
650 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Path Planning for Permutation-Invariant
Multirobot Formations

Stephen Kloder, Student Member, IEEE, and Seth Hutchinson, Senior Member, IEEE

Abstract—In many multirobot applications, the specific assign-
ment of goal configurations to robots is less important than the
overall behavior of the robot formation. In such cases, it is con-
venient to define a permutation-invariant multirobot formation as
a set of robot configurations, without assigning specific configu-
rations to specific robots. For the case of robots that translate in
the plane, we can represent such a formation by the coefficients of
a complex polynomial whose roots represent the robot configura-
tions. Since these coefficients are invariant with respect to permu-
tation of the roots of the polynomial, they provide an effective rep-
resentation for permutation-invariant formations. In this paper, we
extend this idea to build a full representation of a permutation-in-
variant formation space. We describe the properties of the repre-
sentation, and show how it can be used to construct collision-free
paths for permutation-invariant formations.

Index Terms—Configuration spaces, mobile robots, multirobot
systems, path planning.

I. INTRODUCTION

I N THIS PAPER, we address the problem of planning colli-
sion-free paths for permutation-invariant multirobot forma-

tions. Such formations have the property that there is no specific
a priori assignment of robots to individual tasks. Applications of
permutation-invariant multirobot formations include tasks such
as localization and exploration [1], surveillance and monitoring
[2], search and rescue [3], and object manipulation and trans-
portation [4]–[6].

In this paper we describe a new representation for the config-
uration space of permutation-invariant multirobot formations,
for the specific case of formations of robots that translate in the
plane. We refer to this space simply as the formation space. In
this paper, we are concerned not with the maintaining of forma-
tions or applying transformations over them, but with creating
and changing them. We represent a specific formation by the
coefficients of a complex polynomial whose roots correspond
to the unassigned configurations for the robots in the formation.
These coefficients are invariant with respect to permutation of
the roots, and thus the representation of a formation is invariant
with respect to the assignment of specific configurations to spe-
cific robots.

Manuscript received December 14, 2004. This paper was recommended for
publication by Associate Editor D. Fox and Editor K. Lynch upon evaluation
of the reviewers’ comments. This work was supported in part by the National
Science Foundation under Award CCR-0085917 and IIS-0083275. This paper
was presented in part at the IEEE International Conference on Robotics and
Automation, New Orleans, LA, April 2004, and in part at the IEEE International
Conference on Robotics and Automation, Barcelona, Spain, April 2005.

The authors are with the Beckman Institute of Advanced Science and Tech-
nology, University of Illinois, Urbana, IL 61801 USA (e-mail: kloder@uiuc.
edu; seth@uiuc.edu).

Digital Object Identifier 10.1109/TRO.2006.878952

We use our formation space to plan the collision-free paths
for a collection of robots from their specified initial config-
urations to a set of goal configurations—the goal configura-
tions are not preassigned to specific robots. Collision detection
is performed efficiently by exploiting the invariance of paths
in the formation space with respect to translation, rotation and
scaling operations. Paths are constructed using a simple proba-
bilistic roadmap (PRM) planner whose local planning algorithm
is merely a straight-line planner in the formation space. The path
returned by our algorithm is such that each robot terminates its
motion in one of the configurations from the set of goal config-
urations. Thus, each robot determines its eventual goal by trav-
eling there, not by being assigned it.

Existing methods of formation planning are distinguished
by their level of centralization. In fully centralized methods
[7]–[15], a single planner decides the paths of all robots. In
these methods, generally each robot has a predefined role,
starting position, and goal position. Less centralized are emer-
gent behavior methods [6], [16]–[24], which plan motions by
specifying the relationships between the robots. The robots
move toward the goal while maintaining these relationships.
Most emergent behavior methods also prespecify individual
robot roles, but some, like [25], use only role-independent
relationships. Fully decentralized methods are mostly coverage
methods [26]–[41]. In fully decentralized methods, robots do
not have individual identities or assignments. Rather, the robots
decide their motions based on their current locations, and the
locations of whatever other robots are nearby. Generally, there
is no specific goal configuration; instead robots move until
certain local constraints are met.

Our method uses a single representation for the entire for-
mation. This resembles centralized methods, like [7]–[9], that
use an ordered list of robot configurations as a formation con-
figuration. This has the advantage that any formation can be
represented precisely, so it can be used as a goal formation.
Other centralized and emergent behaviors have this advantage:
[11]–[15] use separate paths for each robot, and [6], [17]–[21],
[23], and [24] use relative positions of the robots to define for-
mations. This is generally not true for less centralized methods;
in general, these methods define their goal formations implicitly
through constraints. For example, [22], [25], and [33] use a po-
tential field to determine if the formation is at a goal. Similarly,
[30]–[32] use a Voronoi diagram to test for a goal formation.
This is a potential limitation; describing formations implicitly
limits the specific types of formations that can be represented,
e.g., to symmetric patterns.

Our method resembles decentralized methods in that each
robot moves without knowing its eventual goal. Each robot uses
its own location and the locations of other robots to determine

1552-3098/$20.00 © 2006 IEEE

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 651

how to move. For example, in [30] and [32], motions are de-
termined based on the Voronoi regions for the robots. Since
Voronoi diagrams are unlabeled, this means the robots will move
without knowing their individual roles. There are also emergent
behavior methods with this property; [25] generates a potential
field in which all robots have equal attractive force. This prop-
erty is generally not present in the more centralized methods de-
scribed above; they either order the robots [7]–[9], [13], assign
a goal to each robot [11], [12], [14], [15], or assign relationships
between the robots [6], [17]–[21], [23], [24]. It is evident that
two significant properties of our method, explicit formation rep-
resentation and permutation invariance, are generally mutually
exclusive in previous work.

This paper includes and extends work we have published pre-
viously. [42] introduces the representation and its properties,
and [43] adds obstacle collision detection and roadmap plan-
ning. This paper collects the previous work while adding a new
path-traversal method, and robot-to-robot collision detection.

The remainder of the paper is organized as follows. In
Section II, we describe more precisely our new representation
of the formation space for permutation-invariant multirobot
formations. In Section III, we propose a simple local planner
for such formations, and investigate some basic invariance
properties of the plans it creates. In Section IV, we describe
how these invariance properties can be used to efficiently
perform collision detection. In Section V, we combine the
local planner and collision detection methods with a PRM
planner to create collision-free paths for permutation-invariant
formations. We discuss potential future work in Section VI, and
give conclusions in Section VII. Various proofs and derivations
are given in the appendices.

II. REPRESENTATION

The configuration space of a labeled multirobot forma-
tion is often represented by an ordered list of configurations,
one for each robot. If there are robots, each with config-
uration space , then the configuration space for the entire
formation would be . However, we are building a config-
uration space for unlabeled formations, which are unaffected
by exchanging two robots. We call this a formation space,
and write , where is the symmetric
group of permutations of elements. In this quotient space,

and are identified with each
other if and only if (iff) they are permutations of each other.
We shall sometimes refer to simply as if is
known. If is a manifold, then is also a manifold, as
its neighborhoods are topologically equivalent to the neighbor-
hoods in .

One way to investigate properties of is to derive
a homeomorphism , where is a
manifold with known properties. This can alternatively be
viewed as where is not a bijection, but is
continuous, onto, invertible, and permutation-invariant, i.e.,

iff is
a permutation of . Now we determine a suitable

and for translating robots in two dimensions.

We represent a single configuration not as , but
as . We can use the complex plane since

, and we choose to do so to take advantage of the larger
set of available operations on complex numbers, as well as the
properties of complex polynomials. This will be clarified below.
Therefore, set , and represent the robots’ workspace ,
the space in which the individual robots move, by the complex
plane . We now define a representation for for any

. The representation we will define is not completely
closed form, but it is well defined and permutation-invariant.

Given a set of values representing the lo-
cations of the robots, define polynomial

. Since complex numbers form a field, this poly-
nomial is unchanged by permuting the -values. Therefore, it
is a suitable representation for permutation-invariant point sets
in the plane. Using to represent , we
write

(1)

in which the coefficients are given by

(2)

The complex coefficients can be used to define a
permutation-invariant formation, or simply a formation. For any
set of configurations , (1) defines a unique
formation . Throughout this paper, we will
refer to sets of robot configurations, like , as configuration
sets, while the -entry vectors like that specify these multi-
robot configurations will be referred to as formations.

Equation (1) defines the mapping to be
. Since the roots of a polynomial vary continuously

as a function of the coefficients, , which is , is a
continuous mapping from a formation to a configuration set.
is a homeomorphism because of what is already known about
complex polynomials.

1) Every complex polynomial of degree has exactly roots
(counting multiple roots multiple times). This is the Funda-
mental Theorem of Algebra. See [44], [45], etc. for proofs.

2) Every polynomial has a unique factorization. This is a di-
rect consequence of (1).

3) The mapping from polynomial coefficients to roots is
continuous in both directions. The fact that is contin-
uous is straightforward. The fact that is continuous is
proven in [46].

Therefore, is homeomorphic to . We thus define
our formation space as , the set of all possible

-tuples of complex polynomial coefficients.
Although is well defined, it has no known closed form

for . Therefore, application of this mapping will require
numerical methods.

652 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

III. A SIMPLE LOCAL PLANNER

Now that we have a suitable representation for unlabeled for-
mations, we can do motion planning for them. To plan mo-
tion with the aid of a configuration space, one would normally:
1) map the initial and goal configurations to the configuration
space; 2) determine a path from start to goal in this configura-
tion space; and 3) map this path back into the workspace. In our
case, step 3 is not straightforward, as there is no way to directly
translate a trajectory in formation space to a corresponding tra-
jectory in work space. Therefore, we use methods like those de-
scribed in Section III-B to guide the robots in the workspace
through discrete segments of the formation space path.

This section deals with the simplest formation space planning
algorithm: the straight-line planner. Section III-A describes a
simple, straight-line planner, Section III-B shows how the paths
are traversed, Section III-C describes some path properties, and
Section III-D shows some other results and examples.

A. The Straight-Line Planner

The plans we construct comprise a sequence of straight-line
segments in the formation space. To follow a straight line from
formation to formation , follow the
path

where . Therefore, at time , the robots will be at the
roots of the polynomial

(3)

These roots always lie on a specific polynomial in and .
See Appendix I.

B. Traversing Paths

As described earlier, it is impossible to describe the corre-
sponding paths in the workspace in a closed form. One can see
what these paths look like by plotting the roots of the polynomial
in (3) for various values of . However, when following
these paths, each robot needs to know which individual path to
follow. To determine this, we calculate each robot’s velocity at
each point.

First, we write as a function of . Solving (3) for , we obtain

(4)

(5)

(6)

Fig. 1. Flow curves for vector field for dz=dt.

Therefore

(7)

where

(8)

can be written as a polynomial in ; see Appendix II. From
this, we derive

(9)

Removing from the equation allows each robot to move while
only considering its own location, without trying to synchronize
with the other robots. Since the magnitude of this velocity can
range from impractically slow (on shorter paths) to impossibly
fast (on longer paths), we pick a speed appropriate to the robots
and move in the direction of . Fig. 1 shows the
vector field of .

Since the robot is not following the smooth path precisely
(since numerical methods are used to solve for positions along
the path), it may deviate from the course. From Fig. 1, it is ev-
ident that following the vector field will not necessarily bring
a deviated robot back to its desired path. Therefore, a second
velocity is added to rectify this. If , then is exactly
on the path. Therefore, , the imaginary component of

, gives an estimate of how far off the path is. This can be
approximately corrected by changing by

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 653

Fig. 2. Flow curves for vector field for �i � =(�(z))dz=dt.

Fig. 3. Flow curves for combined vector field.

where is the real component of . The resulting vector field
is shown in Fig. 2. The result of combining the two velocities is
shown in Fig. 3. Notice that all points near the paths converge
to the appropriate paths.

Therefore, at every step, each robot checks its current posi-
tion, calculates its velocity, moves in that direction for a short
time, and then recalculates. Since this involves evaluating a de-
gree polynomial and a degree polynomial, this
can be done in time. Using this method, robots can reach
their individual goals separately, without considering each other
or knowing which goal they are approaching.

There are two possible situations where this method does not
work normally.

1) Zero derivative: This happens when the numerator of (9)
is zero. This situation occurs when is a root of the poly-
nomials corresponding to both and . Therefore, is a
point in both start and goal, and does not need to move.
This is not a problem.

Zero-derivative points appear on the vector fields as
dipoles. In general, robots are rarely near these dipoles, as
the vector field directs them away from them.

2) Infinite derivative: This happens when . This
only happens to robots when two robots collide. See
Section IV-B for details and proof.

Infinite derivative points appear on the vector fields as
saddle points. Saddle points off the robot paths may cause
problems if theyare too close, as thederivativesaround them

can become unpredictable. In our experiments, this has al-
ways happened when two robot paths are close to each other.
Saddlepointscanbeavoidedbychecking inadvance thedis-
tance from each saddle point to the robot paths, and having
each robot move by a distance significantly less than that
distance before recalculating its direction.

The distance from a saddle point to the robot paths
from to can be approximated by calculating

for

where

C. Properties

Due to its linear nature, as well as the nature of , the
straight-line planning method has some nice algebraic proper-
ties. The upshot of these is that paths produced by straight-line
planning, relative to their endpoints, are invariant to linear coor-
dinate transformations. In the lemmas that follow, we will fre-
quently refer to the straight-line path in that connects two
configurations and . We de-
note the path by , where

(10)

in which parameterizes the path.
1) Translation: Define the translational operator

(11)

translates every robot by , which can be any translation
in the plane. From , define the lifted translational operator

. shows the effect of (which is applied to
the roots) on the coefficients of the polynomial, i.e., for any
configuration set , if , then .

Theorem 1: commutes with , i.e.,

(12)

This means that if the initial and goal configurations both trans-
late by the same amount, the resulting path will translate accord-
ingly. See Fig. 4 for an example of this.

Proof: See Appendix III.
An important consequence of this is that the location of the

origin of the coordinate frame is irrelevant when doing straight-
line planning.

2) Scaling and Rotation: In the complex plane, scaling and
rotation are actually the same operation: multiplication. Every

can be written as where , . Multiplying

654 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Fig. 4. Before and after translation.

Fig. 5. Before and after rotation.

Fig. 6. Before and after scaling.

by scales by and rotates by about the origin. Define the
scale/rotate operator

(13)

applies the scale and rotation operations corresponding to
to all robots. From , define the lifted scale/rotate operator

, analogous to .
Theorem 2: commutes with , i.e.,

(14)

This means that if the initial and goal configurations both scale
and rotate by the same amount, the resulting path will scale and
rotate accordingly. See Figs. 5 and 6 for examples.

Proof: See Appendix III.
Scaling and rotation operations can be composed with trans-

lation operations to produce operations that scale and rotate
about any point. Consequently, the orientation of the coordinate
frame is irrelevant, as is the unit size, when doing straight-line
planning.

Fig. 7. Before and after reflection.

3) Reflection: Reflection about the real axis is performed by
conjugating all robot coordinates. Therefore, define the reflec-
tion operator

where is the complex conjugate of . reflects all robots
across the real axis. From , define the lifted reflection operator

, analogous to and .
Theorem 3: commutes with , i.e.,

(15)

This means that if the initial and goal configurations are both
reflected about the real axis, the resulting path will also be re-
flected about the real axis. See Fig. 7 for an example.

Proof: See Appendix III.
Composing reflection about the horizontal axis with rotation

and translation produces all reflections, so reflecting both start
and goal produces a path reflected the same way. Therefore,
left-hand/right-hand coordinate frame orientation is irrelevant
to straight-line planning.

D. Results

We have run our straight-line planning algorithm on a variety
of start and goal configurations for varying formation sizes. The
resulting paths are generally simple and straightforward. The
paths never intersect themselves or other paths, with the excep-
tion of certain degenerate cases, described here.

Figs. 8(a), 9(a), and 10(a) show some typical results. In all
figures, robots move from X’s to O’s. Often the resulting paths
are nice, simple, and almost direct. Fig. 8(a) shows an example
of this. But often the resulting paths are convoluted and round-
about. Fig. 9(a) shows many robots following convoluted paths,
and some moving directly away from their eventual goals.
Fig. 10(a) shows a more extreme example of this, one where
the start and goal formations each consist of robots that are
close to each other, but the start and goal are far apart. In this
case, some robots move straight to a goal, but many robots take
unusually roundabout routes, moving far away from the other
robots before moving in toward the goal.

We run a simple smoothing algorithm on these paths. All
paths are iteratively contracted by the method below, which av-
erages neighboring points while ensuring that paths never inter-
sect.

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 655

Fig. 8. Typical plan for six robots. (a) Before smoothing. (b) After smoothing.

Fig. 9. Typical plan for 50 robots. (a) Before smoothing. (b) After smoothing.

Fig. 10. Plan for three robots that requires extraneous motion by two of the
robots. (a) Before smoothing. (b) After smoothing.

Each path can be written as a sequence of points. These are
the points at which the robot recalculated its direction. Let
be the maximum distance a robot is permitted to travel before
recalculating its direction. Let be the minimum permissible
distance between robots. Usually, this is the width of the robot.
At each iteration, each path is replaced by a new path, such that
we have the following.

1) The first and last points remain the same.
2) Any point whose two surrounding points (one before, one

after) are too close together (i.e., their distance is less than
) is removed.

3) Any point that is too close to another robot’s path (i.e.,
within distance) is replaced with the closest point far
enough away (at distance) from the path. For example,
if is the point being examined, and is the closest point
on another robot’s path, and , then is replaced
by

4) All other points are replaced with the mean of the four
surrounding points (two before, two after).

This process is repeated until the path cannot be improved
on. Usually, this is less than 100 iterations. While smoothed
paths no longer follow the paths described mathematically in
the earlier sections, the paths are more efficient, and each robot
can precalculate its path and do its own smoothing separately.
Figs. 8(b), 9(b), and 10(b) show smoothing results.

Although some paths appear to collide in these figures, they
are just very close to each other. The only way we have found
a collision is by contriving the initial and goal configurations
specifically to generate a collision. Section IV-B discusses this
further.

IV. COLLISIONS

In order for a formation-planning system to be useful, it must
be able to recognize and avoid collisions. In this section, we
address two types of collisions: robot–obstacle collisions, and
robot–robot collisions.

A. Robot–Obstacle Collisions

To define robot–obstacle collisions, we first define the swept
volume of a path to be the locus of points in the
workspace traversed by the robots while following the forma-
tion space path from (10)

i.e., is the set of all roots of for all values
of . Given polynomial configurations and , and an
obstacle region , the straight-line path in the formation
space from formation to formation generates a collision iff

.
In this section, we will incrementally build up the methods

to check for collisions. We will check point obstacles, use
point obstacles to check horizontal-line obstacles, use hori-
zontal-line obstacles to check line-segment obstacles, and use
line-segment obstacles to check polygonal obstacles. Although
point obstacles are degenerate and horizontal-line obstacles are
uncommon, they are necessary as building blocks toward the
intended goal of segments and polygons.

1) Point Obstacles: Consider a point obstacle at location .
For a given formation , a collision occurs iff

i.e., is a root of (1). To determine if collides with ,
recall from (6) from Section III-B

656 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Fig. 11. Formulae for coefficients of
(x).

Fig. 12. Collision with real axis.

Since gives the value for necessary for to
contain , it needs to be real and between 0 and 1 in order for to
be on the path. Therefore, collides with iff
and .

Notice that is unique. This means that given any point
in , robots moving in a coefficient-space straight-line path
will cross that point at most once. Therefore, single robot paths
will not cross themselves, and different robots’ paths will only
intersect at interrobot collisions (when they reach the same
point at the same time; they will not reach the same point at
different times). Interrobot collisions are dealt with below, in
Section IV-B.

2) Horizontal Segment Obstacles: We showed in
Section III-C that if the start and goal are translated and
rotated, the paths transform accordingly. Since any edge can
be rotated and translated onto the real axis, we can rotate and
translate and the same way. If collides with an
edge, then the transformed path will collide with a subset of
the real axis. This means we can test collision with any line
segment if we can test for collision with the real axis.

Theorem 4: For any , collides
with the real axis iff there exists an such that is a root of
the polynomial , where is given
in Fig. 11, and .

Proof: See Appendix IV
This method can also be used to test for collisions with a

segment of the real axis, e.g., a line segment on the real axis
from to (where). This segment can
be checked for collision by rejecting any
without calculating .

Fig. 12 shows an example of collisions with the real axis. The
robots are moving from the X’s toward the O’s, and the dia-
monds mark the points of collision with the real axis, as returned
by the method described here. The robot paths are given up to
the earliest collision, i.e., the among the roots of with
minimum .

3) Arbitrary Segment Obstacles: Now that we can test for
collision with segments on the real axis, we can test for colli-
sions with any segment from to . To do so, we

Fig. 13. Collision with segment.

make use of the transformations in Section III-C. Any line seg-
ment can be rotated, scaled, and translated to the real axis via

and

We then take the transformational operators we applied to
and , and apply the corresponding lifted transformation to the
polynomials

If collides with , then will also collide
with the real axis between and . We can, therefore, apply
the method in Section IV-A.2 to , , , and to determine
if the original path collides with .

Fig. 13 shows an example of collisions with arbitrary seg-
ments. The robots and edge in this example can be rotated and
scaled to match Fig. 12 exactly, and the resulting collision infor-
mation transforms accordingly. Therefore, we can use the col-
lision information from Fig. 12 to find the collisions in Fig. 13.

4) Polygonal Obstacle Collisions: We can use the edge-col-
lision checker to check collision with any polygonal obstacle re-
gion by checking for collision with each edge, as a robot cannot
enter the polygon without crossing an edge. We stop with poly-
gons, because nonpolygonal regions can be approximated by
polygons.

B. Robot-to-Robot Collisions

Although we have not been able to generate collisions be-
tween robots by picking arbitrary initial and goal configurations,
there are ways to explicitly generate such collisions. Note that

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 657

in the current representation, robots have zero size, so a colli-
sion only happens when two robots coincide. Here we show a
specific form to which all collisions conform.

1) Collision Points: In order to define collision paths, we
need to first define collision points. Define to be
the set of points that correspond to polynomials with multiple
roots. We call these collision points or collision formations. We
determine these properties about this set.

1) has a lower dimensionality than .
2) is path-connected.
3) is closed, and has no interior.
4) is nowhere dense in .
Proofs of these properties can be found in Appendix V.
2) Collision Paths: Define a generalized collision path to

be a path that contains a collision between at least two robots
somewhere on its interior. Since our current planning method
uses straight lines in , a generalized collision path must be
a line through a collision point. Using this idea, we show that
every generalized collision path can be generated by a single
method. Note that we are not concerned with trivial collision
paths, paths with start or goal collisions, but no collisions in
between.

Let be an arbitrary collision point. Any collision
paths involving this are straight lines in the formation space
through , and therefore can be written as ,
where is from (10), , and .
The collision along this path will be at time .
Therefore, every nontrivial collision path is uniquely defined by
a single .

We can test for collision paths by looking for the path’s col-
lision points. We do this by noting that a polynomial has
a multiple root at iff . Therefore, if is a
collision point for , then not only must (4) hold, but
also its derivative

Solving both equations for yields

Therefore

where is from (8). Therefore, we can check for collisions by
examining the roots of . If any of them satisfy ,
then the path has a collision.

Fig. 14. Paths with collisions.

Fig. 15. Destination slightly altered; no collisions.

This method is for testing collisions between point robots.
Using the method described in Section III-B, one can also check
for near-misses, which would be collisions between robots of
positive width. If the distance from a saddle point to the robot
path is less than half the width of the robot, the robots will col-
lide. In all of our experiments, near-misses have been near roots
of .

These specific cases are the only formations that generate
collisions. Since is nowhere dense, and the set of colli-
sion paths has a lower dimensionality than the set of formation
paths, we conclude that the set of collision paths is nowhere
dense. Therefore, the probability of a randomly selected path
containing a collision is zero. In our experiments, we have been
unable to generate a collision except through the methods de-
scribed earlier in this section.

To show how unlikely collisions are in practice, consider
Figs. 14 and 15. Fig. 14 shows a path with four robots and
two collisions. In the figure, there are two instances of a light
gray path touching a dark gray path (these paths do not cross).
At both collision points, the robot paths just touch, and then
diverge. The start and goal formations have been selected
specifically to generate those two collisions. In Fig. 15, the
goal locations in Fig. 14 have been adjusted by small random
amounts (approximately 2% of the distance to the collision
points). The resulting paths do not collide; they are not even
close to colliding. The typical randomly selected or human-se-
lected start and goal formations will not produce collisions.

V. ROADMAP PLANNING

The straight-line planner, combined with the obstacle-colli-
sion checker, form an effective local planner. We use it to apply
simple PRM [47] methods to permutation-invariant formations.
To generate each node in the roadmap, we generated uniform

658 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

random samples from the collision-free workspace,
and constructed a node at . Therefore,

samples in the formation space require samples in the
workspace. The roadmap nodes corresponding to formations
and were connected with a roadmap edge iff did not
collide with any edges, and there were no near-misses as de-
scribed in Section IV-B. The start and goal formation were se-
lected by the user, and their nodes were added to the roadmap
afterwards. To determine routes, we used with a metric of

(16)

where

This metric is designed so that for any

This means the metric is invariant to translation and rotation.
In our experiments, finding the roots of a degree- poly-

nomial of the type our method uses (bounded, single roots
only) has generally taken running time. For each
roadmap edge, checking for obstacle collisions requires solving
a -degree polynomial for each obstacle edge. This
requires running time per obstacle edge. Checking for
robot-to-robot collisions requires solving a -degree
polynomial, and then for each root, determining the distance to
each robot path. Since that requires solving polynomials
of degree , checking for robot-to-robot collisions requires

running time. Therefore, if there are robots and
obstacle edges, each roadmap edge requires time
to check. If there are roadmap nodes, the entire roadmap
takes time to generate.

We implemented this planning method in MATLAB on a
2.0 GHz CPU. Figs. 16–19 show the results of planning for three
robots in an environment that simulates an office with cubicles.
This environment, and the environments used in later examples,
are inspired by examples from [14]. The PRM used 200 nodes,
and was generated in 2 min. The individual figures show the
steps used to generate paths.

1) Generate paths. For every edge in the route,
follow the procedure described in Section III-B to move
the robots from to . See Fig. 16.

2) Remove cusps and loops. For each path, any time a robot
returns to a point it has already been to (or very close to), re-
move the steps in between. This has the effect of removing
places where the robot’s path crosses or retraces itself. See
Fig. 17.

3) Exchange path segments. Every time two paths cross, have
each crossing robot continue along the opposite robot’s

Fig. 16. Generate paths.

Fig. 17. Remove cusps and loops.

Fig. 18. Exchange path segments.

path. Now the robots’ paths do not cross, but just touch
each other. See Fig. 18.

4) Smooth paths. Apply the smoothing algorithm described
in Section III-D, augmented to prevent obstacle collisions.
See Fig. 19.

This process of generating the final path from the roadmap took
3 min.

Figs. 20–23 show an example with seven robots in a more
restrictive environment of rooms and corridors. The PRM used
500 nodes and was generated in 1 h. The final paths were gen-
erated in 5 min. Fig. 24 shows the final plan for 10 robots in
a room with 12 obstacles. Here, the roadmap had 2000 nodes,
which took 28 h to generate. The final paths were generated in
8 min.

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 659

Fig. 19. Smooth paths.

Fig. 20. Generate paths.

Fig. 21. Remove cusps and loops.

The PRM used here is simple and not guaranteed to succeed.
In our experiments, paths could be found for most start/goal
pairs in most environments once enough nodes were generated
for the roadmap.

VI. FUTURE WORK

Our method applies only for the case of robots translating in
the plane. This is because this method relies on the properties of

Fig. 22. Exchange path segments.

Fig. 23. Smooth paths.

2-D complex numbers. It might seem that our approach could
be extended to higher dimensional configuration spaces by ex-
ploiting higher dimensional complex numbers, such as quater-
nions. Unfortunately, quaternions cannot be used the same way
to build formations, as quaternions do not commute. Further-
more, a quaternion polynomial does not necessarily have a finite
set of solutions. For example, has infinite solution
set . Therefore, a new method
entirely would be needed to plan permutation-invariant forma-
tions for higher dimensions.

The system is designed for point robots. Circular robots can
be dealt with by expanding the obstacles by the radius of the
robots, and checking for near-misses with a distance of the di-
ameter of the robots (See Section IV-B.1). However, the latter
method is not proven; it has only been confirmed experimen-
tally. Furthermore, robots with noncircular shapes (e.g., poly-
gons) would need to be handled differently.

The robots in this method are holonomic. Since it is possible
to calculate second derivative and curvature at any point, it may
be feasible to do more detailed analysis over any path, and de-
termine whether differential drive or car-like robots can traverse

660 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Fig. 24. 10 robots, 12 obstacles.

the paths. Similarly, calculating other properties may reveal in-
formation applicable to nonholonomic control systems.

There is work in system stability that is relevant to our work.
Kharitonov [48] studied the stability robustness of interval poly-
nomials, which are families of polynomials defined by prespeci-
fying a list of intervals. A polynomial is contained in an interval
polynomial if each coefficient is contained in the corresponding
interval polynomial’s interval. Kharitonov’s law gives a way of
determining if all polynomials in the family have roots with neg-
ative real components. While [48] tests structurally hypercubic
regions of the coefficient space, [49] tests general polytopes, and
[50] tests ellipsoidal regions. Also, [51] and [52] show how to
test if an interval polynomial has any roots in a specific sector
of the left half of the complex plane. Using the transformational
operators defined in Section III-C, one can turn any obstacle
region into a stability problem. Therefore, it may be possible
to find large regions in the formation space that are completely
obstacle-free, and then plan motion within and between these
regions.

VII. CONCLUSION

In this paper, we have built a continuous configuration-space
representation for formations of unlabeled robots that translate
in the plane. We have shown that the formation space is homeo-
morphic to the configuration space for labeled formations, and
that the representation is both invertible and permutation-in-
variant. We have built a local planner in this formation space,
and shown some of its properties. We have demonstrated ob-
stacle collisions for this local planner, and used it to build a gen-
eral formation planner.

APPENDIX I
IS A POLYNOMIAL

In this appendix, we show that the paths generated by a
straight-line path in formation space form part of a polynomial
in and . We saw in Section IV-A-1 that iff

Fig. 25. The robot paths are a subset of the polynomial.

. A necessary condition of this is .
We rewrite as

Since the denominator is real, is real iff the imaginary
component of the numerator is 0. Also note

Therefore

Therefore, in order for to be on the path

must hold. Substituting and into this
equation and setting the imaginary component to zero produces
a polynomial of degree in and . Clearly, the points
along the robots’ paths lie on this polynomial.

This does not mean that all points in the polynomial will be
in the robot paths, as there are values of where or

. In Fig. 25, the thick curves trace the robot’s paths,
while the thin curves show the remainder of the polynomial’s
graph.

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 661

APPENDIX II
SIMPLIFYING

Define

We can now write (6) as

(7) then becomes

Now

Therefore

Setting and rearranging terms yields

(17)

The terms in the double sum are only valid if ,
i.e., , while still satisfying .

Also, if , then the term inside the double sum is 0.
Therefore, we write (17) as

Therefore, can be written as the polynomial
, where

APPENDIX III
PROOFS OF LEMMAS IN SECTION III-C

Theorem 1: commutes with , i.e.,

(18)

Proof: First, set and determine . We
combine (2) and (11) to get

Since the expansion of consists solely of terms
of the form , with one term for each possible

and , we can write

Therefore

Reordering the sums produces

662 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

The terms of the second sum are independent of , and each
term appears once for each of size that contains . Therefore

where

is the collection of sets of size that contain .
Since each set in contains all of plus elements

not in , we have

and therefore

Now, we set and separate the cases where ,
, etc.

Applying (2) yields

(19)

Note that , in accordance with (2).
Now, set

Combining the above with (19) and (10) yields

Therefore, (18) holds.

Theorem 2: commutes with , i.e.,

(20)

Proof: First, set and determine .
We combine (2) and (13) to get

Now, set

Therefore

Therefore, (20) holds.
Theorem 3: commutes with , i.e.,

(21)

Proof: First, set and determine .
Since , and for all complex
and , and is only composed of additions and multiplications,

. Now, set

Therefore

Therefore, (21) holds.

APPENDIX IV
PROOF OF COLLISION-DETECTION METHOD

Theorem 4: For any , collides
with the real axis iff there exists an such that is a root of
the polynomial , where is given
in Fig. 11, and .

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 663

Proof: Set and . We use the
results from Section IV-A.1 to test for collision with the real
axis. With point obstacles, was fixed, so we tested in (6)
and determined whether was real and in [0,1]. Here, however,

can be any point on the edge, so we search for a that makes
real and in [0,1]. Substituting for in (6), we obtain

(22)

If there is some such that is real and between 0 and 1,
then intersects the real axis at .

To make this determination, first find the set of values for
such that is real. Since (22) is a ratio of two complex num-
bers, we make the denominator real, and focus on the numerator.
We transform (22) as

(23)

Since the denominator is real, is real iff the imaginary
component of the numerator is 0. We rearrange terms on the
right-hand side (RHS) of (23) by substituting and
removing

(24)
However, the terms on the RHS are only valid if

, i.e., , while still satisfying .
Therefore, we write (24) as

Using this, we can rewrite the numerator of (23) as a polynomial
, where

(25)
To determine , we use the fact that ,

, and . Therefore

(26)

(27)

We substitute (26) and (27) into (25) to construct
, producing the coefficients in Fig. 11.

The real zeroes of the degree real polynomial
are the values for such that . If

, then intersects the real axis at .

APPENDIX V
PROOFS OF PROPERTIES OF

Proposition 1: has a lower dimensionality than .
Proof: Each formation can be represented as a point .

But collision formations define polynomials with multiple roots.
Every formation with a multiple root at the origin can be defined
by such that . Therefore, every colli-
sion formation can be described by for
any , where is the translation operator
defined in Section III-C.1. This description is not unique: a for-
mation with two collisions has two descriptions, one for each
collision location. Therefore, while each general formation is
described with complex parameters, each collision formation
is described with at most nonzero complex parameters.

Proposition 2: is path-connected.
Proof: Given a formation with a collision at , and a

formation with a collision at , there exists a path from to
such that every point along the path corresponds to a collision

formation. Here is a way to construct such a path.
1) Move all the robots at to simultaneously along the

same path. They should remain incident to each other at
all times while moving along this path.

2) Move all remaining robots in to appropriate locations in
. While moving the other robots, the robots at must

stay together.
3) If a different number of robots collide at than , then

move the appropriate number of robots to or from , until
the current formation is .

Therefore, any two points in can be connected in ,
which means is path-connected.

Proposition 3: is closed, and has no interior.
Proof: To show that is closed, it suffices to note that

each collision-free formation has a collision-free neighborhood.
Therefore, is open, so is closed.

664 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Fig. 26. Neighborhoods of formations and configuration sets.

We define neighborhoods in the formation space to be

Similarly, we define neighborhoods in the space of configura-
tions sets to be

s.t.

where is the set of permutations of . These are the
configuration sets generated by perturbing the points in by a
distance of at most .

Consider a collision formation and any . Set
. Since is continuous, there is a , defined relative

to , , and , such that . But any
collision configuration set can be perturbed by less than to
produce a noncollision configuration set. Therefore, there exists
a collision-free configuration set . Therefore,

is a collision-free formation, and .
Therefore, every neighborhood of contains a collision-free
formation. See Fig. 26.

Therefore, there are no collision formations with neighbor-
hoods contained in , i.e., interior points. Therefore, all points
in are on its boundary.

Proposition 4: is nowhere dense in .
Proof: This follows directly from Propositions 1 and 3.

Since is closed, it is its own closure. Since has no in-
terior, its closure also has no interior. Since has a lower di-
mensionality than , it is a strict subset of . Therefore,
it is nowhere dense.

ACKNOWLEDGMENT

The authors are grateful to R. Murrieta and S. Bhattacharya
for discussions during the early stages of the work, and to the
anonymous reviewers, whose comments have significantly im-
proved the content of this paper.

REFERENCES

[1] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Auton. Robots, vol.
8, no. 3, pp. 325–344, Jun. 2000.

[2] J. Feddema and D. Schoenwald, “Decentralized control of coopera-
tive robotic vehicles,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp.
852–864, Oct. 2002.

[3] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and
rescue with a team of mobile robots,” in Proc. IEEE Int. Conf. Adv.
Robot., Jul. 7–9, 1997, pp. 193–200.

[4] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Pittsburgh, PA, Aug. 1995, pp. 235–242.

[5] M. Mataric, M. Nilsson, and K. Simsarian, “Cooperative multi-robot
box pushing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Pitts-
burgh, PA, Aug. 1995, pp. 556–561.

[6] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor,
“A vision-based formation control framework,” IEEE Trans. Robot.
Autom., vol. 18, no. 5, pp. 813–825, Oct. 2002.

[7] J. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[8] J. Schwartz and M. Sharir, “On the piano movers’ problem: III. Coor-

dinating the motion of several independent bodies: The special case of
circular bodies moving amidst polygonal barriers,” Robot. Res., vol. 2,
no. 3, pp. 46–75, 1983.

[9] P. Svestka and M. Overmars, “Coordinated path planning for multiple
robots,” Robot. Auton. Syst., vol. 23, no. 4, pp. 125–152, 1998.

[10] G. Sanchez and J. Latombe, “Using a PRM planner to compare central-
ized and decoupled planning for multi-robot systems,” in Proc. IEEE
Int. Conf. Robot. Autom., May 2002, vol. 2, pp. 2112–2119.

[11] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Proc. IEEE Int. Conf. Robot.
Autom., Washington, DC, May 2002, pp. 2612–2619.

[12] T. Simeon, S. Leroy, and J.-P. Laumond, “Path coordination for mul-
tiple mobile robots: A resolution complete algorithm,” IEEE Trans.
Robot. Autom., vol. 18, no. 1, pp. 42–49, Feb. 2002.

[13] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Trans. Robot. Autom.
, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[14] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing
solvable priority schemes for decoupled path planning techniques for
teams of mobile robots,” Robot. Auton. Syst., vol. 41, no. 2, pp. 89–99,
2002.

[15] J. Peng and S. Akella, “Coordinating multiple robots with kinody-
namic constraints along specified paths,” Int. J. Robot. Res., vol. 24,
pp. 295–310, Apr. 2005.

[16] R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press,
1998.

[17] P. Tabuada, G. Pappas, and P. Lima, “Feasible formations of
multi-agent systems,” in Proc. Amer. Control Conf., Arlington, VA,
Jun. 2001, pp. 56–61.

[18] K. H. Tan and M. A. Lewis, “Virtual structures for high precision coop-
erative mobile robot control,” Auton. Robots, vol. 4, pp. 387–403, Oct.
1997.

[19] D. Bendersky and J. Santos, “Robot formations as an emergent collec-
tive task using target-following behavior,” in Proc. 4th Argentine Symp.
Artif. Intell., Santa Fe, Argentina, Sep. 2002, CD-ROM.

[20] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Trans. Robot. Autom., vol. 14, no. 6, pp. 926–939,
Dec. 1998.

[21] J. Fredslund and M. Mataric, “A general algorithm for robot formations
using local sensing and minimal communication,” IEEE Trans. Robot.
Autom., vol. 18, no. 5, pp. 837–846, Oct. 2002.

[22] V. Gazi, “Swarm aggregations using artificial potentials and
sliding-mode control regions,” IEEE Trans. Robot., vol. 21, no.
6, pp. 1208–1214, Dec. 2005.

[23] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation sta-
bility,” IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 443–455, Jun.
2004.

[24] P. Tabuada, G. J. Pappas, and P. Lima, “Motion feasibility of multi-
agent formations,” IEEE Trans. Robot., vol. 21, no. 3, pp. 387–392,
Jun. 2005.

[25] P. Ogren, E. Fiorelli, and N. Leonard, “Formations with a mission:
Stable coordination of vehicle group maneuvers,” in Proc. 15th
Int. Symp. Math. Theory Netw. Syst., Notre Dame, IN, Aug. 2002,
CD-ROM.

[26] D. W. Gage, “Command control for many-robot systems,” in Proc. 19th
Annu. AUVS Tech. Symp., Hunstville, AL, Jun. 1992, pp. 22–24.

[27] S. Poduri and G. Sukhatme, “Constrained coverage for mobile sensor
networks,” in Proc. IEEE Int. Conf. Robot. Autom., New Orleans, LA,
Apr. 2004, vol. 1, pp. 165–171.

[28] A. Howard, M. Mataric, and G. Sukhatme, “An incremental deploy-
ment algorithm for mobile robot teams,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2002, vol. 3, pp. 2849–2854.

KLODER AND HUTCHINSON: PATH PLANNING FOR PERMUTATION-INVARIANT MULTIROBOT FORMATIONS 665

[29] B. Yamauchi, “A frontier-based approach for autonomous explo-
ration,” in Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom., Jul.
1997, pp. 146–151.

[30] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessella-
tions: Applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp.
637–676, 1999.

[31] A. Okabe and A. Suzuki, “Locational optimization problems solved
through Voronoi diagrams,” Euro. J. Oper. Res., vol. 1998, pp.
445–456, 1997.

[32] J. Cortes, S. Martinez, and T. K. T. F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. Autom., vol. 20, no. 2,
pp. 243–255, Apr. 2004.

[33] D. Popa, H. Stephanou, C. Helm, and A. Sanderson, “Robotic deploy-
ment of sensor networks using potential fields,” in Proc. IEEE Int. Conf.
Robot. Autom., New Orleans, LA, Apr. 2004, vol. 1, pp. 642–647.

[34] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja,
“Sensor deployment strategy for target detection,” in Proc. 1st ACM
Int. Workshop Wireless Sensor Netw. Appl., Sep. 2002, pp. 42–48.

[35] E. Acar, Y. Zhang, H. Choset, M. Schervish, A. Costa, R. Melamud, D.
Lean, and A. Graveline, “Path planning for robotic demining and de-
velopment of a test platform,” in Proc. Int. Conf. Field Service Robot.,
2001, pp. 161–168.

[36] G. Schmidt and C. Hofner, “An advanced planning and navigation ap-
proach for autonomous cleaning robot operations,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Oct. 1998, vol. 2, pp. 1230–1235.

[37] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida, “Cooperative sweeping
by multiple mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom.,
Apr. 1996, vol. 2, pp. 1744–1749.

[38] I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot collaboration for
robust exploration,” in Proc. IEEE Int. Conf. Robot. Autom., 2000, vol.
4, pp. 3164–3169.

[39] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset, “Limited commu-
nication, multi-robot team based coverage,” in Proc. IEEE Int. Conf.
Robot. Autom., New Orleans, LA, Apr. 2004, vol. 4, pp. 3462–3468.

[40] I. Wagner, M. Lindenbaum, and A. Bruckstein, “Distributed covering
by ant-robots using evaporating traces,” IEEE Trans. Robot. Autom.,
vol. 15, no. 5, pp. 918–933, Oct. 1999.

[41] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordi-
nated multi-robot exploration,” IEEE Trans. Robot., vol. 21, no. 3, pp.
376–386, Jun. 2005.

[42] S. Kloder, S. Bhattacharya, and S. Hutchinson, “A configuration space
for permutation-invariant multi-robot formations,” in Proc. IEEE
Int. Conf. Robot. Autom., New Orleans, LA, Apr. 2004, vol. 3, pp.
2746–2751.

[43] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multi-robot formations,” in Proc. IEEE Int. Conf. Robot. Autom.,
Barcelona, Spain, Apr. 2005, CD-ROM.

[44] C. F. Gauss, “Beitrage zur theorie der algebraischen gleichungen,” Abh.
Ges. Wiss. Gottingen , vol. 4 (1850), Ges. Werke vol. 3, pp. 73–102.

[45] T. Motzkin and A. Ostrowski, “Uber den fundamentalsalz der algabra,”
Sitzb. Preuss. Akad. Wiss. Phys. Math. Klasse, pp. 1–4, 1933.

[46] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex
Variable. New York: Amer. Math. Soc., 1949.

[47] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 556–580, Aug. 1996.

[48] V. Kharitonov, “Asymptotic stability of an equilibrium position of a
family of systems of linear differential equations,” Differen. Equat.,
vol. 14, pp. 1483–1485, 1979.

[49] A. C. Bartlett, C. V. Hollot, and L. Huang, “Root location of an entire
polytope of polynomials: It suffices to check the edges,” Math. Contr.,
Signals Syst., vol. 1, pp. 61–71, 1988.

[50] J. Kogan, “Robust Hurwitz l stability of polynomials with com-
plex coefficients,” IEEE Trans. Autom. Control, vol. 38, no. 8, pp.
1304–1308, Aug. 1993.

[51] A. Katbab and E. Jury, “A note on two methods related to stability
robustness of polynomials in a sector (relative stability),” IEEE Trans.
Autom. Control, vol. 38, no. 2, pp. 380–383, Feb. 1993.

[52] M. Bozorg and E. M. Nebot, “Comments on ‘A note on two methods
related to stability robustness of polynomials in a sector (relative sta-
bility)’,” IEEE Trans. Autom. Control, vol. 42, no. 5, pp. 712–714, May
1997.

Stephen Kloder (S’05) received the B.S. degree in
computer science in 2001 from the Georgia Institute
of Technology, Atlanta, and the M.S. degree in 2004
from the University of Illinois at Urbana-Champaign
(UIUC), where he is currently working toward the
Ph.D. degree.

His interests include multirobot planning and ap-
plications. He has done work on the building of for-
mations, and is currently working on multirobot cov-
erage problems.

Seth Hutchinson (SM’00) received the Ph.D. degree
from Purdue University, West Lafayette, IN, in 1988.

In 1990, he joined the faculty of the University of
Illinois at Urbana-Champaign, where he is currently
a Professor with the Department of Electrical and
Computer Engineering, the Coordinated Science
Laboratory, and the Beckman Institute for Advanced
Science and Technology. He has published more
than 100 papers on the topics of robotics and com-
puter vision, and is coauthor of Principles of Robot
Motion: Theory, Algorithms, and Implementations

(Cambridge, MA: MIT Press), and Robot Modeling and Control (New York:
Wiley).

Dr. Hutchinson serves on the editorial boards of the International Journal of
Robotics Research and the Journal of Intelligent Service Robotics. He served
as Associate Editor and then Senior Editor for the IEEE TRANSACTIONS ON

ROBOTICS AND AUTOMATION, now the IEEE TRANSACTIONS ON ROBOTICS,
from 1997 to 2005. In 1996, he was a Guest Editor for a Special Section of
the TRANSACTIONS devoted to the topic of visual servo control, and in 1994
he was Co-Chair of an IEEE Workshop on Visual Servoing. In 1996 and
1998, he coauthored papers that were finalists for the King-Sun Fu Memorial
Best Transactions Paper Award. He was Co-Chair of the IEEE Robotics and
Automation Society Technical Committee on Computer and Robot Vision from
1992 to 1996, and has served on the program committees for more than 50
conferences related to robotics and computer vision.

