
Vision-based Localization and Robot-centric Mapping
in Riverine Environments

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Junho Yang
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
e-mail: yang125@illinois.edu
Ashwin Dani
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
e-mail: adani@illinois.edu
Soon-Jo Chung
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
e-mail: sjchung@illinois.edu
Seth Hutchinson
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
e-mail: seth@illinois.edu

Received 2 May 2014; accepted 28 April 2015

This paper presents a vision-based localization and mapping algorithm developed for an unmanned aerial
vehicle (UAV) that can operate in a riverine environment. Our algorithm estimates the three-dimensional
positions of point features along a river and the pose of the UAV. By detecting features surrounding a river
and the corresponding reflections on the water’s surface, we can exploit multiple-view geometry to enhance
the observability of the estimation system. We use a robot-centric mapping framework to further improve the
observability of the estimation system while reducing the computational burden. We analyze the performance
of the proposed algorithm with numerical simulations and demonstrate its effectiveness through experiments
with data from Crystal Lake Park in Urbana, Illinois. We also draw a comparison to existing approaches. Our
experimental platform is equipped with a lightweight monocular camera, an inertial measurement unit, a
magnetometer, an altimeter, and an onboard computer. To our knowledge, this is the first result that exploits
the reflections of features in a riverine environment for localization and mapping. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Recent advances in navigation technologies using onboard
local sensing modalities are enabling intelligence, surveil-
lance, and reconnaissance (ISR) missions by unmanned
aerial vehicles (UAVs) in a range of diverse environments
(Bachrach et al., 2012; Bryson & Sukkarieh, 2007; Chowd-
hary, Johnson, Magree, Wu, & Shein, 2013; Doitsidis et al.,
2012; Weiss et al., 2013) where a GPS signal is intermittent or
unavailable. Our goal in this research is to further expand
the scope of future ISR missions by developing a localiza-
tion and mapping algorithm particularly for a riverine en-
vironment. Navigating a UAV in a riverine environment is
challenging due to the limited power and payload of a UAV.
We present a localization and mapping algorithm that uses
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a lightweight monocular camera, an inertial measurement
unit (IMU) integrated with a magnetometer, and an altime-
ter, which are typically available onboard for the autopilot
control of a UAV.

A primary contribution of this work is to exploit a
multiple-view geometry formulation with initial and cur-
rent view projection of point features from real objects
surrounding the river and their reflections. The correspon-
dences of the features are used along with the attitude and
altitude information of the UAV to improve the observabil-
ity of the estimation system. If the features observed from
the camera are in distant range while the UAV is navigating
along the river, neither monocular simultaneous localiza-
tion and mapping (SLAM) methods that do not use reflec-
tions nor stereovision SLAM with limited baseline distance
would provide sufficient information to estimate the trans-
lation of the UAV. Light detection and ranging (LIDAR) sen-
sors that are capable of ranging distant features can weigh
too much for a small UAV. Recently, visual SLAM with an
RGB-D camera (Kerl, Sturm, & Cremers, 2013) has become
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popular due to the dense depth information the sensor can
provide, but the sensor is only functional in indoor environ-
ments where there is not much interference of sunlight.

Another contribution of our work is to use a robot-
centric mapping framework concurrently with world-
centric localization of the UAV. We exploit the differential
equation of motion of the normalized pixel coordinates of
each point feature in the UAV body frame in contrast with
prior work using robot-centric SLAM, which estimates both
the world frame and the features with respect to the robot’s
current pose indirectly through a composition stage. In this
paper, we demonstrate that the observability of the estima-
tion system is improved by applying the proposed robot-
centric mapping strategy.

The rest of this paper is organized as follows. In
Section 2, we provide an overview of related work. In Sec-
tion 3, we describe our experimental platform and explain
our motion models of both the UAV and the robot-centric
estimates of point features. We also present our measure-
ment model, which includes reflection measurements. In
Section 4, we formulate an extended Kalman filter (EKF)
estimator for UAV localization and point feature mapping.
In Section 5, we analyze the observability of our estimation
system under various conditions and show the advantage
of our method. In Section 6, we validate the performance of
our algorithm with numerical simulation results. In Section
7, we show experimental results of our monocular vision-
based localization and mapping algorithm at Crystal Lake
Park in Urbana, Illinois. In Section 8, we summarize our
work with concluding remarks.

2. RELATED WORK

The problem of navigating a vehicle in an unknown envi-
ronment with local measurements can be addressed by pro-
gressively constructing a map of the surroundings while
localizing the vehicle within the map, a process known as
SLAM (Bailey & Durrant-Whyte, 2006; Choset et al., 2005;
Durrant-Whyte & Bailey, 2006). In Scherer et al. (2012), a
navigation algorithm particularly suited for riverine en-
vironments is presented. A graph-based state estimation
framework (Rehder, Gupta, Nuske, & Singh, 2012) is used
to estimate the vehicle’s state with vision and limited GPS.
The river is mapped with a self-supervised river detection
algorithm, and the obstacles are mapped with a LIDAR sen-
sor. Autonomous flight in a riverine environment has also
been demonstrated recently (Jain et al., 2013). Our prior
work (Yang, Rao, Chung, & Hutchinson, 2011) presents a
monocular vision-based SLAM algorithm that uses a planar
ground assumption for riverine environments. In Leedek-
erken, Fallon, & Leonard (2010), a submapping approach is
adopted to address the SLAM problem with an autonomous
surface-craft that builds a map above and below the wa-
ter’s surface. Sonar is used for subsurface mapping while
a LIDAR sensor, a camera, and a radar system are used

for terrestrial mapping to account for degradation of GPS
measurements. In Fallon, Papadopoulos, Leonard, & Pa-
trikalakis (2010), a surface-craft equipped with an acoustic
modem is used to support localization of autonomous un-
derwater vehicles. A departure from point-feature based
SLAM is reported using higher-level features represented
by Bézier curves as stereo vision primitives (Rao, Chung, &
Hutchinson, 2012) or tracking the image moments of region
features (Dani, Panahandeh, Chung, & Hutchinson, 2013)
with a new stochastic nonlinear estimator (Dani, Chung, &
Hutchinson, 2015).

We employ a monocular camera as our primary sensor
to solve six-degree-of-freedom (DOF) SLAM, but monoc-
ular vision presents a challenge because the distance to a
feature cannot be directly estimated from a single image. In
Davison, Reid, Molton, & Stasse (2007), a monocular vision-
based SLAM problem is solved by sequentially updating
measurements from different locations. The map is updated
with new features after the camera moves sufficiently. In-
stead of estimating the Cartesian coordinates of features
in the world reference frame, some recent work (Ceriani,
Marzorati, Matteucci, Migliore, & Sorrenti, 2011; Civera,
Davison, & Montiel, 2008; Sola, Vidal-Calleja, Civera, &
Montiel, 2012) defines the locations of the moving cam-
era (anchor locations) where the point features are first ob-
served. The point features are parametrized using these an-
chor locations, the direction of each feature with respect to
the world reference frame, and the distance between the
feature and the anchor. Such methods reduce accumulation
of the linearization errors by representing the uncertainty of
the features with respect to a close-by anchor location. The
inverse-depth parametrization (IDP) is used to alleviate the
nonlinearity of the measurement model and introduce new
features to the map immediately. The inverse-depth method
ameliorates the known problem of the EKF-based monovi-
sion SLAM (Sola et al., 2012), which often appears when the
features are estimated in Cartesian coordinates. We shall
compare our localization and mapping approach with the
anchored IDP method in this work.

The computational issues of EKF-based SLAM are ad-
dressed by keyframe-based optimization (Forster, Pizzoli,
& Scaramuzza, 2014; Kaess et al., 2012; Kim, & Eustice,
2013; Klein & Murray, 2007; Leutenegger et al., 2013; Stras-
dat, Montiel, & Davison, 2010) and submapping (Clemente,
Davison, Reid, Neira, & Tardós, 2007; Leedekerken et al.,
2010). Keyframe-based methods select a small number of
frames and solve the bundle adjustment problem (Strasdat
et al., 2010) with multiple views. In this work, we consider
the dynamics of the vehicle with an estimation filter and
apply multiple-view measurements that include the initial
view, current view, and reflection view of features in or-
der to improve the observability of the estimation system.
In keyframe-based optimization research, parallel tracking
and mapping (PTAM) (Klein & Murray, 2007) achieves real-
time processing by separating the tracking of the camera
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and mapping of the environment into two parallel tasks.
The UAV navigation (Weiss, Scaramuzza, & Siegwart, 2011;
Weiss et al., 2013) and surveillance (Doitsidis et al., 2012)
problems are addressed based on the PTAM method. In
Mourikis & Roumeliotis (2007), the multistate constraint
Kalman filter (MSC-KF) adds the estimate of the camera
pose to the state vector every time a new image is received
and gains optimality up to linearization errors without in-
cluding the feature estimates in the state vector. The history
of the camera pose is truncated from the estimation state
vector after it reaches the maximum allowable number.

The observability problems of vision-aided inertial
navigation systems (VINSs) (Hesch, Kottas, Bowman, &
Roumeliotis, 2014; Kelly & Sukhatme, 2011; Martinelli, 2014;
Weiss et al., 2013) and SLAM (Bryson & Sukkarieh, 2008;
Huang, Mourikis, & Roumeliotis, 2010; Lee, Wijesoma, &
Guzman, 2006) have been studied in the literature. In gen-
eral, a priori knowledge of the position of a set of features
in the map is required for the system to be observable.
The three-dimensional (3D) location of the robot and its
orientation with respect to the gravity vector in the world
frame (e.g., heading angle) are the unobservable modes of a
world-centric 6-DOF localization and 3D mapping system
that uses a monocular camera and inertial sensors (Hesch
et al., 2014). The MSC-KF (Mourikis & Roumeliotis, 2007)
and the observability constrained EKF (Huang et al., 2010),
which finds a linearization point that can preserve the unob-
servable subspace while minimizing the linearization error,
are applied to a visual-inertial navigation system in Hesch
et al. (2014) to improve the consistency of the estimation.

As stated in Section 1, we present a world-centric lo-
calization and robot-centric mapping system and exploit
multiple views from real point features and their reflections
from the surface of the river to improve the observability
of the estimation system. Observations of known points
through a mirror are used to estimate the 6-DOF pose of
the camera with a maximum-likelihood estimator in Hesch,
Mourikis, & Roumeliotis (2009). In Panahandeh & Jansson
(2011), an approach for estimating the camera intrinsic pa-
rameters as well as the 6-DOF transformation between an
IMU and a camera by using a mirror is proposed. In Mari-
ottini, Scheggi, Morbidi, & Prattichizzo (2012), epipolar ge-
ometry with multiple planar mirrors is used to compute
the location of a camera and reconstruct a 3D scene in an
indoor experimental setup. In contrast, we exploit geomet-
rical constraints from reflection measurements in a natural
environment for localization and mapping.

Robot-centric estimation, as opposed to world-centric
SLAM, is used with different meanings and purposes.
Robot-centric SLAM for both localization and mapping is
introduced in Castellanos, Martinez-cantin, Tardos, & Neira
(2007) and applied to monocular visual odometry in Civera,
Grasa, Davison, & Montiel (2010) and Williams, & Reid
(2010). The method defines the origin on the current robot
frame and estimates both the previous pose of the robot and

the location of the features with respect to the current robot
frame. This scheme reduces the uncertainty in the estimate
and alleviates the linearization error in the EKF. Another
category of robot-centric work (Boberg, Bishop, & Jensfelt,
2009; Haner & Heyden, 2010) estimates the features with
respect to the robot by using a dynamic model with veloc-
ity and angular velocity information without estimating the
pose of the robot and circumvents the observability issue in
SLAM. Nonlinear observers are derived (Dani, Fischer, &
Dixon, 2012; Dixon, Fang, Dawson, & Flynn, 2003; Jankovic
& Ghosh, 1995; Yang, Chung, Hutchinson, Johnson, & Kise,
2013a) for feature tracking and depth estimation, which can
also be viewed as robot-centric mapping with a monocular
camera.

In this paper, we employ a robot-centric feature map-
ping framework for localization and mapping in riverine en-
vironments primarily with a monocular camera. We exploit
the differential equation of motion of the normalized pixel
coordinates of each point feature in the UAV body frame in
contrast with prior work using robot-centric SLAM, which
estimates both the world frame and the features with re-
spect to the current pose of the robot indirectly through a
composition stage. We estimate the state of the robot along
with the features by composing a measurement model with
multiple views of point features surrounding the river and
the reflections on the water’s surface. The observability of
the estimation system is substantially improved as a re-
sult. Our previous work (Yang, Dani, Chung, & Hutchinson,
2013b) showed preliminary results of the localization and
robot-centric mapping by using reflections. In this work,
we analyze the observability of our estimation system un-
der various conditions and validate the effectiveness of our
algorithm through numerical simulations and experiments
in a larger environment. To our knowledge, we report the
first result of exploiting the reflections of features for local-
ization and mapping in a riverine environment.

3. RIVERINE LOCALIZATION AND MAPPING SYSTEM

In this section, we describe the overall architecture of our
riverine localization and mapping algorithm. We present
the motion model for the localization of the UAV and the
robot-centric mapping of point features. We also derive the
measurement model with multiple views of each point fea-
ture and its reflection.

3.1. Overview of The Experimental Platform

Our system estimates features with respect to the UAV body
frame while estimating the location of the UAV in the world
frame. Figure 1 shows the block diagram of our riverine
localization and mapping system. We define our world ref-
erence frame with the projection of the X- and Y-axes of
the UAV body frame on the river surface when the estima-
tion begins. The Z-axis points downward along the gravity
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Figure 1. The block diagram of our riverine localization and mapping system.

Figure 2. Our quadcopter is equipped with a lightweight monocular camera, an IMU, a magnetometer, an altimeter, and a compact
Pico-ITX onboard computer.

vector (see Figure 3). We set the origin of the UAV body
frame on the center of the IMU, which is mounted on the
UAV, and we define the UAV body frame as the coordinate
frame of the IMU. We use onboard sensor readings for the
motion propagation and the measurement update stages
of our EKF estimator in order to simplify the process and
alleviate the nonlinearity of the system.

Figure 2 shows our quadcopter, which contains a
lightweight monocular camera facing forward with a res-
olution of 640 × 480 pixels, a three-axis IMU and a mag-
netometer, an ultrasound/barometric altimeter, and a com-
pact Pico-ITX onboard computer equipped with a 64-bit
VIA Eden X2 dual core processor and a VIA VX900H me-
dia system processor. The distance between the UAV and
the surface of the river is measured with the altimeter. For
the propagation stage of the filter, the motion model of the
UAV is derived to use the IMU and magnetometer readings,
and the motion model of each feature incorporates gyro-
scope measurements. In the measurement update stage, the

measurement model is formulated with multiple views as
follows. We project the features to the camera upon their
first and current observations. The measurement model is
augmented with observations of corresponding reflection
points and the altitude readings of the UAV.

3.2. Dynamic Model

We describe the motion model used for localization of the
UAV in the world reference frame and the estimation of
point features with respect to the UAV body frame.

3.2.1. Dynamic Model for the Riverine Localization and
Mapping

The state vector for our estimation system consists of pw
b ≡

(xw
b , yw

b , zw
b )T ∈ R

3, vb ≡ (v1, v2, v3)T ∈ R
3, bb

a ∈ R
3, qw

b ∈ H,
bb

g ∈ R
3, and xb

i ≡ ((hb
i )T , ρb

i )T ∈ R
3, where pw

b and qw
b are

the location and the attitude quaternion of the UAV’s body
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with respect to the world reference frame, vb is the veloc-
ity of the UAV with respect to the UAV body frame, and
bb

a and bb
g are the bias of the accelerometer and the gyro-

scope. The subscript (or superscript) b denotes the UAV
body frame, and w represents the world reference frame.
The vector xb

i for the ith landmark consists of its nor-
malized coordinates hb

i = (hb
1,i , h

b
2,i)

T = (yb
i /x

b
i , z

b
i /x

b
i )T ∈ R

2

and its inverse-depth ρb
i = 1/xb

i ∈ R
+ from the UAV along

the X-axis of the UAV body frame, where the vector pb
i =

(xb
i , y

b
i , z

b
i )T ∈ R

3 is the Cartesian coordinates of the feature
with respect to the UAV body frame. We get the acceleration
ab = ãb − bb

a ∈ R
3 by subtracting the accelerometer bias bb

a

from the accelerometer readings ãb ∈ R
3, and the angular ve-

locity ωb ≡ (ω1, ω2, ω3)T = ω̃b − bb
g ∈ R

3 by subtracting the
gyroscope bias bb

g from the gyroscope readings ω̃b ∈ R
3 as

shown in Kelly, & Sukhatme (2011).
The dynamic model for our estimation system is given

by

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pw
b

vb

bb
a

qw
b

bb
g

xb
1

...

xb
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R (qw
b ) vb

−[ωb]×vb + ab + RT (qw
b ) gw

0
1
2 �(ωb)qw

b

0

f
(
xb

1, vb, ωb
)

...

f
(
xb

n, vb, ωb
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where (xb
1 · · · xb

n) are the state vectors of n point features, and
gw ∈ R

3 is the gravity vector in the world reference frame.
We shall define the motion model f(xb

i , vb, ωb) of the ith
feature in Section 3.2.2. The skew-symmetric matrix [ωb]× ∈
so(3) is constructed from the angular velocity vector ωb, and
�(ωb) is given by

�(ωb) ≡
(−[ωb]× ωb

− (
ωb

)T 0

)
. (2)

The motion model for each feature xb
i in Eq. (1) requires

the velocity of the UAV in the UAV body frame of refer-
ence, as shall be shown in Eq. (4). Therefore, we employ the
time derivative of the UAV’s velocity, which considers the
acceleration ab and the angular velocity ωb in the UAV body
frame instead of integrating the acceleration aw in the world
reference frame.

3.2.2. Vision Motion Model for the Robot-centric Mapping

We perform robot-centric mapping to generate a 3D point
feature-based map. The method references the point fea-
tures to the UAV body frame and mainly considers the
current motion of the UAV to estimate the position of the
features. We provide the observability analysis of our esti-
mation system in Section 5.

The position of each point feature is first estimated in
the UAV body frame. The dynamics of the ith feature in
Cartesian coordinates is given in Chaumette & Hutchinson
(2006) as follows:

d

dt
pb

i = −[ωb]×pb
i − vb, (3)

where pb
i is the location of the ith feature with respect to

the UAV body frame. We represent the vector pb
i of the fea-

ture with normalized coordinates hb
i ≡ (hb

1,i , h
b
2,i)

T and the
inverse-depth ρb

i . In Dani et al. (2012), a model that consists
of the normalized pixel coordinates hc

i ≡ (hc
1,i , h

c
2,i)

T ∈ R
2

and the inverse depth ρc
i ∈ R

+ of a point feature with re-
spect to the camera coordinate frame is used to estimate
the location of the point, along with the angular velocity
and two of the velocity components of the camera. In this
work, we employ the robot-centric mapping framework and
formulate a system for both localization and mapping. We
derive the dynamics [ẋb

i = f(xb
i , vb, ωb)] of the ith feature ref-

erenced with respect to the UAV body frame from Eq. (3)
as

d

dt

⎛
⎜⎝

hb
1,i

hb
2,i

ρb
i

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

(−v2 + hb
1,iv1

)
ρi + hb

2,iω1 −
(

1 + (
hb

1,i

)2
)

ω3 + hb
1,ih

b
2,iω2

(−v3 + hb
2,iv1

)
ρi − hb

1,iω1 +
(

1 +
(
hb

2,i

)2
)

ω2 − hb
1,ih

b
2,iω3

(−ω3h
b
1,i + ω2h

b
2,i

)
ρb

i + v1
(
ρb

i

)2

⎞
⎟⎟⎟⎟⎟⎠ ,

(4)

where xb
i ≡ ((hb

i )T , ρb
i )T represents the vector of the ith land-

mark from the UAV body frame.
The model in Eq. (4) is similar to the one presented in

Dani et al. (2012), but the model is augmented with the UAV
localization part. We construct the motion model in Eq. (1)
for the localization and mapping by combining the dynamic
model of the UAV and the vision motion model given by
Eq. (4). The estimator that we will present in Section 4 ex-
ploits the motion model given by Eqs. (1) and (4).

3.3. Vision Measurement Model

We describe our vision measurement model for our estima-
tion system. The vision measurements consist of the projec-
tion of each point feature at the first and current observa-
tions and its reflection.

3.3.1. Projected Measurements of Features

We compute the normalized pixel coordinates hc
i of the

ith point feature in the camera coordinate frame with
hc

i = ((xm
i − xm

0 )/λα, (ym
i − ym

0 )/λ)T , where (xm
i , ym

i ) is the
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pixel coordinates of the feature, (xm
0 , ym

0 ) is the coordinates
of the principal point, λ is the focal length of the camera
lens, and α is the ratio of the pixel dimensions (Chaumette &
Hutchinson, 2006). The camera coordinate frame is assigned
with a rightward-pointing X-axis, a downward-pointing Y-
axis, which forms the basis for the image plane, and a Z-
axis perpendicular to the image plane along the optical
axis. Also, the camera coordinate frame has an origin lo-
cated at distance λ behind the image plane. We compute
the unit vector pc

s,i ≡ (xc
s,i , y

c
s,i , z

c
s,i)

T ∈ R
3 to the feature with

respect to the camera coordinate frame from the normal-
ized pixel coordinates hc

i . The subscript s stands for the
unit sphere projection of a vector. We get the unit vector
pb

s,i ≡ (xb
s,i , y

b
s,i , z

b
s,i)

T ∈ R
3 to the feature with respect to the

UAV body frame from pb
s,i = R(qb

c )pc
s,i since the distance

between our IMU and the camera is negligible. Here, qb
c

is the orientation quaternion of the camera with respect
to the UAV body frame, which we get from the IMU-
camera calibration. Note that pb

s,i is a unit sphere pro-
jection of the vector pb

i ≡ (xb
i , y

b
i , z

b
i )T ∈ R

3 of the feature,
which is referenced with respect to the UAV body frame.
We compute the normalized coordinates hb

i ≡ (hb
1,i , h

b
2,i)

T =
(yb

i /x
b
i , z

b
i /x

b
i )T = (yb

s,i/x
b
s,i , z

b
s,i/x

b
s,i)

T of the ith feature in the
UAV body frame with the elements of the unit vector pb

s,i .
We define pw

bi ∈ R
3 and qw

bi ∈ H as the location and the
attitude quaternion of the UAV when the estimator first
incorporates the ith feature to the state vector. The cur-
rent location of the UAV with respect to (pw

bi, qw
bi) is given

by pbi
b = RT (qw

bi)(p
w
b − pw

bi) ∈ R
3, and the current attitude

quaternion of the UAV with respect to qw
bi is denoted by

qbi
b ∈ H, where R(qbi

b ) = RT (qw
bi)R(qw

b ). We reference the ith
feature with respect to (pw

bi, qw
bi) as pbi

i ≡ (xbi
i , ybi

i , zbi
i )T ∈ R

3

and express it in terms of the state of the UAV and the feature
itself as

pbi
i = RT (qw

bi) (pw
b − pw

bi) + RT (qw
bi)R(qw

b )pb
i , (5)

where the vector pb
i of the feature with respect to the

UAV body frame is given by pb
i = (1/ρb

i , h
b
1,i/ρ

b
i , h

b
2,i/ρ

b
i )T .

We include the initial normalized coordinates hbi
i =

(ybi
i /xbi

i , zbi
i /xbi

i )T ∈ R
2 of the ith feature in the measurement

vector and exploit multiple views, as shall be seen in Section
4.2. The initial normalized coordinates hbi

i define a constant
vector that is identical to the normalized coordinates hb

i of
the ith feature upon its first observation.

3.3.2. Measurements of Reflections of Features

Reflection of the surrounding environment is an impor-
tant aspect of riverine environments. We express the re-
flection of the ith point feature pw

i that we measure with
the camera as pb

r,i ≡ (xb
r,i , y

b
r,i , z

b
r,i)

T ∈ R
3 in the UAV body

frame, and we define a mirrored point as p̃w
i = Spw

i ∈ R
3,

where S = I − 2nnT ∈ R
3×3 is the householder transforma-

tion matrix that describes a reflection about a plane and
n = (0, 0, 1)T (Hesch et al., 2009). The point feature pw

i in the
world reference frame is symmetric to its mirrored point in
the world reference frame p̃w

i with respect to the river sur-
face. We define the X-Y plane of the world reference frame
as the river surface, as shown in Figure 3.

The measurement of the reflection can be expressed
in terms of a projection of the vector p̃b

i ≡ (x̃b
i , ỹ

b
i , z̃

b
i )T ∈

R
3, which is the position of the mirrored point with re-

spect to the UAV body frame. The equality of the nor-
malized coordinates h̃b

i ≡ (h̃b
1,i , h̃

b
2,i)

T = (ỹb
i /x̃

b
i , z̃

b
i /x̃

b
i )T =

(yb
r,i/x

b
r,i , z

b
r,i/x

b
r,i)

T ∈ R
2 holds, where (ỹb

i /x̃
b
i , z̃

b
i /x̃

b
i )T is the

normalized coordinates of the mirrored point p̃b
i , and

(yb
r,i/x

b
r,i , z

b
r,i/x

b
r,i)

T is the normalized coordinates of the reflec-
tion pb

r,i . The position of the mirrored point with respect to
the world reference frame is p̃w

i = Spw
i = S[pw

b + R(qw
b )pb

i ].
The position of the mirrored point with respect to the UAV
body frame is given by (Hesch et al., 2009)

p̃b
i = RT (qw

b )
[
S

(
pw

b + R(qw
b )pb

i

) − pw
b

]
. (6)

Figure 3 shows an illustration of the projection of the
vector to a point feature pb

i and the vector to its reflection
pb

r,i from the UAV body frame. We include the two-view

Figure 3. Illustration of the vision measurements of a real object and its reflection. The vector pw
i of a point feature from a real

object in the world frame is symmetric to the vector p̃w
i of its mirrored point with respect to the river surface (X-Y plane). The

measurement of the reflection is a camera projection of the vector p̃b
i .
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Algorithm 1 Reflection matching in riverine environments

Input: image data T0 and camera orientation qw
c

Output: normalized pixel coordinates of real objects and their reflections
1. while image data are present do
2. Select good features to track with the Shi and Tomasi method.
3. Select an image patch around each feature and invert the patch vertically.
4. Slide each patch T on the source image T0 and compute the NCC given by Eq. (8).
5. Match each patch T in the source image T0 based on the NCC.
6. Compute the reference slope θ0 and the matching slope θi given by Eq. (9).
7. if |θ0 − θi | > η then
8. Reject the matching result.
9. end if
10. Acquire reflection measurements from the matching results.
11. Track the feature and its reflection with the KLT algorithm.
12. end while

measurements (hb
i , hbi

i ) and the reflection measurement h̃b
i

in the measurement model and enhance the observability
of our estimation system (see Section 5 for the observability
analysis).

3.3.3. Vision-data Processing and Reflection Matching

We implemented an algorithm that matches the points from
the objects around the river to the points from the reflections
in the image by using the normalized correlation coeffi-
cients (NCC) (Scherer et al., 2012). The algorithm discards
false matches by using the UAV’s attitude information. The
pseudocode of the reflection matching algorithm is shown
in Algorithm 1.

The algorithm first selects good features to track by us-
ing Shi and Tomasi’s method (Shi & Tomasi, 1994), which
computes the minimum eigenvalue of the autocorrelation
matrix of the Hessian over a small window in the intensity
image. Algorithm 1 extracts an image patch around each
point feature and inverts the image patch vertically to take
account for the reflection symmetry. We compute the corre-
lation coefficient of the two intensity image patches by

M(x̃m, ỹm) =
50∑

x′=1

50∑
y′=1

[T (x ′, y ′) − T̄ ][T0(x̃m + x ′, ỹm + y ′)

− T̄0], (7)

where T0 is the original intensity image, T is a 50×50 pixels
patch from the image T0, which is vertically inverted, and
T̄ and T̄0 are the means of T and T0. The coordinates of the
pixels that form the patch T are (x ′, y ′), and the coordinates
of the first upper left pixel in the image T0 are (x̃m, ỹm).
The results are normalized to reduce the effects of lighting

differences. The NCC is given by (Haralick & Shapiro, 1993)

N (x̃m, ỹm) = M(x̃m, ỹm)

⎛
⎝ 50∑

x′=1

50∑
y′=1

[T (x ′, y ′) − T̄ ]2

·
50∑

x′=1

50∑
y′=1

[
T0(x̃m + x ′, ỹm + y ′) − T̄0

]2

⎞
⎠

−1/2

.

(8)

Algorithm 1 then finds the corresponding location in
the source image that has the highest NCC. The methods
proposed in Zhang, Guo, & Cao (2010) and Zhong, Liu, Liu,
& Li (2013) could also be considered as cues for reflection
detection.

To reject incorrect matches, we define a reference slope
θ0, which is computed based on the camera orientation,
across the source image. Algorithm 1 computes the reflec-
tion matching slope θi with the pixel coordinates of the
object and its reflection. If the difference between the refer-
ence slope and the matching slope exceeds a threshold η,

the algorithm rejects the matched reflection. The reference
slope θ0 and the matching slope θi are given by

θ0 = atan2
(
yc

s,0 − ỹc
s,0, x

c
s,0 − x̃c

s,0

)
,

θi = atan2 (ym
i − ỹm

i , xm
i − x̃m

i ) , (9)

where (xm
i , ym

i ) are the pixel coordinates of the ith feature,
and (x̃m

i , ỹm
i ) are the coordinates of the candidate for the

reflection of the feature. We compute the unit vector pc
s,0 with

a unit sphere projection of an arbitrary point in the image.
The reflection corresponding to the unit vector pc

s,0 is given
by p̃c

s,0 = (x̃c
s,0, ỹ

c
s,0, z̃

c
s,0)T = RT (qb

c )RT (qw
b )SR(qw

b )R(qb
c )pc

s,0 ∈
R

3 in the camera frame.
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Figure 4 shows an example of matching real objects
and their reflections at Crystal Lake. The algorithm tracks
the center of the inverted image patch and its matched im-
age patch over the sequence of image data with the pyra-
mid KLT tracking algorithm (Bradski & Kaehler, 2008). The
KLT algorithm solves an optical flow equation by the least-
squares criterion while assuming that the flow is locally
constant. We assume that the UAV does not perform acro-
batic maneuvers, so the pixel coordinates of real objects lie
above their reflections in the image.

4. EKF ESTIMATOR

In this section, we formulate a discrete-time EKF (Reif,
Gunther, Yaz, & Unbehauen, 1999) to estimate the loca-
tion p̂w

b ∈ R
3 of the UAV in the world reference frame;

the velocity v̂b ≡ (v̂1, v̂2, v̂3)T ∈ R
3 of the UAV, accelerom-

eter bias b̂b
a ∈ R

3, and each vector of the ith point feature
x̂b

i ≡ (ĥb
1,i , ĥ

b
2,i ρ̂

b
i )T ∈ R

3 with respect to the UAV body frame,
where the hat operator ˆ(.) indicates an estimated value.

4.1. Motion Propagation

Let us denote the reduced-order state estimate by μ ≡
((p̂w

b )T , (v̂b)T , (b̂b
a)T , (x̂b

1:n)T )T ∈ R
9+3n, where x̂b

1:n denotes n

features. We denote the predicted state estimate by μk at
time-step k and the corrected state estimate after the mea-
surement update by μ+

k in discrete time. We denote the
estimate covariance by 	k ∈ R

(9+3n)×(9+3n) at time-step k. The
state estimate of the UAV is propagated through the dy-
namic model based on Eqs. (1) and (4) as follows:

μk = f
(
μ+

k−1, qw
b,k−1, ω

b
k−1, ãb

k−1

)
, (10)

where

f
(
μ+

k−1, qw
b,k−1,ω

b
k−1, ãb

k−1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂w+
b,k−1 + R

(
qw

b,k−1

)
v̂b+

k−1
t

v̂b+
k−1 +

(
−[ωb

k−1]×v̂b+
k−1 + ãb

k−1 − b̂b+
a,k−1 + RT (qw

b,k−1)gw
)


t

b̂b+
a,k−1

x̂b+
1,k−1 + f1

(
μ+

k−1,ω
b
k−1

)

t

...
x̂b+

n,k−1 + fn

(
μ+

k−1,ω
b
k−1

)

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(11)

and

fi

(
μ+

k−1, ω
b
k−1

)
=

⎛
⎜⎜⎜⎜⎜⎝

(−v̂+
2,k−1 + ĥb+

1,i,k−1v̂
+
1,k−1

)
ρ̂b+

i,k−1 + ĥb+
2,i,k−1ω1,k−1 −

(
1 +

(
ĥb+

1,i,k−1

)2)
ω3,k−1 + ĥb+

1,i,k−1ĥ
b+
2,i,k−1ω2,k−1(

−v̂+
3,k−1 + ĥb+

2,i,k−1v̂
+
1,k−1

)
ρ̂b+

i,k−1 − ĥb+
1,i,k−1ω1,k−1 +

(
1 +

(
ĥb+

2,i,k−1

)2)
ω2,k−1 − ĥb+

1,i,k−1ĥ
b+
2,i,k−1ω3,k−1(

− ω3,k−1ĥ
b+
1,i,k−1 + ω2,k−1ĥ

b+
2,i,k−1

)
ρ̂b+

i,k−1 + v̂+
1,k−1

(
ρ̂b+

i,k−1

)2

⎞
⎟⎟⎟⎟⎟⎠ . (12)

Here, μ+
k−1 is the state estimate from the previous time-step;

qw
b,k−1 is the attitude quaternion of the UAV, and ãb

k−1 and

ωb
k−1 are the acceleration and the bias free angular velocity

measurements, which are provided by the magnetometer
and the IMU at time-step k − 1.

The covariance matrix is propagated through 	k =
Fk−1	

+
k−1F

T
k−1 + Wk−1, where Fk−1 is the Jacobian of the mo-

tion model f (μ+
k−1, qw

b,k−1,ω
b
k−1, ãb

k−1) in Eq. (11) evaluated
at μ+

k−1, and Wk−1 represents the covariance of the process
noise.

The prediction of the error angle vector δθ̂
w

b ∈ R
3 and

the gyroscope bias error 
b̂b
g = bb

g − b̂b
g ∈ R

3 (Crassidis,
Landis Markley, & Cheng, 2007; Kelly & Sukhatme, 2011)
can be included in Eq. (11) as

δθ̂
w

b,k = δθ̂
w+
b,k−1 −

[([
ω̃b

k−1

]
×

−
[
b̂b+

g,k−1

]
×

)
δθ̂

w+
b,k−1

+ 
b̂b+
g,k−1

]

t,


b̂b
g,k = 
b̂b+

g,k−1, (13)

where ω̃b
k−1 is the gyroscope measurement that includes a

bias bb
g , and b̂b

g,k−1 is the estimate of the gyroscope bias. The
predicted estimate of the attitude quaternion q̂w

b,k is given
by

q̂w
b,k = q̂w+

b,k−1 + 1
2

(
�(ω̃b

k−1) − �(b̂b+
g,k−1)

)
q̂w+

b,k−1
t. (14)

The error angle vector δθ̂
w

b is a minimal representa-
tion derived with a small-angle approximation of the error
quaternion, δq̂w

b = qw
b ⊗ (q̂w

b )−1 (Crassidis et al., 2007; Kelly
& Sukhatme, 2011), where ⊗ denotes quaternion multipli-
cation. For the case of including the attitude in the estima-
tion state vector, the estimate of the UAV’s attitude q̂w

b,k−1

and the angular velocity ω̂b
k−1 ≡ (ω̂1,k−1, ω̂2,k−1, ω̂3,k−1)T =

ω̃b
k−1 − b̂b

g,k−1 should replace qw
b,k−1 and ωb

k−1 in Eqs. (11) and
(12), respectively.

It is possible to include the gyroscope bias error 
b̂b
g

and the error angle vector δθ̂
w

b in the estimation state to
estimate the attitude of the UAV while preserving the nor-
malization constraint of the quaternion if the UAV’s attitude
information is not provided. Reduced-order estimators
are often used (Dani et al., 2012; Dixon, Fang, Dawson, &
Flynn, 2003; Jankovic & Ghosh, 1995) to solve an estimation
problem concisely with directly measurable variables when

it is not necessary to filter the measurements. We simplify
the process and alleviate the nonlinearity of the model by
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Figure 4. The results of reflection feature detection with the reflection matching Algorithm 1. The real objects (red boxes), the
corresponding reflections (green boxes), the matching slope θi (black lines), and the reference slope θ0 (blue line in the middle of
the image) are shown.

acquiring the estimated attitude qw
b of the UAV and the

bias-compensated angular velocity from an IMU and a mag-
netometer and excluding the corresponding state variables
from the estimation state vector.

4.2. Measurement Update

The predicted measurements of our estimation system that
consist of the current view hb

1:n of features, the observation
hb

1:n of the features from the initial feature detection positions
(which we denote as the initial view hbi

1:n), the reflection view
h̃b

1:n of n point features, and the altitude −ẑw
b,k are given by

h(μk, qw
b,k, pw

bi, qw
bi) =

⎛
⎜⎜⎜⎝

hb
1:n(μk)

hbi
1:n(μk, qw

b,k, pw
bi, qw

bi)

h̃b
1:n(μk, qw

b,k)

−ẑw
b,k

⎞
⎟⎟⎟⎠ , (15)

where the altitude −ẑw
b,k is measured by an altimeter. The

current view of the ith point feature is given by

hb
i (μk) = (

ĥb
1,i,k ĥb

2,i,k

)T
. (16)

We transform the measurements hc
i in the camera coor-

dinate frame to hb
i in the UAV body frame as we described

in Section 3.3.1.
The initial view of the ith point feature is given by

hbi
i (μk, qw

b,k, pw
bi, qw

bi) = (
ŷbi

i,k/x̂
bi
i,k ẑbi

i,k/x̂
bi
i,k

)T
, (17)

where p̂bi
i,k = (x̂bi

i,k, ŷ
bi
i,k, ẑ

bi
i,k)T = RT (qw

bi)(x̂
w
b,k − x̂w

bi) + RT (qw
bi)

R(qw
b,k)p̂b

i,k [which is given by Eq. (5)] is the estimated posi-
tion of the feature with respect to (pw

bi, qw
bi). The estimated

location pw
bi = p̂w

b,ki
and the filtered attitude qw

bi of the UAV
are stored at time-step ki when the ith feature is first mea-
sured. On the other hand, p̂b

i,k = (1/ρ̂b
i,k, ĥ

b
1,i,k/ρ̂

b
i,k, ĥ

b
2,i,k/ρ̂

b
i,k)T

is the estimated position of the feature with respect to the
UAV body frame at the current time-step k.

The current view h̃b
1:n(μk, qw

b,k) of a reflection of the ith
feature is given by

h̃b
i (μk, qw

b,k) =
(

ˆ̃xb
i,k/ ˆ̃zb

i,k
ˆ̃yb

i,k/ ˆ̃zb
i,k

)T

, (18)

where ˆ̃pb

i,k ≡ ( ˆ̃xb

i , ˆ̃yb

i , ˆ̃zb

i )T = RT (qw
b,k){S[p̂w

b,k + R(qw
b,k)p̂b

i,k] −
p̂w

b,k} [which is given by Eq. (6)] is the estimated position
of the mirrored point of the ith feature with respect to the
current UAV body frame (see Figure 3).

The state estimate and the estimate covariance are up-
dated with vision measurements by

μ+
k = μk + Kk

(
zk − h

(
μk, qw

b,k, pw
bi, qw

bi

))
,

	+
k = 	k − KkHk	k, (19)

where the Kalman gain is given by Kk = 	kH
T
k (Hk	kH

T
k +

Vk)−1. Here, zk is the measurement vector at time-step k, Hk

is the Jacobian of the measurement model h(μk, qw
b,k, pw

bi, qw
bi)

in Eq. (15) evaluated at μk , and Vk is the covariance of the
measurement noise.

If we include the error angle vector δθ̂
w

b and the gyro-
scope bias 
b̂b

g in Eq. (11), the estimate of the UAV’s attitude
and the gyroscope bias can be updated by

q̂w+
b,k = q̂w

b,k + 1
2
�

(
δθ̂

w+
b,k

)
q̂w

b,k,

b̂b+
g,k = b̂b

g,k + 
b̂b+
g,k, (20)

where (q̂w
b,k, b̂b

g,k) are the predicted estimates of the attitude

and the gyroscope bias, and (δθ̂
w+
b,k ,
b̂b+

g,k) are the updated
error angle vector and the gyroscope bias error.
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4.3. World Reference Frame Representation

The motion model in Eq. (11) includes the dynamics of each
feature in the UAV body frame. By using this robot-centric
approach, we are able to estimate the position of each point
feature with respect to the UAV body frame and enhance the
observability of the estimation system, as shall be shown in
Section 5. After the measurement update of each EKF cycle,
we express the estimates of the point features with respect
to the world reference frame as follows:

p̂w
i,k = p̂w

b,k + R(qw
b,k)p̂b

i,k, (21)

where p̂w
b,k is the estimated location of the UAV, p̂b

i,k is the
estimated position of the ith feature, and qw

b,k is the attitude
of the UAV. By representing the estimated p̂w

i,k in the world
reference frame, we are able to generate a map in a global
frame instead of showing the time-varying trajectories of
point features in the UAV body frame. We estimate the vec-
tor x̂b

i,k of the feature that is being measured and discard the
features that go out of sight to maintain the size of the state
vector, thereby reducing the computational load.

5. OBSERVABILITY ANALYSIS

The observability problem of VINS (Hesch et al., 2014; Kelly
& Sukhatme, 2011; Martinelli, 2014; Weiss et al., 2013) and
SLAM (Bryson & Sukkarieh, 2008; Huang et al., 2010; Lee
et al., 2006) have been studied in the literature. It has been
shown that VINS and SLAM require a priori knowledge of
the position of a set of features in the map in order to make
the system observable. In Section 3, we presented an estima-
tion system for world-centric localization and robot-centric
mapping, which includes water reflections and feature point
locations referenced to initial-view robot positions. In this
section, we analyze the observability property of the esti-
mation system under various conditions.

5.1. Methods of Observability Analysis

First, we state the definition of the observability. A system is
observable if there exists t0 ≤ tf such that the state x0 of the
system at time t0 can be determined from the knowledge
of the system’s output over the interval [t0, tf ] (Franklin,
Powell, & Emami-Naeini, 2001). Here, x0 is the state vector
at time t0. Observability implies that the current state of the
system can be determined from the present and past output
measurements and input commands.

In Hermann & Krener (1977), the observability of non-
linear systems is categorized to be observable, locally ob-
servable, weakly observable, and locally weakly observable.
Local weak observability is defined in Hermann & Krener
(1977) as follows:

Definition 1. (Local weak observability): A system is locally
weakly observable at x0 if there exists an open neighborhood U of
x0 such that for every open neighborhood V of x0 contained in U ,
x0 is distinguishable from any other point in V .

The local weak observability from Definition 1 im-
plies that we can instantaneously distinguish (Hermann
& Krener, 1977) each state from its neighbors. In Huang
et al. (2010), it is stated that if the nonlinear system is not
locally weakly observable, the linearized system can gain
spurious information along the unobservable direction and
degrade the performance. Therefore, we first check the lo-
cal weak observability of our estimation system and verify
the role of the measurements included in Eq. (15). The lo-
cal weak observability can be analyzed with the rank of
the nonlinear observability matrix ONL. We formulate the
nonlinear observability matrix ONL by recursively comput-
ing the Lie derivatives of the measurement function h in
Eq. (15) with respect to the affine form of the dynamic func-
tion f = f0 + f1ab + f2ω

b presented in Eqs. (11) and (12) as
shown in Kelly, & Sukhatme (2011). The nonlinear observ-
ability matrix is given by

ONL = ∇
(

(L0h)T
(
L1

f0
h
)T

· · ·
(
L

γ

f0f1f2
h
)T

· · ·
)T

, (22)

where ∇ is the gradient operator with respect to our state,
L0h = h, L

γ

f0
h = ∇Lγ−1h · f0 for the γ th-order Lie deriva-

tive, and L
γ

f0f1f2
h = ∇L

γ−1
f1f2

h · f0 for mixed Lie derivatives.

5.2. Observability Analysis of the System

We analyze the observability of our estimation system and
show the advantage of employing the measurement model
given by Eq. (15) along with the motion model of our
reduced-order system given by Eqs. (11) and (12). We con-
sider situations in which we do not acquire the reflection
measurement, the initial view measurement, which is the
observation of a feature from the initial feature detection lo-
cation, and the altitude measurement to show the necessity
of each type of measurements.

5.2.1. Observability with Current View, Initial View,
Reflection, and Altitude Measurements

The nonlinear observability matrix ONL for our estimation
system given by Eqs. (11) and (15) satisfies the observability
rank condition. The linear observability matrix for our esti-
mation system also satisfies the rank condition. Therefore,
the nonlinear system is locally weakly observable, and the
linearized model computed for the EKF estimator is com-
pletely observable. The reflection measurements h̃b

1:n allow
the observability results to hold even if a single feature is
measured without any a priori knowledge of the feature’s
position and the UAV is stationary without any motion
parallax provided for the feature. The multiple measure-
ments in the model given by Eq. (15) provide sufficient con-
straints with the information from the motion model given
by Eqs. (11) and (12).
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5.2.2. Observability with Only Current View Measurements

We consider the case in which the altitude −zw
b measurement

is not available, and the reflection view h̃b
i and the initial

view hbi
i measurements are not used in order to show the

role of these measurements. If we only include the current
view hb

i of a single feature to the measurement function and
omit the rest, the null space of the nonlinear observability
matrix can be found as

span

⎛
⎜⎝

I3×3 03×3 03×3 03×2 03×1

01×3 −
(
vb

)T

ρb
i

−
(
bb

a

)T + gT R(qw
b )

ρb
i

01×2 1

⎞
⎟⎠

T

,

(23)

where the state vector of the reduced-order system is com-
posed of (pw

b , vb, bb
a, xb

i ). Note that the same state vector is
used in this section except for Eq. (24). We treat the atti-
tude quaternion qw

b of the UAV as a known vector since we
acquire the estimate of the UAV’s attitude from the IMU
and the magnetometer. The null space shows the unobserv-
able modes. The location of the UAV is unobservable. Also,
the velocity of the UAV, the bias of the accelerometer, and
the inverse-depth of the feature constitute the unobservable
modes. The normalized coordinates (hb

1,i , h
b
2,i) of the feature,

which are directly measured, are observable.
It is known that the monocular-vision SLAM with IMU

measurements is also unobservable when the position pw
i =

(xw
i , yw

i , zw
i )T ∈ R

3 of the feature is estimated with respect to
the world reference frame. The null space of the nonlinear
observability matrix for the visual-inertial SLAM with a
single feature prescribed in the world frame is given as

span

(
I3×3 03×3 03×3 I3×3

−gT [pw
b ]T× −gT [vw

b ]T× 03×3 −gT [pw
i ]T×

)T

, (24)

where the state vector of the reduced-order system is com-
posed of (pw

b , vb, bb
a, pw

i ).
From Eq. (24), we can see that the relative 3D location

of the robot and the feature location are unobservable. The
location and the velocity of the robot and the position of
the feature also form the unobservable modes for a world-
centric 6-DOF localization and 3D mapping system that uses
a monocular camera and inertial sensors. Furthermore, the
attitude of the UAV along the gravity vector, i.e., yaw, is un-
observable for visual-inertial SLAM if we do not acquire the
attitude information from the IMU and the magnetometer
(Hesch et al., 2014).

5.2.3. Observability with Partial Measurements

If we measure the current view hb
i and the initial view hbi

i

of a single feature but not the reflection h̃b
i and the altitude

−zw
b after the initialization, the null space of the nonlinear

observability matrix can be found as

span

(
(pw

bi − pw
b )T

ρb
i

−
(
vb

)T

ρb
i

−
(
bb + g

)T

ρb
i

01×2 1

)T

.

(25)

For this case, we fixed the attitude of the UAV with R(qw
b ) =

I3×3 for simplicity. The null space shows that the translation
of the UAV from the initial-view position, the velocity of
the UAV, and the bias of the accelerometer constitute the
unobservable modes.

If we employ all the measurements in Eq. (15) except
for the initial view hbi

i of a feature, the null space of the
nonlinear observability matrix ONL can be found as

span
(
I2×3 02×1 02×3 02×3 02×3

)T
. (26)

The null space shows that the location of the UAV is unob-
servable without the initial view hbi

i . The initial view pro-
vides a reference to estimate the translation of the UAV. The
results in Eqs. (23)–(26) show the necessity of employing the
initial view hbi

1:n, the reflection view h̃b
1:n, and the altitude −zw

b

measurements for achieving observability. In Section 5.3, we
will quantify the degree of observability of our estimation
system.

5.3. Degree of Observability

In Section 5.2, we used the observability matrix to analyt-
ically determine whether the system is observable and to
find the unobservable modes. In this section, we quantify
the observability by computing the degree of observability
with the eigenvalues related to the observability Gramian
as given by Krener & Ide (2009). The degree of observabil-
ity indicates how accurate the estimation results are with
noisy measurements. The discrete time-varying observabil-
ity Gramian over a time-step interval [k, k + m] is given by

 � HT
k Hk + F T

k HT
k+1Hk+1Fk + F T

k F T
k+1H

T
k+2Hk+2Fk+1Fk

+ · · · + F T
k · · · F T

k+m−1H
T
k+mHk+mFk+m−1 · · · Fk, (27)

where Fk and Hk are the Jacobian matrices of the dynamic
function given Eqs. (11) and (12) and the measurement func-
tion given by Eq. (15), respectively, at time-step k. The small-
est eigenvalue of 1/2 shows the degree of observability
(Krener & Ide, 2009).

We compare our localization and robot-centric map-
ping system, which exploits the reflection measurements
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Figure 5. The degree of observability of our localization and robot-centric mapping system with reflection measurements and the
anchored IDP SLAM system are shown, where the observability Gramian  is defined in Eq. (27).

as presented in Sections 3 and 4, with a popular localiza-
tion and mapping method that represents the features with
respect to anchors in the world reference frame with the
inverse depth parametrization (IDP) (Ceriani et al., 2011;
Civera et al., 2008; Sola et al., 2012) by providing the an-
chored IDP SLAM method with the UAV’s attitude and
altitude information but without reflection measurements.
The observability Gramian is computed with true state
values for both of the systems in the simulation environ-
ment that shall be shown in Section 6. Figure 5 shows that
our localization and robot-centric mapping system with re-
flection measurements has a larger degree of observability
than the anchored IDP SLAM system, which does not use
reflection measurements. The comparatively large degree of
observability of our localization and robot-centric mapping
system with reflection measurements shows that we can ex-
pect the estimation results from our estimation system to be
more robust to measurement noise than the anchored IDP
SLAM system. We shall demonstrate the superior perfor-
mance of our localization and robot-centric mapping system
with reflection measurements to the anchored IDP SLAM
system in Section 6 with numerical simulation results of the
localization and mapping.

6. NUMERICAL SIMULATIONS

In this section, we present results of numerical simulation
and analyze the performance of our riverine localization
and mapping algorithm. In Section 7, we will present ex-
perimental results using real-world data. Here, we simulate
a riverine environment with a river image (Aroda, 2013)
as shown in Figure 6. A trajectory along the river is de-
fined by a sequence of way points and a potential field-style
algorithm to generate the acceleration and angular velocity

commands and execute a smooth 3D trajectory with roll,
pitch, and yaw motions. Gaussian white noise of standard
deviation σ = 0.01 is added to the acceleration and angu-
lar velocity commands as a disturbance. The UAV travels
418 m along the river for 530 s and extracts 330 point features
from the trees around the river. The features are evenly dis-
tributed along the river 5 m apart from each other along the
latitude and longitude directions. The heights of the features
are distributed with a uniform distribution on the interval
0–30 m. The features that are between 5 and 20 m away
from the camera that has a 90◦ field of view are considered
as visible features. We allow the UAV to always measure
four features at each step, where two of the features have
reflections.

Gaussian white noise of standard deviation σ = 0.01
and 0.001 is added to the acceleration and angular veloc-
ity readings and the attitude and altitude measurements,
respectively. The noise in camera pixel measurements is
simulated as Gaussian white noise of σ = 1 considering a
focal length of λ = 770 pixels. The location estimate of the
UAV is initialized as p̂w

b,0 = (0, 0, zw
b,0)T , where −zw

b,0 ∈ R
+ is

the initial altitude of the UAV over the river. The velocity
estimate of the UAV and the accelerometer bias estimate are
initialized as v̂b

0 = 0 and b̂b
0 = 0, respectively. The ith point

feature for Eq. (12) is initialized as x̂b
i,0 = (hb

1,i,0, h
b
2,i,0, 0.1)T ,

where hb
1,i,0 and hb

2,i,0 are the initial normalized coordinates
of the feature.

Figure 6 shows the localization and mapping results
from our localization and robot-centric mapping system
with reflection measurements on the simulated environ-
ment. The simulation results show the time-history of the
location estimate of the UAV converging to the true trajec-
tory of the UAV, and the estimated positions of the features
converging to their true positions. Figure 7 also compares
the estimates of the state variables and their true values.
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Figure 6. Results of the localization and mapping in a simulated riverine environment. The solid blue curve shows the trajectory
of the UAV, and the green dots are the 3D point features extracted from the trees. The dashed red curve is the time-history of the
UAV’s location estimate, and the orange dots are the estimated locations of the features.

The estimation state includes the location and the veloc-
ity of the UAV, the bias of the accelerometer, and the nor-
malized coordinates and the inverse-depth (ρ̂b

i,k = 1/x̂b
i,k) of

the features. The results show that the estimates converge
to their true values. The estimates of the features, which
are shown in Figure 7(d), are in the UAV body frame as
described in Section 3.2.2. We represent the robot-centric
results in the world reference frame as described in Sec-
tion 4.3 and generate mapping results that are shown in
Figure 6.

Figure 8 shows the error between the state estimate and
the true state values of the UAV and the features. The er-
rors converge close to zero, and the 3σ standard deviation
are bounded because our measurements, which consist of
the current view, the initial view, and the reflection view of
each feature, along with the altitude of the UAV, provide
sufficient information for the estimation. The spikes that
appear in the error are due to the impulses in the acceler-
ation, which are generated from the algorithm we used to
define the trajectory of the UAV. Figure 8(d) shows the error
norm of the location and the velocity of the UAV and the
error norm of the inverse-depth of all the features. Our lo-
calization and robot-centric mapping system with reflection
measurements has an average error norm of 0.3113 m for
the location of the UAV, 0.0312 m/s for the velocity of the
UAV, and 0.0029 (1/m) for the inverse depth of the features.
The anchored IDP SLAM system has an average error norm
of 12.9103 m for the location of the UAV, 0.1613 m/s for the

velocity of the UAV, and 0.0419 (1/m) for the inverse depth
of the features. The superior performance of our localization
and robot-centric mapping system with reflection measure-
ments compared to that of the anchored IDP SLAM system
that does not have reflection measurements is related to the
relatively large degree of observability, which is shown in
Section 5.3.

7. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the effectiveness of our algorithm in a real
environment, we conducted experiments at Crystal Lake
Park in Urbana, Illinois (see Figure 9). To evaluate our
method, we present five sets of results.

� We present results obtained using GPS and IMU data to
serve as ground truth.

� To compare our method against existing methods, we
present results obtained using an anchored IDP method
(Ceriani et al., 2011; Civera et al., 2008; Sola et al., 2012).

� To demonstrate the effectiveness of our method, we
present results obtained using reflection measurements,
and that incorporate loop closure.

� To demonstrate the relative performance of our approach
for localization and mapping, we present results for our
method that do not exploit loop closure.

� To illustrate that a short sequences of badly estimated
poses can cause the pose estimates to diverge, we show
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Figure 7. The location estimate of the UAV in the world reference frame, the velocity estimate of the UAV with respect to the UAV
body frame, and the accelerometer bias estimate are shown. The estimates of the point features with respect to the UAV body frame
are also shown.

the results of our method obtained when GPS data are
provided for those sequences.

Below, we describe our experimental methodology,
present the results of our experiments, and discuss factors
that influence the performance.

7.1. Methodology

For all experiments, we flew our quadcopter UAV (de-
scribed in Section 3.1) at Crystal Lake in Urbana, Illinois us-
ing the altitude hold mode of the onboard automatic flight
control system that accepts a radio control pilot input for
heading control. We performed a calibration of all param-
eters of the sensing system, including the camera intrin-
sic parameters [through camera calibration Bouguet (2008)]
and the orientation between the IMU and the camera [with
IMU-camera calibration (Lobo & Dias, 2007)]. We removed

the initial bias in the accelerometer by performing static cal-
ibration of the IMU at the beginning, and the IMU provided
bias-compensated angular velocity. We used the Ublox Lea-
6H GPS module that has an accuracy of 2.5 m, and we used
the position results that are filtered with the inertial naviga-
tion system (INS) for the ground truth.

Figure 10 shows a characteristic set of images taken
from the experimental data acquired at Crystal Lake with
our quadcopter. We detected multiple point features from
the image data automatically with Shi and Tomasi’s method
(Shi & Tomasi, 1994) and found their reflections with Al-
gorithm 1, which we presented in Section 3.3.3. The algo-
rithm tracked the features with the pyramid KLT method
(Bradski & Kaehler, 2008) and sorted outliers with random
sample consensus (RANSAC) (Bradski & Kaehler, 2008) on
consecutive images. Algorithm 1 searched for a new pair
of reflections per frame per core at 10 Hz. The rest of the
estimation algorithm was capable to run at 100 Hz on a
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Figure 8. The estimation errors and the 3σ standard deviation estimates of the location and the velocity of the UAV and the
features are shown. The error norms of the location and the velocity of the UAV and the inverse-depth of all the features are also
shown.

quad-core computer with the features shown in Figures 10
and 11. We simplified the estimation process by estimat-
ing the vector x̂b

i,k of the feature that was being measured
and by discarding the features that left the camera field
of view in order to keep the size of the state vector small
and to reduce the computational load. When an old fea-
ture was removed, a new feature was initialized in its place
in the estimation state vector. We used a fixed number of
features in the estimation for each frame (40 considering
the process speed). Preference was given to features with
matched reflections, and when there were not sufficiently
many of these, features without matching reflections were
used.

We updated the global map with the estimated location
p̂w

i,k of each feature, which is derived from the state estimate
x̂b

i,k of the feature. We initialized the location estimate and

the velocity estimate of the UAV as p̂w
b,0 = (0, 0, −zw

b,0)T and
v̂b

0 = 0, respectively, and the accelerometer bias estimate as
b̂b

0 = 0. We initialized the altitude −zw
b,0 of the UAV over the

water with the measurements from the altimeter.
State-of-the-art SLAM methods (Hesch et al., 2014;

Scherer et al., 2012; Weiss et al., 2013) rely on loop clos-
ing to prevent drift over time. Therefore, we have im-
plemented a simple vision-based algorithm to detect loop
closure, and we incorporated a postprocessing stage to min-
imize the final error between our UAV’s location estimate
and the ground truth. Our algorithm used speeded-up ro-
bust features (SURFs) (Bradski & Kaehler, 2008) to find the
best match between image data that were acquired from
the starting location and from when our UAV quadcopter
revisited the starting point. Then, our algorithm used a
Kalman smoother (Särkkä & Sarmavuori, 2013) to constrain
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Figure 9. We acquired the real-environment data by using our quadcopter UAV (highlighted with a red circle). We flew our
quadcopter UAV at Crystal Lake in Urbana, Illinois using the altitude hold mode of the onboard automatic flight control system.

Figure 10. Feature tracking on image data from Crystal Lake. Feature tracking results (green lines) with the pyramid KLT method
and outliers (red lines) are shown in the first row. Matching of the reflections (green boxes) corresponding to real objects (red boxes)
with Algorithm 1 are shown in the second row.

the two location estimates to coincide and filtered the entire
trajectory.

7.2. Experimental Results

Figure 12 gives a quantitative summary of our results.
Figure 12(a) shows the ground truth (GPS/INS) location
of our quadcopter UAV, the estimated location of our
quadcopter from the anchored IDP SLAM method, our

method of using reflection measurements (without loop
closure), and our method augmented with loop closure
detection. Figure 12(b) shows the estimation errors of the
three aforementioned methods, relative to the GPS/INS
data. Figure 12(c) shows the estimate of the UAV’s velocity.
Figure 12(d) shows the normalized coordinates and the
inverse-depth estimates of the features. In Figure 12(d), the
estimation of old features that move out of sight are reini-
tialized with new features, as we stated in Section 7.1.
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Figure 11. The number of features incorporated in the measurement vector with and without reflection measurements.

Figure 12. The location estimate of the UAV with respect to the world reference frame, and the velocity estimate of the UAV and
the estimates of the point features both with respect to the UAV body frame, are shown. The estimation error of the UAV’s location
relative to the GPS/INS data is also shown.
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Figure 13. The experimental results are overlaid on a satellite image of Crystal Lake provided by Google Maps. The time-history of
the UAV’s location estimate from our robot-centric method with reflections (red) and the anchored IDP method without reflections
(blue) and the position estimate of the features from our method with reflections (orange dots) are shown. The GPS/INS ground
truth trajectory of the UAV (yellow) and the loop closing results with our method using reflections (green) are also shown. The
ending locations are marked with circles.

The estimation results and GPS/INS data are overlaid
on a satellite image of Crystal Lake provided by Google
Maps in Figure 13. According to the GPS data, the quad-
copter traveled approximately 343.48 m for 253 s. The ro-
tation with respect to the gravity direction is unobservable
in a pure visual-inertial navigation system. However, the
sensor package we use compensates the gyro bias and pro-
vides angular rate and attitude estimates by using its gyro-
scope and accelerometer along with a magnetometer, and it
makes the unobservable rotation directly measurable. The
reduced-order state estimator we presented in Section 4 uses
the drift-free attitude information acquired by the IMU and
the magnetometer.

The final error between the GPS data and the esti-
mated location of the UAV was 26.26 m for our localization
and robot-centric mapping system with reflection measure-
ments, 100.36 m for the anchored IDP SLAM method with-
out reflection measurements, and 0.67 m for our method
with loop closing. The average error norm of the UAV’s
location over the entire trajectory was 10.64 m from our lo-
calization and robot-centric mapping system with reflection

measurements and 34.93 m from the anchored IDP SLAM
system without reflection measurements.

7.3. Lessons Learned

As can be seen in both Figures 12(b) and 13, our method
outperforms the anchored IDP method, and incorporating
loop closure provides further improvement. In particular,
the drift along the X-Y plane is reduced when we used our
localization and robot-centric mapping system, which uses
reflection measurements, and it is nearly eliminated when
loop closure is exploited. We believe that the inaccuracies in
the localization results for the anchored IDP method were
due in part to inaccurate estimation of feature depth. Our
method is able to exploit additional geometrical constraints
imposed by using reflection measurements when estimat-
ing the depths of the features and the location of the UAV.
A second advantage for our method is its larger degree of
observability (Section 5).

Even though our method outperformed the anchored
IDP method in real experiments, the difference in perfor-
mance of our method for simulations versus real-world
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Figure 14. The experimental results show that a short sequences of badly estimated poses (blue circles) can cause the pose
estimates to drift (red). The localization result that is obtained when GPS data are provided as measurements to the smoothing
filter around these points is shown as a comparison (green).

experiments raises issues that merit discussion. The most
significant cause for the difference between simulation and
experimental performance is likely tied to the quality of
feature matching, and consequent feature tracking error.
For our simulations, we modeled the error in the vision
measurements with Gaussian noise, but we did not model
incorrect vision measurements caused by mismatch of re-
flections and drift in feature tracking results. In simulations,
features with reflections were always visible to the UAV.
In contrast, for our experiments, there were instances for
which Algorithm 1 was unable to find reflections. This can
be seen in Figure 11(a), which shows that the number of de-
tected reflection features varied significantly over the course
of the experiment. Further, in the experimental data, there
were instances of incorrect feature matching and tracking,
as shown in Figure 10(c).

A secondary factor in the mismatch between simulated
and experimental results is related to the geometry of the
environment. In simulations, features were located between
5 and 20 m away from the UAV, while for our experiments,
the features that were available in the scene were sometimes
significantly more distant. As features become more distant,
the accuracy of our method decreases, and this can be seen
in our experimental results.

Finally, as with all localization and mapping methods,
the incremental nature of the pose estimation process is such
that a short sequence of badly estimated poses can cause the
pose estimates to diverge. This is illustrated in Figure 14. At
the positions indicated by the blue circles, significant pose
estimation error occurred, and from these points onward,
the localization error begins to drift. To more fully illustrate
this, we also show in green the localization result that is
obtained when GPS data are provided as measurements
to a Kalman smoother near these points in the trajectory to
process the GPS data over a sequence of local intervals. This
demonstrates the detrimental consequences of even a small
number of pose estimation errors, and it points to the utility
of our method in situations for which intermittent GPS data
might be available.

8. CONCLUSION

In this paper, we presented a vision-based SLAM algorithm
developed for riverine environments. To our knowledge,
the water reflections of the surrounding features for SLAM
are used for the first time. The performance of our visual
SLAM algorithm has been validated through numerical
simulations. We also demonstrated the effectiveness of our
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algorithm with real-world experiments that we conducted
at Crystal Lake. The numerical simulation results and the
real-environment experimental results show that the accu-
racy in the estimation of the UAV’s location along the X-Y
plane in riverine environments is greatly improved by us-
ing our localization and robot-centric mapping framework
with reflection measurements.

We believe that the water reflections of the surround-
ing features are important aspects of riverine environ-
ments. The localization results of our localization and
robot-centric mapping system with reflection measure-
ments outperformed the anchored IDP SLAM method be-
cause additional geometrical constraints are exploited by
using reflection measurements to estimate the depths of the
features and the location of the UAV. In contrast, without the
geometrical constraints from the reflection measurements,
the anchored IDP SLAM method lacked reliable depth infor-
mation of the features that could improve the performance
of the localization and mapping. The superior performance
of our localization and robot-centric mapping system with
reflection measurements was expected in the experiments
due to its larger degree of observability compared to the
anchored IDP SLAM method.

Future research could extend this work by employing
other sensors and vision techniques. The improved estima-
tion results from sensor fusion approaches could be applied
for autonomous guidance and control of the UAV in a river-
ine environment.
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APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS

The video of our experimental results using Crystal Lake
data is available in the online version of this article.
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