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The goal of traditional probabilistic approaches to image seg-
mentation has been to derive a single, optimal segmentation, given
statistical models for the image formation process. In this paper,
we describe a new probabilistic approach to segmentation, in which
the goal is to derive a set of plausible segmentation hypotheses
and their corresponding probabilities. Because the space of possible
image segmentations is too large to represent explicitly, we present
a representation scheme that allows the implicit representation of
large sets of segmentation hypotheses that have low probability.
We then derive a probabilistic mechanism for applying Bayesian,
model-based evidence to guide the construction of this representa-
tion. One key to our approach is a general Bayesian method for
determining the posterior probability that the union of regions is
homogeneous, given that the individual regions are homogeneous.
This method does not rely on estimation and properly treats the
issues involved when sample sets are small and estimation perfor-
mance degrades. We present experimental results for both real and
synthetic range data, obtained from objects composed of piecewise
planar and implicit quadric patches, © 1995 Academic Press, Inc.

1. INTRODUCTION

Image segmentation, the low-level vision task of ex-
tracting a set of homogeneous regions from an image, has
been a topic of active research since the earliest days of
computer vision research. Although considerable effort
has yielded many approaches, segmentation is still widely
considered to be an unsolved problem. The difficulty of
the segmentation problem is due, at least in part, to its
underconstrained nature. For example, Horn asserts that
one of the primary difficulties in evaluating a segmentation
method is the lack of a clear definition of the ‘‘correct”
segmentation [32], and Szeliski argues that low-level im-
age models often underconstrain the solution and advo-
cates the use of uncertainty estimation [63]. Jain and Bin-
ford assert that a key problem in vision research is that
the segmentation problem is often ignored or is assumed
to have been solved [38].

In spite of these criticisms, most, if not all, previous
approaches to segmentation have been aimed at deriving
a single, optimal segmentation result for a given scene.

This segmentation is often used by some higher level
system (e.g., for object recognition). In this paper, we
present an alternative approach. For a given input scene,
rather than attempting to derive a single, optimal segmen-
tation, we derive a set of plausible segmentation hypothe-
ses and their corresponding probabilities. This is achieved
by using statistical image models to determine a Bayesian
posterior distribution over a set of alternative image seg-
mentations. In terms of image understanding, this ap-
proach can be considered as a step toward breaking down
the segregation that usually exists between segmentation
and a higher level system, by allowing a higher level sys-
tem to have access to more information at the segmenta-
tion level and possibly to influence segmentation-level
Bayesian computations.

Our approach provides the following three key advan-
tages, which will be discussed below.

+ Multiple alternative segments or segmentations, and
their corresponding probabilities, can be utilized by a
higher level system.

» The framework readily supports extensions to incor-
porate higher level or other additional models.

* Our system is capable of estimating the amount of
information present in the image under a particular statis-
tical image model.

Consider the first point. One straightforward use of
multiple segmentations (or segments) would be to provide
ranked alternatives for a system that can repeatedly re-
quest a different segmentation (or segment), given that
previous solutions led to a failure. Rather than simply
representing a set of alternatives, consider also obtaining
probabilities for each of the alternatives. The probabilities
give much mere information than is present in the set of
alternatives alone. For instance, if the leading segmenta-
tion obtains a probability of 0.99, then the confidence in
the segmentation should be high. If the top 10 segmenta-
tions have approximately the same probability, some
other model may have to be used to further constrain the
solution.

Since the space of alternatives is often undercon-
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strained using low-level models [63], a more interesting
approach is to introduce additional constraints through
the use of higher level models, for instance, at the recogni-
tion level. For this to occur, it is unreasonable to select
a single, apparently best, segmentation to send to the
higher level system, since the single segmentation is
formed by making all of the decisions using low-level
models, losing all other information. For the higher level
models to participate in the segmentation process, it
seems useful to give at least some set of alternative seg-
mentations. Additional evidence can then begin to be ap-
plied by the higher level system to constrain the space of
segmentations, eventually resulting in a unique solution.

This provides the motivation for our second point. The
Bayesian formalism provides a natural way to combine
evidence from several models. In general, a Bayesian
approach begins with some prior distribution and some
evidence and yields a posterior distribution. A multiple
model approach treats the posterior distribution from one
model as the prior distribution for the next model. The
second posterior distribution reflects the application of
both models. This concept can be applied directly to seg-
ment and segmentation distributions. For example, seg-
mentation choices based on surface information could be
constrained by introducing a regularity model for segment
boundaries. Furthermore, additional evidence can be in-
corporated directly into posterior distribution on the
space of segmentations during the execution of our algo-
rithm. This offers the computational advantage of
allowing this evidence to preclude the consideration of
numerous alternatives that could later be eliminated. For
example, in Section 4.3.2 we provide expressions for com-
bining evidence from multiple independent models when
assessing region homogeneity. This additional evidence
would also be introduced when computing probabilities
for combinations of segments, described in Section 3.3.2.
Extensions of this type are currently being investigated
in the continuation of this work.

For a typical application, it is useful to know the degree
to which a particular image model is providing information
regarding the segmentation. When some models are sig-
nificantly more costly than others, which is typically the
case in computer vision, this is particularly true. This
is the motivation for our third point. With a probability
distribution over segments and segmentations available,
a formal measure of information content can be directly
quantified. One natural measure is the information en-
tropy, which is a function of a probability distribution.
A clear discussion of the characteristics of an entropy
measure is provided in [3]. Several alternative, entropy-
based functions can be found in {17, 60].

An entropy measure can be used, for example, to select
between different models or to decide to combine several
models synergistically. Szeliski argues that a measure of
uncertainty can be used to guide search, indicate when
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more sensing is required, and integrate new information
[63]. We presently do not employ entropy measures to
guide our algorithms, but we could estimate the amount
of information present by applying an entropy measure
directly to the probability distributions of segments and
segmentations.

In practice, it may not be necessary to construct full
segmentations. For instance, for model-based recognition
of objects composed of polynomial surface patches, three
segments may be sufficient to determine the position of
an object. Faugeras and Hebert provide conditions under
which this holds [23]. Each three-segment group corres-
ponds to a set of segmentations. One advantage of our
work is that it allows the consideration of such partial
segmentations and their corresponding probabilities.

We now briefly describe the organization of this paper.
Since our work has been influenced by previous statistical
approaches, Section 2 presents a brief survey of previous
statistical or probabilistic approaches to segmentation.

In Section 3 we wilt define a probability space on the
sct of all possible image partitions, which we refer to as
the segmentation sample space. It is not feasible, from
a computational standpoint, to explicitly represent every
segmentation in the segmentation sample space. There-
fore, in Section 3, we introduce an efficient, approximate
representation scheme that allows explicit representation
of segmentations that have high probability, while impli-
citly representing subsets of segmentations that have low
probability. The representation is defined in terms of seg-
ment sample spaces. Each segment sample space repre-
sents a set of region groupings in the image. For each
such grouping, a probability is computed that reflects the
homegeneity of the region grouping. For example, when
dealing with range data from objects that are composed
of piecewise quadric surfaces, a region grouping will have
a high degree of homogeneity if it can be closely approxi-
mated by a quadric surface.

To effectively utilize our approximate representations
of the segment and segmentation sample spaces, we have
developed probabilistically sound and computationally
feasible methods. Section 3.2 describes concepts that re-
late to the segment sample space. Section 3.3 describes
concepts that relate to the segmentation sample space.
In Section 4 we present the probability relationships and
expressions that are used during the incremental construc-
tion of a segment or segmentation sample space represen-
tation, which incorporate evidence from a statistical im-
age model.

In Sections 5 and 6 we describe some algorithm details
and present experimental results. The experimental re-
sults are for range data obtained from objects composed
of piecewise planar and quadric surfaces. We present
probability distributions over alternative segments and
segmentations, for both synthetic data and real range data.
Conclusions are presented in Section 7. Proofs of the
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propositions are presented in Appendix A. In this paper
we have used the implicit polynomial surface model for
defining region-grouping homogeneity, and these details
are presented in Appendix B. We have shown in related
work that the probabilities that reflect region-grouping
homogeneity can also be computed for parametric polyno-
mials for intensity images, and a Markov random field
(MRF) model for texture analysis [46].

2. STATISTICAL SEGMENTATION APPROACHES

Statistical approaches to segmentation can be loosely
divided into three categories: statistical clustering, MRF
energy optimization, and probabilistic relaxation. In this
section, we briefly review work in these areas.

Clustering has been applied to a variety of image types
and models. Silverman and Cooper [58] segment intensity
images into regions that can be approximated by planar or
quadric surfaces. Bell combines clustering with a Monte-
Carlo approach to segment radiograph images to deter-
mine manufacturing defects [4]. Four basic components
involved in most clustering algorithms are (e.g., [20, 36]):
(1) Define a feature metric space. (2) Determine feature
values corresponding to pixels or regions. (3) lteratively
group pixels or regions with close features in the metric
space (4) Terminate based on some stopping criterion (if
the number of classes is unknown). The feature space
could, for example, correspond directly to pixel intensi-
ties or could represent a space of polynomial surfaces,
as in [58]. The decisions involved in the third step depend
on the particular clustering algorithm chosen, such as
agglomerative clustering [20, 58] and K-means clustering
[24, 67]. Most clustering algorithms require specification
of the number of classes, and recent work has been done
specifically addressing the problem of determining the
number of classes, known as cluster validation, in the
context of image segmentation applications [40, 67].

The MRF approach models the image as a lattice of
random variables, with each variable having explicit de-
pendency on some local neighborhood consisting of other
random variables. The general model that is most often
used in computer vision was introduced in a seminal paper
by Geman and Geman [27], in the context of image resto-
ration. The appeal of the approach is the fact that any
MRF formulation (which applies to a variety of image
models) can be expressed as an energy minimization prob-
lem, in which parallelism can be exploited. The primary
difficulties with the approach are the computational com-
plexity of the optimization, and the problem of MRF pa-
rameter estimation [25]. The approach has been applied
to modeling noise processes and texture [14, 16, 48], color-
constancy [15], blurring [27, 39], boundary modeling [28,
39], and locally dependent nonlinear image transforma-
tions [27]. This model has also been considered for range
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image segmentation by modeling edges with MRF line
processes [18, 37, 49].

In recent years there has been considerable interest in
improving MRF energy optimization algorithms. Geman
and Geman used a simulated annealing approach (also
called stochastic relaxation) to determine the maximum
a posteriori estimate (M AP} of the image [27]. The temper-
ature, T, is controlled in a manner that guarantees conver-
gence to the optimal energy state, but the rate of conver-
gence can be slow in practice. Other techniques have been
developed which yield performance trade-offs. Besag [7]
proposed the iterative conditional modes (1CM) method
as a feasible alternative to stochastic relaxation. Marro-
quin et al. gave an approach, called maximizer of posterior
marginals (MPM), which defines a segmentation error
metric, minimized to yield the best labeling. Empirical
comparison of these three approaches was done in [18],
concluding that for many cases, ICM was the most effi-
cient and robust and produced the most reasonable seg-
mentations.

Derin and Elliot derive a recursive formulation of the
posterior energy function and propose the dynamic pro-
gramming formalism to determine the MAP estimate [16].
Due to high computational complexity, an iterative, sub-
optimal approximation is used, which sequentially pro-
cess strips in the image. Cohen and Cooper give a parallel,
hierarchical algorithm for optimizing the energy function
in a Gaussian MRF [14].

An alternative approach to the minimization is taken
by Chou and Brown [13]. The site values are arranged in
a hierarchy, in which various nodes represent subsets
of the set of labelings that can be assigned. Using this
representation, a highest confidence first (HCF) method
is developed for efficient energy minimization with least
commitment under inaccurate models.

The issues involved in MRF parameter estimation have
also been carefully considered. In all of the MRF algo-
rithms, some model parameter estimation must be per-
formed to obtain the energy function. Often, methods
pecform parameter estimation ‘‘off-line’’ as a prepro-
cessing stage to segmentation [16]. Cohen and Cooper
discuss the problem of adaptively estimating parameters
during segmentation in the context of texture models [ 14].
Subrahmonia et al. propose an iterative scheme which
performs global optimization of the energy function and
parameter estimation for 3-D surfaces through a single
performance functional [62]. An alternative adaptive
estimation/optimizatton scheme has been proposed by
Lakshmanan and Derin [44]. Manjunath and Chellappa
[48] argue that for texture models, estimation on small
windows and simple, nearest-neighbor clustering can be
used as a starting point for the energy optimization to
yield results comparable to the adaptive scheme [44].

The probabilistic relaxation (or relaxation labeling) ap-
proach has many similarities to the MRF approach and
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has been less popular in recent times. One of the early
appearances of relaxation labeling is in work by Rosenfeld
et al, [53]. A compatibility measure is used to model
the interaction between pairs of pixels, when determining
probability assignments. One begins with a prior distribu-
tion of labelings, and through an assignment rule based
on compatibility, iteratively improves estimates of the
““true’’ probabilitics. Rutkowski et al. provides a proba-
bility updating rule, which explicitly defines quantities
(as individual labeling probabilities and pairwise, joint
probabilities) needed for building the models. Some heu-
ristic estimation is often required to determine these prob-
abilities, as in [54]. A more recent discussion of relaxation
labeling, applied to the problem of supervised and unsu-
pervised texture classification, can be found in [33, 34].

3. REPRESENTING SEGMENT AND SEGMENTATION
PROBABILITY SPACES

In this section we describe an approximate representa-
tion scheme that allows for explicit representation of seg-
mentation hypotheses with high probability, while imptic-
itly specifying large sets of segmentation hypotheses with
low probability. We begin in Section 3.1, by defining sev-
eral terms that will be used throughout the paper. For
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convenience, notation that will be used in this paper is
summarized in Table 1. In Section 3.2, we describe the
mechanism for building approximate representations for
a single segment sample space, which is used to maintain
a probability distribution over a space of single segments
in an image. In Section 3.3, we describe how, given a set
of approximate segment sample space representations,
we can construct an approximate representation of the
segmentation sample space, which describes the probabil-
ity distribution over all possible segmentations. Finally,
in Section 3.4 we address issues related to defining prior
probability distributions for segment sample space and
segmentation sample space representations.

3.1. Regions, Segments, and Segmentations

The input to our segmentation algorithm is an array
of image elements. Associated with each element is its
representation. This might may be an intensity value, a
set of coordinates in R?, other image information, or a
combination of these. In Appendix B (in which implicit
polynomial models are briefly presented), this represents
a point in 3, with coordinates x = [x; x; x;]. Since the
elements of the image are arranged in a matrix, adjacen-
cies and connectivity can be considered in the usual way.

A region, R, is some connected subset of the image,

TABLE 1
Notation Used in This Paper, with Elements Sorted by the Order of Their Introduction
Symbol Definition Section
R A connected subset of the image i1
a9 The set of all regions 3.1
T A segment (connected set of regions) from the image 3.1
5 A segmentation {or partition of &) 3.1
11 The set of all segmentations that can be generated from @& 3.1
(SH The set of all segments that include R; 3.2
T, A segment sample space (6;, 3®;, P) 32
By The set of all subsets of ©; (i.e., the events ona J) 32
I An inclusion set, containing regions 12
E An exclusion set, containing regions 3.2
(I, E) {TeOICT,ENnT=} 3.2
C ‘A J-cover (a partition of 6;) 32
B, An event chosen for F-refinement 32
R, A region chosen for J-refinement 3.2
p(C, B,, R,) The J-refinement mapping 3.2
4 The segmentation sample space ([1, &4, P) i3
K-l The set of all subsets of [T (i.e., the events on the ¥} 3.3
f The segment-to-segmentation mapping 3.3.1
ol{F, I, E} (SeN:Fcs} ﬂ f&, EY) 3.3.2
C An P-cover (a partition of IT) 332
A, An event chosen for Y-refinement 33.2
P, The probability of including R, 4.1
Tip T({R,‘, Rp}, @) 4.1
U The parameter space for R; 4.2
Y. The observation space for R; 4.2
Ag A ratio based on prior membership probability 42

A A ratio based on models and observations 4.2
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In practice, most region-based segmentation algorithms
begin by partitioning the image inio an initial set of re-
gions, R (e.g., [31, 50, 55, 58]). This provides a computa-
tional advantage (since there are not as many potential
groupings of data points to consider) and also allows sta-
tistical models to be effectively exploited [58]. The only
concern in the construction of 3k is that each R € R should
be homogeneous. In practice, however, we do tolerate
the existence of several regions that are not homogeneous.
In our experiments, we have constructed 9 by recursively
splitting regions that (a) cannot be closely approximated
by a single plane, or (b} contain an edge.

For a given segmentation problem, we work with a
pairwise-disjoint set of regions, &, in which every element
of the image is contained in exactly one region R € 9.
A segment, T, is a connected set of regions (e.g., T =
{R,, R,, R,} is a segment consisting of three regions). A
set of regions is connected if their union is connected. A
segmentation, S, denotes a set of segments that forms a
partition of . Note that a segmentation in turn defines
a partition of the image.

Given a segmentation, S, and two adjacent segments,
T,, T, € §, a new segmentation, §', can be formed by
replacing 7, and T, with T, U T,, and keeping all other
segments fixed. This corresponds to region merging, ex-
pressed in our set-theoretic terms. We note, however,
that in our formalism regions are not actually merged in
the traditional sense. Rather, we form groups of regions,
without every explicitly constructing the union of these
regions.

Let II denote the set of all segmentations that can be
constructed given & (i.e., I1 is the set of all partitions of
®R). At one extreme, II includes the partition induced by
the original regions in 9. At the other extreme, IT contains
the partition that corresponds to the combination of all
regions into one segment. The implication of starting with
@R is that there are many image partitions that are not
considered. In the limiting case, the elements of & are
singleton subsets of the image. Hence, using & as a basis
does not impose any inherent limitations on the space of
segmentations that can be generated.

3.2. A Segment Sample Space (7))

In this section, we define a Segment Sample Space, and
describe how approximate segment sample space repre-
sentations are constructed. A detailed example is de-
scribed in Sections 3.2.1, which illustrates the definitions
and concepts. In Section 3.3, we show how approximate
segmentation sample space representations can be con-
structed, using these approximate segment sample space
representations as a starting point.

For some region R; € R, let O, be the set of all possible
segments that contain R,. Specifically,

Q,={TCR: Tisconnected, R, € T}. 4}
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Note that 6, always contains at least two elements: the
singleton {R;} and the entire set %k (provided the image is
connected). For any such 6;, there is a corresponding
segment sample space that describes both 6, and the prob-
abilities associated with each subset of 0,. Specifically,
a segment sample space is defined as

g—i = (ejs %is Pi)! (2)

in which 6; is defined in (1), @, is the set of all subsets
of 9;, and P is a probability mapping on %;. (Throughout
the remainder of the paper, to simplify notation, we omit
the subscript on the probability mapping P;}. Since the
singleton events are mutually exclusive, the probability
for an arbitrary event B € %, can be obtained by summing
the probabilities P({T}) for each T € B,.

For real image applications, the set of segments, 9,,
will be extremely large; the set 9, is exponentially larger.
Therefore, it is infeasible to explicitly enumerate the ele-
ments in either 8; or 3%;. To deal with these combinatoric
issues, we now introduce an implicit representation for
elements of %;, a representation for approximations to
J;, and a mechanism by which any given approximation of
', can be refined to yield a more accurate approximation.

Each element B € %; corresponds 1o a set of segments,
We can identify this set by specifying (a) the set of all
regions common to every segment in B, and (b) a set of
regions not included in any segment in B, Specifically,
the inclusion set, I, is the set of regions common to every
segment in B {note that I always includes R;}). The exclu-
sion set, E, is a set of regions that are not included in any
segment in B. To eliminate redundant representations,
we require each element of £ to be adjacent to some re-
gionin I. Note, F N E = J. Using this notation, we define
7({, E), which maps to some B € @;, as

T(LEy={T€0,:ICT,ENT=0} 3)

Thus, 7(I, E) specifies the set of all segments that include
all regions in I and exclude all regions in E. This represen-
tation is efficient when compared to the enumeration of
segments in B. For instance, 7({R,, R,}, {J) could repre-
sent the set of all segments in an image that contain regions
R, and R,, through the simple specification of I =
{R,, R}and E = .

The following proposition implies that every event
B € &, has a well-defined representation in terms of 7 and
E sets.

ProposiTION 1.
fined and onto %B;.

The mapping defined by 7 is well de-

The proof of this and all subsequent propositions are
provided in Appendix A.

Given this representation for subsets of ©,, we now
turn to the construction of approximations of 7,. Ulti-



208

mately, we would like to construct approximations of J;
that explicitly represent those segments that have high
probability values, while only implicitly specifying large
subsets of segments that have low probability values.
However, for any approximation to J;, every segment
should be represented, either explicitly or implicitly. To
this end, we define a J-cover, C, of 7, to be a set of
pairwise-disjoint elements in %; that form a partition of
O,. If the probabilities for the elements in C are known,
we can consider C to represent an approximation of J;.
It is approximate because probabilities are not associated
with the singletons in %;, but only with those elements
that are explicitly contained in C. Since the ¢lements of
C form a partition of ©;, every element of ©; is represented
in C, either explicitly (in the case of singleton subsets of
%, in C) or implicitly (in the case of nonsingleton subsets
of B, in C).

The notion of goodness of approximations can be for-
malized by imposing a partial ordering on J-covers. Given
two J-covers, C, and C,, we say that C, is better than
C, if and only if for all B, € C, there exists some B, €
C, such that B, C B,. In other words, C, is better than C,
if C, can be obtained by partitioning some of the elements
of C,. We denote by C7 the set of all singletons in %;.
Thus, C7 is an exact representation of J;; all of the ele-
ments of B; are explicitly represented, and the probability
for each is given. Hence, in this case the entire probability
map is fully determined (since the probability for any B €
%, can be obtained by summing the probabilities P({T})
for each T € B®,). Thus, C7 is better than C for all other
T-covers C. The poorest approximation of J; is C? =
{©;}. We know that P(0,) = 1; however, the probabilities
of the other events in %; cannot be directly determined.
Thus, C is better than C? for all other -covers, C.

Procedurally, in order to construct approximations to
9,, we begin with C? and derive a sequence of J-covers,
such that C¥*!is better than CX. Each step in this se-
quence corresponds to a single JT-refinement opera-
tion. Specifically, given a J-cover Cf, an event, B, =
v(I,, E,) € C{, and a region R, & I, U E,, we define a
new J-cover, C¥*! = p(C¥, B,, R), by

p(C}, B,,R,) =(Cf - B,)U
{r(I, U{R,} E ), 7(1,, E, U {R 1)

The region R, is termed the T-refinement region. In
order to ensure that only connected sets of regions are
represented in the new F-cover, we require the J-refine-
ment region, R, to be adjacent to some region in . The
J-cover, C ,’-‘“ , is termed the refined FT-cover with respect
to C* The only difference between C¥ and C¥*' is the
replacement of B, by 7(/, U {R,}, E;) and 7(I,, E, U
{R,}). Thus, the J-refinement operation has the effect of
partitioning the event B, into two new subsets of B,: the
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segments in B, that include R, are in 7(I, U {R,}, E,) and
the remaining elements of B, (all those that exclude R,)
are in r(I,, E, U {R,}). Each singleton in %; represents a
single segment. We will refer to these events as ground
segment events, since such events cannot be refined.

There is a correspondence between generating a se-
quence of J-covers and generating classification and re-
gression trees [10, 12, 26). Classification and regression
trees are used to represent a sample space efficiently,
often for the purpose of pattern recognition. In terms of
classification and regression trees, J-refinement corres-
ponds to the notion of impurity reduction through parti-
tioning [12]. The goal in the classification and regression
tree setting is to select finer partitions of the sample space
to optimally reduce the expected loss due to approximate
representation. In our framework, we will also be reduc-
ing the expected loss, but with an interest in obtaining a
representation of ground segment events that have highest
probability.

3.2.1

To help clarify these definitions, we now present an
example. Figure 1 shows a hypothetical image consisting
of four regions: R, R,, R;, and R,. Consider ©,, which
is the set of all segments that include R;:

An Hustrative Example

9, ={{R L, {R,, R}, {R,, Rs}a {Rl’ Rz’Ra}s (5)
{Rl! RZ’ R4}! {Rl! Rl’-’ R4}’ {RI 3 R23 R}a R4}}

Note that {R,, R,} & O, since R, is not adjacent to R,. For
larger images, the number of segments in ©, is typically a
small fraction of the total number of possible {connected
or not) region groupings. This is because the excluded
regions tend to disconnect the included regions from the
rest of the image. This happens in the example when R,
is cut off from R, by excluding R, and R;.

In Table 2 we show the representation for a few events
in @, in terms of v({, E). In rows 4 and 8 to 13 of the
table, 7(I, E) corresponds to a ground segment event. We
note that (f, E) provides a compact representation for
potentially large subsets of ;. For example, in row 3 of
the table, four elements of ©, are implicitly represented

FIG. 1. A simple image composed of only four regions is provided
as an example.
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TABLE 2
Segment Space Events Are Represented for the Four-Region Example

I E I, E)
1 {Ry} {} &
2 {Ri} (R} {Ry}, {Ry, R}, {Ry, Ry, RuJY
3 {Rlv RZ} {} {{Rl! RZ}' {Rl! RZ! R4}v {Rla RZ! R.‘s}: {Rl» R2= RJ’ Rd}}
4 {r} {Ry, R} {R}}
5 {Rls R}} {RZ} {{Rls R!}s {Rl’ RJ’ Rd}}
6 {Rl! RI} {RS} {{Rlv RZ}: {RI? RZ! Rd}}
7 {Ri, Ry, Ry} {} {Rp, Ry, R}, {R), Ry, Ry, Ril}
g {RI- RS} {Rh Rﬂ} {{Rlv RS}}
9 {RII R3l R4} {Rl} {{Rlv RJ: R4}}
10 {Rt, Ry} {R, Ry} {{R, Ry1}
ll {Rll R2' R4} {Rl} {{Rh RZs R4}}
12 {R, Ry, R3} {R} {Ry, Ry, Rsl}
13 {RI9 Rls R}- Rd} {} {{R], RZ, R39 R-t}}

Note. The columns under I and E denote the include and exclude sets, respectively. The column under

7(I, E) gives the corresponding event in %;.

by I ={R,, R;} and E = J. The savings in representation
increases as the number of regions in % increases.

Table 4 depicts one possible sequence of J-refinement
operations that could be derived. For convenience, Table
3 names all of the segments of ©,. We begin with (3,
which corresponds to the set ©,. F-cover C!} is con-
structed by using the mapping C! = p(C?, O/, R,). The
F-cover C}is constructed using R; and event {T}, T3, T¢}.
The iterations are continued until F-cover C§. No further
T -refinements can be performed after C$ since every ele-
ment in C$ is a ground segment event.

3.3. The Segmentation Sample Space (%)

The segmentation sample space is represented by the
probability triple

&=l ,P), (6}

in which II is the set of all segmentations that can be

formed using R, # represents the set of all subsets of 1
(i.e., the power set of 1I), and P denotes a probability

TABLE 3
Enumeration of Segments for the Example Image
Name Segment
T] {Rl}
TZ {Rl’ R2}
T, {R). Ry}
T-i {RII RZ, R3}
T; {Ri. Ry, R}
T6 {R], RJ, R4}
T‘.' {RII RZa R3- R4}

mapping defined on s4. Since the size of 1 grows at least
exponentially with the size of ®, we will only construct
approximations to &, in a way similar to that used to
construct. approximate representations of J,. Further-
more, we will use approximations of the various J, as the
basic building blocks in the construction of these approxi-
mations to ¥.

In the remainder of this section, we will develop the
relationship of the probability distribution on a particular
J ; to the probability distribution on ¥, show how approxi-
mations to I, can be used to construct representations of
&, and finally, introduce a method for approximating &,

3.3.1. The Segment-to-Segmentation Mapping

The relationship between a particular 7; and ¥ is speci-
fied by the function f;: %, — 4. For a ground segment
event, denoted by {T},! we define f; by

FTh={SEIl:Te S} W)
The event f;,({T}) € o is the set of all segmentations that

include the segment T. Since every T € 6, contains R,
and segments in a segmentation are disjoint, we have

AT NAALH=0OVT, T, €6, T\ #1,. (8)
In other words, no single segmentation can contain two
distinct segments that belong to the same ©,, since by
the definition of 6, such segments would overlap. Using
(7) and (8), we define the mapping for a general event,

! We use {T} instead of T since the ground segment event js a singleton
subset of ©;,
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TABLE 4
A Sequence of F-Refinements That Generates a J-Cover, C§, Which Explicitly
Represents All Segments

F-cover R, B, Partition of 6,
ct — — T, T, T5, Ty, Ts, Ty, T}
C} Rl 8l {{Tz, Td! TS' TI}, {Tl’ TJ’ Tﬁ}}
o] Ry (T, Ty, Tg} {7z, Ty, Ts, T} T} ATh, T
C% R3 {Tls T47 T59 TT} {{TZs TS}: {T4= T-,-}, {T1}9 {T39 Tﬁ}}
ct R, {73, Tg} {T2, T}, (T4, T}, {To), (D), (T}
Ci Ry {Ts, T3} T (T}, Ty, Toh AT {T) (T
(9 Ry {1y, T3} {Tah (T} {7, {T9h {0k T AT

B € %, as

mey=Jrimn=Jsem:tes), ©

TER TER

in which both unions occur over disjoint sets. By applying
f; to each ground segment event of J; we obtain a set of
events that form a partition of TI, with each set in the
partition corresponding to some segment from ¥,. .

The relationship between O, and II resembles the re-
finement relationship defined by Shafer [57]. In fact, the
mapping f; is very similar to what Shafer terms a refining
mapping; however, this should not be confused with our
use of refinement in the context of creating new approxi-
mations for §

The relatmnshlp between the probability map on &, and
the probability map on & is such that the two probablhty
maps coincide on events that are equivalent through f,.
To avoid confusion, in this section and in Section 3.3.2,
we will use Pp; to denote the probability map on ¥, and
Pg to denote the probability map on ;. Explicitly, the
probability assigned to a ground segment in 7, is assigned
directly to the corresponding event on &:

Pp(f(TH) = Po(T). (10)
For an arbitrary event B € &; we use (9) to obtain
Py(fi(B)) = 2, Po(T}) = Po(B), (1)

TEB

which holds because ground segment events are disjoint.

Given a probability map defined on J;, we have con-
straints only for the corresponding map on &, i.e., we
can only determine probabilities for those clements of
4 that are in the image of B; under f;. This implies that
9, can be considered as an approximate representation
of &.

3.3.2. Building Approximate Representations of ¥

In this section, we show how to construct approximate
representations for & using approximate representations

of various ;s as building blocks. The idea is to piece
together ground segment events from a number of J;'s,
until the entire image is covered. The probability mapping
from ground segment events in J; to events in ¥, given
by (11), is used to determine the corresponding probabili-
ties for the events on &. Construction of an approximation
to & can proceed as follows:

1. Letj =1, and let &; = R.

2. Select some region, R € %, and construct an ap-
proximate representation for ﬁ

3. Refine the representation of i until a I-cover, C,
is obtained such that it includes at least some set, X €
C, of ground segment events.

4. Select some segment T € X and construct R, =
QRJ - T.

5. Repeat 2-4 until ®; = &, i.e., until the entire image
has been covered by segments.

Although the algorithm above seems to imply that the ¥
representation is built from explicit ¥, representations,
we show in Sections 3.3.3 and 5.2 that the & representa-
tion can be constructed by a sequence of ¥ refinements,
much in the same manner as for a 9 representation.
Given an approximate representation of &, it is possible
to compute the probabilities, Py, for events on ¥ that
are represented. Consider, for example, the case of two
iterations of the above construction process. Let T, be a
ground segment event from 6,, T, be a ground segment
event from 6, , andlet Ry, =R — T, — T,. We cancompute
the probability assigned to the event corresponding to all
segmentations that contain both T, and T; as

Pr(AGTH N AGT) 1)

= Pa(LU{TDIAAT NPT ).

Assuming that the probability maps on different J.’s

are independent (i.e., there is no statistical dependency

between different segments in the same segmentation),
we have

P[l(fl({T]}) mfz({Tz})) = Pn(ﬁ({rz}))Pn(fl({Tﬁ))- (13)
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TABLE 5
The Possible Segmentations
for Four-Region Example

Segmentation

{{Rl ' R}l R4‘5’ {RZ}}
{Ry, Ry, R}, {R3l}
{{Ry, Ry, Ri}, (R}
{{Rln RZ! R3, Rd}}
(IR, R} {Ry, RY}
{{R1, Ra}, AR} {RA}
{R;, Ry}, {Ra}, (R}
{{R;, Ro}, {Ra}, {RJ}}
{{Rl}n {Rls R4}l {Rﬂ}}
{{Rl}v {RZ! Ri}i {Ri}}
{{Rl}! {RZ! RS! R!}}
{Ri} R R (Rl
{{Ri}, (R:} {Rs, Ralh

Using one segment from each of # 7,’s and assuming
that the probability maps on different J/'s are indepen-
dent, we obtain

Py(AAT) NAATH N ... NLUT,H) (14
= Po(f4TD) ... PrCAU TN PhHUTI ).

Cases in which the probability maps on individual J,’s
are not independent are discussed in [45]. This corres-
pends to a situation in which additional model-based evi-
dence could be used, causing a statistical dependency
between segments (as opposed to strictly within seg-
ments).

For the example presented in Section 3.2.1, Table §
indicates the set of segmentations that can be derived
using this process. For this example, five J,’s were con-
structed, and all of the 13 possible segmentations are
represented in the table,

3.3.3. Compact Representation of Events on &,
Y-Refinements, and F-Covers

In this section, we introduce a representation for events
on ¥ that is analogous to the r representation introduced
in Section 3.2 for events on J,. Following this, we define
an ¥-cover {(which is analogous to a §-cover) and the ¥-
refinement operation (which is analogous to T-re-
finement).

Any event on ¥ constructed in the manner presented
in Section 3.3.2 can be implicitly represented by a set of
segments, F, an include set, 7, and an exclude set, E. The
elements of F are the segments obtained in the sequence
of I, constructions, The sets I and E are the include
and exclude sets of v(J, E), an event in the current 7,
construction. We will use (O;, 9;, P) to denote the current
.. Formally, we represent an event on & by a function
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o, in which

o(F,LE)={S€:FCS}[ | firU E). (15)
As defined in Section 3.3.2, f; is the function that maps

events in %; to their corresponding events on &. In this
context, the corresponding event on ¥ is

e Ey= | {sem:resy

TET(1L.E)

(16)

Thus, (15) represents the set of segmentations that in-
clude every segment in F and exactly one segment from
(I, E).

An P-cover, C, is a set of pairwise-disjoint events in
& that form a partition of II. As with J-covers, there is
a partial ordering on Y-covers, and, as with J-covers, it
is possible to construct a finer ¥-cover from an existing
F-cover by performing an P-refinement operation.

An P-refinement is performed by partitioning the ¥-
refinement event, A, = o(F,, I,, E,}, into iwo finer
events, A; and Ag. This is achieved by applying the &-
refinement operation to r(/,, E)), for a J-refinement re-
gion R,. We impose the constraint that R, be adjacent to
some region in 1, and that it not be used in F, or I,,. For
the case in which 7(/,, E,) is a nonground segment event,
the two ¥-refined events are

Ay=o(F, I,U{R}.E) a7

and

Ag=a(F,, L, E, U{R,)D. (18)
This proposition implies that the replacement of A, by
A, and Ag corresponds to a valid F-refinement:

ProrosiTiON 2. If A, = o(F,, 1, E,), and 7{1,, E)
represents a nonground segment event on ¥, then A; and
Ay, given above, form a disjoint partition of A,

It is possible, however, that 7(I,, E,) may be a ground
segment event, In this case, the construction of a new &
must be initiated. We select some region, R;, that is not
inany of F,, I, or E, as the initial region for the new J.
It is convenient to use an equivalent representation for
o(F,, 1,, E,), as given in the following proposition:

ProPOSITION 3. For an event on ¥, o(F,, 1, E,), in
which ©(1,, E) is a ground segment event on ¥, and for
some region Ry not in F, or 1,

O-(Fps Ip! Ep) = U(Fp ‘U {Ip}’ {RJ}; @). (19)

Although the proof is in Appendix A, this equivalence
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can be seen by noting that 7(/,, E,) contains only on¢
segment, {1 }, and the expressions on both sides describe
the set of all segmentations that contain the segment {/,}
and the segments in F,.

Using Proposition 3, when +(f,, E) is a ground segment
event on 7;, the F-refined events are

A;=a(F,U{L},{R;,R,},QD) 20

and

Ag=o(F, U{L}, {R;},{R,}). 21)
Again, these represent a disjoint partition of A, and hence
can be used in an ¥-refinement.

3.4. Considering Priors

Bayesian approaches require the specification of prior
distributions. Our goal when specifying prior distributions
is to reflect uniformity, to avoid introducing prior bias.
Alternatively, one might want to introduce a prior bias,
for instance toward some number of segments per seg-
mentation. In this section, we describe three possible
specifications of prior distributions on & and & probability
spaces. Each of these specifications corresponds to a par-
ticular definition of uniformity over & or &. In Section 4,
we discuss how the image models are applied to yield a
posterior probability distribution.

The first kind of prior uniformity, termed segmentation
uniformity, is the condition that all segments have equal
prior probability, i.c.,

€1

LAE I
I

P{sh = (22)

in which |II| is the number of possible segmentations.
This appears to be the most natural definition of unifor-
mity. The difficulty with segmentation uniformity is that
it requires enumerating IT before being able to determine
the prior. The methods that have been discussed are aimed
at avoiding this enumeration. Hence, segmentation uni-
formity is difficult to explicitly use; however, it serves as
a reference for comparing other types of uniformity.
The second kind of prior uniformity, which will be
called segment uniformity, specifies that each segment in
I has equal prior probability. Specifically, for a space 6,

1

YT&0, (23)

Segment uniformity appears to be a natural choice; how-
ever, segment uniformity does not imply segmentation
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uniformity, except for the special case in which f({T}
contains the same number of elements, for all T € O,.
This is implied by the probability constraint {(11}. Thus, in
general, withrespect to segmentation uniformity, segment
uniformity can be considered as a kind of bias.

The third and final type of uniformity that we consider is
membership uniformity. Membership uniformity reflects
the assumption that for any ¥ -refinement, the prior proba-
bilities associated with the two T-refined events are equal.
This corresponds to the assumption that the prior proba-
bility of including a region in a segment is equal to the prior
probability of excluding that region from the segment.
Membership uniformity does not imply segment unifor-
mity, except in the special case when | U E| has the
same number of regions for all ground segment events,
(I, E) € J. Note that this is not the case for the example
of Section 3.2.1, as can be seen from Table 2.

Our experiments indicate that the bias due to priors is
readily overcome when evidence is strong. We have also
observed that membership uniformity is usually closer to
segmentation uniformity than it is to segment uniformity.
This is due to the fact that segments with fewer regions
(given higher prior probability) tend to cause more J’s
to be constructed than larger segments. The probabilities
on ¥ are obtained from these individual 9’s using (14).
As the number of segments grows, the prior probability
tends to decrease, compensating for the small-segment
bias with respect to segment uniformity.

4. BAYESIAN PROBABILITY ASSIGNMENTS
FOR REFINEMENTS

Although constructing F-covers by J-refinement has
been specified structurally, no attention has yet been
given to determining the probability assignments to the
events that are created by J-refinement. One primary
issue must be considered: we are not given a complete
representation of 7 on &, This would require one probabil-
ity assignment for every ground segment event.

Recall that each J-refinement removes one event in a
F-cover of O, and replaces it with two disjoint events
whose union is the original event. The basic strategy in
building a representation for some ¥ is to determine prob-
ability assignments for the new events when this step
is performed. This requires deciding how to divide the
probability of the original event between the two new
events. There are two basic mechanisms that exert influ-
ence on this probability assignment. As discussed in Sec-
tion 3.4, there is some prior distribution on the sample
space. Also, after the application of evidence, some poste-
rior distribution is obtained. Model-based evidence will
be used, along with the prior distribution, to determine
probability assignments at the J-refinement step. These
issues will be discussed in the remainder of this section.
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4.1. Refined-Event Probability Assignments

Using the J-refinement mapping, p, successive parti-
tions are constructed for 6,, as prescribed by (4). In order
to perform a J-refinement operation, we select an event
B, = 7({,, E,) and a J-refinement region R,, and then
partition 7(1,, E,) into (I, U {R,}, E,) and (I, E, U
{R.}). For probabilistic consistency, it is necessary to
have

P, B = Pl ULR L E ) + P(r (1, E, U{R,})).
(24)

Prior to the first J-refinement we have i, E) =
T({R:}, &) = O,. Therefore, it is assumed inductively that
P(r(l,, E,)) is known, and that the two probabilitics on
the right side of (24) must be determined using priors and
model-based evidence.,

We assume here that P(z(l,, E))) is not altered by the
J-refinement operation. If this is not the case, itis possible
to develop more general models for which P(r (. E,)} is
affected by considering evidence associated with R,. For
example, taxonomic hierarchies, analyzed by Pearl [51],
allow this to occur. Pearl gives an efficient method for
propagating evidence-based, posterior probabilities
throughout a hierarchy of events, but the construction
of the hierarchy is not considered. Pearl’s more general
Bayesian networks have aiso been applied to computer
vision problems. Agosta and Binford ef al. have consid-
ered them for model-based object recognition applications
(1, 81. Sarkar and Boyer have proposed Bayesian net-
works for a hierarchical organization of perceptual fea-
tures [56].

Since P(z(I,, E,)) is known inductively, only one of
the terms on the right side of (24} is required, say Pirdd,
U {R,}, E,)). To assist in the application of model-based
evidence, we provide the folowing decomposition:

PROPOSITION 4. For some refined event, (I, U{R,},
E,), its probability can be expressed as

P(‘T(Ip U {RP}’ Ep)) (25)
=PER. R, DU, ENPG,, E,).
We let P, = P(7([R,, R}, @) | U, E,)) and refer to
P as the membership probability. This is essentially the
probability that R, is a member of the maximal homoge-
neous segment that contains R;, given that regions in
I, are members and regions in E, are not. Because we
will use the event 7({R,, R,}, @) extensively throughout
this section, we simplify its notation by letting 7;, =
T({R;, R,}, ©). Note that the right-hand side of (25) is
expressed in a form that explicitly indicates the impor-
tance of adding R, to £,. This is the fundamental distinc-
tion between the event (I, E,) and the T-refined event.
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It is natural to expect that the probability due to evidence
will depend directly on the new region that has been
brought into consideration, which has been precisely rep-
resented by the right-hand side of (25). Our membership
probability can alternatively be considered as a definition
of fuzzy membership, with respect to the segment that
contains R; [19, 43].

4.1.1. IE-Independent and IE-Dependent Models

The probability P(r({R;, R}, @) | =(1,, E,)) in (25)
depends on R,, I,, and E_. If a model uses information
from all of these regions, it is termed IE-dependent. If a
model uses information only from R,and R, €1, then it
is termed [E-independent, since the membership probabil-
ity is independent of the regions in f and E {except R)).
Explicitly, {E-independence can be expressed for P, as

Py = P(T({Ri, Rp}! ) |T(Ip= Ep)) (26)
= P(T({R:'s Rp}’ @))-
The choice between these models depends on the appli-
cation. The IE-dependent model is, of course, the more
general model since it does not require an additional as-
sumption: however, the computations that it will tend to
produce are more costly. Since the /E-independent model
uses only R, and R,, only one membership probability
computation is performed for each potential T-refinement
region. If/ »and E, are also considered, then a membership
probability computation must be performed for each -
refinement. It is not always appropriate to use the JE-
independence assumption. Since the membership proba-
bilities with this assumption depend on the relationship
between R, and R;, there must be a significant amount of
information available in R,. Typically, this will imply that
better utilization of model evidence will be possible when
R; contains more data points. We note that in general,
7{{R;, R,}) could be statistically dependent on any other
region in & ; however, for computational reasons, at most
the regions in f and E are considered.

4.2, Posterior Evidence-Based Membership Probability

In this section we present the expressions that deter-
mine the posterior membership probability for the IE-
independent model. The more general, IE-dependent
model derivations and expressions can be found in Section
4.3.1 and in [45].

For each R, € % we associate the following: a parame-
ter space, an observation space, a degradation model,
and a prior model {see Table 6). The parameter space
directly captures the notion of homogeneity: every region
has a parameter value (a point in the parameter space)
associated with it, which is unknown to the observer. The
observation space defines statistics that are functions of
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TABLE 6
The Key Components in Qur General Statistical Framework

Parameter space A random vector, U,, which could, for
instance, represent a space of polyno-
mial surfaces.

A random vector, Y, which represents
the data or functions of the data x € R, .

A conditional density, p(y,|uy), which
models noise and uncertainty.

An initial parameter space density, p(u,).

Observation space
Degradation model

Prior Model

the image elements, and that contain information about
the region’s parameter value. We could use the image
data directly for the observation or could choose some
function (possibly a sufficient statistic, depending on the
application) that increases the efficiency of the Bayesian
computations.

Although the parameter values are not known in gen-
eral, a statistical model is introduced which uses two
probability density functions (pdf’s), forming the prior
model and the degradation model. The prior model is
represented by a density on the parameter space (usnally
uniform), before any observations have been made. The
degradation model is represented by a conditional density
on the observation space, for each given parameter value,
and can be considered as a model of image noise. Each
of these concepts have been used in similar contexts for
image segmentation. In fact we have borrowed the term
degradation model from Geman [29]. In that context, simi-
lar models are used for a Bayesian formalization of the
MRF approach. Szeliski also defines a Bayesian model
for MRFs and terms what we call the degradation model,
the sensor model [63].

The transformation of the image elements in R, and R,
yicld observations of the random variables ¥, and Y;.
These serve as the evidence used to determine the poste-
rior membership probability, which is represented as
P(T({Ris Rp}’ g)‘!"n )’p)

PROPOSITION 6.  Given the observations y, and y,, the
posterior IE-independent membership probability is

I

PR, R LDl W0 = T35 5y @)
in which
_1-5
M="p, 28)
and
MLy, = [ p(y: [ wp(w) dullf piy,|u,)ptu,) du,]

fp (YI , ufp)p (Yp ’ uip)p (u:'p) dul'p
(29)
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We denote the prior membership probability as P,. The
Ag and A,(y;, y,) ratios represent a decomposition of the
factors contributing to the membership probabitity: a prior
factor and a posterior factor. The range of values of these
ratios is restricted to 0 = Ay < =@ and 0 = Ay, y,) < .
When one of these ratios takes on the value of 1, it essen-
tially does not bias the posterior membership probability.

The expression (29) has appeared recently in work from
the statistics literature and is termed a Bayes factor. Smith
and Speigelhalter used a similar ratio for model selection
between nested linear parametric models [59]. Aitken has
developed a Bayes factor for model comparison that con-
ditions the prior mode! on the data [2]. Kass and Vaidya-
nathan present and discuss some asymptotic approxima-
tions and sensitivity to varying priors of the Bayes factor
[42]. Petit also discusses priors, but with concern for ro-
bustness with respect to outliers {52]. The Bayes factor
has ailso been carefully studied for evidence evaluation
in a forensic science context [6, 11, 21, 22]. Other refer-
ences to Bayes factors include [3, 30, 41].

4.3. Other Cases and Extensions

In this section we briefly present some extensions to
the result presented in the previous section. The expres-
sions in Section 4.3.1 represent the more general IE-de-
pendent model. Section 4.3.2 presents the expression ob-
tained when multiple independent parameter spaces and
observation spaces are considered. Finally, Section 4.3.3
indicates how the expressions apply to discrete random
variable parameter and/or observation spaces. The re-
sulting expressions from these three extensions are similar
in appearance to the expressions in Proposition 5, and
consequently for detailed derivations the reader is re-
ferred to [45].

4.3.1.

With the IE-dependent model, the probability of homo-
geneity is expressed as

1E-Dependent Membership Probability

P.T:P(Tfplyp’yl" .,ym,'r(lp, Ep)) (30)

This expression is similar to that for the /E-independent
model. We would therefore expect some similarities be-
tween the derivation of this membership probability and
that for the /E-dependent model, and, indeed, this is the
case. With the /E-independent model, only R, and R , were
used to influence the parameter space density. With the
{E-dependent model, all of the regions that belong to I,
will be used. It may be possible that the models are formu-
lated in such a way that is possible to create an observation

variable obtained from the region given by

R=|J R

RkE]p

(31
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In other words there are Y, and U, for R;, with a given
conditional pdf p(y,(u;). The membership probability is
then computed using (29) by replacing R, with R;.

Alternatively, we may treat each region in I, individu-
ally, with each region having its own set of observation
variables. The observations from each region in I, to-
gether with y, can be used to determine the posterior
membership probability.

Let I, = {Ry,..., R,} be the set of included regions.
The observation variables are Y,, ..., Y,,. It is assumed
again that all information to be considered is represented
by these variables. All of these observations together are
the evidence that is used to determine the membership
probability. As shown in [45], the membership probability
can be represented as

P(Tily""iym’y’T(l’E))
P SR i (32)
]+/\0)\1(Y1’---;Ymvyp),
in which
)\l(yl""vy”nyp)

(33)

_ UGy, |u)p,) dul{] 2, ply, | wlp(w) du}
S, ply, ) wip(y, | wp() du :

This form is intuitively pleasing since it is nearly the
same as (29) for JE-independent membership probability.
The distinction is that the product of pdf’s over different
regions which appear here in the integrals replaces the
pdf corresponding only to region R; for the independent
model.

These two alternatives {creating one large region or
considering individual observation spaces), in general,
produce different results. The two alternatives coincide
when both Y, and the observation variables from each of
the regions in [, are sufficient statistics. When this occurs,
the same information regarding the parameter density will
be obtained whether observations are made from each
region individually, or one observation is made from the
union of the regions. Since each individual region observa-
tion is equivalent to using all of the points in I, directly,
the resulting parameter densities will be the same for both,
yielding identical results for either approach.

4.3.2. Multiple Independent Models

Since a Bayesian model is used to determine member-
ship probability, there is a natural extension to the case
of multiple, independent models of evidence. We begin
the discussion with the prior membership probability.
When the evidence-based probability is determined from
the first model, the resulting probability can be treated
as a membership prior for the next evidence model. This
is a natural benefit of using this Bayesian approach, as
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opposed to formulating some decision criterion for each
model. Hence, one can combine evidence from multiple
sources.

For simplicity, the multiple model case will be shown
only for the JE-independent case, The results carry over
ta the IE-dependent model in a straightforward manner.
Consider some set of models, ¢ach specified as in Section
4.2. Take some region R, There are m models, each with
its own parameter space random variables: U}, ..., U,
The superscripts denote different parameter spaces. Also,
consider observation variables Y;,..., Y{, with each
y4 corresponding to relevant observations about the pa-
rameter space Uj.

For each of the m models we receive an observation,
vielding the values y),..., y7 and y/,....y/" This will
be all of the evidence used to determine the membership
probability, and the posterior membership probability is
represented as

P(Tiply;ln---’y:)n’yi]s---’y;n- (34)

By using these definitions, the membership probability

expression becomes

1
E+ A I MY ¥D
(35}

P, iy, ¥l ymyh. oyl =

For the case in which m = 1 this specializes 10 be (27)
for the single IE-independent model.

Again, this framework has provided a decomposition of
the evidence. The prior component A, behaves as before.
Each of the N (yh,yi) independently contributes to the
region membership probability in the same manner as for
the single, IE-independent model.

4.3.3. Discrete Random Variable Cases

In the discussion so far, both Y, and U, were introduced
as mappings on a continuous probability space, The dis-
crete cases are merely notational variants of the pre-
viousty derived expressions. For instance, with a single
IE-independent model with discrete-valued parameter
and observation spaces, we have

Ay, )=[2u Py, | wPWI[Z, P(y,|w)P@)]
oo 2y Ply; | WPy, | wPu) :

(36)

5. ALGORITHMS TO CONSTRUCT J; AND &
REPRESENTATIONS

The algorithms used to construct approximate repre-
sentations for J,’s, and ultimately for ¥, are primarily
implementations of the concepts presented in the preced-
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ing sections. In this section, we describe a number of the
implementation details related to these algorithms. More
detatled descriptions of the algorithms can be found in
{45].

As described in Section 3.3.2, an approximate represen-
tation of & is built from ground segment events of approxi-
mate representations of ;. Therefore, in Section 5.1,
we describe an algorithm for generating an approximate
representation of 7, in which the » ground segment events
that have the highest probability are explicitly repre-
sented. Then, in Section 5.2, we describe two methods
for generating approximate representations for &. In the
first, beam-search is used to generate segmentations. In
the second, an explicit representation of the n segmenta-
tions that have the highest probability is generated (the
latter algorithm is analogous to the algorithm described
in Section 3.1).

5.1. Constructing Approximate Representations of J,

As described in Section 3.2, successive approximations
to I, are constructed by repeated application of the J-
refinement operation. At each iteration, F-refinement re-
quires the selection of a J-refinement region, R,, and an
event, B,. For a J-cover C, our algorithm selects for J-
refinement the element B € C that has highest probability,
since it is most likely to contain ground segment events
with larger probabilities. The J-refinement region, R,,
which depends on the choice for B,,, must also be selected.
In general, we prefer to use regions that contain the most
information early in the computation. The corresponding
membership probability will be close to either 0 or 1. A
membership probability close to 0 will assign low proba-
bility to the event #(, U {R,}, E,). When the probability
is low, this new event is unlikely to be considered for
subsequent J-refinement. The complementary event,
7{{,, E, U {R,}), will have high probability and is likely
ta be selected for further J-refinement. An analogous
situation occurs when the membership probability is close
to 1. We have observed through experimentation that
the choice of smaller, less-informed regions early in the
computation quickly leads to numerous alternatives;
hence regions are sorted by size as candidates for B,

Recall that a T-cover, C, represents a set of events on
I, that partition 0,. Typically, a F-cover will contain both
ground and nonground segment events. At any stage of
the algorithm, the current J-cover, C, can be partitioned
as

C=CgUChanngﬂCh:®, (37)
in which C, contains the ground segment events of C, and
C,, contains the remaining, nonground segment events of
C. For any ground segment ecvent {7} such that 7 € B
and B € C,, the posterior probability associated with {7}
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can be no greater than the posterior probability associated
with . This observation is the basis for the termination
criterion for our approximation algorithm, This is ex-
pressed as

P(nth(C,)) = max P(B), (38)
BEC,

in which nth(C,) represents the event in C, that has nth
highest probability. When this condition is met, the repre-
sentation explicitly contains the n segments that have
highest probability in ©;.

5.2, Constructing Approximate Representations of ¥

We have developed two algorithms for deriving approx-
imate representations for . The first uses a beam-search
algorithm [66], and the second generates the » segmenta-
tions with the highest posterior probability.

For both ¥ algorithms, it is necessary, at various stages,
to choose a new initial region, R, to begin the construction
of anew . In our implementation, both algorithms select
the largest available region as the new R,. The motivation
for this is that regions containing more ‘‘information”
tend to cause more extreme values for A(y;, y,) (tending
toward 0 or infinity), yielding more compact representa-
tions of ;. Although region size is not a formal measure
of information content, in our experiments (reported in
Section 6 and in [45]) we have observed that when J;'s
are constructed with small initial regions, the resulting
event probabilities tend to remain close to their prior
values, and many competiting ground segment events on
J; are obtained.

The beam-search algorithm for constructing an approxi-
mate representation of & begins by generating a set of
approximate representations of 7;, each of which explic-
itly represents the b ground segment events with the high-
est probabilities. Thus, b is similar to the beam width in
a traditional beam-search algorithm. The algorithm then
finds the »n best segmentations that can be constructed
using only those ground segment events that have been
derived. When b = 1, this algorithm produces a single
segmentation in a “‘greedy’’ manner.

The second algorithm generates the n best segmenta-
tions by performing successive ¥-refinement operations.
Analogous to the partition of F-covers described in Sec-
tion 5.1, we can partition an F-cover, C, as

C=C,UCandC,NC, =0, (39
in which C, contains events that correspond to individual
full segmentations, and C, contains the events of C that
correspond to sets of segmentations. For any § such that
S € A and A € C,, the posterior probability associated
with § can be no greater than the posterior probability
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associated with 4. This observation is the basis for the
termination criterion for our approximate ¥ algorithm.
This is expressed by

P(nth(C,)) = max P(A), (40)
AEG,

in which #th(C,) represents the event in C, that has nth
highest probability. When this condition is met, the repre-
sentation explicitly contains the n segmentations that have
highest probability in IT,

Since the second algorithm is able to guarantee that the
best n segmentations have been represented, one might
question the value of the beam-search algorithm. The
beam-search algorithm offers the advantage of signifi-
cantly improving space and time requirements, at the ex-
pense of guaranteeing that the best segmentations have
been represented. For example, if b = 3, and a segmenta-
tion that has high probability contains a segment that is
ranked fourth in its F;, then the beam-search algorithm
will fail to return it. In practice we have found that the
beam-search algorithm can yield reasonable results, par-
ticularly when there is a large number of regions, &, and
little information per region. Both algorithms have been
useful in our experiments.

6. EXPERIMENTS

In this section we present experimental results on both
real and synthetic range data. Experiments on synthetic
data were performed so that the effect of noise variance
can be explicitly investigated. In this paper we present a
few representative examples of the experiments that were
performed; additional experimental results and compari-
sons can be found in [45]. In Section 6.1 we present results
obtained using the approximation algorithm for J,, and
in Section 6.2 we present results obtained using the &
approximation algorithm, The evaluations of (29) that
were needed for membership probability computations
were obtained using numerical techniques presented in
[47].

The algorithms were implemented in Common LISP on
a SPARC IPC workstation. The execution times varied
dramatically, from a few seconds in some cases, to a few
hours in others. Most of the execution time is devoted to
computations of the membership probability. We have
determined experimentally that the computational cost
(in terms of time and space) increases both as the number
of regions increases, and as the amount of information
per region decreases. For the synthetic data, we have
observed that computation time increases as the noise
variance is increased (less information per region), be-
cause the number of reasonable alternatives rapidly in-
creases. This corresponds to the intuition that the space
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of segmentations becomes increasingly underconstrained
as the amount of uncertainty is increased.

6.1.

In this section we present experimental results that
show 7, representations on some real range images and
one synthetic image. Each approximate representation
was obtained using the algorithm described in Section 5.1
to derive the 20 best ground segment events. For some
results, we show only the first 8 of the 20 best ground
segment events. We used as prior membership probabil-
ity of 0.5 for the planar model and 0.99 for the quadric
model. A higher prior membership probability is required
for the quadric case; otherwise the posterior membership
probabilities are relatively low. This is due to the fact that
even when the union of two regions is homogeneous,
there are many quadric surfaces that well approximate
one region and not the other, causing A,(y;, y,,) to be low.

The synthetic image consists of 10,000 data points
(100 x 100). Figure 2a shows the data set before noise is
applied. When the points are projected into the x,—x,
plane, there is integer spacing between adjacent points,
There is one four-sided pyramid in the image, with a plane
in the background. Note that the height of the pyramid
is distorted in the figure: the x; and x, coordinates range
from 0 to 100, while the height of the pyramid, given by
maximum value of x;, is only 12. Figure 2Zb shows the
range image after applying noise with ¢? = 0.1. Figure
2¢ shows the range image after applying noise with % =
1.0. Figure 3 shows the set of regions, %, that was pre-
sented to the algorithms.

If we select Ry, as the initial region and o = 1.0, we
obtain the top 20 segments shown in Fig. 4. Due to the
high level of noise, the correct segment does not obtain
highest rank; however, due to the representation of alter-
natives it appears in the 8th position. Figare 5 shows the
result when Ro; is selected as an initial region and ¢? =
0.1. For this experiment, the noise level is significantly
reduced, and for this problem the correct segment appears
first and has very high probability. Hence we infer (as
one would expect} that the image model is significantly
more powerful when the noise level is low.

Figure 6 describes a set of range data of a polyhedral
object with two initial regions that were used for experi-
ments. For this range image we present an artificial ren-
dering of the data; thus the reader can clearly see the
object. The regions, 9, are obtained by combining the
edge maps from edge detection and a recursive splitting
algorithm which splits a region if the sum-of-squares error
is too large using the optimal planar parameter estimate.
The data sets are noisy, and the region maps that are
presented contain many small regions that correspond to
invalid data, This causes many specks to appear inside
the segments. Figure 7 shows the resulting distribution

J Representations
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C

FIG. 2. (a) The range data without noise; (b) the data with o2 = 0.1; (¢) the data with o2 = 1,0.

using R, as the initial region. Note that regions that are
close to the planar boundaries tend to be excluded. This
is due to the fact that these regions are not truly homoge-
neous. Most of the alternative segments are very similar
because there are many small competing regions. Figure

FIG. 3. The set of regions, ®. This image shows the region bound-
aries projected into the x,—x, plane, and the regions are labeled with
integers for reference.

8 shows a result in which small regions are excluded from
consideration to emphasize the segment differences.

An image of a piecewise quadric object is presented in
Fig. 9. An intermediate step was performed when generat-
ing the initial regions, which merges regions whose union
is planar with very high probability. The resulting set
of segments using R.; as the initial region is shown in
Fig. 10.

6.2. & Representations

In this section we present three experimental results
which show representations of & and individual segmenta-
tions on images that were used in Section 6.1. The algo-
rithms presented in Section 5.2 are demonstrated here.
The first two approximate representations of ¥ corre-
spond to generating the 20 best segmentations. The final
approximate representation of ¥ was obtained using the
beam-secarch algorithm, with b = 5. The result in Fig. 11
corresponds to little noise, and the correct segmentation
is at the top of the ranking with many similar alternatives
also appearing. The result in Fig. 12 does not even repre-
sent the correct segmentation in the top 20 due to the
high level of noise. The alternatives are, however, similar
to the correct segmentation. Figure 13 shows 20 segmenta-
tions obtained on one of the real range images.
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12: 0.008679

M 2 5

17: 0.005493 18: 0.005382

19: 0.005030 20: 0.004821

FIG. 4. Twenty segments that have highest probability in ©,,. There were 216 events in the final J-cover, with 36 ground segment events.

In this experiment, o = 1.0, and the IE-independent model is in use.

Figure 14 shows some compiled results after performing
numerous experiments on the synthetic image. Figure [4a
shows how the probability distribution over the top 20
segmentations changes as the noise variance is increased
from 0.01 to 1.0. For each value of the variance, 10 trials
were performed in which the synthetic image was regener-
ated each time according to the given noise model; the
results presented in the figure were obtained by averaging

over the trials. When the variance is small, the first seg-
mentation (being the correct one in this instance) receives
a probability near 1. As the variance increases, the first
segmentation receives much less probability, and the
probability distribution is closer to being uniform. We
have also observed that the entropy increases as the vari-
ance increases, quantifying the increase of uncertainty.
In Fig. 14b we observe that the number of refinements



220 LA VALLE AND HUTCHINSON

. |
5: 0.000770 6: 0.000620 7 0.000326 8: 0.000303

FIG. 5. The first 8 of the 20 ground segment events that were determined to have highest probability in ;. There were 550 events in the
final I-cover, with 29 ground segment events. In this experiment, o = 0.1, and the /E-independent model is in use.

FIG. 6. (a) A rendering of the data set, (b} the set of regions, ®, (¢) initial region Ry, and (d) initial region Ry,.
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1: 0.013670 2: 0.011170 3: 0.010372 4: 0.008475

5: 0.007205 6: 0.005888 7: 0.005641 8: 0.005467

FIG. 7. The first 8 of the 20 ground segment events that were determined to have highest probability in 0.4. There were 2294 events in the
final T-cover, with 20 ground segment events. In this experiment, the IE-independent model is in use.

4: 0.034070

5: 0.014327 6: 0.009798 7: 0.009176 8: 0.004976

FIG. 8. The first 8 of the 20 ground segment events that were determined to have highest probability in O,. There were 255 events in the
final F-cover, with 28 ground segment events. In this experiment, the fE-independent model is in use. Regions, R, such that |[R;| < 24 have
been removed. :
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FIG. 9. (a) The rendering of the data set; (b) the set of regions used in a preprocessing step; (¢) the set of regions, ®; and (d) the initial region.
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2: 0.012041

6: 0.003254

10: 0.000201

13: 0.000084 14: 0.000081

17: 0.000031 18: 0.000016
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4: 0.005795

7: 0.001619 8: 0.000664

11: 0.000165 12: 0.000104

15: 0.000046 16: 0.000034

19: 0.000016 20: 0.000010

FIG. 10. Twenty segments that have highest probability in ©44,. There were 150 events in the final J-cover, with 37 ground segment events.

In this experiment, the /E-dependent model is in use.

performed (and hence computation time and space) in-
creases as the variance increases, due to the consideration
of more reasonable alternatives.

7. CONCLUSION

We have developed a general approach to constructing
representations of probability distributions of image seg-

ments and segmentations, which are conditioned on statis-
tical image models. From the experiments we conclude
that segmentation need not be treated as an isolated pro-
cess with an optimal solution, but can be considered prac-
tically as a set of low-level models that can yield a proba-
bility distribution over the space of alternatives. A higher
level system can request alternative segmentations, or
extensions could be made to incorporate higher level or
other additional models. A higher level system can also



PROBABILITY DISTRIBUTIONS OF IMAGE SEGMENTATIONS 223

1: 0.958295 2: 0.003712 3: 0.002556 4: 0.002176

X

5: 0.001674 6: 0.001458 7: 0.001393 8: 0.001344

X

L
9: 0.001264 10: 0.001263 11: 0.001092 12: 0.001088

P

Lr

13: 0.001077 14: 0.001066 15: 0.001055 16: 0.000970

X

17: 0.000942 18: 0.000902 19: 0.000847 20: 0.000831

FIG. 11. Twenty segmentations that have highest probability in I1. In this experiment, o> = 0.1, and the IE-independent model is in use.
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1: 0.028864 2: 0.027437 3: 0.022058 4: 0.020968
5: 0.016604 6: 0.015783 7: 0.012689 8: 0.012061

FIG. 12. The first 8 of the 20 segmentations that were determined to have highest probability in I1. In this experiment, o? = 1.0, and the IE-

independent model is in use.

measure the amount of information present in the image
under the application of a statistical image model.

We hope that this coatribution will change some of the
focus in segmentation research toward the consideration
of distributions of segments and segmentations and
stronger Bayesian models, and away from the determina-
tion of single, optimal (or near-optimal) segmentations
from underconstraining models. Progress toward this goal
will require the ability to successfully integrate other types
of image models into the Bayesian computations, which
is presently being investigated.

6: 0.011435

5: 0.012795

APPENDIX A: PROOFS OF THE PROPOSITIONS

ProrosITION 1.
fined and onto %;.

Proof. Well defined. Note that +(I, E) is a maximal
subset with respect to C. Suppose 7 could map to two
different events, B, and B,. Then it must also map to
B, U B, by (3). If B, # B,, neither can satisfy the maxi-
mality condition since B, C B, U B, and B, C B, U B,. This
leads to a contradiction; hence 7 is well defined.

The mapping defined by 7 is well de-

§: 0.006416

FIG. 13. Eight segmentations that were obtained from a beam-search with 5 = 5. In this experiment, the /E-independent model is in use.
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b
FIG. 14. (a) The probability distribution over the top 20 segmentations, plotted against variance; and (b) the number of refinements performed

vs increasing variance.

Onto. Suppose there exists some B &€ %, which is not
the image of 7 for any I or E sets, Let I = NgepS. Let E
be the set of all regions that are not in Ug-pS and are
adjacent to some region in I, The set v(I, E) is precisely
the original event B, assumed not to be the image of
+(I, E), which is a contradiction. =

ProposITION 2. If A, = (F,, I,, E,), and 7(1,, E,)
represents a nonground event on T, then A; and Ag,
given by (17) and (18), form a disjoint partition of A,,.

Proof. Using the definition of o, {15), the intersection
of A; and A is

{Sell:TeSVIreF,}Nfxd, J{R}E,) @1
N Afilr Uy, E, U {R,D).

This set is empty since 7(f, U {R,}, E,) and 7(/,, E, U
{R,}) represent events for I -refinement (which are known
to be disjoint}, and the application of f; to each of them
yields disjoint sets of segmentations (recall (9}).

Taking the union of A; and A; we obtain

(SEM:TESVIEFIN AU, UIRLE) (49
U fi(r{d,, E, U {R,))].
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This is equivalent to
{(SEM:TESVTEF N fir(l,,E) =4, (43)

since

fileld,, E) = £ U, U{R L E) U fi(r(1,, E, U {R,})
(44)

ProposiTioN 3. For an event o(F,, 1,, E,), on ¥, in
which 1(I,, E,) is a ground segment event on J;, and for
some region R; not in F, or I,

o(F,, I,,E}=a(F,U{l},{R}, ©). (45)

Proof. On the right side, F, represents a set of seg-
ments, and /, and E, represent an additional segment (a
ground segment event on ;). This additional segment
can be identified by its set of regions, whichis /,. To obtain
the second expression, we add the additional segment, /,
to F,, and represent a new J; with the include set, {R},
and exclude set, .

This equivalence becomes clearer when the definition
of « is applied to left and right sides of (45) to obtain

[SEN:TESVTEF}Nf(r(I,,E,)  (46)

and

{SEM:TESYTE (F,U{LDIN AR} DN, @D

respectively. The first expression describes the set of all
segmentations that contain the segments in F, and con-
tain the segment I, (given by the ground segment event
7(I,, E,)). The second expression describes the set of all
segmentations that include F, and I, and also contain
some segment that contains R;. The second condition is
not restrictive since every segmentation must contain a
segment that contains R; (i.e., fi(r({R,}, &) = II). There-
fore, the two representations denote the same event
on¥ =m

PROPOSITION 4. For some refined event, (I, U{R,},
E,), its probability can be expressed as

Pr(I,U{R,}, E))
=P@(R, R}, D | 1L, EDP(r(,, E.)).

Proof. Since v(I, U{R,}, E)) C7(l,, E,), we have

P(T(Ip U {Rp}! Ep)) (49)
=P, U{R.}, E)|7(1,, E))P( (1, E,)).

(48) -
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By using the following lemma with I, = [, I, = {R;, R, },
E = E,, E, =, we have

P(r(I, U{R},E,)| 1, E,)

5
= PR R}, D) |0, E). OO

LemMa. If L 1, I; are include sets with I = I, U I,
and E, E,, E, are exclude sets with £ = E, U E, then
(I, E) = v(I}, E)}) N 7(I,, E,).

Proof of Lemma. Wehaver(I, EY=7(I,UL,E U

E,). By definition

T(Il U 12, El U Ez) (51)
={Te€6;: (UL CT,(EEUE)NT=0a)}.

This can equivalently be expressed as

{Teo, (I, cT,LCT.ENT=C,E,NT=} (52)
This is the same as
{TeG;: [, CT}M{TE6;:,CT}
MN{TEB:EENT=¢)} (53)
N{T€O0,:E,NT=¢%.
But this is equivalent to
{TEO: L, CT.ENT=} (54)

N{Teo, LCT E,NT=]},
which is simply 7(f|, E) N 7(I,, E;). =

PROPOSITION 5.  Given the observations y, and y;, the
posterior membership probability is

1

P(ryly, ¥ = my—p), (55)
in which
. l - PU
Ay = P, (56)
and
Ao y.) = [ p(y: | w)p(u) dud(f ply, |u,)p(u,) du,]
] y“ y,o IP(Yz | “fp)p(yp | “ip)p(uip duip)
(57)
Proof. In order to determine the probability of merg-

ing two regions, it will be necessary to consider a state-
ment of the form H(R; U R,) = true, which corresponds
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to the condition that R; U R, is homogeneous, and H(R;
U R,) = false, which corresponds to the condition that
R; U R, is not homogeneous. We will use 1- to represent
the condltlon H(R; U R,) = true, and 1- to represent
H(R; UR,} = false. Note that if H is true then R;and R,
share the same parameter value.

Next, we state that if two regions, R;and R,
same parameter value, w;

, share the
.,» Which is given, then

p(yb yp |“r'p) =P(Yi|“fp)P(yp|“ip)- (58)
The region’s parameter value {(and not observations from
neighboring regions) is all that is needed to predict the
observation. This is equivalent to asserting that nothing
is learned about the degradation model when observations
arc made from other regions having the same given param-
efer value,

We next make the assumption that the observations Y,
and Y, are conditionally independent, given that R, U R,
is not homogeneous. Formally, this is stated as

(YL Y, | 75) = py)r(y,). (59)

We note that this assumption is not necessary, which is
further discussed in [43].

The observations serve as the evidence used to deter-
mine the Bayesian probability of homogeneity, which is
represented as P(r;, | y;, ¥,). We can apply Bayes’ rule
to obtain

P(Xu yp | TJP)P(T,p)
P Y
p¥;, Y- | Tlp)P(Tlp)
T PUn Y, 7 P(T,) + Py, Y, TO PG

P (Tlp | Yir Y.= (60)

(6D

The denominator of (61) is the standard normalizing factor
from Bayes’ rule, over the hinary sample space, {r,,, rg
The expression P(r;,) represents the prior probability of
homogeneity, i.e., the probability that two adjacent re-
gions should be merged, when y; and y, have not been
observed, and in practice we usually take P(ry,) =
P(r§ AR 1/2. This represents a uniform dlstrlbutlon over
the bmary sample space.
We can write (61) as

1

Plr,, ly:, ¥,) = l—m (62)
in which
_1-PH) _puy 1)
A0 P(H) and }‘l (yi! up) - (63)

p(yi’yplfip)'

227

Substituting (59) into the expression for A(y;, y,) in
(28), we obtain

p(yirly,)

MY ¥ i
( p) p(yi! yp | Tip)

(64)

The condition 7, is equivalent to asserting that w; = u,,.
Using a common prior density p{(u;,), which is equal to
both p(w,;) and p(u,), we can wrile the denominator of
(64) as a marginal with respect to U,

PG Yol 7) = F PG ¥, lup)p(uy) duy,. (65)

"Using (58) in the denominator, and using the marginal
over U, for each term of the numerator, we obtain

_ UpGilw)pm) dullfp(y,|u,)puy) du,]

M0 ¥o) T oty T, p(y, [uy)p () du,

(66)

APPENDIX B: IMPLICIT-POLYNOMIAL SURFACE
MODEIL EXPRESSIONS

In this section we briefly present the polynomial formu-
lation of the membership probability that we used for our
experiments. A more complete discussion can be found
in [45].

For this model, an image element is represented by a
point in {R?, specified by x = [x, x;, x;]. We will describe
points that belong to some region R, by x € R,. This
model declares that all points in a region R, came from
the same polynomial surface patch, with some noise oc-
curring in the observation process. The segmentation goal
in this context is to determine maximal connected sets
of regions that belonged to the same polynomial surface
(before noise was applied).

B.1. The Parameter Manifold

We will not introduce a general, implicit polynomial
model, applying to 3D surfaces. A more general formula-
tion of implicit polynomial models, pertaining to curves
and surfaces or arbitrary degree and dimension, has been
developed by Taubin [64]. A polynomial can be consid-
ered as a linear combination of monomial basis functions.

An implicit polynomial equation is represented as

(-, u) = Euxlfxgwg 0, (67)



with

ay=by=cy=0. (68)
The constants a;, b;, and c; are integers, representing
the exponents of each variable. The - used here indicates
that we have an implicit function with x as the vari-
ables. In later expressions we will refer to ¢(x, u), which
yields a nonzero value unless x is on the surface. The
degree of the polynomial model is the maximum over
Jof a; + b, + c¢;. The planar model is of degree 1, and
the quadric model is of degree 2.

With the present formulation, there are redundant rep-
resentations of the solution sets (i.e., there are many pa-
rameter vectors that describe the same surface in 9%). It
is profitable to choose some restriction of the parameter
space that facilitates the integrations in (29}, but maintains
full expressive power. We use the constraints, [u] = 1
and #; > (), to constrain the parameter space to a half-
hypersphere, 2%, termed the parameter manifold.

B.2. The Observation Space

The observation considered here is a function of the
signed distances of the points x € R, from the surface
determined by w,, termed as displacements. Define
8(x, ¢(:, u,)) to be the displacement of the point x to the
surface described by the zero set, {x:¢(x, u;) = 0}. The
function 8(x, ¢(-, u,)} takes on negative values on one
side of the surface and positive on the other.

We consider the following observation space definition,
and others are discussed in [45]%

YR, u) = X [8(x, ¢, u )T

XER;

(69)

This function of the displacements is often used for poly-
nomial parameter estimation.

Although we have defined the observation space in
terms of the displacements, a closed-form expression for
the displacement of a point to a polynomial surface does
not exist in general. We use a displacement estimate pre-
sented by Taubin and Cooper [65]:

(b(x’ uk)

e 70
9.0, u] (70)

S(X; ¢(! “k)) =

B.3.

To define the degradation model, we first need to ex-
press the density corresponding to the displacement of an
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% Note that we use y, instead of y, when the observation space is
scalar.
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observed point from a given surface. We use a probability
meodel for range-scanning error, used and justified by Bolle
and Cooper [9], and also used by Taubin [64]. The model
asserts that density, p(8|u), of the displacement of an
observed point from the surface, ¢(x, u), is a Gaussian
random variable with zero mean and some known vari-
ance, o, This degradation model is merely chosen as a
representative of possible models that can be used. For
different imaging systems, other models may be more
appropriate. Ikeuchi and Kanade provide a detailed dis-
cussion of the modeling of a variety of range-imaging
sensors [35].

Since taking the sum of squares of Gaussian densities
yields the x? density, the degradation density, for unit
variance, using (69) is

I et
POy = x5, (v) = mnk” te /2 (71)

Here v, is the sum-of-squares for a given region, R,, and
parameter value u,, given by (69). Also, ['(-) is the stan-
dard gamma function and m, = |R,| (the number of ele-
ments in R,).

B.4. The Prior Model

Since the parameter space has been restricted to a
bounded set, we can define the prior pdf to have equal
value everywhere on the parameter manifold. This cap-
tures the notion of uniformity due to the lack of informa-
tion; however, it is important to note that our choice of
parameter manifold affects the prior density on the space
of implicit surfaces. If other constraints were used on the
parameter space, and we assumed a constant-valued pdf,
the density would be somewhat different from the one we
have selected here. Once some information is present
(i.e., some observed data points) this distinction becomes
less important.

Since the density over the parameter manifold must
integrate to I, the uniform density is just the inverse of
the surface area of the half hypersphere that defines the
parameter manifold, which is straightforward to compute.
The prior model is p(w,) = A5, in which 4, represents
the area of the N parameter manifold. This quantity can
be determined through a straightforward integral transfor-
mation [61].
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