comparisons to existing state-of-the-art SLAM

algorithms.

1 INTRODUCTION

As simultaneous localization and mapping (SLAM) has matured as a

discipline, SLAM research has increasingly focused on systems-level

issues such as optimizing constituent components of algorithms

and overall systems integration.1–3 While in the early days of SLAM

researchers often presented the results of robot excursions measured

in meters, today systems are expected to perform well over much

longer trajectories,2,4–6 further emphasizing the need for a systems-

level approach. At the forefront of the vision-based SLAM approach,

feature points are usually selected to represent landmarks in the map.

Although point-based approaches have produced precise SLAM sys-

tems that run in real time, point-based SLAM algorithms are subject to

a number of drawbacks: Points ignore structural information between

sampling points belonging to the same surface or edge, making it

difficult for a robot to determine how it should interact with its sur-

roundings. Creating dense maps with feature points requires a large

state space. Many map points do not represent anything physically

significant and are not needed because they belong to a structured

object that can be represented compactly using parametrized shapes.

In settings that lack distinguishable feature points, point-based detec-

tor/descriptor algorithms will fail to track enough feature points for a

robot to accurately estimate its pose. In contrast, our proposed Curve

SLAM algorithm is able to operate in settings that lack distinguishable

feature points while creating sparse structured maps of the environ-

ment. In fact, in our experimental evaluations, we have observed that

Curve SLAM can reduce the required number of landmark features by

several orders of magnitude relative to state-of-the-art point-based

methods.

In this article, we present a systems-level approach that uses Bézier

curves as landmarks in the SLAM framework as opposed to feature

points. Our work derives its motivation from environments where a

river, road, or path dominates the scene. In these environments, dis-

tinctive feature points may be scarce. As shown in Figure 1, we over-

come these problems by exploiting the structure of the road, river, or

path using Bézier curves to represent the edges of the path. Then, with

a stereo camera and inertial measurement unit (IMU), we reconstruct

the three-dimensional (3D) location of these curves while simultane-

ously estimating the six degrees of freedom (6-DOF) pose of a robot.

1.1 Contributions

This paper presents a much improved version of our previous Curve

SLAM approaches.7,8 Our contribution is a systems-level approach

that extends and combinesmethods in computer vision and computer-

aided geometric design to solve the SLAMproblem. The specific contri-

butions and benefits of the proposed approach can be summarized as

follows:

• We present an algorithm that interpolates, splits, and matches

curves in a stereo pair. This allows us to reconstruct the 3D location

of curves, parametrized by a small number of control points.
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F IGURE 1 The images demonstrate the proposed Curve SLAM algorithm applied to various settings under different environmental conditions.
Curve SLAM relies on a stereo camera and IMU to solve the SLAM problem in a previously unknown environment using parametrized curves as
landmarks. The images show curve landmarks interpolated to yellow road lanes and the outline of a sidewalk

F IGURE 2 Features of the proposed Curve SLAMalgorithm. As shown in (a), the proposed algorithm provides amethod that combines curves to
reduce the data representing the map. Part (a) demonstrates a before (top layer) and after (bottom layer) effect of our curve-combining algorithm.
Curve SLAM also provides amethod to compare the physical dimensions of curve landmarks [part (b)], allowing Curve SLAM to operate in settings
that lack distinguishable feature points. Part (b) is further explained in Section 4.1

• We present a data association algorithm that compares the physical

dimensions of curve landmarks between chronologically sequential

stereo image frames to remove curve outliers; see Figure 2. When

the dimensions of a curve do not match between sequential image

frames, the curve is pruned. The algorithm relies on heuristics and

mild assumptions, but it is designed to find false associations when a

small number of landmark curves (usually fewer than four) are con-

sistently tracked between image frames. Tracking such a small num-

ber of landmarks allows our algorithm to operate in settings that

lack distinguishable feature points, and to createmaps that aremore

sparse than point-based SLAMalgorithms.Our approach to the data

association problem is quite different from point-based algorithms

that track hundreds of feature points between image frames.

• Wepresent a curve-combiningalgorithmthat reduces thenumberof

curve landmarks representing the map; see Figure 2. Bézier curves

are useful in this process because they can be represented com-

pactly by the location of parametrized control points, allowing us to

construct large maps with fewer landmark states than conventional

point-based SLAMalgorithms. Additionally, the shape of curves pro-

vide structure and information that can aid a robot in path planning

and control.

• We validate the approach with experimental hardware in multi-

ple outdoor environments, and we compare Curve SLAM against

theOpenKeyframe-based Visual-Inertial SLAM (OKVIS)5 algorithm

and a stereo version of the Parallel Tracking and Mapping (SPTAM)

algorithm.9,10
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1.2 Relatedwork

Various SLAM algorithms have incorporated high-level features in

order to overcome drawbacks associated with point-based SLAM.

Examples of high-level features includeplanes,11–13 imagemoments,14

line segments,1,3,15 objects such as office chairs and tables,16 or a

river.17,18 A desirable characteristic of high-level structure is that it

provides a compact structured map of the environment. For instance,

in Ref. 11, orthogonal planes are used to represent structured land-

marks in a compact manner. The orthogonal planes represent objects

such as walls, the ceiling, windows, and doors of an indoor office set-

ting. In a similar fashion, the work in Refs. 15 and 1 uses line segments

to localize a camera, and to map an environment with a vision-based

sensor. Lines represent the structure of objects one would expect to

find in the mapped location, e.g., a computer monitor, the structure of

an indoor hallway, or the outline of a door. Lines also provide a sparse

representation of the environment. For example, in Ref. 15 only two

points, the start and end point of a line segment, are used to rep-

resent each line. The work in Ref. 3 presents a systems-level SLAM

approach that uses line segments, ideal lines, vanishing points, and pri-

mary planes that are used in conjunction with feature points. In addi-

tion to providing a structured map, their algorithm demonstrates that

high-level features can improve the localization accuracy of a SLAM

algorithm when used in conjunction with sparse feature points, and

they demonstrate that high-level features are able to operate in set-

tings that lack distinguishable feature points. Later in this article, we

demonstrate that Curve SLAM shares this characteristic of being able

to operate in settings that lack conspicuous feature points.

By creating compact structured maps of the environment, the

Curve SLAM algorithm incorporates some of the ideas represented

in the previously mentioned papers on high-level structure, and the

systems-level approach we take is similar in form to the recent

publications.1,3 However, Curve SLAM is different from the previously

mentioned algorithms on high-level structure because it is intended

for settings that contain curved features, e.g., settings where a path or

road is present. Applying Bézier curves as landmark primitives in these

settings allows us createmaps that aremore sparse than the high-level

feature primitives previously mentioned.

The use of curves as vision primitives has been studied in the com-

puter vision literature. Methods have been devised to match curves

acrossmultiple image views,19 not necessarily closely spacedor specif-

ically in stereo images.20 The work in Ref. 21 presents a method to

reconstruct the 3D location of nonuniform rational B-spline curves

from a single stereo pair without matching point-based stereo cor-

respondences. We incorporate the idea contained in this paper in

Section 3.

The algorithm in Ref. 22 uses B-spline curves as landmark primi-

tives to localize a robot and create a structured map of an environ-

ment in a compact fashion. They use a single plane 2D scanning laser

sensor and an extended Kalman filter (EKF) to jointly estimate the

3-DOF pose of a planar ground robot and the location of each B-spline

curve. They demonstrate how to add curves to their filter state and

extend the length of curves in their filter state by modifying the loca-

tion of parametrized curve control points representing each B-spline

curve. Our work differs from the work in Ref. 22 in a number of ways.

The algorithms in this article are designed around a vision sensor as

its primary sensing input as opposed to a 2D scanning laser. Thus most

of the constituent algorithms in this paper, such as reconstructing 3D

curvesor solving thedata association step, require anentirelydifferent

approach. Additionally, our state ismore general than the filter state in

Ref. 22; we include the full 6-DOF pose of a robot, making it applica-

ble to various robotic platforms such as small unmanned aerial vehi-

cles (UAVs). Furthermore, because one of our sensing inputs is a stereo

camera, we are able to locate curves in settings where a laser sensor

will fail, e.g., in one of our experiments we use yellow road lanes as

curve landmarks.

Various place recognition algorithms have been developed that

can aid a SLAM system that is occasionally unable to track feature

points. A recent and thorough review of the place recognition prob-

lem is given in Ref. 23. Unfortunately, most approaches rely on feature

points or likely require offline training. Additionally, feature points will

likely fail when the appearance of the scene changes drastically, e.g.,

unexpected weather or changes in lighting conditions.24 The work in

Ref. 25 presents an algorithm that is invariant to lighting conditions,

but it relies on feature points and requires multiple stereo cameras.

The work in Refs. 26 and 27 presents a place recognition algorithm

that is invariant to seasonal and lighting changes, and does not require

feature points. Their work uses midlevel image patches and a support

vector machine to train an image classifier offline. They demonstrate

that their algorithm is invariant to extreme changes in the environ-

ment. Unfortunately, their work requires at least one pass of the envi-

ronment and offline training.

Before proceeding, we emphasize thatwe do not believe that point-

based approaches are necessarily inferior. Indeed, recent point-based

SLAM approaches demonstrate remarkably accurate results that run

in real time.4,6,10,28–33 This is true both in estimating the motion of a

vehicle and in creating maps of an environment. In fact, Curve SLAM

can be modified rather easily to include feature points so that curves

and feature points can be used simultaneously to solve the SLAMprob-

lem. However, we believe alternative approaches are required in order

to overcome the aforementioned shortcomings inherent with feature

points.

2 CURVE SLAM OVERVIEW

2.1 Goals and assumptions

The aim of this paper is to estimate the pose of a robot equipped with

a stereo camera and IMUwhile providing a sparse structured map of a

previously unknown environment using static curved features as land-

marks. Letting 𝐱 ∈ ℝ15+12N represent the state vector, our goal is to

estimate the following variables:

𝐱 ≜
[
𝐩 , 𝐯,𝚯,𝐛a,𝐛g,

(
𝐂
1

)⊤
,… ,

(
𝐂
N

)⊤]⊤
, (1)

where 𝐩 represents the robot's position with respect to the

world frame, 𝐯 represents the body-frame velocity of the robot, 𝚯
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F IGURE 3 The goal of Curve SLAM is to simultaneously estimate the pose of a robot and the 3D location of curved features. Each curved feature
is represented as a Bézier curve and is defined by the location of its 3D control points: 𝐏

j,0
, 𝐏

j,1
, 𝐏

j,2
, and 𝐏

j,3

represents the robot's attitude, 𝐛a represents accelerometer bias, and

𝐛g represents gyroscope bias. The N variables 𝐂
1
,… ,𝐂

N
represent

the location of curved features defined with respect to the world-

frame. Each curved feature 𝐂
j

∈ {𝐂
1
,… ,𝐂

N
} is represented as a

Bézier curve and is defined by the location of its control points, i.e.,

𝐂
j

≜ [ (𝐏
j,0
)⊤, (𝐏

j,1
)⊤, (𝐏

j,2
)⊤, (𝐏

j,3
)⊤]⊤ ∈ ℝ12, where the variables

𝐏
j,0

∈ ℝ3, 𝐏
j,1

∈ ℝ3, 𝐏
j,2

∈ ℝ3, and 𝐏
j,3

∈ ℝ3 represent the 3D coor-

dinates of control points defined with respect to the world frame (an

image of a cubic Bézier curve, along with its control points, is shown in

Figure 3). Each curved feature is fixed to a larger curved object natu-

rally occurring in the scene, e.g., a long curved sidewalk. Additionally,

because the work in this paper is focused on mapping environments

where a road or path dominates the scene, we assume at least one

static curve is in the image corresponding to the left or right edge of

a road or path.

2.2 Outline of curve SLAMalgorithm

The pseudocode of the proposed Curve SLAM algorithm is provided in

Algorithm 1, and the functional components of Curve SLAM are illus-

trated in Figure 4. As shall be demonstrated in Section 3, the algorithm

uses a single stereopair todetermine the3Dcoordinates of curve land-

mark parameters, i.e., control points, relative to the body frame of the

stereo camera. To reconstruct the 3D location of control points, we do

not rely on matching point-to-point stereo correspondences. Instead,

we use the projection of curves in the stereo image plane to formu-

late a least-squares problem that optimizes the 3D location of con-

trol points. Section 4 explains how to track curve landmarks between

chronologically sequential image frames in order to solve the data

association problem. Section 4 also explains how the IMU measure-

ments and the control point measurements captured from the stereo

camera are fused together with an EKF to simultaneously localize the

stereo camera and create a structured map. Once the location of a

3D curve has been estimated, Section 4.8 shows how to combine this

curve with previously estimated curves to further reduce the number

of curve landmarks representing themap.

2.3 Properties of Bézier curves

The notations and symbols used throughout the paper are defined in

Table 1. The following properties of Bézier curves34 make them useful

for Curve SLAM:

Algorithm 1: Curve SLAM

• A Bézier curve is defined by its control points, which define the

curve's shape. The start control point and end control point are

located at the start point and end point of the curve. Letting ti be the

ith element of 𝐭 = [0,Δt,2Δt,… ,1]⊤, the linear transformation that

maps ti to a point that lies on the Bézier curve𝐂
j
is given by


(
ti,𝐂

j

)
=
[
𝐏
j,0
, 𝐏

j,1
, 𝐏

j,2
, 𝐏

j,3

]
𝐁j
𝐔i,j

, (2)

where 𝐔i,j
=
[
t
j

i
t
j−1
i

⋯ 1
]⊤
, and the matrix of constant coeffi-

cients 𝐁j
is obtained from the Bernstein polynomial coefficients
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F IGURE 4 Functional components of the Curve SLAM algorithm

(see Ref. 34). In fact, Eq. (2) is true for any t ∈ [0,1], but in this article,
we are only concerned with mapping the uniformly spaced vector 𝐭
onto a Bézier curve.

• Bézier curves are invariant under affine transformations, i.e., any

affine transformation on a Bézier curve is equivalent to an affine

transformation on the control points.35

• If a Bézier curve cannot be degree reduced, the control points are

unique and the weights can only be varied in a known way by a per-

spective transformation.36,37

3 ESTIMATING 3D BODY FRAME CURVES

WITH A SINGLE STEREO PAIR

The purpose of this section is to demonstrate how to reconstruct the

3D location of the path boundary using a single stereo pair. This task

is accomplished by formulating and solving a nonlinear least-squares

optimization problem that minimizes the reprojection error of the

image coordinates comprising the path boundary. The optimization

problem depends on two inputs, and the purpose of this section is to

explain how to construct these two inputs. The first input is repre-

sented by the variable 𝐲o,j,i, which represents 2D image coordinates

located on the path boundary, where o ∈ {L, R}, j represents the jth

curve, and i represents the ith discretized point belonging to curve j.

The second input is the predicted measurement function 𝐲̂o,j,i(⋅) that
represents the projection of a 3D curve from the body frame to the

image plane. A high-level overview of the steps taken to construct

these two inputs is as follows (these stepsand two inputs are illustrated

in Fig. 5):

1. Locate the path boundary in each image of the stereo pair.

2. Interpolate and match m Bézier curves 𝐂L
1
⋯𝐂L

m, 𝐂
R
1
⋯𝐂R

m to the

path boundary in the stereo images; a single point located on these

interpolated andmatched curves represents themeasurement 𝐲o,j,i .

3. Obtain the predicted measurement function 𝐲̂o,j,i(⋅) by projecting

points located on 3D body frame curves 𝐂
1
⋯𝐂

m to the image

plane. The curve 𝐂
j
is related to the jth curve in the world frame

TABLE 1 Notations and definitions

Name Description

 The 3Dworld frame.

 The body frame of the stereo camera.When a subscript is attached to the variable, e.g.,r , it is used to denote the body frame at the
rth stereo image frame.

L The left camera image.

R The right camera image.

𝐩 𝐩 ≜ (x, y, z) is defined as the 3D displacement ofwith respect to . The variable h = −z represents the camera's height.

𝚯 𝚯 ≜ (𝜙, 𝜃,𝜓) is the orientation of in ZYX Euler angles.

𝐯 𝐯 ≜ (u, v, w) is defined as the linear velocity of the camera with respect to the body frame.

𝐓AB 𝐓AB ∈ SE(3) is the transformation that changes the representation of a point defined in the coordinates of frame B to a point defined
in the coordinates of frame A.

𝐏
j,l

∈ ℝ3 We define the variables 𝐏
j,0
, 𝐏

j,1
, 𝐏

j,2
, 𝐏

j,3
to represent the control points of the jth cubic Bézier curve. The variables 𝐏

j,1
and 𝐏

j,2
are

themiddle control points, and 𝐏
j,0
and 𝐏

j,3
are the start and end control points, respectively. The superscript denotes the frame

where the variable is defined.When the curve is linear or quadratic, 𝐏
j,0
and 𝐏

j,3
are the start and end control points, respectively.

When the curve is quadratic, 𝐏
j,1
is themiddle control point.

j j denotes the order of the jth curve. In this article,j is 1 (linear), 2 (quadratic), or 3 (cubic).

𝐂

j
𝐂

j
≜ [ (𝐏

j,0
)⊤ , (𝐏

j,1
)⊤ , (𝐏

j,2
)⊤ , (𝐏

j,3
)⊤]⊤ ∈ ℝ12 is defined as the jth cubic Bézier curve. A Similar expression follows for a linear or

quadratic curve. The superscript denotes the framewhere the variable is defined. Throughout this paper, it should be
remembered that each curve has an associated polynomial order, which can easily be determined using a lookup table associated
with the variable j.

𝐭 Wedefine 𝐭 as an ordered vector with n elements that are evenly spaced between 0 and 1, i.e., 𝐭 = [0,Δt,2Δt,… ,1]⊤ .

𝐔i,j
Let ti be the ith element of 𝐭, then𝐔i,3 = [ t3i t

2
i
ti 1 ]⊤ , where the subscript denotes the order of the jth curve. A similar expression

follows for a linear or quadratic Bézier curve.

(𝐭,𝐂

j
) The linear transformation that maps 𝐭 to points that lie on the Bézier curve𝐂

j
,(𝐭,𝐂

j
) is defined in Section 2.3.

𝜷 𝜷 represents an estimated parameter vector ofmBézier curves, i.e., 𝜷 ≜ [(𝐂
1
)⊤⋯ (𝐂

m)
⊤]⊤ .
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F IGURE 5 The steps taken to reconstruct the 3D location of control points with respect to the body-frame. Also see Proposition 1 in the
Appendix

𝐂
j
, an element of the SLAM state defined in Eq. (1), as fol-

lows: 𝐂
j
= 𝐓𝐂

j
, where 𝐓 ∈ SE(3). Additionally, the curves

𝐂L
1
⋯𝐂L

m, 𝐂
R
1
⋯𝐂R

m correspond to the projection of 𝐂
1
⋯𝐂

m in the

stereo pair. This projection is uniquely defined. Furthermore, with

the correct correspondence between the curves in 𝐂L
1
⋯𝐂L

m and

𝐂R
1
⋯𝐂R

m, we are able to estimate the 3D location of𝐂
1
⋯𝐂

m in the

body-frame. A proof of these facts is presented in the Appendix.

3.1 Extraction of the path boundary

In this paper, we employ two methods to extract the boundary of the

path. In the first method, we filter the image with an averaging filter

to remove noise, threshold the image to locate the path, and apply a

contour detector38 that finds and sorts the pathboundary according to

spatial proximity. We repeat this procedure for both the left and right

image of each stereo frame. The size 𝜌n of the average filter window

and image threshold are discussed in Section 5.4. The second method

relies on a pretrained convolutional neural network to detect pixels

that represent the road.39 Once the road is detected, we apply a con-

tour detector38 that finds and sorts the road boundary according to

spatial proximity. We repeat this procedure for both the left and right

images of each stereo frame.

3.2 Interpolating andmatching curves in the image

plane

Tofind 𝐲o,j,i, we interpolate andmatch a set ofmBézier curves𝐂L
1
⋯𝐂L

m,

𝐂R
1
⋯𝐂R

m to the path boundary in the stereo pair using linear least

squares by modifying the algorithm in Ref. 40. During this process, we

must be able to quickly match a measurement 𝐲o,j,i to a predicted mea-

surement 𝐲̂o,j,i(⋅), and determinewhere to split curveswhen the bound-

ary is not sufficiently smooth. In this subsection,weexplain how to con-

struct 𝐲o,j,i to accomplish these tasks. We define B as the set of image

coordinates comprising the path boundary, and a break point as a
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F IGURE 6 Curves matched in the left and right images. The green points represent the start or end point of a single curve. The red lines denote
matching sets of curves

single image coordinate belonging to the set B. A break point desig-

nates a desired start or end control point of the jth curve 𝐂o
j
in the

image plane. Between two break points, we attempt to interpolate

𝐂o
j
. Break points are determined when a curve is added to the state

(Section 4.2) or from the data association step (Section 4.1). The steps

to interpolate andmatch curves are as follows:

Step 1. Let (ur
b2j−1

, vr
b2j−1

) and (ur
b2j
, vr

b2j
)be thebreak points of curve j in

image frame r, and Bc = {(ur
b2j−1

, vr
b2j−1

),… , (ur
b2j
, vr

b2j
)} ⊂ B be

the image coordinates between the break points (ur
b2j−1

, vr
b2j−1

)

and (ur
b2j
, vr

b2j
). We interpolate a single Bézier curve 𝐂L

j
to Bc

by fixing the start control point 𝐏L
j,0

and end control point 𝐏L
j,3

at the break points. In other words, 𝐏L
j,0

= (ur
b2j−1

, vr
b2j−1

), 𝐏L
j,3

=
(ur

b2j
, vr

b2j
), and depending on the order of the curve (deter-

mined in Section4.3),wefind themiddle control points𝐏L
j,1
and

𝐏L
j,2
with least squares.We repeat this process for all the break

points in the left image.

Step 2. Match curves between the left and right images. To do so, we

obtain (𝐭,𝐂L
j
), which has the effect of discretizing 𝐂L

j
into a

set of spatially ordered points that lie on curve 𝐂L
j
. In gen-

eral, the spacing of these discretized points is not uniform, but

is obtained by mapping the uniformly spaced vector 𝐭 onto
a nonlinear polynomial [see Eq. (2)]. Other parametrizations

exist for the vector 𝐭 that allow the discretized curve points

to be more uniformly spaced,41,42 but these approaches are

more computationally complex. Each point L ∈ (𝐭,𝐂L
j
)must

satisfy the epipolar constraint in the right image and must

lie on the path boundary. These two constraints combined

give a good initial estimate of where the discretized curve

(𝐭,𝐂L
j
) is located in the right image. Then, for each point L ∈

(𝐭,𝐂L
j
), we implement a template matcher to further refine

the curves location in the right image. The template matcher

compares two small image patches between the left and right

image. One image patch is centered around each point  L ∈
(𝐭,𝐂L

j
), while the second, slightly larger image patch is cen-

tered around the estimated location of  L in the right image.

The size 𝜌t of the template window is described in Section 5.4.

Step 3. Our last step is to interpolate a Bézier curve𝐂R
j
to the refined

location of(𝐭,𝐂L
j
) in the right image.

Typical results of the matching process are shown in Figure 6. With

the interpolated image curves, we find ameasurement 𝐲o,j,i bymapping

the vector 𝐭 with curve𝐂o
j
to the image plane. A measurement is given

by

𝐲o,j,i = 
(
ti,𝐂o

j

)
. (3)

3.3 Curve parameter optimization

Our next step is to reconstruct the 3D coordinates of the path bound-

ary with a series of m Bézier curves 𝐂
1
⋯𝐂

m. When reconstructing

the path boundary, it is helpful to remember that the measured curves

𝐂L
1
⋯𝐂L

m, 𝐂
R
1
⋯𝐂R

m, defined in Section 3.2, correspond to the projec-

tion of 𝐂
1
⋯𝐂

m in the stereo pair. Defining 𝜷 ≜ [(𝐂
1
)⊤⋯ (𝐂

m)
⊤]⊤ as

a stacked parameter vector of curve control points, we estimate 𝜷 by

formulating a nonlinear least-squares optimization problem that min-

imizes the reprojection error of the image coordinates comprising the

path boundary in a single stereo frame. The general form of the opti-

mization problem is given by

𝜷 = argmin
𝜷

∑
o∈{L,R}

m∑
j=1

n∑
i=1

||||||𝐲o,j,i − 𝐲̂o,j,i(𝜷)||||||2 , (4)

where o indicates the left or right stereo image, j indicates the curve,

and i indicates the image coordinates belonging to curve j. The 2D vec-

tor 𝐲o,j,i represents measured image coordinates belonging to the path

boundary. We showed how to calculate 𝐲o,j,i in Section 3.2. The func-

tion 𝐲̂o,j,i(⋅) represents a measurement predicted by the parameters in

𝜷 . To find a predicted measurement, we map the vector 𝐭, using the jth
curve 𝐂

j
, from the body frame to the image plane. Letting ti be the ith

element of 𝐭, a predictedmeasurement is given by the equation

𝐲̂o,j,i(𝜷) =𝐌o
(


(
ti,𝐂

j

))
, (5)

where𝐌o(⋅) is the function that maps a 3D point from the body frame

to the image plane of the left or right camera.

With the measurement and predicted measurement defined, we

solve Eq. (4) with the Levenberg-Marquardt algorithm.43–45 An ini-

tial guess for the parameters in 𝜷 is given by the optimized variables

from the previous image frame. Once the optimization is complete,

the reprojection error of each curve is checked. Any curve with a
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F IGURE 7 (a) Tracking end points of a curve between two chronologically sequential frames. (b) Comparing the structure ofmatched curves; this
particular example demonstrates a tracking failure

reprojection larger than a threshold 𝜌r is discarded. The selection of 𝜌r
is based on the precision of the stereo camera calibration. The purpose

of 𝜌r is simply to provide a fail safe when it is obvious the stereo trian-

gulation failed; the size of 𝜌r is discussed in Section 5.4. The output of

the Levenberg-Marquardt optimization gives an estimate of the curve

control points definedwith respect to the body frame.

After applying the Levenberg-Marquardt algorithm to estimate 𝜷 ,

we calculate the measurement covariance matrix 𝐕r , as described in

Section 5.4.46 The covariance 𝐕r is used as the extended Kalman filter

measurement covariance in Section 4.6, and it will be used in solving

the data association step in Section 4.1.

4 SLAM ESTIMATOR FORMULATION

In this section, we propose a solution to the data association problem

and formulate an extended Kalman filter to solve the SLAM problem.

To do so, we determine the order of each Bézier curve and determine

when to add curves to the filter state. This section explains how to

accomplish these tasks.

4.1 Curve-based data association

We solve the data association problem by tracking the start and end

points of curves between sequential frames in the left camera's field

of view (FOV), and by comparing the 3D structure of these curves

between frames to ensure they were tracked correctly. Tracking is

done with the the Lucas-Kanade tracking (KLT) algorithm.47 In imple-

menting the KLT algorithm, it is important to emphasize that our

data association algorithm is different from conventional point-based

tracking algorithms, e.g., the type that relies on salient regions in the

image to detect, describe, and track a uniform distribution of points

between image frames, followed by an outlier rejection algorithm to

remove outliers; see Ref. 5 as an example. Instead, the KLT algorithm

is used to track just the start or end points of curves between two

sequential image frames. Additionally, because we remove outliers by

comparing the 3D shape of curves between image frames, it is suffi-

cient to track fewer than five landmark curves between most image

frames. In other words, our algorithm is not dependent on tracking a

large number of point-based landmarks. In turn, this allows our algo-

rithm to operate in settings that lack distinguishable feature points

and to create maps that are more sparse than point-based SLAM algo-

rithms. This approach is quite different from point-based data associa-

tion algorithms that track hundreds of feature points between image

frames. Finally, our data association step is different from tracking a

collection of feature points because curves lie on the edge of a path.

Thus, when finding a curve correspondence between two chronologi-

cally sequential image frames, the data association search space is lim-

ited to a one-dimensional edge.

The KLT algorithm will occasionally track the start and end con-

trol points to thewrong location, producing outliers.We remove curve

outliers by comparing their 3D curve shapes between frames. We

explain our outlier rejection process assuming cubic ordered curves

since similar steps can be applied to linear or quadratic curves. To

compare curves, we define 𝐝r−1
l,l+1 as the estimated distance between

two control points, i.e., 𝐝r−1
l,l+1 = 𝐏r−1

j,l
− 𝐏r−1

j,l+1 ; see Figure 7. Alterna-

tively, 𝐝r−1
l,l+1 can be written as 𝐝r−1

l,l+1 = A𝜷 , where A is of the form

A = [0,… ,0,1,−1,0,… ,0]. In this case, 𝚺r−1
l,l+1 has an estimated covari-

ance given by𝚺r−1
l,l+1 = A𝐕r−1A

⊤. The steps to solve the data association

problem are as follows:

Step 1. Track the break points of curves (ur−1
b1

, vr−1
b1

),… , (ur−1
b2m

, vr−1
b2m

)
from frame r − 1 to frame r with the KLT algorithm. We rep-

resent the image coordinates that tracked from frame r − 1

to frame r as (urt1 , v
r
t1
),… , (urt2m , v

r
t2m

). These image coordinates

are not yet confirmed as break points because the KLT algo-

rithm may fail to correctly track break points between image

frames.

Step 2. Track the image coordinates (urt1 , v
r
t1
),… , (urt2m , v

r
t2m

) from

frame r back to frame r − 1, forming the image coordinates

(ur−1t1
, vr−1t1

),… , (ur−1t2m
, vr−1t2m

).
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F IGURE 8 Events triggering the addition of a curve to the state and their resulting addition. A curve is added when the currently tracked curve
is about to leave the camera's FOV; see (a). When this occurs, a region of interest is set around the location of desired control points, and the Shi-
Tomasi corner detector48 is used to find good features to track in these regions; see (b) (the Shi-Tomasi corner detector allows the KLT tracking
algorithm to track start/end control points with greater accuracy). The point with the strongest corner feature in this region that is close enough to
the boundary of the path is selected as the new start or end control point

F IGURE 9 Part (a) demonstrates a path that contains sharp corners and is not sufficiently smooth for a single cubic Bézier curve. When this
occurs, the Curve SLAM algorithmwill automatically split the boundary of the path; see (b)

Step 3. For each break point in frame r − 1,measure the Euclidean dis-

tance between the location of the break point and the location

the break point is tracked to in step 2, i.e., for the qth break-

point determine ||(ur−1tq
, vr−1tq

) − (ur−1
bq

, vr−1
bq

)||. If a curve's break

point is not tracked to its original location, then the curve is

removed.

Step 4. The remaining tracked points are assigned as break points and

the curve-fitting algorithm of Section 3 is computed for frame

r, outputting the 3D location of curves with respect to the rth

body frame.

Step 5. Verify that the 3D curve structure matches between frame

r and frame r − 1 (see Fig. 7). We verify this by performing

two Mahalanobis distance tests. The first Mahalanobis dis-

tance test verifies the distance between all sequential control

pointswith the estimated covariance of 𝐝r−1
l,l+1 and sample 𝐝r

l,l+1.

The second Mahalanobis distance test verifies the distance

between the start and end point of the curve using the esti-

mated covariance of 𝐝r−1
0,3

and sample 𝐝r
0,3

. Note, in the second

Mahalonobis distance test, we include a max threshold toler-

ance 𝜌s. If a curve changes shape by more than 𝜌s, it fails the

secondMahalonobis distance test. The selection of 𝜌s is based

on the precision of the stereo camera. The purpose of 𝜌s is sim-

ply to provide a fail safe when it is obvious the KLT algorithm

tracked feature points incorrectly. The size of 𝜌s is discussed in

Section 5.4.

Step 6. If the curve fails the second Mahalonobis distance test in

Step 5, the curve is removed from the state. If the curve passes

the second Mahalanobis distance test but not the first, the

curve is treated as a linear Bézier curve.

4.2 Adding curves in the image plane

Curves are added so that their lengths are approximately equivalent.

We add a curve when the end control point of the currently tracked

curve is about to leave the camera's FOV. This illustrated in Figure

8(a) by the tracked curve crossing the the yellow line Le. When this

occurs, a desired control point is set approximately at the top of the

camera's FOV and at the start control point of the currently tracked

curve [see Fig. 8(a)]. In the initial frame or when a particular side of

the boundary is empty of curves (a particular side may be empty of

curves due to tracking failures), we arbitrarily set a desired control

point approximately at the top of the camera's FOV, the bottom of

the camera's FOV, and at half the arc length of the path boundary.

These desired control points represent a start or end point of a curve.

A region of interest is selected around the desired control points, and

the Shi-Tomasi corner detector48 is used to find good features to track
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F IGURE 10 Our sensor package consists of a stereo camera, an IMU, and GPS

in this region. Corner points whose distance exceeds a threshold 𝜌k
from the path boundary are rejected. Among the remaining corner

points in a single region, the point with the strongest corner feature

is selected as the new start or end control point [see Fig. 8(b)]. The

size of the region of interest 𝜌w and the parameter 𝜌k are discussed in

Section 5.4.

4.3 Automatic correction of the polynomial curve

order

With the newly determined start or end points (determined in the

previous subsection, see Section 4.2), we are ready to determine the

polynomial order of these newly added curves. Determining the poly-

nomial order is necessary for two reasons: First, when adding curves

to the boundary of the path, care must be taken to avoid overfitting

the path by interpolating a higher-order curve to the boundary when

only a lower-order curve is required. Otherwise, it is likely that the

fitted 3D control points will not remain static between image frames,

causing localization errors. Second, we need a way to determine when

to split these newly added curves when the boundary of the path

is not sufficiently smooth (see Fig. 9). This section explains how to

accomplish both of these tasks. To determine the order of a curve, let

𝐏L
j,0
𝐏L
j,3

be the start and end points of a newly added curve found in

Section 4.2. Additionally, let Bc = {𝐏L
j,0
,… ,𝐏L

j,3
} ⊂ B represent the

image coordinates of the path boundary between 𝐏L
j,0
and 𝐏L

j,3
. Starting

with a first-order curve j = 1, the following steps are taken to deter-

mine the curve's order:

F IGURE 11 The variables used to describe the curve-combining
algorithm

Step 1. Given j, interpolate a Bézier curve of order j to the bound-

ary of the path between the newly added control points 𝐏L
j,0

𝐏L
j,3
.

Step 2. Using the Shapiro-Wilk test,49 check that the residuals of the

interpolated curve from Step 1 are normally distributed. If

the residuals are normally distributed, the curve order has

been determined. If the residuals are not normally distributed,

increase the curve order by 1, i.e., j = j + 1. Note, in this

step, we also include a minimum threshold tolerance 𝜌p to

avoid oversplitting the path boundary (splitting is discussed in

Step 4 of this section). As long as the maximum residual of the

interpolated curve from Step 1 is below 𝜌p, the order of the

curve has been determined. We discuss the parameter 𝜌p in

Section 5.4.

Step 3. Repeat Steps 1 and 2, progressing from a first-order curve to

a third-order curve. If the curve is not third-order, proceed to

Step 4.

Step 4. If the curve is not third-order, we split Bc at the point on

Bc where the residual is a maximum, and designate this split

point (us, vs) as a new break point. This forms two sets of

data points B1 = {𝐏L
j,0
,… , (urs, v

r
s)} and B2 = {(urs, v

r
s),… ,𝐏L

j,3
},

where B1 consists of all the ordered points before the break

point, and B2 consists of all the ordered points after the break

point.

Step 5. Repeat Steps 1–3 recursively on the data points in B1 and B2
until the residuals are normally distributed.

The start and end points of curves determined from this process are

used as as break points in Section 3.2.

4.4 SLAMestimator state and sensors

We estimate the camera pose, linear velocity, and location of curve

control pointswith anEKF.Wedefine thevariableP as theerror covari-

ancematrix, and the variable 𝐱 as the filter state:

𝐱 ≜
[
𝐩 , 𝐯,𝚯,𝐛a,𝐛g,

(
𝐂
1

)⊤
,… ,

(
𝐂
N

)⊤]⊤
,
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F IGURE 12 Sample images of DS1. The edges of the curved sidewalk provided curves for the Curve SLAM algorithm. Collection time: Dawn.
Weather: mostly cloudy and clear. Length: 252.2m. Duration: 138.5 s

F IGURE 13 Sample images of DS2. The edges of the curved sidewalk provided curves for the Curve SLAM algorithm. Collection time: 2 p.m.
Weather: Part of DS2 was collected during a light rainstorm under cloudy conditions. The other part was collected under mostly sunny conditions
and clear weather. Length: 375m. Duration: 195.85 s

where the variables 𝐩 , 𝐯, and𝚯 are defined in Table 1. The variables

𝐛a ∈ ℝ3 and 𝐛g ∈ ℝ3 represent the accelerometer bias and gyroscope

bias, respectively.

An image of the sensors used to collect experimental data for Curve

SLAM is shown in Figure 10. In addition to a stereo camera, our hard-

ware is equipped with a Novatel SPAN-IGM-A1 GNSS inertial nav-

igation system equipped with a GPS and an Analog Devices ADIS

16488 IMU consisting of an accelerometer and gyroscope. The GPS

is used only for ground truth. All hardware has been calibrated so

that measurements can be transformed to the body frame of the left

camera.50–52 The accelerometer and gyroscope are used to propa-

gate the state equations in the prediction step of the EKF, where the

gyroscope bias and accelerometer bias are both propagated as a ran-

dom walk. The gyroscope measurement 𝝎m
k
at time step k is given by

𝝎m
k
= 𝝎k + 𝝎n

k
+ 𝐛g , where 𝝎k is the true angular rate of the camera,

and 𝝎n
k
represents gyroscope noise. The accelerometer measurement

𝐚m
k
at time step k is given by 𝐚m

k
= 𝐯̇ + 𝝎k × 𝐯 − R (𝚯)𝐠 + 𝐚n

k
+ 𝐛a,

where 𝐚n
k
represents accelerometer noise. Letting 𝐚k = 𝐯̇ + 𝝎k × 𝐯 −

R (𝚯)𝐠 , we define 𝐮k = [𝐚⊤
k
𝝎⊤
k
]⊤ as the input vector, and 𝐰k =

[𝐚n⊤
k

𝝎n⊤
k
𝐛n,a
k
𝐛n,g
k
]⊤ as theprocess noisewith covariancematrix𝐖. The
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F IGURE 14 Sample images of DS3. The edges of the curved sidewalk provided curves for the Curve SLAM algorithm. Collection time: roughly
one hour prior to sunset.Weather: mostly sunny and clear. Length: 603.4m. Duration: 437.55 s

F IGURE 15 Sample images of DS4. Yellow road lanes provided curves for the Curve SLAM algorithm. Collection time: roughly 10:30 a.m.
Weather: mostly cloudy and clear. Length: 230m. Duration: 70 s

variables 𝐛n,a
k

∈ ℝ3, 𝐛n,g
k

∈ ℝ3 represent accelerometer and gyroscope

bias noise, respectively. This noise comes as a result of propagating the

bias states as a randomwalk.

4.5 Estimator prediction step

We implement the EKF prediction step by feeding the data from

the IMU as a dynamic model replacement, where the gyroscope bias

and accelerometer bias are both propagated as a random walk.53

To explain the process, we adopt standard EKF notation in which

the subscript k|k − 1 represents a predication step, while the sub-

script k|k represents a measurement update. Using one-step Euler

integration, the predicted state 𝐱̂ at time step k is given by 𝐱̂k|k−1 =
𝐱̂k−1|k−1 + f(𝐱̂k−1|k−1,𝐮k−1,𝐰k−1)Δt, where

f
(
𝐱,𝐮k,𝐰k

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(𝚯)𝐯

𝐚m
k
− 𝐛a − (𝝎m

k
− 𝐛g) × 𝐯 + R (𝚯)𝐠

S(𝚯)(𝝎m
k
− 𝐛g)

𝟎3×1

𝟎3×1

𝟎N×1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The variableR(Θ) is a rotationmatrix from the body frame to the

world frame, and S(𝚯) is a rotational transformation that allows the
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F IGURE 16 Sample images of DS5. The edges of the road provided curves for the Curve SLAM algorithm. Collection time: unknown. Weather:
sunny and clear. Length: 435m. Duration: 40 s

F IGURE 17 Themedian (x or dot) plotted between the 5th (bottom horizontal line) and 95th (top horizontal line) percentile for translation error
and orientation error of Curve SLAM andOKVIS for DS1

body frame angular rates to be expressed in terms of the derivatives

of the ZYX Euler angles, i.e.,

S(𝚯) =
⎛⎜⎜⎜⎝
1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃

0 cos𝜙 − sin𝜙

0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

⎞⎟⎟⎟⎠ . (7)

The error covariance is updated as

Pk|k−1 = 𝐅k−1Pk−1|k−1𝐅k−1 + 𝐋k−1𝐖𝐋⊤k−1,
where 𝐅k =

𝜕f(𝐱̂k|k ,𝐮k ,𝐰k)
𝜕𝐱 and 𝐋k =

𝜕f(𝐱̂k|k ,𝐮k ,𝐰k)
𝜕𝐰 . We compute the expres-

sions for the Jacobians 𝐅k and𝐋k symbolically offline.

4.6 Measurement update

At every stereo frame,wemeasurem different Bézier curves𝐂
1
⋯𝐂

m.

These curves are related to the existing map curves by the transfor-

mation𝐂
j
= 𝐓 (𝐂

j
), where𝐓 ∈ SE(3) is the transformation that

changes the representation of a point defined in the coordinates of

frame  to a point defined in the coordinates of frame . The mea-

surement equation is given by 𝐳k = 𝐡(𝐱k) + 𝐯k , where

𝐡(𝐱) =
[(
𝐓

(
𝐂
1

))⊤
,… ,

(
𝐓

(
𝐂
m

))⊤]⊤
. (8)

The variable 𝐯k represents measurement noise with covariance

matrix𝐕k . The measurement covariance matrix𝐕k is defined as stated

in Section 3.2.We demonstrate how to calculate𝐕k in Section 5.4. The

remaining EKF update equations are implemented as follows:

𝐲̃k = 𝐳k − 𝐡(𝐱̂k|k−1),
𝐒k = 𝐇kPk|k−1𝐇⊤k + 𝐕k,

𝐊k = Pk|k−1𝐇⊤k + 𝐒−1k ,
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F IGURE 18 Themedian (x, dot, or plus sign) plotted between the 5th (bottom horizontal line) and 95th (top horizontal line) percentile for trans-
lation error and orientation error of Curve SLAM, OKVIS, and SPTAM for DS2

F IGURE 19 Themedian (x, dot, or plus sign) plotted between the 5th (bottom horizontal line) and 95th (top horizontal line) percentile for trans-
lation error and orientation error of Curve SLAM, OKVIS, and SPTAM for DS3

𝐱̂k|k = 𝐱̂k|k−1 +𝐊k𝐲̃k,

Pk|k = (𝐈 −𝐊k𝐇k)Pk|k−1,

where𝐇k =
𝜕𝐡(𝐱̂k|k−1)

𝜕𝐱 . We compute the expression for the Jacobian𝐇k

symbolically offline.

4.7 Adding curve-control points to the filter state

After a curve has been added in the image plane (see Section 4.2),

the filter state needs to be updated. With the method in Ref. 22, we

augment the filter state with the new curve 𝐂
N+1 and augment the

error covariance matrix with the necessary initial cross-covariances.

Letting 𝐱a represent the augmented state and Pa represent the aug-

mented error covariance, we perform this operation as follows:

𝐱a = 𝐠 (𝐱, 𝐳) ,

Pa = 𝐆𝐱P𝐆⊤𝐱 +𝐆𝐳𝐕r𝐆⊤𝐳 ,

where 𝐠(𝐱, 𝐳) = [𝐱⊤,𝐓(𝐂
N+1)

⊤]⊤, 𝐆𝐱 =
𝜕𝐠(𝐱,𝐳)
𝜕𝐱 , and 𝐆𝐳 =

𝜕𝐠(𝐱,𝐳)
𝜕𝐳 .

We compute the expressions for the Jacobians𝐆𝐳 and𝐆𝐱 symbolically

offline.

4.8 Combining curves

One of our main objectives is to represent long segments of a path

with a small number of curves. However, because the depth measure-

ment accuracy of a stereo camera is limited by range, our sparseness

objective interferes with how accurately we are able to localize the

camera. Thus, we limit the length of curve segments. To overcome this

drawback, we add one additional stepwhilemapping the environment.

When the location of a curve 𝐂
mc+1

is no longer contained in the cam-

era's FOV, we attempt to combine 𝐂
mc+1

with curves 𝐂
jc

⋯𝐂
mc

that

were estimated prior to 𝐂
mc+1

. The steps to combine curves are given

as follows:

• Assume 𝐂
jc
,… ,𝐂

mc
belong to a single growing cubic Bézier curve



j
(see Fig. 11).
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F IGURE 20 Themedian (x, dot, or plus sign) plotted between the 5th (bottom horizontal line) and 95th (top horizontal line) percentile for trans-
lation error and orientation error of Curve SLAM, OKVIS, and SPTAM for DS4

F IGURE 21 Themedian (x or dot) plotted between the 5th (bottom horizontal line) and 95th (top horizontal line) percentile for translation error
and orientation error of Curve SLAM andOKVIS for DS5

• Interpolate a single cubic Bézier curve to(𝐭,𝐂
jc
)⋯(𝐭,𝐂

mc
) and

(𝐭,𝐂
mc+1

) by fixing the start control point at the start point in

(𝐭,𝐂
jc
) and the end control point at the last point in (𝐭,𝐂

mc+1
).

The twomiddle control point are determinedwith least squares.

• If the median of the residuals in the least-squares fit is less than

a threshold d, 𝐂
mc+1

is added to 

j
. The size of d is discussed in

Section 5.4

• If the median of the residuals in the least-squares fit is not less than

a threshold d, we start a new growing curve 

j+1

, with 𝐂
mc+1

as

its only element. Meanwhile, the past curve 

j

is no longer grow-

ing, i.e., no curves that are subsequently estimated are added to
j
.

Instead, they are checked for addition to curve
j+1

.

5 EXPERIMENTAL RESULTS

We compare Curve SLAM against the Open Keyframe–based Visual

Inertial SLAM algorithm (OKVIS),5 and a stereo version of the Parallel

Tracking and Mapping (SPTAM)9,10 by adopting the metric proposed

in Ref. 54 and by comparing the number of landmarks required to rep-

resent the map.We used five different data sets that were captured at

different times of the day under varying environmental conditions. The

first three data sets contain images of sidewalks that were obtained

from a local park (the sidewalk provided curves for the Curve SLAM

algorithm), the fourth data set contains images of yellow road lanes

that were obtained while driving on a nearby road (the yellow road

lanesprovidedcurves for theCurveSLAMalgorithm), and thefifthdata

set is a sequence taken from the KITTI data set,55 and contains images

of a road (the road provided curves for the Curve SLAM algorithm).

Sample images of the five data sets are shown in Figures 12–16.

During the first four data sets, the stereo camera had a 36 cm baseline

with 3.5 mm focal length lens. Images were sampled at 20 Hz, and

IMUmeasurements were sampled at 100 Hz. During the fifth data set,

the stereo camera had a 54 cm baseline with 4 mm focal length lens.

Images were sampled at 10 Hz, and IMUmeasurements were sampled

at 10 Hz. During the first four data sets, we segmented the boundary

of the path by thresholding the HSV color channels of an image (our

approach is described in Section 3.1). During the fifth data set, we

segmented the boundary of the path with a pretrained convolutional
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TABLE 2 Algorithm comparison for DS1

Parameter SPTAM Curve SLAM OKVIS

Map Landmarks NA 160 control points 279690

Distance Traveled: 45m

m̃t, m̃o NA 1.09m, 0.67◦ 1.09m, 0.97◦

et05 , eo05 NA 0.43m, 0.26◦ 0.28m, 0.40◦

et95 , eo95 NA 2.51m, 1.35◦ 9.22m, 2.17◦

Max error (trans., att.) NA 2.73m, 1.75◦ 10.61m, 3.56◦

m̃t/d NA 2.42% 2.42%

Distance Traveled: 95m

m̃t, m̃o NA 1.29m, 0.76◦ 1.23m, 1.16◦

et05 , eo05 NA 0.55m, 0.30◦ 0.36m, 0.41◦

et95 , eo95 NA 4.40m, 1.58◦ 10.18m, 2.55◦

Max error (trans., att.) NA 5.43m, 1.90◦ 10.98m, 3.91◦

m̃t/d NA 1.36% 1.30%

Distance Traveled: 145m

m̃t, m̃o NA 1.64m, 0.86◦ 1.44m, 1.34◦

et05 , eo05 NA 0.69m, 0.32◦ 0.39m, 0.45◦

et95 , eo95 NA 4.72m, 1.63◦ 10.38m, 2.89◦

Max error (trans., att.) NA 6.91m, 2.10◦ 11.55m, 4.14◦

m̃t/d NA 1.13% 0.99%

Distance Traveled: 195m

m̃t, m̃o NA 1.83m, 0.97◦ 1.65m, 1.42◦

et05 , eo05 NA 0.75m, 0.33◦ 0.41m, 0.47◦

et95 , eo95 NA 5.73m, 1.80◦ 10.80m, 3.27◦

Max error (trans., att.) NA 6.91m, 2.29◦ 12.35m, 4.76◦

m̃t/d NA 0.94% 0.85%

Distance Traveled: 245m

m̃t, m̃o NA 1.86m, 0.99◦ 1.68m, 1.41◦

et05 , eo05 NA 0.76m, 0.34◦ 0.41m, 0.47◦

et95 , eo95 NA 5.88m, 1.81◦ 10.98m, 3.24◦

Max error (trans., att.) NA 6.91m, 2.29◦ 12.73m, 4.76◦

m̃t/d NA 0.76% 0.68%

aDS1was collected at dawn under clearweather conditions.We did not apply SPTAM toDS1 becausewewere unable to track a sufficient number of feature
points.

neural network designed to detect image pixels that represent the

road (see Section 3.1).

The first three data sets were collected from a local park at differ-

ent times of the day under different lighting and weather conditions.

All the data in the park were obtained by mounting the sensors onto a

cart that was pushed by a person. The edges of a long curved sidewalk

in this local park were used as curves in the Curve SLAM algorithm.

The first data set, DS1, was collected at dawn under clear weather

conditions. The experiment lasted roughly 138.5 s. During this time,

our sensors traveled approximately 252.2m. The second data set, DS2,

was collected in the midafternoon, roughly 2 p.m. Part of DS2 was col-

lectedduring a light rainstormunder cloudy conditions,while theother

part of DS2 was collected immediately following this light rainstorm

under mostly sunny conditions. DS2 lasted roughly 195.85 s. During

this time, our sensors traveledapproximately375m.DS3was collected

about an hour prior to sunset on amostly sunny daywith clearweather

conditions. DS3 lasted roughly 437.55 s. During this time, our sensors

traveled approximately 603.4m. The fourth data setDS4was collected

by strapping the sensors onto a car and driving on a nearby road. Yel-

low road lanes were used as curves. DS4 was collected in the morning

hours under mostly cloudy conditions. DS4 lasted roughly 70 s. Dur-

ing this time, our sensors traveled approximately 230m. The fifth data

set DS5 is a sequence obtained from the Kitti data set,55 and was col-

lected with the sensors attached to the top of a car while driving in a

residential area. The edges of a road were used as curves. This partic-

ular sequence from the Kitti data set was selected due to the presence

of curves in the environment and the high number of occlusions cov-

ering the road. DS5 was collected under sunny conditions. DS5 lasted

roughly 40 s. During this time, the sensors traveled approximately

435m.
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TABLE 3 Algorithm comparison for DS2

Parameter SPTAM Curve SLAM OKVIS

Map Landmarks 138403 220 control points 345340

Distance Traveled: 70m

m̃t, m̃o 1.06m, 1.64◦ 1.54m, 0.74◦ 1.30m, 1.44◦

et05 , eo05 0.62m, 0.78◦ 0.87m, 0.23◦ 0.46m, 0.56◦

et95 , eo95 1.79m, 2.52◦ 2.23m, 1.53◦ 2.03m, 2.70◦

Max error (trans., att.) 2.58m, 3.29◦ 2.57m, 1.86◦ 4.68m, 4.97◦

m̃t/d 1.51% 2.19% 1.85%

Distance Traveled: 145m

m̃t, m̃o 1.43m, 1.99◦ 2.09m, 0.80◦ 1.52m, 1.51◦

et05 , eo05 0.63m, 0.92◦ 0.91m, 0.26◦ 0.52m, 0.61◦

et95 , eo95 2.99m, 3.51◦ 3.66m, 1.53◦ 3.91m, 2.81◦

Max error (trans., att.) 4.91m, 4.19◦ 4.24m, 1.89◦ 9.35m, 4.97◦

m̃t/d 0.98% 1.44% 1.04%

Distance Traveled: 215m

m̃t, m̃o 1.90m, 2.26◦ 2.44m, 0.88◦ 1.88m, 1.57◦

et05 , eo05 0.68m, 0.98◦ 0.94m, 0.28◦ 0.58m, 0.63◦

et95 , eo95 5.13m, 3.81◦ 4.68m, 1.58◦ 5.04m, 2.80◦

Max error (trans., att.) 8.41m, 4.87◦ 6.11m, 2.06◦ 10.51m, 4.97◦

m̃t/d 0.88% 1.13% 0.88%

Distance Traveled: 290m

m̃t, m̃o 2.29m, 2.44◦ 2.77m, 0.95◦ 2.11m, 1.57◦

et05 , eo05 0.71m, 1.03◦ 0.97m, 0.29◦ 0.62m, 0.64◦

et95 , eo95 8.16m, 5.04◦ 7.27m, 1.87◦ 5.79m, 2.79◦

Max error (trans., att.) 12.58m, 6.78◦ 9.07m, 2.76◦ 14.71m, 4.97◦

m̃t/d 0.79% 0.96% 0.73%

Distance Traveled: 365m

m̃t, m̃o 2.31m, 2.45◦ 2.80m, 0.94◦ 2.16m, 1.56◦

et05 , eo05 0.71m, 1.03◦ 0.98m, 0.29◦ 0.62m, 0.64◦

et95 , eo95 8.43m, 5.10◦ 7.49m, 1.87◦ 5.94m, 2.79◦

Max error (trans., att.) 15.24m, 6.78◦ 9.63m, 2.76◦ 19.44m, 4.97◦

m̃t/d 0.63% 0.77% 0.59%

aDS2was collected at 2 PMwith light rain andmostly sunny conditions.

For a ground truth comparison of all the data sets, we have

included a precise GPS-INS track that is time-synchronized with

the stereo camera and IMU measurements. The GPS-INS track

includes a ground-truth for the location and attitude of the sen-

sor platform. Note, the GPS is only used to provide ground truth

information.

5.1 Evaluationmetric

To compare Curve SLAM against OKVIS and SPTAM, we extend the

metric proposed in Ref. 54. Letting d represent the distance traveled

between frame ie and frame je, we compare algorithmswith the follow-

ingmetric:

Δ𝐓(d) = 𝐓−1
0je
𝐓0ie 𝐓̂

−1
0ie
𝐓̂0je , (9)

whereΔ𝐓(d) ∈ SE(3) represents the error between an estimated pose

𝐓̂ie je ∈ SE(3) and ground truth pose 𝐓ieje ∈ SE(3), and the subscript 0

represents the initial frame. To compute d, we sum the Euclidean dis-

tance between all temporally sequential GPS ground truth coordinates

between frame ie and frame je. For a fixed value of d, we computeΔ𝐓(d)
between numerous poses ie and je in order to obtain error statistics for

the orientation error and translation error.

5.2 Localization results

Figures 17–21 display the median translation error m̃t plotted

between the 5th et05 and 95th et95 percentile for translation error

as well as the median orientation error m̃o plotted between the 5th

eo05 and 95th eo95 percentile for orientation error for five fixed values

of d. Tables 2–6 summarize these results. In DS1, DS3, and DS4,

Curve SLAM is more accurate or provides less variance in its motion
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TABLE 4 Algorithm comparison for DS3

Parameter SPTAM Curve SLAM OKVIS

Map Landmarks 151867 348 control points 495874

Distance Traveled: 115m

m̃t, m̃o 4.79m, 6.49◦ 2.08m, 1.68◦ 1.66m, 1.19◦

et05 , eo05 3.00m, 4.25◦ 1.11m, 0.80◦ 0.90m, 0.46◦

et95 , eo95 7.03m, 8.82◦ 2.90m, 2.87◦ 2.86m, 1.98◦

Max error (trans., att.) 22.27m, 29.44◦ 3.19m, 3.47◦ 6.57m, 4.02◦

m̃t/d 4.17% 1.81% 1.44%

Distance Traveled: 235m

m̃t, m̃o 5.91m, 8.06◦ 2.44m, 1.94◦ 2.40m, 1.44◦

et05 , eo05 3.19m, 4.47◦ 1.21m, 0.98◦ 1.03m, 0.52◦

et95 , eo95 24.23m, 13.99◦ 5.11m, 3.17◦ 6.59m, 2.82◦

Max error (trans., att.) 49.77m, 33.60◦ 5.63m, 3.87◦ 12.62m, 4.12◦

m̃t/d 2.52% 1.04% 1.02%

Distance Traveled: 355m

m̃t, m̃o 19.10m, 11.21◦ 2.88m, 2.07◦ 2.82m, 1.68◦

et05 , eo05 3.31m, 4.60◦ 1.28m, 0.98◦ 1.09m, 0.56◦

et95 , eo95 48.97m, 18.49◦ 5.81m, 3.31◦ 8.25m, 3.01◦

Max error (trans., att.) 54.36m, 33.60◦ 7.80m, 3.87◦ 12.62m, 4.12◦

m̃t/d 5.38% 0.81% 0.80%

Distance Traveled: 475m

m̃t, m̃o 20.51m, 12.25◦ 2.98m, 2.15◦ 3.23m, 1.81◦

et05 , eo05 3.37m, 4.65◦ 1.32m, 0.99◦ 1.11m, 0.58◦

et95 , eo95 53.66m, 19.22◦ 5.77m, 3.30◦ 8.20m, 3.17◦

Max error (trans., att.) 55.86m, 33.60◦ 7.80m, 3.87◦ 12.62m, 4.12◦

m̃t/d 4.32% 0.63% 0.68%

Distance Traveled: 595m

m̃t, m̃o 20.56m, 12.27◦ 2.99m, 2.15◦ 3.25m, 1.82◦

et05 , eo05 3.38m, 4.65◦ 1.33m, 1.00◦ 1.11m, 0.59◦

et95 , eo95 53.76m, 19.25◦ 5.77m, 3.33◦ 8.19m, 3.17◦

Max error (trans., att.) 55.90m, 33.60◦ 7.80m, 3.97◦ 12.62m, 4.12◦

m̃t/d 3.45% 0.50% 0.55%

aDS3was collected near sunset undermostly sunny conditions.

estimates than SPTAM and OKVIS because these environments

lacked distinguishable feature points (sample images of the data

sets are shown in Figures 12–16). Consequently, SPTAM and OKVIS

occasionally failed to track feature points robustly, and the ability

of SPTAM and OKVIS to accurately localize and map these settings

declined. In fact, at one point during DS3, OKVIS reported a failure

to track feature points. Similarly, while operating in DS3 and DS4,

SPTAM occasionally failed to track feature points correctly, causing

major localization and mapping errors. In DS1, we were unable to

apply SPTAM because it completely failed to track feature points. A

reason that OKVIS operates in DS1, DS3, and DS4 better than SPTAM

is because OKVIS relies on an IMU to localize its position, preventing

tracking failures from causingmajor localization errors. However, even

in these settings, the performance of OKVIS diminishes. In contrast

to OKVIS and SPTAM, Curve SLAM does not depend on tracking large

numbers of feature points, allowing it to operate in these settings

better than OKVIS or SPTAM (for further discussion of Curve SLAM's

dependence on tracking landmarks, see Section 4.1).

DS2 contained better conditions for detecting, extracting, and

tracking feature points, thus for DS2, Curve SLAM is slightly less accu-

rate than SPTAM and OKVIS. However, the maximum error estimates

and attitude estimates provided by Curve SLAM are better than those

fromOKVIS and SPTAMover all distances traveled in DS2. In DS5, our

algorithm is less accurate thanOKVIS for a few reasons:DS5 contained

better conditions for detecting, extracting, and tracking feature points.

Additionally, in DS5 we relied on a pretrained convolutional neural

network to detect the road. During short periods of operation, Curve

SLAM was unable to detect the road, and our algorithm was forced to

rely solely on propagating the IMU. Finally, in DS5, the camera to road

distance was large, causing larger inaccuracies in our stereo triangula-

tion method. However, in settings similar to DS2 and DS5 where large

numbers of feature points are readily available for tracking, we expect
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TABLE 5 Algorithm comparison for DS4

Parameter SPTAM Curve SLAM OKVIS

Map Landmarks 55577 92 control points 17805

Distance Traveled: 40m

m̃t, m̃o 1.47m, 1.43◦ 0.90m, 0.37◦ 1.08m, 0.34◦

et05 , eo05 0.64m, 1.21◦ 0.47m, 0.19◦ 0.39m, 0.13◦

et95 , eo95 2.03m, 1.64◦ 1.61m, 0.64◦ 1.46m, 0.72◦

Max error (trans., att.) 2.09m, 1.69◦ 1.74m, 0.74◦ 1.55m, 0.97◦

m̃t/d 3.66% 2.25% 2.70%

Distance Traveled: 80m

m̃t, m̃o 2.00m, 1.62◦ 1.03m, 0.52◦ 1.41m, 0.45◦

et05 , eo05 0.75m, 1.23◦ 0.51m, 0.21◦ 0.43m, 0.16◦

et95 , eo95 4.43m, 2.97◦ 1.88m, 0.90◦ 2.72m, 0.81◦

Max error (trans., att.) 4.57m, 3.07◦ 2.35m, 1.03◦ 3.04m, 1.00◦

m̃t/d 2.50% 1.29% 1.77%

Distance Traveled: 125m

m̃t, m̃o 3.14m, 2.73◦ 1.06m, 0.59◦ 1.84m, 0.58◦

et05 , eo05 0.87m, 1.25◦ 0.53m, 0.23◦ 0.56m, 0.17◦

et95 , eo95 7.38m, 4.52◦ 1.81m, 1.13◦ 3.84m, 0.94◦

Max error (trans., att.) 7.69m, 4.61◦ 2.35m, 1.30◦ 4.19m, 1.39◦

m̃t/d 2.51% 0.85% 1.47%

Distance Traveled: 165m

m̃t, m̃o 3.45m, 2.80◦ 1.14m, 0.64◦ 2.26m, 0.62◦

et05 , eo05 0.97m, 1.26◦ 0.54m, 0.24◦ 0.62m, 0.18◦

et95 , eo95 10.38m, 5.71◦ 1.76m, 1.42◦ 4.80m, 0.93◦

Max error (trans., att.) 11.23m, 5.83◦ 2.35m, 1.76◦ 5.27m, 1.39◦

m̃t/d 2.09% 0.69% 1.37%

Distance Traveled: 210m

m̃t, m̃o 3.58m, 2.81◦ 1.16m, 0.66◦ 2.31m, 0.61◦

et05 , eo05 0.98m, 1.26◦ 0.55m, 0.24◦ 0.62m, 0.18◦

et95 , eo95 11.09m, 5.76◦ 1.82m, 1.58◦ 4.89m, 0.93◦

Max error (trans., att.) 15.33m, 7.31◦ 2.35m, 1.95◦ 5.92m, 1.39◦

m̃t/d 1.70% 0.55% 1.10%

aDS4was collected at 10 AMundermostly cloudy conditions and clear weather

a robust point-based feature detector/extractor tracking algorithm to

provide a bettermotion estimate thanCurve SLAM,which tracks a lim-

ited number of landmark curves between temporally sequential stereo

frames.

Figures 22–26 plot the body-frame velocity estimates and the atti-

tude estimates of Curve SLAM,OKVIS, SPTAM, and the corresponding

ground truth as a function of time. The body frame velocity estimate

for SPTAMwas obtained by subtracting twoworld frame position esti-

mates between chronologically successive image frames and multiply-

ing by the frame rate to obtain a world frame velocity estimate. This

world frame velocity estimatewas then transformed to the body frame

using SPTAM's estimated attitude. In all five data sets, Curve SLAM's

attitude estimate is accurate without relying on an external compass.

It should also be noted that without the vision-based curve measure-

ments, the IMU alone would produce quickly growing attitude error

estimates.

Figures28–32plot the estimated camera trajectoryofCurveSLAM,

OKVIS, SPTAM, and the corresponding ground truth trajectory using

google maps for all five data sets. To overlay the estimated trajectory

onto google maps, we align the frame where the GPS ground truth

coordinates are defined with the world frame of each of the data sets.

To align coordinate frames, we must find a coordinate transformation

that maps a point 𝐫
k

defined in the coordinates of the world frame

(the world frame represents the coordinate frame in which each data

set is defined) to a point 𝐫 ′

k
defined in the coordinates of the GPS

frame  ′, where 𝐫
k

represents the estimated location of the sensor

platform in theworld frame at time step k. The coordinate transforma-

tion that aligns the world framewith the GPS frame is expressed as

𝐫 ′

k
= 𝐑 ′


𝐫
k

+ 𝐜 ′


. (10)
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TABLE 6 Algorithm comparison for DS5

Parameter SPTAM Curve SLAM OKVIS

Map Landmarks NA 96 control points 21402

Distance Traveled: 65m

m̃t, m̃o NA 3.53m, 0.21◦ 1.10m, 0.46◦

et05 , eo05 NA 1.31m, 0.08◦ 0.37m, 0.16◦

et95 , eo95 NA 6.41m, 0.43◦ 5.24m, 8.87◦

Max error (trans., att.) NA 7.15m, 0.45◦ 10.37m, 13.36◦

m̃t/d NA 5.43% 1.69%

Distance Traveled: 130m

m̃t, m̃o NA 4.88m, 0.27◦ 1.23m, 0.66◦

et05 , eo05 NA 1.98m, 0.09◦ 0.56m, 0.18◦

et95 , eo95 NA 9.80m, 0.46◦ 8.57m, 12.27◦

Max error (trans., att.) NA 11.62m, 0.54◦ 15.59m, 14.21◦

m̃t/d NA 3.76% 0.95%

Distance Traveled: 195m

m̃t, m̃o NA 5.61m, 0.29◦ 1.59m, 0.79◦

et05 , eo05 NA 2.20m, 0.13◦ 0.59m, 0.23◦

et95 , eo95 NA 11.50m, 0.51◦ 5.48m, 12.99◦

Max error (trans., att.) NA 14.02m, 0.55◦ 15.59m, 14.61◦

m̃t/d NA 2.88% 0.81%

Distance Traveled: 260m

m̃t, m̃o NA 6.45m, 0.31◦ 1.98m, 0.90◦

et05 , eo05 NA 2.24m, 0.13◦ 0.62m, 0.24◦

et95 , eo95 NA 12.27m, 0.51◦ 10.50m, 13.41◦

Max error (trans., att.) NA 15.60m, 0.55◦ 15.59m, 14.72◦

m̃t/d NA 2.48% 0.76%

Distance Traveled: 330m

m̃t, m̃o NA 7.25m, 0.31◦ 2.14m, 1.07◦

et05 , eo05 NA 2.26m, 0.13◦ 0.65m, 0.24◦

et95 , eo95 NA 16.02m, 0.51◦ 13.05m, 13.41◦

Max error (trans., att.) NA 18.54m, 0.55◦ 16.79m, 14.72◦

m̃t/d NA 2.20% 0.65%

aDS5 is a sequence obtained from the KITTI data set.55
bDS5was collected under sunny conditions.

Thematrix𝐑 ′


and translation vector 𝐜 ′


are obtained byminimiz-

ing
∑

k ||𝐫 ′

k
− 𝐠 ′

k
||2, where 𝐠 ′

k
represents ground truth coordinates.

In Figures 28, 29, and 30 the labeled white curve is the sidewalk

path that was used to provide curves in the Curve SLAM algorithm.

In Figure 31, the center curve is a road, and yellow road lanes located

on this road were used as curves in the Curve SLAM algorithm. In

Figure 32, the labeled road provided curves for the Curve SLAM algo-

rithm. In DS3, between the start point and end point of the loop, Curve

SLAM estimated the magnitude error between the start pose and end

pose to be 6.4m,whileOKVIS estimated themagnitude error between

the start pose and end pose to be 7.1 m. By comparison, ground truth

recorded a magnitude error of 4.24 m between the start pose and end

pose. At the final pose, the final attitude error between ground truth

and Curve SLAM is 3.8 degrees in yaw, 1.61 degrees in pitch, and 2.12

degrees in roll. The final attitude error between OKVIS and ground

truth is 1.94 degrees in yaw, 0.01 degrees in pitch, and 0.04 degrees

in roll.

5.3 Mapping results

For mapping purposes, we further reduce the number of points

required to represent the path using the method described in Section

4.8. A plot of these results is shown in Figure 33 for DS1, Figure 34 for

DS2, Figure 35 for DS3, Figure 36 for DS4, and Figure 37 for DS5. The

mapping results are obtained by transforming themap curves from the

world frame where each data set is defined to the coordinate frame

where GPS is defined. The transformation used in this process is given
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F IGURE 22 Attitude and body-frame velocity estimates of Curve SLAM along with the corresponding ground truth for DS1

F IGURE 23 Attitude and body-frame velocity estimates of Curve SLAM and SPTAM along with the corresponding ground truth for DS2

by Eq. (10). Figure 27 displays the number of landmarks required to

map the five data sets for Curve SLAMand SPTAM. In all the applicable

data sets, Curve SLAM requires roughly three orders of magnitude

fewer landmarks to represent the map (see Tables 2–6). Indeed, in

DS1 only 160 control points are used to represent 252 m of a path,

in DS2 only 220 control points are used to represent 375 m of a path,

in DS3 only 348 control points are used to represent 603 m of a path,

in DS4 only 92 control points are used to represent 230 m of a path,

and in DS5 only 96 control points are used to represent 435 m of a

path.

5.4 Calibration and parameter selection

While obtaining the experimental data in this paper, we found the

stereo camera to be incredibly sensitive to small disturbances, mostly

due to vibrations. Thus, we find it helpful to emphasize that our stereo
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F IGURE 24 Attitude and body-frame velocity estimates of Curve SLAM and SPTAM along with the corresponding ground truth for DS3

F IGURE 25 Attitude and body-frame velocity estimates of Curve SLAM and SPTAM along with the corresponding ground truth for DS4

camera and IMU had a precision mounted case that was specifically

created to prevent disturbances from disrupting the calibration. Addi-

tionally, stereo images on our sensor platformwere time-synchronized

within nanoseconds of each other using an external hardware trig-

ger. Furthermore, to enhance the accuracy of the sensor system, we

calibrated the stereo camera to the IMU immediately following data

collection.

Throughout this paper, we described various parameters. We

now describe how to select these parameters. To calculate 𝐕r , we

apply the method in Ref. 46. To do so, we first estimate the error

variance 𝜎2:

𝜎2 =
∑

o∈{L,R}
∑m

j=1
∑n

i=1 ||𝐲i − 𝐲̂(𝜷))||2
d𝜷

,
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F IGURE 26 Attitude and body-frame velocity estimates of Curve SLAM and SPTAM along with the corresponding ground truth for DS5

F IGURE 27 The number of curves (Curve SLAM) and points (SPTAM) required to represent themap as a function of time for the five data sets

where d𝜷 is the number of degrees of freedom for error in the param-

eter vector 𝜷 . An estimate of the parameter covariance 𝐕r = Var(𝜷) is
given by

𝐕r = 𝜎2(𝐉⊤𝐉)−1,

where 𝐉 is the Jacobian of 𝐲̂with respect to 𝜷 , i.e., 𝐉 = 𝜕𝐲̂(𝜷)
𝜕𝜷

.

The process noise covariance matrix 𝐖 is calculated with the

method in Ref. 53, where the noise characteristics of the IMU are

obtained directly from the manufacturer's data sheet: http://www.

novatel.com/assets/Documents/Papers/SPAN-IGM-A1-PS.pdf.The

work

The above calculations for𝐖 and 𝐕r provide a good starting point

for tuning𝐖 and 𝐕r . It is important to note that minor hand-tuning of

𝐖 and𝐕rwas requiredoffline toobtain the results in this section.How-

ever, this hand-tuning was only required for DS1 and DS5. The filter

gains for DS5 are different from the other data sets because DS5 used

http://www.novatel.com/assets/Documents/Papers/SPAN-IGM-A1-PS.pdf
http://www.novatel.com/assets/Documents/Papers/SPAN-IGM-A1-PS.pdf
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F IGURE 28 Localization results plotted in googlemaps for DS1. The
estimated trajectory of Curve SLAM is plotted in dashed blue, the esti-
mated trajectory of OKVIS is plotted in dashed purple, and the ground
truth trajectory of the stereo camera is plotted in red. The estimated
trajectory of SPTAM is not visible because the setting lacks distinguish-
able feature points, and SPTAM failed to track a sufficient number of
feature points in this environment. The start point of the GPS track is
markedwith anX.DS1was collected at dawnunder clearweather con-
ditions. The experiment lasted roughly 138.5 s. During this time, our
sensors traveled approximately 252.2m

a completely different sensor platform (DS5 is a sequence taken from

theKITTI data set). The filter gains forDS2, DS3, andDS4 are the same

as DS1.

For the initial error covariancematrix P, we initialize the robot pose

block as Prp,rp = 09×9. Likewise, the initial error covariance between a

control point and robot pose is initialized to zero, i.e., Prp,jp = 09×3. The

error covariance between curve control points are initialized to the ini-

tial value of themeasurement covariance𝐕0.

In the initial frame, we obtain a parameter estimate of 𝜷 for

use in the Levenberg-Marquardt algorithm in four steps. First, we

extract the path boundary. Second, we add curves in the image plane

as described in Section 4.2. Third, we match curves between the

stereo pair as described in Section 3.2. Fourth, our initial guess for

𝜷 is obtained by triangulating the control points between matched

curves.

In Section 3.1, the size 𝜌n of the average filter window is 𝜌n = 5 × 5.

To extract the boundary of the path, the image was processed in the

hue, saturation, value (HSV) color space. Due to the stark contrast in

hue between the concrete sidewalk and green grass, or the concrete

road and yellow road lane (see Figs. 12–15), there is a range of valid

threshold values. Assuming a normalized image, we set the thresholds

to find the sidewalk or yellow road lane to be between the following

values: Hmin = 0.09, Hmax = 0.5, Smin = 0.15, Smax = 1.0, Vmin = 0, and

F IGURE 29 Localization results plotted in googlemaps for DS2. The
estimated trajectory of Curve SLAM is plotted in dashed blue, the esti-
mated trajectory of OKVIS is plotted in dashed purple, the estimated
trajectory of SPTAM is plotted in dashed yellow, and the ground truth
trajectory of the stereo camera is plotted in red. The start point of the
GPS track is marked with an X. DS2was collected in themidafternoon,
roughly 2 p.m. Part of DS2was collected during a light rainstorm under
cloudy conditions, while the other part of DS2 was collected immedi-
ately following this light rainstormundermostly sunny conditions. DS2
lasted roughly 195.85 s. During this time, our sensors traveled approx-
imately 375m

Vmax = 1 for the hue, saturation, and value channels, respectively, in

DS1-DS3. For DS4, we set the thresholds as Hmin = 0.04,Hmax = 0.26,

Smin = 0.1, Smax = 1.0, Vmin = 0, and Vmax = 1. The size 𝜌t of the tem-

plate used to match and refine the location of curves in Section 3.2 is

set as 𝜌t = 15 × 15 for the left image. In the right image, the size of

the image patch is 17 × 20. We set 𝜌r in Section 3.3 as 𝜌r = 5 pixels.

We set 𝜌s in Section 4.1 as 𝜌s = 100 mm for DS1, DS2, DS3, and DS4,

and 𝜌s = 2.5m in DS5. To calculate the thresholds for theMahalanobis

distance, tests in Section 4.1 are set at 2.5 standard deviations. In Sec-

tion 4.2, we set the size of the image window 𝜌w as 𝜌w = 16 × 16. Ini-

tially, we set 𝜌k to 1.5 pixels. If no corner points are within 1.5 pixels

of the path boundary, we progressively increase 𝜌k from 2.5 to 3.5 pix-

els until a corner point is found. If no corner points are in this range,

we select the initial boundary point as the desired control point. The

Shapiro-Wilk test in Section 4.3 is a parametric hypothesis test of nor-

mality. The null hypotheses is that a parameter is normal with unspec-

ified mean and variance. The significance level we implemented for

the Shapiro-Wilk test is set at 0.05. When the path is not sufficiently

smooth, the Shapiro-Wilk test had a tendency to oversplit the bound-

ary. As described in Section 4.3, we incorporated a threshold parame-

ter 𝜌p to avoid oversplitting the path. While we do not provide a sys-

tematicway of selecting 𝜌p, we tested a range of values for 𝜌p, between



MEIER ET AL. 25

F IGURE 30 Localization results plotted in googlemaps for DS3. The
estimated trajectory of Curve SLAM is plotted in dashed blue, the esti-
mated trajectory of OKVIS is plotted in dashed purple, the estimated
trajectory of SPTAM is plotted in dashed yellow, and the ground truth
trajectory of the stereo camera is plotted in red. The start point of the
GPS track is marked with an X. DS3 was collected about an hour prior
to sunset on a mostly sunny day with clear weather conditions. DS3
lasted roughly 437.55 s. During this time, our sensors traveled approx-
imately 603.4m

2 and 15 pixels, and observed no noticeable effects on the localization

accuracy, and veryminimal effects on themapping results.We set 𝜌p as

𝜌p = 10 pixels.We set d in Section 4.8 as d = 1m.

6 CONCLUSION

In this paper, we presented a SLAM algorithm that uses Bézier curves

as landmark primitives rather than feature points. Our approach

allowed us to create an extremely sparse structured map of the envi-

ronment. We compared our algorithm against SPTAM and OKVIS in

five different settings. In the first three environments, a long wind-

ing sidewalk provided curve landmarks. In the fourth environment,

road lanes provided curve landmarks. In the fifth environment, the

road provided curve landmarks. In the first, third, and fourth locations,

Curve SLAM was more accurate than SPTAM and OKVIS because

it was difficult to track feature points in these environments. In the

second environment, SPTAM and OKVIS were slightly more accurate

than Curve SLAM. This result is expected because point-based fea-

ture detector/extractor tracking algorithms will likely provide a more

robust motion estimate than our tracking algorithm when feature

points are readily available. In this regard, point-based approaches

are not inferior. Indeed, recent point-based SLAM approaches provide

F IGURE 31 Localization results plotted in googlemaps for DS4. The
estimated trajectory of Curve SLAM is plotted in dashed blue, the esti-
mated trajectory of OKVIS is plotted in dashed purple, the estimated
trajectory of SPTAM is plotted in dashed yellow, and the ground truth
trajectory of the stereo camera is plotted in red. The start point of the
GPS track ismarkedwith an X. DS4was collected in themorning hours
undermostly cloudy conditionswith clearweather. DS4 lasted roughly
70 s. During this time, our sensors traveled approximately 230m

precise motion estimates that run in real time over long trajectories.

Curve SLAM can be modified rather easily to include feature points

so that curves and feature points can be used simultaneously to solve

the SLAM problem. However, alternative approaches are required in

order to localize and map settings that lack distinguishable feature

points and to provide compact, structured maps of the environment.

In all five environments, Curve SLAM required fewer landmarks com-

pared to SPTAM and OKVIS. In fact, in our experimental evaluations,

we observed that Curve SLAM was able to reduce the required num-

ber of landmark features by several orders of magnitude relative to

SPTAM and OKVIS. Future work includes applying our algorithm to

a river setting and solving the place recognition problem when the

appearance of the environment changes drastically, e.g., at different

times of the day, across seasonal changes, or in adverse environmental

conditions.
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F IGURE 32 Localization results plotted in googlemaps for DS5. The
estimated trajectory of Curve SLAM is plotted in dashed blue, the esti-
mated trajectory of OKVIS is plotted in dashed purple, and the ground
truth trajectory of the stereo camera is plotted in red. The start point
of the GPS track is marked with an X. DS5 contains a sequence of data
obtained from theKITTI data set, and itwas collectedunder sunny con-
ditions. This sequencewas selecteddue to thepresenceof curves in the
environment and the number of occlusions covering the road

F IGURE 33 Mapping results plotted in google maps for DS1. The
mapping results display the reduced number of curves required to esti-
mate the sidewalk. Red points denote the start and end points of curve
segments, The blue plot represents the location of curves interpolated
with the estimated control points

F IGURE 34 Mapping results plotted in google maps for DS2. The
mapping results display the reduced number of curves required to esti-
mate the sidewalk. Red points denote the start and end points of curve
segments. The blue plot represents the location of curves interpolated
with the estimated control points

F IGURE 35 Mapping results plotted in google maps for DS3. The
mapping results display the reduced number of curves required to esti-
mate the sidewalk. Red points denote the start and end points of curve
segments. The blue plot represents the location of curves interpolated
with the estimated control points
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F IGURE 36 Mapping results plotted in google maps for DS4. The
mapping results display the reduced number of curves required to esti-
mate the sidewalk. Yellow points denote the start and end points of
curve segments. The blue plot represents the location of curves inter-
polated with the estimated control points

F IGURE 37 Mapping results plotted in google maps for DS5. The
mapping results display the reduced number of curves required to esti-
mate the road. Red points denote the start and end points of curve
segments. The blue plot represents the location of curves interpolated
with the estimated control points
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APPENDIX

Epipolar geometry of curves

Consider a 3D curve 𝐂 that projects to 𝐂L and 𝐂R in the left and right

stereo images; see Figure A1. From the perspective of the left image,

the3D locationof𝐂 couldbeanywherealong the rays thatproject from

the optical center 𝐎L of the camera passing through the image plane

of 𝐂L to form the points comprising 𝐂. With a curve correspondence

between the left and right images, the 3D curve lies at the intersection

of the rays that project from the optical center of each camera. Thus,

we can estimate the 3D location of𝐂.
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F IGURE A1 A polynomial curve projected to a stereo image pair

We can prove, under certain assumptions, that the preimage of two

image curves is itself a curve in world coordinates. This proof is out-

lined below.

Proof of curve reconstruction

For this proof, we make the assumption that for a specific curve in ℝ3,

the map f : ℝ3 → ℝ2 projecting the curve to an image is an isomor-

phism. This assumption only implies that the curve is fully observed in

both images (i.e., a curve should not lose information and appear as a

point or line when projected to the image).

Background:

For a smooth map between manifolds given by f : X → Y, y ∈ Y is a

regular value of f if ∀ x ∈ f−1(y), dfx : TxX → TyY is subjective. Here, TxX

and TyY are the tangent spaces of X and Y at points x and y.

The Preimage Theorem:

If f : X → Y is a smooth map, and y ∈ Y is a regular value of f, then

M = {x : x ∈ f−1(y)} is a submanifold of X, and the codimension ofM in

X is equal to the dimension of Y.

Proposition 1:. Given a stereo image frame, and a curve observed in each

image, the preimage is itself a curve in the world frame.

Proof. We can define a curve in the left image as fL(uL, vL) = 0. Under nor-

malized perspective projection, uL = x∕z and vL = y∕z. So, we can express

this curve as fL(x∕z, y∕z) = 0, fL : ℝ3 → ℝ1.

Then, the inverse image of 0 is given by

ML = {(x, y, z) ∈ ℝ3 ∣ fL(x∕z, y∕z) = 0}

and using the Preimage Theorem,ML is a manifold inℝ3 with codimen-

sion 1. Thus, ML is a 2-manifold, which can be represented in implicit

form by the set

ML = {(x, y, z) ∈ ℝ3 ∣ FL(x, y, z) = 0}.

Similarly, if we define the curve in the right image as fR(ur, vr) = 0,

using a similar argument the inverse image of 0 in the right image is

also a 2-manifold given by

MR = {(x, y, z) ∈ ℝ3 ∣ FR(x, y, z) = 0}.

Consider now the function F : ℝ3 → ℝ2 given by

F(x, y, z) =

[
FL(x, y, z)
FR(x, y, z)

]
.

The inverse imageMof the stereo imagecurves is the intersectionof

the two surfacesML andMR, or the set of points for which FL = FR = 0:

M = {(x, y, z) ∈ ℝ3 ∣ F(x, y, z) = 𝟎].

Since in this case F : ℝ3 → ℝ2, we can conclude using the Preim-

age Theorem that the inverse image of the point [0,0]T will

be a manifold of codimension 2 in ℝ3 (i.e., a 1-manifold, or a

curve).


