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Abstract

Thispaper addresses the pursuit-evasion problem ofmainaining sur-
veillance by a pursuer ofan evader in a world populated by polyg-
onal obstacles. This requires the pursur to plan colision-free mo-
tions that honor distance constrants imposed by sensor capabilities,
while avoiding occlusion of the evader by any obstacle. The pa-
per extends the three-dimensional cellular decomposition ofSchwartz
and Sharir to represent the four-dimensional configuration space of
the pursuer-evader system, and derive necessary conditions for sur-
veillance (equivalently, sufficient conditions for escape) in terms of
this new representation A game theoretic formulation of the prob-
lem is then given, and this formulation is used to characterize opti-
mal escape trajectories for the evader A shooting algorithm is pro-
posed thatfinds these trajectories using the minimun prnciple. Fi-
nally, noting the similarities between this surveillance problem and
the problem of cooperative manipulation by two robots, several co-
operation strategies are presented that maximize system performance
for cooperative motions.

KEY WORDS-surveillance strategies, motion planning,
pursuit-evasion

1. Introduction

In this paper, we consider the basic surveillance problem of
planning motions for a pursuer such that it maintains visibility
of a moving evader in a known workspace containing obsta-
cles. This is a variant of the traditional pursuit-evasion prob-
lem (discussed in Section 2) in which the pursuer has the goal

Surveillance Strate'gies
for a Pursuer with Finite
Sensor Range

of either catching or finding the evader. Our problem has ap-
plication in several domains. In security applications, it may
be desirable for a robot sentry to surveil a moving evader (ei-
dw anther robot or a human) as the evader moves through
some sensitive area. In non-securty applications, it may be
desirable fora robot to monitor the pCerorm e ofanother ro-
bot or of a human worker (e.g. a mobile robot might- follow a
highway crew as it makes road repairs, monitoring the quality
of the repair work). Furthermore, as we will discuss below,
our methods for planning surveillance strategies are also ap-
plicable to situations in which robots cooperate, such as shared
manipulation or maintaining robot formations.

For our problem, we assume that the evader is initially po-
sitioned within the pursuer's field of view, at a distance L1ji
from the pursuer. The pursuer's goal is to maintain visibil-
ity of the evader while maintaining a surveillance distance
Lmin < L < Lma, in which L n and L,x are parameters de-
termined by the capabilities of the sensor and by any pursuer
safety concerns. This requires the pursuer to plan collision-
free motions that prevent occlusion of the evader by obstacles
in the workspace, while maintaining the surveillance distance
in the interval [Lmin, L, ]. We assume that the pursuer is pro-
vided with a map of the workspace, and that the workspace is
populated with polygonal obstacles.

In the case of a visibility based pursuit-evasion problem,
it is pertinent to analyze the case of bounded surveillance dis-
tance for the following reasons. First, commercially available
sensors (laser and cameras) have upper and lower range limits.
In particular, if the evader is farther from the pursuer than a
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maximal sensor range then its location is unknown, and sur-
veillance is broken. The lower bound on the surveillance dis-
tance may be due to sensor capabilities, but more likely it will
derive either from safety concerns (e.g. if the evader has the
ability to harm the pursuer) or from a desire for the pursuer
to remain undetected throughout the surveillance. Hence, if
the evader is within this minimal range, even if the pursuer
can partially infer the location of the evader, the evader has al-
ready a great advantage: the pursuer may not be able to detect
the evader, and furthermore, the evader has the ability to hann
the pursuer.
A great deal of related research exists in the area of pursuit

and evasion, much of it from the dynamics and control com-
munities, and we review the most relevant of this in Section 2.
This past work typically does not take into account constraints
imposed on pursuer motion due to the existence of obstacles
in the workspace, or visibility constraints that arise due to oc-
clusion. In this paper, we focus on these often neglected geo-
metric aspects of the problem.

In Section 3 we define the configuration space for our
pursuer-evader system and derive an efficient combinatoric
reprsentatio for this configuration space. If the purser and
evader are constrained to remain separated by a fixed distance,
the motion pilning problem for the pursuer-evar system is
analogous to the problem ofmoving a rod in a plane. The basic
problem of moving a rod in a plane was solved by Schwartz
and Sharir (1987) using an elegant combinatoric representa-
tion of the set of free configurations. This representation can
be extended to the case when the surveillance distance is al-
lowed to vary by noting that the qualitative structure of this
representation changes only at a finite set of critical values of
the surveillance distance. Thus, we can represent the full four-
dinnsional configuration space of our pursuer-evader system
by using a finite set of Schwartz and Sharir decompositions,
provided we connect them appropnately. The description of
this process concludes Section 3.

The representation developed in Section 3 leads to a nec-
essary condition for surveillance (symmetrically, a sufficient
condition for the evader to escape), expressed in terms of the
qualitative decomposition of the configuration space. In par-
ticular, in Section 4 we derive conditions for the existence of a
surveillance strategy for the case of a pursuer with unbounded
velocity. If no such strategy exists, then there is no strategy for
a pursuer with bounded velocity.

In Section 5, we formulate the surveillance problem using
the language of noncooperative, dynarmic game theory. Here,
we assume that the pursuer and evader have bounded veloci-
ties.

Conditions for escape are then formulated in terms of the
time required by the evader to reach a particular configuration,
and the corresponding time required by the pursuer to reach a
position from which it can maintain surveillance.

For the case of bounded velocities, we solve the case cor-
responding to the following assumptions: The pursuer-evader

system's motion takes place in free space up to the moment
that the system reaches a set of escapable configurations and
the pursuer maintains a minimal surveillance distance.

The formulation in Section 5 relies on the ability of the
evader to plan optimal escape trajectories. Therefore, in Sec-
tion 6 we derive the optimal escape trajectories for the-evader
using Pontryagin's minimum principle. In this section we pro-
pose a shooting algorithm to compute optimal escape trajec-
tories, and show several results. For any such trajectory, it is
straightforward for the pursuer to determne the required mo-
tion to maintain surveillance. If the duration of this motion
exceeds the duration of the optimal escape trajectory, the sur-
veillance is broken.

The two-robot pursuer-evader system becomes a team of
two cooperating robots if the evader acts in concert with the
pursuer. Therefore, in Section 7 we describe severl coopera-
tive motion strategies. These strategies could be used, for ex-
ample, by two robots manipulating a rigid object. In this sec-
tion, we consider leader-follower motions, in which the evader
assumes the role of leader and the pursuer assumes the role of
follower.

Finally, Setion 8 ovis conclusions and discusses future
work.

2. Previous Work

Our surveillance problem is related to pursuit-evasion games.
A great deal of research exists in the area of pursuit and eva-
sion, particularly in the area of dynamics and control in free
space (without obstacles) (Hajek 1965; Isaacs 1975; Basar and
Olsder 1982). This work typically does not take into account
constraints imposed on pursuer motion due to the existence of
obstacles in the workspace, nor visibility constaints that arise
due to occlusion.

Within the robotic planning community, several versions of
the pursuit-evasion problem have been considered. One such
problem is that offinding an evader with one or more mo-
bile pursuers that sweep the environment so that the evader
does not eventually sneak into an area that has already been
explored. Exact (Parsons 1976; Suzuki and Yamashita 1992;
Guibas et al. 1997; LaValle and Hinrichsen 1999, Shas et al.
2004) and probabilistic algorithms (Vidal et al. 2002; Hes-
panha et al. 2000; Isler et al. 2005) have been proposed to
solve this problem. Another problem is to actually "catch" the
evader, that is, to move to a contact configuration or closer
than a given distance (Isaacs 1975; Isler et al. 2004).

These problems are related to, but not the sane as ours. We
assume that initially the pursuer can establish visibility with
the evader. Our problem consists of determining a pursuer mo-
tion strategy to always maintain that visibility. The problem of
maintaining visibility of a moving evader has been tradition-
ally addressed with a combination of vision and control tech-
niques (Espiau 1992; Hutchinson et al. 1996). Pure control
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approaches, however, are local by natue, and do not take into
account the global structure of the environment. Our interest
is in deriving pursuer strategies that guarantee successful sur-
veillance, taking into account both constraints on motion due
to obstacles, and constraints on visibility due to occlusion.

Some previous work has addressed the motion planning
problem for maintaining visibility of a moving evader. Game
theory is proposed in LaValle et al. (1997) as a framework to
formulate the tracking problem and an online algorithm is pre-
sented. In Becker et al. (1997), an algorithm is presented that
operates by maximizing the probability of future visibility of
the evader. This algorithm is also studied with more fonnal-
ism in LaValle et al. (1997). This technique was tested in a
Nomad 200 mobile robot with good results.

The work in Fabiani and Latombe (1999) presents an ap
proach that takes into account the positioning uncertainty of
the robot pursuer. Game theory is again proposed as a frame-
work to formulate the tracking problem, and an approach is
proposed that periodically commands the pursuer to move into
a region that has no localization uncertainty (a landmark re-
gion) in order to re-localize and better track the evader after-
ward.

In Gonzalez et al. (2002), a technique is proposed to track
an evader without the need of a global map. instead, a range
sensor is used to construct a local map of the enviromnent,
and a combinatoric algorithm is used to compute a differential
motion for the pursuer at each iteration.

The approach presented in Murrieta et al. (2002) computes
a motion strategy by maximizing the shortest distance to es-
cape - the shortest distance the evader needs to move in or-
der to escape the pursuer's visibility region. In this work the
evaders were assumed to move unpredictably, and the distrib-
ution of obstacles in the workspace is assumed to be known in
advance. This planner has been integrated and tested in a robot
system that includes perceptual and control capabilities. The
approach has also been extended to maintain visibility of two
evaders using two mobile pursuers.

Recently, some research has considered the problem of
maintaining visibility of several evaders with multiple robots.
In Parker (2002) a method is proposed to accomplish this task
in uncluttered environments. The objective is to minimize the
total time during which evaders escape observation by some

robot tearn member. In Jung and Sukhatme (2002) an approach
is proposed to maintain visibility of several evaders using mo-
bile and static sensors. A metric for measuring the degree of
occlusion, based on the average mean free path of a random
line segment, is used.

3. Configuration.Space for the Surveillance
Problem

ning the motion of a variable-length rod in a plane. The instan-
taneous distance between the pursuer and evader corresponds
to the length of the rod, and occlusion of the evader by an
obstacle corresponds to collision of the rod with an obstacle.
To maintain surveillance, it is necessary and sufficient that the
line segment connecting the pursuer and evader does not inter-
sect any obstacle in the environment. In addition to this occlu-
sion constraint, a particular surveillance problem may impose
bounds on the surveillane distance. For example, we may re-
quire that L < Ll,,, if the sensor range is bounded by Lm.
Further, there may be some minimum allowable surveillance
distance LnJin This minimum distance could be due to sensor
capabilities, but it is more likely to derive from safety concems
(e.g. if the evader has the ability to harm the pursuer) or from
the pursuer's desire to remain undetected by the evader. We
express this constraint by bounding the surveillance distance,
Lnmin < L < Lma,.

The problem of planning the motion of a fixed-length rod
in the plane has been addressed in Schwartz and Sharir (1987)
and Banon (1990). While this solution is not directly ap
plicable to our surveillance problem, the representation intro-
duced there can be extnded to the case of a rod with vaiabe
length, and this extended representation provides the basis for
the sufficient cdtions for escape given in Section 4. In the

remainder of this section, we define the configuration space
for our problem, briefly review the method of Schwartz and

Sharir (1987) and Banon (1990), and show how this represen-
tation can be extended to our surveillance problem.

The position of the evader is given by (x, y), its coordi-
nates in the plane, and the instantaneous distance between the
pursuer and evader is given by L. We specify the position of
the pursuer implicitly by giving the orientation of the line of
sight from the evader to pursuer. For a given 9, the position of
the pursuer is given by

[XP] cos ]
Yp [sin

(1)

Figure 1 illustrates these definitions. Note that the figure also
illustrates the evader velocity, parameterized by ve and a; these
will be used in Section 6.

With these definitions, the -configuration of the pursuer-
evader system is given by (x, y, 9, L), and the configuration
space is Q = SE(2) x [Ln,in, Lmax., which corresponds exactly
to the case of of a variable-length rod moving in the plane. Un-
der this formulation, the evader controls (x, y) and the pursuer
controls and L.1 Thus, the task of the pursuer is to choose a

trajectory 9(t), L(t) such that there is never a collision of the
rod with an obstacle, and such that Lmin < L(t) < L, for
allt.

If we model the pursuer and evader as points in a plane, then
our surveillance problem is very similar to the problem of plan-

1. When the velocity of the pursuer is bounded, control of the parameter L
is shared by the pursuer and evader, since in this case, the pursuer cannot
arbitrarily effect changes in the surveillance distance.
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P

L

0 X-axis

(x,y)

a) Basic Pursuer-Evader conflguration

b) Occlusion

Fig. 1. Configuration variables for the pursuer-evader system

This problems lends itself to an elegant combinatori repr-

sentation. To explain this representation, we first describe the
cylindrical decomposition given in Schwartz and Sharir (1987)
for the case when L is fixed. Following this, we describe how
the cylindrical- decomposition can be extended to the case of
variable L.

For a fixed surveillance distance L, we denote the corre-
sponding three-dimensional slice of Q by Ql. When building
a representation of Qi, the key observation is that for a partic-
ular (x, y), as varies, the rod will make contact with some
fixed set of obstacle features (edges or vertices for the case
of polygonal obstacles). If we vary (x, y), this set of contact
features will change only when (x, y) crosses a critical curve.
Thus, the critical curves delineate noncritical regions in the
plane such that, for a noncritical region R, the set of contact
features remains constant for all (x, y) E R. The set of criti-
cal curves is defined in terms of obstacle features (edges and
vertices) and the length of the rod L. The catalog of critical
curves is illustrated in Figure 2. More detailed explanations
concerning their construction can be found in Schwartz and
Sharir (1987) and Latombe (1991).

This partition of the plane into noncntical regions induces
a cylindrical decomposition on Qi. For a noncritical region
R we define the cylinder above R as the set of configurations
{(x,y,9) E Ql I (x,y) E R}. In the cylinder above any
noncritical region in the plane, there will be a set of simply
connected cells, each of which lies either entirely in the free
configuration space or entirely within the configuration space
obstacle region.

For any collision free configuration (x, y, 9) in the cylinder
above R, as the rod rotates it will make contact with two obsta-

cle featr (called stops), one, say s* when inceases, and
the other, s_, when 6 decreases. The region R and these two
features implicitly define a free cell K in the cylinder above R:
K includes the set of configurations for-which (x, y) e R such
that increasing causes fist contact with s+ and decreasing
causes first contact with s_. For a fixed L, we denote by KX
the decomposition (K,}.

Figure 3 shows the critical curves for a simple workspace
consisting of a large free space and a long corridor. The non-
critical regions are ntumbered 1-19. As an examnple, the cylin-
der above Rs contains two free cells. We will adopt a simple
naming scheme for the cells in this example: KiL denotes the
free cell above region Ri for which the pursuer is in the com-
dor (generally to the left of the evader) and KiR denotes the free
cell above region R, for which the pursuer is not in the comdor
(generally, but not always, to the night of the evader). In this

simple example, there are at most two cells above any region.
Thus, for region R5, the cell K5L includes all configurations
(x, y, 9) such that (x, y) E R5 and increasing or decreasing
causes collision with the walls in the corridor, while the cell
K5R. includes all configurations (x, y, 9) such that (x, y) E Rs
and increasing or decreasing causes collision with the ver-
tical walls bounding the free space. One configuration from
each of these cells is illustrated in Figure 4. We can now
represent the set of collision free configurations in Ql by a
graph.

Definition: For a specific L, the connectivity graph GL -
(VL, EL) has vertices that correspond to the cells K E K1 in the
decomposition of Ql. An edge exists between vertices v and
v' iff their corresponding cells K and K' are adjacent.

-- r .i - 1--

I..

E

| @ . w .
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_____ The Rod
L

Curve type 1

A

L

Curve type 0 (obstacle)

Curve type 3

L.
A

Curves type 2

Curve type 4

L

Curve type 5

lijfl L

Filg. 2. The critical curves of Schwartz and Shrir (1987).
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Fig. 4. In the figure on the left, the rod's configuration is in cell K5L. In the figure on the right, the rod's configuration is in cell
K5R*

Suppose two cells K and K' exist in the cylinders above re-
gions R and R', respectively, and that the regions R and R' are
separated by the critical curve fi. If K and K' are adjacent, any
configurat inX can be connected to any configurtion in K'
by a free path whose projection onto the x-y plane crosses 3
transversally, with constant orientation in some neighborhood
-of the crossing point. The test for adjacency is a bit compli-
cated, but it is formulated entirely in terms of the qualitative
description of the cells (Schwartz and Sharir 1987; Latombe
1991). The complete graph for our example is illustrated in
Figure 5. As an example, it is possible for the rod to move
from K5L to K4L, but it is not possible to move from K5R to
K4L.

To extend the representation of Schwartz and Sharir to the
case of variable L, the following proposition is key.

Proposition 1: For L E [LWjn,Lmxis] the structure o-GL
changes only at a finite set of critical values {L1, .L..4,} If
we order these values such that L1 < L2 < L4,, then GL is
constant for allL E (Li, Li+,) for i = 1, 2 ... n- 1.

Proof: As L ranges from Lmin to Lr, the critical curves move
in the plane. The structure of GL changes only when (a) a new
critical curve appears, or (b) the qualitative structure of the
intersection of two critical curves changes. In all other cases,
the geometry of the noncritical regions and of the free cells
may change, but the connectivity graph (which is derived from
the qualitative structure of the decomposition) will not change.

For case (a), as L increases, new critical curves of type 3
and 5 will appear (critical curves of type 1, 2 and 4 exist for
all values of L). By examining the catalog of critical curves
shown in Figure 2, it can be seen that this will occur exactly
when L = d, where d is the distance between two vertices for
type 3 critical curves or the distance between a vertex and an
edge for type 5 critical curves.

For case (b), as L increases, the critical curves move "away
from" their obstcle features. In geneal, two
critical curves will intersect for the first time when L = d/2,
in which d is the distnce betwee two obstle feaus. For
example, two critical curves oftype 2 will intersect for the first
time when L = d/2, where d is the distance between the two
vertices. Likewise, a critic'al curve of type I will intersect a
critical curve of type 2 for the first time when L - d/2, and
d is the distance between the corresponding edge and vertex.
The other combinations are siniular, in that the critical value of
L is uniquely determined for any two critical curves. U

The main consequence of this proposition is that the entire
four-dimensional configuration space of the parsuer-evader
system can be represented using a- finite collection of connec-
tivity graphs G1 ... G,. In particular, let L1 < L2 - * < L,
be the sorted list of critical values of L, with L1 = Lmin and
Ln = Ln.. Then Gi = GLe, where Li is an arbitrarily cho-
sen sample value such that Li <L < Li+,. All that remains
is to add connections between the Gi to form the full connec-
tivity graph for Q.

Definition: The connectivity graph G = (V, E) includes all
vertices V = U V, and all edges E = U Ei. In addition, for
vertices v E Gi and v' E Gi+i with corresponding noncritical
regions R and R' and corresponding cells K and K', an edge
exists between v and v' iff R' n R $ 0 and the cell K' is a free
cell, i.e. if increasing the length of the rod without changing
its position does not cause a collision.

In terms of this combinatoric representation of the surveil-
lance problem, the evader controls the choice of x, y, and
the pursuer controls the choice of 0 and L (again, assuming
for the moment that the pursuer velocity is unconstrained).
With regard to the cylindrical decomposition of Ql and the

....... ...
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. . . . . . . . . . . . . . . .
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Fig. 5. Complete connectivity graph for the simple coridor exaple.

stratification induced by the Gi, the evader controls which
cylinder in Q, contains the system configuration, while the
pursuer controls the choice of stratification Gi and the choice
ofwhich cell in the cylinder contains the system configuration.

Given this combinatoric representation for the surveillance
problem, we will now establish sufficient conditions for es-
cape.

4. Sufficient Conditions for Escape

In this section, we give a necessary and sufficient condi-
tion to escape based on the analysis of the four-dimensional
configuration space of the system. Later, we impose a bounded
speed constraint to both players. With the bounded speed con-

straint our necessary and sufficient condition to escape be-
comes only a sufficient condition, meaning that if this con-
dition holds then the evader will escape. However, if this con-
dition does not hold then the bounded speed constraint must
be taken into consideration to know whether or not the pursuer
is able to maintain surveillance of the evader.

It is possible to express a set of sufficient conditions for
escape directly in terms of the connectivity graph G and the
cylindrical decompositions computed for the LV. To derive
these conditions, we fist derive a sufficient condition for es-

cape for a particular L' in termns of the graph Gi and the de-
composition of QL° . We then show that if an escape path ex-

ists for a particular value La-, then an escape path exists for all
L > LD.I

We begin by considering the case when L is fixed. Consider
the exaample shown in Figures 3 and 5. Suppose the evader is
in region R6. There are two cells in the cylinder above R6,
cell K6L for which the pursuer is in the comrdor, and cell K6R
for which the pursuer is in a large empty space. If the current
configuration is in cell K6L, then by moving to region R7 the
evader can break the surveillance (i.e. escape). There is no

motion for the pursuer that prevents collision (the pursuer's
line of sight to the evader is broken by a vertex). This can be
seen from the connectivity graph in Figure 5. In the graph,
there is no cell adjacent to K6L in the cylinder above R7. Thus,
there is no free continuation into which the system can move
if the evader chooses to move into region R7.

Suppose instead that the evader is in region R5 and the sys-
tem configuration is in cell K5L (i.e. the pursuer is in the corr-
dor). It is not possible for the evader to break the surveillance
by moving to an adjacent region.2 For every region RI adja-
cent to R5, there is a cell in the cylinder above R' adjacent to
K5L. The pursuer merely changes the orientation 0 so that the
system configuration moves into that free cell when the pur-
suer moves to region R'. However, the evader can move to
region R6, forcing the system configuration into cell K6L, from
which the evader can escape by moving to region R7. Thus,
even though the evader cannot escape immediately, there is an
escape path that the pursuer cannot prevent. This leads to the
following recursive definition of an escapable cell.

2. The regions adjacent to R5 are R4, R6, Rg, R12 and R13. Note that regions
R7 and Rg are not adjacent to R5, since the boundaries of R5 and R7 (resp. R5
and Rg) share only a single point, an obstacle vertex v2 (resp. vI).
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Definition. For the decomposition of Qi corresponding to a
particular sample value L = L, a cell K E I1 in tie cylinder
above a region R is an escapable cell if for some R' adjacent
to R, in the cylinder above R'

(a) there is no cell K' E PCL adjacent to K, or

(b) every cell KI E K,L that is adjacent to K iS an escapable
cell.

If a cell satisfies condition (a) of the definition, the evader
can escape immediately by moving to the adjacent region R'.
This is the case for cells K8L and K6L of the example in Fig-
ures 3 and 5. If the current configuration lies in either of these
cells, the evader can move into region Rg or R7, respectively,
to escape.

If condition (b) of the definition is satisfied, the evader
can escape by moving ihrough a sequence of adjacent regions,
forcing the system configuration to move through a sequence
of escapable cells, eventually reaching a cell that satisfies con-
dition (a) of the definition. For the example of Figures 3
and 5, if the system is in configuration KIL, the evader can

escape by following a path through regions R3, -R4, R5, R6
and R7. The pursuer has no choice but to follow, as the sys-
tem configuration moves through cellS K3L, K4L, K5L, K6L, and
finally into collision when the evader moves into region R7.
Thus, this sequence provides one guaranteed escape path for
the evader.

By the definition above, the cell K17L is an escapable cell
that satisfies both conditions (a) and (b) of the defmition. If the
evader is in region R17 and moves into region Rlg, ftere is no
motion possible for the pursuer that maintains the surveillance
distance L. This illustrates a second way for the evader to
"escape" - it can force the pursuer into a position from which it
cannot maintain surveillance distance, or, the evader can "force
the pursuer into a corner." Both of these cases are taken into
account by our definition of escapable cell.

As the above examples illustrate, for a fixed surveillance
distance L,, the evader can escape if at any time the system
configuration enters an escapable cell. Thus, the pursuer must
ensure that this does not occur. For the example of Figure 3,
the pursuer strategy is simple: never enter the corridor, since
doing so causes the system to enter some cell KiL, and no such
cell exists in the reduced connectivity graph. This leads to the
following sufficient condition for escape.

Proposition 2: For a fixed surveillance distance L', if there
exists a region R such the cylinder above R contains only es-

capable cells, the evader can force the system into an escapable
cell by moving to region R, from which there is a guaranteed
escape path.

Comparing Figures 3 and 5, it can be seen that there is no
such region for the simple corridor example. For every region
R, there is some cell in the cylinder above R that is not an es-
capable cell. Thus, the pursuer can prevent escape. Suppose,
however, that the simple corridor example is changed slightly,
as shown in Figure 6. The connectivity graph is shown in Fig-
ure 7. Cells K6L, K8L, K2IR and K23R satisfy condition (a) of
the definition for escapable cells. By recursively applying the

definition, it can be seen that every other cell in the connec-

tivity graph satisfies condition (b) of the definition, i.e. the
evader can escape regardless of which cell contains the ini-
tial configuration. The evader merely enters the corridor, and
makes a sharp tumr when exiting the other end of the corridor.
For this exanple, there is no pursuer strategy that will maintain
the surveillance.

Intuitively, planning collision-free paths for a variable
length rod becomes more difficult as the length of the rod in-

creases. Indeed, for a bounded workspace, there exists some
length L' such that no free configuration exists for any L > L'.
Likewise, for our surveillance problem the difficulty of main-
taining surveillance increases as the surveillance distance in-
creases. There are two reasons for this. Frst, as L increases
the set ofocclusion-fiee configurations becomes smaller (anal-
ogous to set of fre configurations for the rod becomning
smaller as the length of the rod increases). Secondly, as L
increases, the pursuer speed required to change Q increases.
With respect to the sufficient conditions for escape, only the
former is relevant, but as we will see later, for the task of plan-
ning optimal surveillance strategies for a pursuer with bounded
velocity, the latter concern is pre-eminent.

Propoitio 3: For a point (x, y) in the plane, if there exists an
L such that in the decomposition K& every cell in the cylinder
above (x, y) is an escapable cell, then for every LV > L, every
cell in the cylinder above (x, y) in KLU is an escapable cell.

Proof: If the two cells K1 and K2 are contained in adjacent
cylinders in KI, then KI and K2 are adjacent if and only if
their ranges of free orientations overlap.3 The cell KI is an
escapable cell if no such K2 exists. For a particular (x, y), the
range of free orientations is nonincreasing with increasing L.
Therefore, if the projection onto the plane of KI E IC, con-
tains (x, y), increasing the value of L will have the effect of
deforming K1, and the resulting cell will also be an escapable
cell, since the range of free orientations for the deformed cell
can be no greater than for the original cell, and thus no new ad-
jacencies can arise. Note that for some values of LO, the cell
K may actually split into multiple disconnected cells (each of
which will have a range of free orientations that is no greater
than the range for the original cell), and in this case, each of
the resulting cells will be escapable cells. *

Proof: The proof is immediate from the recursive definition of
escapable cells.

3. Although the combinatoric representation described in Schwartz and Sharir
(1987) is defined in terms of stops, the geometric condition for adjacency can
be expressed in terms of overlapping ranges of free orientations.
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Fig. 6. Simple workspace in which a corridor connects two large empty spaces.

Fig. 7. Connectivity graph for the example of Figure 6.

Figure 8 illustrates three cases. In the top left example, an 3 critical curve exists for some L', then a type 3 critical curve
escapable cell exists in the cylinders over regions RI and R2. will exist for all L > L'. In the example shown in the top
For example, if the evader is in region R1 and the pursuer is right of the figure, it can be seen that when L is increased,
in region R2, surveillance will be broken if the evader moves escapable cells exist in the cylinders above regions RI and R?2.
into the region directly above R1. This situation exists anytime The middle example in Figure 8 shows the similar case for
there is a type 3 critical curve. It is easy to see that if a type a critical curve of type 5. The bottom example in Figure 8
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P E

forced into a dead end
(a)

PE

E

rounding a corner
(b)

Fig. 9. If the pursuer is not able to change 9 fast enough, motion of the evader directly toward the pursuer will force the system
into an escapable cell (a). If the pursuer cannot move quickly enough, the evader can break the line of sight by forcing a colision
of the rod with the corner (b)

illustrates the case for a type 2 critical curve. In this case, the
escapable cell corresponds to forcing the pursuer into a corner.

The importance of Proposition 3 is that it allows us to cx-
press a sufficient condition for escape in terms of the combi-
natoric representation of Q.

Proposition 4: For the decomposition KL' if there exists a
region R such the cylinder above R contains only escapable
cells, then there is no guaranteed surveillance strategy for the
pursuer.

Proof: The proof follows immediately from the definition of
escapable cells, Proposition 2 and Proposition 3, since KL7 iS
the decomposition corresponding to the minimum surveillance
distance. U

If this sufficient condition is satisfied, then the evader can
escape the surveillance regardless of the pursuer's capabilities.
If the condition is not satisfied, it may still be possible for the
evader to escape, depending on the constraints on the pursuer's
velocity.

5. Escaping a Pursuer with Bounded Velocity
In this section, we consider the case of a pursuer with bound
velocity. The discussion above has assumed that the pursuer
can move with unbounded velocity, but the sufficient condi-
tion for escape given above continues to hold when the pur-
suer velocity is bounded: if the evader can escape an infinitely
fast pursuer, then of course it can escape a pursuer with finite
speed. The concept of escapable cell remains key in our devel-
opment, but when the pursuer's velocity is bounded, the pur-
suer must take more care in avoiding escapable cels; it must
also take care to avoid collisions of the rod with obstacles in
the workspace, even if the system configuration does not lie in
an escapable cell.

Consider the example shown in Figure 9(a), for which
9 = r. If the evader moves directly toward the pursuer, the
pursuer must change the orientation of the rod before the pur-
suer is forced into the comrdor. If the pursuer cannot move fast
enough to do so, the evader will have forced the system into an
escapable cell, from which it has a guaranteed escape path.

In addition to avoiding escapable cells, when the veloc-
ity of the pursuer is bounded, it must also take care to avoid
configurations from which the evader can force a collision
of the rod with an obstacle. Consider the case illustrated in
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Figure 9(b). If the pursuer cannot move quickly enough, the

evader can break the line of sight by forcing a collision of the
rod with the comer.
We can formulate this problem as a noncooperative dy-

namic game. Essentially, for a given configuration q =

(x, y, L), the evader's task is to find some location (x', y')
in the plane, such that if the evader moves to (x', y') along an

optimal trajectory (we define conditions for optimality in Sec-
tion 6), the pursuer will not have sufficient time to change the
orientation of the rod to avoid entering an escapable cell or to
avoid a collision configuration.

In the previous section, it was seen that the difficulty of
the surveillance problem increases as L increases. Above, we
were concerned only with establishing necessary conditions
for surveillance, but this same principle applies when plan-
ning surveillance strategies for a pursuer with bounded veloc-
ity. Assuming that the maximum evader speed is not greater
than the maximum pursuer speed,4 the only escape strategy
for the evader is to move in such a way as to occlude the pur-
suer's view. To prevent this occlusion the pursuer must change
the orientation of the rod so that it does not contact an obsta-
cle. Thus, fte pursuer's effectiveness depends on the possi-

ble maximum value of 9. Using simple geometry, we have
Lb= IV-L11, in which VPL isthe component ofthe pursuer ve-
locity that is perpendicular to the rod. Thus, we again see that
as L increases, the surveillance task becomes more difficult,
or altematively, surveillance is the easiest when L = Lnin.
For this reason, in the sequel we will specifically consider the

case of L = Ladn, and we will derive pursuer strategies that
attempt to maintain this minimum surveillance distance. In
some cases, the pursuer may not be able to move fast enough
to maintain this surveillance distance. In this case, if L ex-

ceeds L., the evader escapes. Furthermore, since the pur-
suer's performance is maximized for L = L=in, when we de-
rive the optimal evader motion we will assume that L = Lnin
(a minimax type approach - the evader wishes to escape even

when the pursuer's performance is maximal).
To formalize the problem, we define the following termi-

nology. Let 1Z be the set of admissible positions in the plane
for the evader (i.e. the collision-free points in the plane).
Let q = (x, y, 9, L) be the current configuration, and q' =
(x', y', 9', L') be a destination configuration. In this formula-
tion, the evader will choose (x', y') and the pursuer will choose
9' and L'.
We define te(q, q') to be the time required by the evader to

follow its optimal path (as defined in Section 6) from (x, y)
to (x', y'), and t (q, q') to be the minimum time required by
the pursuer to change the system orientation to 9' such that
q'IE Qfree, given that the evader follows its optimal path from

(x, y) to (x', y'). If we define the set of free orientations for a
given (x, y) E Z to be

Of(X, y) = I (x, y, 9, Lmin) E Qfreel

then the best choice for the pursuer is the free orientation that
maximizes the difference between tc (q, q') and t(q, q'), and
we define the corresponding evader loss (equivalently the pur-
suer gain) by

C(q, (x', y')) = sup t(q, q) - tp(q, q') (2)
'eef(x',y')

The evader's task is to select the point (x', y') that minimizes
the pursuer's gain,

(q) = inf C(q, (x', y')).
(x'y')elz

(3)

Note that in this formulation we have explicitly set L = Lmjn.
It is possible to derive analogous equations for the general
case, but here we consider only the optimal pursuer strategy
ofa the n su ill distance.

With this formulation, the evader escapes when C(q) < 0.
This leads to the bounied-velocity analog ofan escapable cell.

Definiton: A configuration q is an escapable configuration
if L*(q) <0.

There are several limiting cases. If both (x, y) and (x', y')
lie in the same region R, and R is a region with no stops
(i.e. the rod can rotate freely), then t(q, q') = 0; the pur-
suer need make no effort to change the system orientation.
If there is no collision free path for (x', y), then we define
tP(q, q') = oo. For the case of a pursuer with unbounded
velocity, we have t;(q, q') 0 when q does not lie in an es-

capable cell, and t (q, q') = oo when q lies in an escapable
cell and the evader follows a guaranteed escape path. In this
case a configuration that lies in an escapable cell is trivially an
escapable configuration.

For a given evader position (x, y), £* (q) depends not only
on x and y, but also on the value of 9. This leads to the fol-
lowing defimitions.

Definition: For a given evader position in the plane, the set of
admissible orientations for the rod is given by

Oadm(X, y) = (6 I q = (x, y, 9, Lnin), >(q)? 0)

and a configuration q = (x, y, Lmin) is said to be an ad-

missible configuration if E Oadm(x, y). We will denote by
Qadm the set of admissible configurations. This leads to our
sufficient condition for escape when the pursuer has bounded
velocity.

Proposition 5: If there exists a point (x, y) E R such that
8wm(x, y) = 0, then there is an escape path for the evader

originating at (x, y).
4. If this assumption does not hold, the evader has the trivial escape strategy
of merely moving at its maximum speed away from the pursuer
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If the condition of the proposition is not satisfied, then it is
the task of thfe pursuer to keep the configuration of the rod in
Qadm by choosing 9 e 9adm(x, y) as the evader traces a path
in the plane. In the next section, we describe the pursuer policy
to keep 0 e a3m(X, Y).
We solve the specific portion of the pursuit evasion game

corresponding to the following assumptions: the rod's motion
takes place in the free space up to the moment that the sys-
tem reaches an escapable configuration, which corresponds to
a contact with either an obstacle or an escapable cell. The pur-
suer maintains a minimal surveillance distance, and the set of
escapable configurations is bounded by critical curves.

It is possible to formulate and solve this part of the whole
gamne, even if the global trajectories ofboth evader and pursuer
are unknown in advance. In other words, it is possible to de-
duce the local motion policies of both pursuer and evader and
the required final rod orientation.

When the pursuer maintains the minimum surveillance dis-
tance, its trajectory can be decomposed into two components:
one that is equal to the evader velocity and one that is perpen-
dicular to the rod. This is true regardless of the evader's trajec-
tory, and it does not require any cooperation on the part of the
evader (i.e. it applies to the case of an antagonistic evader). In
this cMe, the evader trajectory can influence the rate ofchge
in 9, but not the initial and final orientations. Thus, the policy
for the pursuer to change the rod from an initial orientation to
a final one (avoiding an escapable configuration) will be the
same regardless of the actual evader trajectory.

Since we know in advance both the map and the maximum
velocities of the evader and the pursuer, then the escapable
configurations are also known. If there is more than one set of
escapable configurations then the evader can choose the opti-
mal one wiith respect to a given criterion related to the capabil-
ities of the pursuer. Thus, knowledge of the optimal final rod
orientation can be deduced from the map.

The task of the evader is to find the optimal motion strategy
to escape. In the section 6, we describe the proposed optimal-
ity criterion. We also explain the validity of this optimization
criterion.

6. Optimal Escape Trajectories for the Evader

In the optimization of Equation (3), for a given initial
configuration q = (x, y, 9, L) and for a specified point (x', y')
in the plane, the evader should take the path from (x, y)
to (x', y') that minimizes amount by which the pursuer can
change the orientation of the rod in the time required for the
evader to reach the escapable configuration.

If the evader's goal was to minimizes the maximum angular
speed of the rod (maxirmizing the time taken for the pursuer
to change the rod orientation) then the evader should move
directly toward or directly away from the pursuer. This evader
policy is described in detail in the next section (6.1). However,

this evader motion may not reach an escapable configurtion.
On the other hand, a straight-line evader path minimizes the
time to reach an escapable system configuration. This path is
studied in section 7.2. But the straight-line evader path is not
optimal with respect to the criterion of minimizing the change
in 9 that can be effected by the pursuer.

Because of the kinematic constraints (bounded speeds and
surveillance distance), there is a trade-off between minimiz-
ing the time taken for the evader to reach the escapable
configuration ad maxmzing the time taken for the pursuer
to change the rod orientation. The solution of the game can be
established as a function of the rod orientation. If the pursuer
can change the rod angle to one corresponding to an admissi-
ble orientation then the pursuer wins. Thus, the key concem
for the evader is to minimize this change of angle. We now
formulate and solve this optimization problem.

Without loss of generality, suppose that the evader is lo-
cated at the onrgin, and (x', y') = (xe, 0), i.e. the evader is
moving to a point on the x-axis. In the development that fol-
lows, we first derive an expression for the rate at which the pur-
suer can change the orientation of the rod. Following this, we
formulate the optimization problem using Pontryagin's mini-
mum principle.

6.1. Maximum Rate of Orientation Change

We assume that both the pursuer and evader move at their max-
imum velocities. In this case, we can parameterize the evader's
velocity by a, the angle from the x-axis to the evader velocity
vector. This is illustrated in Figure 1. We denote by V. and
V. the upper bounds on the norm of the pursuer and evader
velocities, respectively. Using these conventions we have

[x 1 V cos a (4)
L sina

and the derivative of Equation (1) is therefore given by
[ cosa ] L [-sin ]

I~ siI o (5)

Since the optimal strategy for the pursuer is to choose L-
Lmi. we derive here the evader strategy corresponding to this
choice. Thus, in the derivations that follow, we assume that
L = Lm, is a constant. If the escape strategy succeeds for
L = Lw then it succeeds for any L > Lmin. Computing the
squared norm of each side of Equation (5) gives

- L29 + 2VeL(sina cosi- cosa sin9)@ + V2:

o - L292 + 2VeLsin(a -9)9 +V2 _V 2

and solving for a using the quadratic formula we obtain

l9 =~(Pt-p sin(a -)-) /1J-p2cos2(a -)) (6)
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in which 0 < p < I is the ratio of V, to Vp. Note, if p > 1, it
is trivial for the evader to escape.

To simplify notation, define

= (-p sin(a-9)+ A/1 p2 cos2(a-9))

= (-p sin(a -9)- i- p2 cos2(a-9))

The decision of whether to use b+ or ( is made by the
pursuer, based on whether the pursuer wishes to maximize I8I
tohave9 <0 ,orto have9> 0. Since 0 < p < 1,

Ip sin Xl < A/1 _p2=Cos2q
and therefore b > Oand ( < 0.

The magnitude of the angular change lb is maximized by
choosing b+ when sin(a - 9) < 0, and choosing (- when
sin(a -9 ) > 0. When sin(a -9) = 0, either choice will yield

11 = + LP1_p2cos2(a-9)L

The maxinmum angular speed is then given by

0 < a -9 < X

X < a-9 <2r

In the interval 0 < a - < r, the function |@ is con-
cave. Likewise, in the interval X < a - < 2r, the function
9+ is concave. Thus, the minimum is achieved at the transition
point, where I#i =-9+, and where the derivative of max |i? is
discontinuous, i.e. for (a -9) = kr. Therefore, if the evader
wishes to choose a velocity that minimizes the maximum an-
gular speed of the rod, the evader should move directly toward
or directly away from the pursuer.

6.2. Formulang the Optimal Control Problem

In formulating the optimal control problem, it is convenient
to let x be the independent variable (instead of time t) and to
parameterize the control a by x, since the evader will move
from the point x = 0 to the point x' = x,. It is clear that
the projection of the evader position onto the x-axis will be
monotonically increasing, so this is a reasonable choice for
a parameterization of the problem. This leads to a modified
system description in which the state of the rod is given by
= (y, 9), and the system equation is given by

d
- = f(4,a)

The time derivatives for x and y are given by
dx
d = Vecos a

dt
dy Vesin a
dt

With respect to the independent variable x, the state equations
are then given by

dy = dy (dx> =tana =fi(,a)

dfi df9 (dx\d9 _ _d(

-p sin(a - 9) i p2cos2(a-9)
Lp cos a

= f2((, a)

In the remainder of this section, to simplify notation, we will
use 0, A, and 4, to denote the d es of B, i andi with
respect to x rather than with respect to ime. Further, in this
secio we will ony solv the pb for the case 0 = 0
The case for b = 9- is analogous.

To minrimize the angle by which the pursuer can change the
orientation of the rod, we use the cost function

~dO
- TXdx

-= j f2(, a)dx

Thus, we seek the control input a that mminizes J, sub-
ject to the system equation; = f(C, a), and subject to the
boundary conditions

9(0) =9, y(O) =Y(x) = 0

To solve this optimization problem, we use the minimum
principle and solve the resulting equations numencally using a
shooting method.

The system Hamiltonian is given by

a, x) = d + AI (x)fi (C, a) + A2(x)f2((, a)dx

= 'ifi(4,a)+ (1 + A2)f2(C,a)
= Altana+(1+A2)

x
-p sin(a-)+ l p2cos2(a-9)

Lp cos a

in which Ai (x) are the Lagrange multipliers, which are a func-
tion of the independent variable x.
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Algorithm OptimalEvasion (0, x,)

1. Choose initial values for the Lagrange multipliers.
2. Let j +- 0?9(0) +- 9. y(O) +- 0. x(°) +- 0.

3. Choose a(j) that miniinizes the Hamriltonian,

a(j) = arg minH(((j),a, x(j))
4. Integrate the state equations to determine ((j + 1)

y(j + 1) y(j) + fl(((j),a(j))Ax
9(j + 1) U(j) + f2(((j)., a(j))Ax

5. Integrate the adjoint equation for A2 to to determine A2(i + 1).
6. x(j + 1) 4- x(j) + Ax.

7. If y(j) and y(j + 1) have different sign, then the system has crossed the x axis.
If x(j + 1) - xc1< e; then the optimal trajectory is given by a(0),... a(j).

8. If y(j) and y(j + 1) have different signi but xU + 1) - xe 1> ,E then we have missed the boundary
condition. In this case, adjust the initial values for A and go to step 2.

9. If y(j) and y(j + 1) have the same sign, then we have not crossed the x-axis! and we continue to
iterate forward: j +- j + 1, go to step 3.

Fig. 10. Algorithm to find the optimal evader trajectory.

The adjoint equation for AI is given by

a
Ai = - i-XH=Oay

which implies that AI is a constant. This allows us to write the
Hamiltonian as

1H((, a, x) = K tana +(1 + A2)

x
-p sin(a-)+- p2cos2(a-9)

Lp cos a

The adjoint equation for A2 is given by

a

A2 = - H=-0+ 2)

cos(a -9) p sin(a-9)
x 1- IwL cosaa1p2cos2(a-@

We find the optimal evader trajectory a* iteratively using
the algorithm shown in Figure 10. Figures 11 and 12 show ex-
amples of optimal evader trajectories and the resulting pursuer
trajectories. Values for the Lagrange multipliers and xe are also
shown in each figure. In each of these examples, the angle
is increasing (the rod rotates in a counterclockwise direction),
and thtis the evader trajectory minimizes = 9R.

Figure 11(a) shows an example for which the pursuer and
the evader are moving in the same direction, and therefore the
pursuer must "catch up" to the evader. Figure 1 (b) shows an
example for which the pursuer and the evader are moving in
opposite directions. This could result, for example, from the
evader tying to force the pursuer into a corn. For the example
of Figure 12 there is no fixed escape point (reflex vertext those
with internal angle bigger than 7r). In this case, thefnal value
of y is unconstrained and the evader merely chooses its instan-
taneous velocity to minimize the instantaneous value of 0.

The choice of the endpoint for the evader trajectory is
a function of the nearest escape point. We consider two
cases: the escape point is a reflex vertex of an obstacle in
the workspace, or the escape point lies on a critical curve that
bounds a region whose cylinder contains an escapable cell.

Reflex vertex: Two critical curves of type 4 (line segments)
emerge from a reflex vertex. Let us call 0, the angle of the line
segment (critical curve) having the smallest angle of the two
segments, and Of the angle of the other line segment. If the
evader is at the reflex vertex and the rod is not at an orientation
bounded by 9, and Of then the pursuer would need unbounded
speed to prevent the evader from escaping. Thus, the admis-
sible rod-orientations are bounded by these two orientations.
The smallest change in the rod orientation in order to bring
the rod to an admissible orientation corresponds to either 0, or
Ofi. The reflex vertex location defines the final boundary con-
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Fig. 12. In this case, the goal configuration is unspecified, and
the evader chooses its instantaneous velocity to minimize the
instantaneous rate of change in 9.

dition of the differential equations modeling the rod motion.
This case is illustrated on the left in Figure 13. The evader is
denoted with an E and the pursuer with a P. The critical curves

are shown in dashed lines. Note that some critical curves are

omitted for clarity.

A critical curve bounding an escapable cell: Analogous to
the reflex vertex case, the orientations- associated to an es-

capable cell are bounded by two angles 0, and Of. If the
evader location is in the region associated to the escapable
cell and the rod is at an orientation within 9i and Of then the

evader escapes. In this case, the evader optimal trectory is
generated having the origin at the evader initial position and
defining the x-axis perpendicula to the critical curve bound-
ing the escapable cell. This x-axis orientation corresponds to
the smallest distance trajectory between the evader and the crit-
ical curve, thus geometrically satisfying optimal time to reach
the escapable cell. The initial conditions are the rod initial an-
gle and the evader location. The point where the trajectory hits
the critical curve is the endpoint of an optimal escape trajec-
tory. This case is illustrated on the right in Figure 13.

Under the assumptions that we have presented in Section 5,
the pursuer motion strategy is the same regardless of the evader
trajectory. Note that, if the evader changes its mind and it takes
another trajectory then it does not affect the pursuer's policy.
If initially, the evader cannot escape by taking its optimal tra-
jectory then it cannot escape with any other trajectory. The
pursuer should still apply the same motion strategy.:Note that
given the invariance of this strategy it captures a large number
of situations to avoid the evader escaping.

With the bounded speed constraint imposed over the evader
and the pursuer, there are cases where the evader can escape

pursuer surveillance if the rod moves in contact with the ob-

stacles. We give in Sections 7.3 and 7.4 the general modeling
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Fig. 13. The endpoints of optimal escape trajectories

of these motions. However, since we consider that in these
cases, the evader and pursuer become a cooperative team, we
have not analyzed the evader motion strategy needed to escape.

7. Leader-fallower Cooperative Motion Plans

Although the development above has dealt with the case of
an antagonistic evader that tries to escape surveillance, much
of the analysis applies also to cooperative motion. Examples
of such motions include cooperative manipulation of a rigid
object or performing coverage tasks for which the distance be-
tween robots must be held at a constant value as the robots
cover terrain, maintaining robot formations (our result applies
to the special case of two-robot formations), and even planning
motions of transportation systems such as trailers (although
these systems include nonholonomic constraints in addition to
the constraints that we consider; our work provides perfor-
mance bounds on these systems). In such cases, it is more

intuitive to refer to the evader as the leader and to the pursuer

as the follower. In this section we describe four such coop-
erative motions: motions that minimize the follower's effort,
motions in which the leader follows a straight-line path to the
goal, motions for which the follower follows a straight line,
and motions for which the follower and leader round a corner

in a cooperative fashion.

0 Evader

O Pursuer

Rod
L

Hound curve

Fig. 14. The Tractrix c-urve

7.1. Passive Pursuer Trajectories

If the leader is moving in a straight line, the follower can min-
imize its expended energy by following the path that it would
take if it were "dragged by a string" held attached to the leader.
This problem was fst solved by Liebniz, and the resulting
trajectory for the evader is known as the Tractrix curve (Math-
world; Lawrence 1971) (also called the hound curve). See Fig-
ure 14. The parametric equations that determine the follower
position are

xp (t) = t - tanht; yp (t) = cosh t
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72. Straight-line Pathfor the Leader

Suppose that the leader takes a straight line path to its goal
position. What is the minimum time required by the follower
to reach its goal position while maintaining the distance con-
straint? To formalize this question, we consider the case in
which the leader moves in a straight line (i.e. a is a constant),
and the follower must change the orientation of the system
from 90 to of. We then solve for the nmnimum time.required
by the follower to achieve this change.

The time derivative of 9 is given by Equation (6). To com-
pute the time T required to change the system orientation by
A9, we integrate dt over the required motion

dt L I
dO Vp-p sin(a-9) 1-p2cos2(a-9)

T = Jdt

LI'61 dO
Vp JO -p sin(a - Q) 1p2cos2(a-U)

After some algebra, we obtain

L p
T - I sin(a - 9)d9

VP I -p2J0

L 1 1
Vp 1 _p2I I-p2 coS2(a-O)d9

Under the change of variables I= - (a - 9) the second
integral can be written as

_- p2 sin2(q)db (7)

This integral is similar to the incomplete elliptic integral of the
second kind (Abramowitz and Stegun 1964), which is defined
-as

E[S1Ip2] = do
This integral corresponds to the arc length of a sector of an

ellipse from 0 to ql (the amplitude), and in which p2 is called
the elliptic module. Many modem mathematical programming
languages (e.g. Mathematica (Mathworld)) provide a built-in
function to solve this integral. The integral in Equation (7) can
now be expressed as the difference

f01
T = do p2sin2(qdq = E[qj Ip2] - E[q50 p2]

As always, the choice of positive or negative sign for the
second integral gives rise to two possible solutions, depending
on whether the rod rotates in the counterclockwise or clock-
wise direction.

xp

Obstace

2n-0

\ r
X-axis

Fig. 15. In this figure, the pursuer attempts to follow the wall.
Depending on the values of p and 9, it may or may not be
possible for the follower to effect this strategy.

7.3. Wal Folowi'ng

For this motion, the follower obeys a wall following strategy
as the leader nmoves, possibly toward the wall, possibly paallel
to the wall. Without loss of generality, assume that the wall
lies along the x-axis so that wall following is achievd by the
follower velocity (p, 0). As above, assume the leader moves
with maximum velocity in direction a. In this case, Equation
(5) can be written as the two equations

p= Vccosa-OLsinO

0 Vesina +OLcost

Solving the second equation for 9 yields

V,sina
L cos9

and substituting this into the above equation for x gives

XP = V, cosa + Ve sin a tan9

To find the leader trajectory that maximizes the required fol-
lower speed, we compute and set to zero the derivative of this
equation with respect to a and obtain

0 = -Vesina+Vecosatan9

tan a = tan9

a = +kx, k=1,2 ...

i.e. if the leader moves directly along the follower's line of
sight the result is to maximize the required follower Velocity.
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Obstade

Fig. 16. Illustration of the required follower velocity when the
leader rounds a comer

For the case a = 9, we obtain the maximum velocity by
back substitution,

xp = VecosO+Vesin9ton6

= Vecos9+V(sin sin
cos

Ve
= c

cos

The follower can effect this velocity provided

VP> Ve cos .>p
-Cos9u

Since sin + ;= -sin and cos + r =-cos 9, the same
bound applies for motion directly away from the follower.

7.4. Rounding a Corner

Suppose the rod is in contact with a vertex whose coordinates
are given by (xv, Yv) as shown in Figure 16. If the leader
moves with velocity (x, y), what must be the pursuer's veloc-
ity to maintain the vertex contact?

The constraint that the rod is in contact with the vertex can

be specified in terms of the angle

xv -x
cos2 =

/(X -X)2 + (WV-y)

sinO0 Yv Y
V(Xv T X)2 + (Yv -y)

To simplify notation, let I = (x -x)2 + (yV-y)2 be
the distance from the leader to the vertex. If we combine the
above equations with Equation (1) we obtain

[XP ]=[X] L [Xv -X]

The pursuer velocity is obtained by differentiating the above

[XP1 [ L+[ -sin29x+cos9sin9 I
YP J I L cos9sinx -cos29I J

8. Conclusions

This work proposes an approach to maintain visibility of a
moving evader with a mobile robot in a polygonal environ-
ment. The evader moves continuoly; its global trajectory is
unknown but the distribution of obstacles in the workspace is
known in advane. We give necessuy conditions for the exis-
tence of a surveillance strategy.

The work presented in Efrat et al. (2003) gives an efficient
algorithm to compute an optimal motion strategy to track an
evader. The method assumes a predictable evader. Our work
relaxes this constraint. Our approach is able to track the evader
even if the global trajectories of both evader and pursuer are
unknown in advance, since it is possible to dediuce the opti-
mal motion policies of both pursuer and evader. In Efrat et al.
(2003), the authors proposed as anir nto their work
to include a range constraint. Our paper presents that exten-
sion.

In game theoretic terms, we have solved the game of degree
(Isaacs 1975; Basar and Olsder 1982) of maintaining visibil-
ity at a fixed distance of a moving evader with a mobile ro-
bot in the presence of obstacles, for a single set of escapable
configurations.

The decision problem, which is equivalent to answering
the question Can the evader escape? depends on the optimal
evader and pursuer motion policies. If the pursuer is able to
track an evader that travels the optimal path then it will be able
to track an evader that travels any other path.

Our analysis including bounded speeds holds for a single
set of escapable configurations. If more than one set is con-
sidered then a combinatorial problem arises. This combinato-
nal problem corresponds to defining the optimal ordering to
visit the escapable configurations. In this paper, we did not
deal with this combinatorial problem, which we leave for fu-
ture work. However, note that our sufficiency condition for
escaping without the bounded speed constraint includes any
ordering to visit escapable configuration sets.
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In Murrieta et al. (2003b), we proposed a method able to
deternine the existence of a solution if there is a delay be-
tween evader and pursuer motion. In that work we assumed
that the pursuer speed was unbounded. As future work, we
would like to find a solution for the case of both delay and
bounded pursuer speed. Finally, we want to consider dynamic
and nonholonomic constraints.
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