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stage k E { 1, ... , K). One can begin with stage K + 1
and repeatedly apply (38) to obtain the optimal actions.
At stage K + 1, we can use the last term of (12) to ob-
tain ~K+i (~x+i ) - lx+i (~x+1 ). The cost-to-go Lk
can be determined from LK+1 through (38). Using the
UK E U and TCk that minimize (38) at XK, we define

7~(~~’) = JUK, TCKI. We then apply (38) again, using
L* K to obtain LK_1 and -yk -1. These iterations continue
until k = 1. Finally, we take -y* = {&dquo;’(i,... , ~yK}.
The cost-to-go function L* shares similarities with the

concept of a global navigation function in motion planning
(Latombe 1991; Rimon and Koditschek 1992), as both repre-
sent functions on the configuration space that can be used to
control the robot. Also, various forms of dynamic program-
ming have been successfully applied in several other mo-
tion planning contexts (Barraquand and Ferbach 1994; Hu,
Brady, and Probert 1991; Miura and Shirai 1991; Suh and
Shin 1988); for instance, the wavefront expansion method
that is described in Latombe (1991) can be viewed as a spe-
cific form of dynamic programming.

Recall that because of stationarity, the strategy qk does
not depend on the stage index k for the problems that we
consider.

6.2.1.2 Imperfect Information

We now describe how the dynamic programming equation
is applied under nondeterministic sensing and control uncer-
tainties. From a given information state, we wish to evaluate
a partial strategy from stage k to stage K. Previously, we used
the notation L~(~k) to evaluate a part of an optimal strategy
from a given state. Using the information state representation
Fk(?7k), which was defined in Section 3.3, we have

We want to consider the effect of selecting -Yk(?7k) in the
information space ?7k. This results in Fk+1(~1k+1)~ ~ defined
in (17). We additionally assume that the per-stage loss does
not depend on state l(~~, Uk, TCk) = l(Uk, TCk), which en-
compasses the loss functionals that we have considered thus
far (this assumption is not required in general).
The dynamic programming principle states that ~~ (r~k ) can

be obtained from ~~+1 (r~k+i ) by the following recurrence:

in which L~(r~k) represents the optimal worst-case loss, ob-
tained by implementing the optimal strategy 7* from stage k
to stage K + 1.

At stage K + 1, we can use the last term of ( 11 ) to obtain

6.2.2. The Probabilistic Case

6.2.2.1 Perfect Information

Next, we present the principle of optimality under probabilis-
tic control uncertainty. The resulting equation can be applied
in the same iterative manner to obtain an optimal solution.
The expected loss obtained by starting from stage k and im-

plementing the portion of the optimal strategy 1-yk* ...... ~yK}
can be represented as

in which E{} denotes expectation taken over the actions of
nature.

The principle of optimality (Kumar and Varaiya 1986)
states that lg(zk ) can be obtained from Lk+1(~~+1) by the
following recurrence:

Note that the integral is taken over states that can be reached
using (1).

6.2.2.2 Imperfect Information

We now describe how the dynamic programming equation
is applied under probabilistic sensing and control uncertain-
ties. From a given information state, we wish to evaluate a
partial strategy from stage k to stage K. Previously, we used
the notation L¡(Xk) to represent the expected loss of execut-
ing a partial, optimal strategy from a given state. Using the
information state density ~(~k ~ r~k) on X, we have

We also consider the one-stage expected loss associated
with taking an action, from a given information state, ?7k:

This is the expected loss that will be incurred if an action
~ck and TCk are taken from state r)k, resulting in some 1]k+l.
The integral of (45) is determined from (11) and (9). Using
the previous notation, the dynamic programming principle
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states that 1g(qk ) can be obtained from Lk+1(rlk+1) by the
following recurrence:

Above, p(r~~+1 ~ ~A:.7A:(~)) is determined by replacing 9
with -y in (29).
At stage K + 1, we can use the last term of ( 11 ) to obtain

6.3. Approximating the State Space

We determine optimal strategies numerically by successively
building approximate representations of Lg over the state
space. A uniform grid is used to closely approximate Lk.
(Note that the use of a hierarchical representation is more
difficult in this context than in traditional path planning.) We
obtain the value for Lg(zk) by computing the right side of
(38) (or the appropriate dynamic programming equation) for
various values of Uk and TCk and using linear interpolation.
Other schemes, such as quadratic interpolation, can be used
to improve numerical accuracy (Larson and Casti 1982).

Note that the LK represents the cost of the optimal one-
stage strategy from each state ~. More generally, LK_z
represents the cost of the optimal i + 1 stage strategy from
each state XK-,. For a motion planning problem, we are
concerned only with strategies that require a finite number
of stages before terminating in the goal region, and assume
that stationarity holds, as discussed in Section 3.4. We select
a positive 6 = 0 and terminate the dynamic programming
iterations when IL¡(Xk) - L¡+1 (xk+dl < b for all values

in the state space. The resulting strategy is formed from
the optimal actions and termination conditions in the final
iteration. Note that no choice of K is necessary. Also, at
each iteration of the dynamic programming algorithm, we
retain only the representation of L~+1 while constructing i g ;
earlier representations can be discarded.
To execute a strategy, the robot uses the final cost-to-go

representation, which we call Li . The robot is not confined
to move along the quantization grid that is used for deter-
mining the cost-to-go functions. The optimal action can be
obtained from any real-valued location x E X through the
use of (38) (or the appropriate dynamic programming equa-
tion), interpolation, and the approximate representation of
Li . A real-valued initial state is given. The application
of the optimal action will yield a new real-valued configu-
ration for the robot. This form of iteration continues until

TCk = true.

6.4. Approximating the Information Space

With sensing uncertainty, planning occurs in the information
space, which is generally of a much higher dimension than
the state space. This section discusses trade-offs between
the computational expense and the quality of information
space approximations. Many issues exist that may cause
one method to be preferable over another. In the current

implemented examples, which are presented in Section 6.6,
we limit the history to the past sensor observation. This
results in sensor feedback, which is similar to the approach
used in Erdmann (1993).

These approximation techniques can be used in combi-
nation with interpolation, which was discussed in Section
6.3. Strategies are determined, however, by successively
building cost-to-go functions on the information space, as
opposed to X.

6.4.1. Limiting History

As defined in Section 3.2, ?7k is defined as a subset of the
sensing and action history. One straightforward way to keep
the information space dimension fixed is to limit the amount
of history that is remembered. For instance, we can maintain
i stages of history to obtain

If i = 0, then only the last sensor observation can be retained
for decision making, which results in a sensor-feedback strat-
egy. If position sensing is used along with a directional force
sensing, then the information space is reduced to having one
more dimension than the state space.

6.4.2. Introducing Statistics

A more general way to reduce the information space com-
plexity is to transform the history into a lower dimensional
space. This technique encompasses the history limiting ap-
proach. An ideal situation exists when an information space
can be transformed using a low-dimensional sufficient statis-
tic (Duda and Hart 1973; Kumar and Varaiya 1986). A suf-
ficient statistic implies that any decision that is based on the
complete history can equivalently be made by considering
only the statistic.

In general, a transformation of the form

is applied to the history. The information space Nk as defined
in previous sections can be replaced by the statistic space Zk
for which E Zk. Strategies are then defined Zk, and dy-
namic programming can again be applied to yield solutions.
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6.4.3. Functional Approximation with Moments

One special type of statistic that can be used to approximate
the information spaces is the set of moments. Suppose there
is probabilistic uncertainty and the information space is rep-
resented as a function space of pdfs. Moments can be used
as statistics that summarize the information in the pdfs. Con-
sider, as an example, a second-order approximation. Recall
from Section 4.2.2 that from any sensing and action history
(i.e., {ui, U2t .... 2G/~-1, YI, !/2.....~}). the pdf on the state
space can be inferred, p(~k ~ rik). Let J.1.k and Ek repre-
sent the mean vector and covariance matrix, respectively, of
p(~k ~ I 77k). From any history, we can now obtain the mo-
ments ~c~ and £k .

If rik are -Yk(77k) given, recall that a density for the next
information state p(rik+i ~ I rl~,7k(~1k)) will be obtained.
This was used in (46) as part of the principle of optimal-
ity, which can be used to compute an optimal strategy. When
using moments, we can replace p(T/k+1 ~.7A:(~)) with
P(ILk+l, ~k+i ~ I J.1.k, Ekt ’Yk(ILkt Ek)) in (46). This can be

used to determine optimal strategies from moments (optimal
on the approximated information space).
An information feedback strategy ̂ tk(71k) is then replaced

by a moment feedback strategy -y~(~k, Ek). The hope in
using moment approximation is that ~yk(rik) -: -Yk*(Pk, Ek)
for all ?7k E Nk.

6.5. Computational Performance

We briefly discuss the computational performance of the dy-
namic programming computations. Let Q denote the number
of cells per dimension in the representation of Cfree. Let n

denote the dimension of the information space (which be-
comes the dimension of the state space in the case of perfect
information). Let U ~ denote the number of actions that
are considered. Let I 8 denote the number of actions that
are considered by nature. The space complexity of the algo-
rithm is O( Qn), which is proportional to the size of the state
space. For each iteration of the dynamic programming, the
time complexity is O(Q’~ ~ U ~ ~ 8 1). and the number of iter-
ations is proportional to the robot velocity and the complexity
of the solution strategy. The number of iterations required
is directly proportional to the number of stages required for
the longest (in terms of stages) optimal strategy that reaches
the goal. The computation at each cell (in the application of
(38)) has time complexity 0(1 U ~ ~ 8 1). with n fixed. This
analysis assumes constant time for interpolation; typically,
however, the interpolation complexity itself is exponential in
dimension.
The computational cost of dynamic programming in-

creases exponentially in the dimension of the state space
for perfect information and the information space for imper-
fect sensing; however, most algorithms that solve the basic

motion planning problem without sensing and control un-
certainty have exponential complexity in the dimension of
the configuration space (for surveys and comparisons, see
Hwang and Ahuja 1992; Latombe, 1991). We consider
the current approach to be reasonable for a few dimensions,
which includes many interesting motion planning problems.
For more difficult problems, some additional computational
techniques may need to be developed.

In our simulation experiments, we have considered prob-
lems in which X C R2. We typically divide the state space
into 50 x 50 cells, 64 quantized actions to approximate trans-
lational motion. We have considered similar quantizations
of the information space under sensor feedback.
The computation times vary dramatically depending on the

resolutions of the representation. For the examples that we
present in this paper, the computation times vary from about a
few minutes to a few hours on a SPARC 10 workstation. It is

important to note that the dynamic programming equations
are highly parallelizable. For example, under probabilistic
uncertainty with perfect state information, the computation
of the optimal action at each location zk depends only on a
very local portion of the representation of L~+1 (~k+1 ) and
on no portion of Lk(~k). A parallelized implementation of
the algorithm would significantly improve performance.

6.6. Computed Examples

In this section, we present computed examples of optimal
strategies that were determined by the computational meth-
ods discussed in Section 6. For these strategies, we show
forward projections and preimages that can be compared to
the results in Sections 4.3 and 5.3.

For the results in this section, we used the loss functional
(13) with l(Uk, TCk) =11 v II [ At and cj = 10, 000. We have
found the loss functional (12) to not be as useful for deter-
mining optimal strategies. For most problems, the cost-to-go
is zero at every state from which it is possible to achieve the
goal. Therefore, there are many strategies that are considered
equivalent, while in reality the expected time (or worst-case
time) for some of the strategies to achieve the goal may be ar-
bitrarily longer. For fixed motion commands, however, (12)
provided useful information because a strategy was chosen
that in many possible trajectories did not achieve the goal.

For the first example, we refer back to the peg-in-hole
problem that was introduced in Section 4.3. We assume, as
considered previously, that I I v I At = 3 and ee = 48.8°.
Figures 7a and 7b show computed results that were obtained
under probabilistic uncertainty with perfect state informa-
tion. Figure 7a depicts the optimal strategy by showing the
direction of the motion command Uk = ~~(~~) at different
locations in the state space. Figure 7b shows isoperformance
classes for every six units (i.e., there is a contour for every
two expected stages of motion). This can be compared to the
preimage results from Section 5.3; under the implementation
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Fig. 7. Optimal strategies and performance preimages for the
peg-in-hole problem under probabilistic control uncertainty
and nondeterministic control uncertainty.

of the optimal strategy, the curves emanate radially from the
goal region.

Figures 7c and 7d show computed results that were ob-
tained under nondeterministic uncertainty with perfect state
information. The isoperformance curves are closer together
because worst-case analysis causes the computed loss to be
greater.

Figure 8 shows several more computed optimal strategies
for probabilistic uncertainty with perfect state information.
We assume for each of these examples that j j v II At = 3
and Ee =48.8°.

Figure 9 shows the computed optimal strategies for prob-
abilistic uncertainty with imperfect state information. We
assume for each of these examples that ~ ~ v ~ ( At = 3 and
co = 48.8°. We used the sensing model from Section 3.5
and let ep = 5 and e f = 0. Without perfect sensing, the
expected time to reach the goal increases, which causes the
isoperformance curves to be closer together. In addition, the
sample paths under the implementation of the optimal strate-
gies involve more variations.
The strategy representation and the isoperformance curves

in Figure 9 do not align completely with the obstacles in the
workspace because the optimal actions and isoperformance
curves are defined in the information space. For these ex-

amples, the information space is represented by the set of

possible sensor values. Sensed force values are not shown in
the figures.

Figure 10 shows computed optimal strategies for non-
deterministic uncertainty with imperfect state information.
A solution strategy could not be found using the same un-
certainty models as for the probabilistic case. This occurs
because worst-case analysis eliminates the consideration of
many reasonable strategies, as mentioned in Section 2. We
therefore use 11 v 11 At = 10, Ee = 0.8, Ep = 2.5, and

E f = 0. The isoperformance curves are shown for every 30
units of loss.

7. Discussion

In this section, we briefly discuss some aspects of the current
framework and future directions that could be taken with this
research.

7.1. Randomized Strategies

In Erdmann (1989, 1992, 1993), useful manipulation plan-
ning methods were developed around randomizing the ac-
tions of the robot. It is important to note that in our work
the robot strategy is deterministic even though the execu-
tion of the strategy can be considered as a random process.
Erdmann has argued that two important benefits result from
using randomized strategies: (1) robustness with respect to
incorrect models can be obtained and (2) multiple attempts
can be made to solve a task instead of requiring a guaranteed
solution.

By conditioning our strategies on state feedback or infor-
mation feedback, the robot is capable of making multiple
attempts to solve a task. In a motion planning context, one
can imagine a robot that attempts to execute a motion plan,
reports failure, and then replans to make another attempt;
this behavior is exhibited in the error detection and recovery
strategies in Donald (1987, 1988, 1990). An &dquo;attempt&dquo; is
not as distinct in our approach, however, because the robot
responds dynamically to its information. Rather than recom-
puting a new strategy, the response corresponds to the optimal
behavior that was determined through global analysis of the
motion planning problem and its uncertainties.

Robustness with respect to incorrect modeling represents
a useful feature, which has not been considered by our frame-
work thus far. In the approach that we present, the assumption
is made that the models are correct. Under nondeterministic

uncertainty, the correctness of the model can become critical
since it then becomes impossible to &dquo;guarantee&dquo; a particu-
lar loss (unless the model truly represents an upper bound on
the uncertainty). Under probabilistic uncertainty, the effect of
modeling errors appears to be less drastic. One difficulty with
introducing randomization is that it can arbitrarily increase
the loss required to complete the goal even though robust-
ness is strengthened. In the limiting case, pure Brownian
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Fig. 8. Examples that were computed under probabilistic uncertainty and perfect state information.

motion can be executed. This essentially makes no model-
ing assumptions and will achieve the goal, but the loss can be
extremely high. It remains to be seen whether randomized
actions can be incorporated into our framework to provide a
reasonable trade-off between the distance of a strategy from

optimality and the potential incorrectness of the models.

7.2. Hierarchical Strategies

In the methods developed in this paper, the robot executes
a fixed command at each At. In traditional preimage plan-
ning, however, a fixed action is executed until the termination
condition is met. If the goal is not yet reached, another ac-
tion is executed. In general, a sequence of fixed actions with
termination conditions is executed until the goal is reached.

Recall that the performance preimage can be used to eval-
uate a particular strategy. One interesting approach would be
to implement preimage backchaining and subgoals by perfor-
mance preimages. We can define G1 as a subgoal for a larger

problem, and define a g and TC that achieves Gt in a satis-
factory way. The resulting posterior density p(XK+t) would
be used as the initial information state for the achievement
of a second goal G2. We can consider abstract actions of
the form ~G2, q) that attempt to achieve some original goal.
Backchaining from G under explicit performance measures
and a given set of choices for abstract actions is another form
of dynamic programming. The relationship between standard
preimage planning and dynamic programming is discussed in
Erdmann (1993). The reason for considering abstract actions
and subgoals is the hope that a simple set of abstract actions
exists that can be composed to provide quick and efficient
solutions for a wide class of problems (as was the case with
backprojection planning (Erdmann 1984).

7.3. Determining Accurate Uncertainty Models

The flexibility of our approach permits the use of a variety
models for sensing and control uncertainty. In many previ-

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


40

Fig. 9. Examples that were computed under probabilistic uncertainty and imperfect state information.

ous approaches, the results were strongly dependent on the
particular model chosen. For instance, worst-case analysis in
the backchaining approach has often used bounded disk un-
certainty for position and bounded angular error for control
uncertainty. With our approach, one important area of fu-
ture research is to develop models that accurately reflect the
uncertainty involved in a particular manipulation task. This
is particularly true for the case of probabilistic uncertainty.
The densities hold a large amount of expressive power; how-
ever, simple models are often chosen to obtain reasonable
results. Within our framework, different uncertainty mod-
els can be substituted and, through simulations or repeated
execution trials, better uncertainty models could be devel-
oped for a particular context. This direction of research was
also advocated in Brost and Christiansen (1996) to determine
valid error distributions for the computations of appropriate
probabilistic backprojections.

7.4. Sampling Issues

One important issue that has received little attention in ma-
nipulation planning literature is the sampling rates that are
available for sensing and control. In the typical preimage

planning formulation, the robot is allowed to issue a new
command at any point in time, implying continuous-time
controllability of the robot. The robot command is changed,
however, only during the few occurrences of meeting the
termination condition. In this paper, we have assumed a

sampling rate that essentially approximates continuous-time
control and sensing. By allowing the motion command to
change at any discrete stage, we obtain a significant amount
of control over the robot in the face of uncertainty. One use-
ful approach might be to consider a much lower sampling
rate. This models the situation in which fine motions are per-
formed before additional sensing or a new control input can
be applied. This seems to appropriately reflect a situation
in which the planning workspace is very small, such as in a
part-mating operation.

8. Conclusion

We presented a flexible framework for manipulation planning
under uncertainty in which motion strategies are selected to
optimize a loss functional. We have indicated through the dis-
cussion and simulation experiments that the efficiency of a
robot motion strategy is crucial in planning under uncertainty.
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Fig. 10. Examples that were computed under nondeterminis-
tic uncertainty and imperfect state information.

We have developed a performance preimage as a useful con-
cept for evaluating motion strategies, which generalizes the
classical preimage. This work identifies termination criteria
with optimal stopping problems from optimal control the-
ory and allows the incorporation of a termination condition
into the optimal strategy. We apply information space con-
cepts from stochastic control and dynamic game theory to
incorporate history into a motion strategy with uncertainty in
sensing. We additionally provide a computational approach
that numerically determines optimal motion strategies un-
der a wide class of performance functionals by applying the
dynamic programming principle to approximate stationary
cost-to-go functions and illustrate the concepts through com-
puted examples. One of the most important directions for
future research will be to investigate different methods of
approximately representing the information space.
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