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Model-Based Tracking of Complex Articulated
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Abstract—in this paper, we present methods for tracking com- In this paper, we present a model-based object-tracking
plex, articulated objects. We assume that an appearance model system. Our system exploits known geometric, kinematic,

and the kinematic structure of the object to be tracked are given, ; ; : _
leading to what is termed amodel-basedbject tracker. At each dynamic, and appearance models of the object (in our ex

time step, this tracker observes a new monocular grayscale image periment;, . fOb‘?t arm and a human arm) ‘9'““”9 .trellcking.
of the scene and combines information gathered from this image Thus, object tracking becomes the problem of instantiating the
with knowledge of the previous configuration of the object to esti- parameters of the models given an observed image sequence.

mate the configuration of the object at the time the image was ac- Qur approach iteratively updates selected model parameters

quired. Each degree of freedom in the model has an uncertainty (o o internal joint angles or kinematic parameters of an
associated with it, indicating the confidence in the current esti- ' h ti ; in th is ob d |
mate for that degree of freedom. These uncertainty estimates are arm) each time a new image in the sequence is observed. In

updated after each observation. An extended Kalman filter with Particular, for each frame in the image sequence, the following
appropriate observation and system models is used to implement operations are performed. First, the current estimate of the
this upd_ating process. The methods that_we descri_be are potentiall_y object configuration is used by a graphics engine to compute
beneficial to areas such as automated VISl_Jal track_lngm general, vi- feature templates. These feature templates are then used by
sual servo control, and human computer interaction. . .

a sum of squared differences (SSD) tracker to estimate the
feature locations in the current image. Finally, these observed
feature locations are then used to drive an extended Kalman
l. INTRODUCTION filter (EKF), which updates both the estimate of the object
. . . _configuration and the internal state of the EKF.

ITH recent advances in computing power and image in- Our system functions on a sequence of monocular grayscale

terr;ret?tlon allgorltbhmst, It is now fee%sr:ple IlIka Eue images. It accounts for both self-occlusion and external occlu-
movements of complex ObJects In a Scené. This allows the CQfl " features, and it weights feature observations according

strgct::)n of systetms thattca:\, for e.xart‘np:(e, _re;:ogmzef og!ei; their expected value in disambiguating the state, as well as the
and allow a remote operator to specify tasks in terms of obje ount of spatial uncertainty present in the feature observation.

rather than Q|rectly manipulating a rpbotlc arm. The tasalef The remainder of the paper is organized as follows. In Sec-

Ject trackingis a necessary prerequisite to complex systems Sut%h Il, we describe our approach to feature tracking and the
. . . . ssimilation of feature tracking results into an object-tracking
plex, articulated objects in a scene, such as an articulated rOb?}é%ework. This section includes a review of the related litera-
arm. . : . . -
: L L . ture on tracking. In Section I, we give a high-level description
ObeeCt :_rack|?g IS tg_e ptroblerr;_ of es:At\lmaS_ngt?nd up;_datln?_ t 5 our tracking system. This section begins with a more detailed
configuration ot ah object over ime. An object S CoNNgUratioly; ¢ ssjon of the models that are used, along with a qualitative

IS defined by its pose parameters (_bOth position and orenteialuation of the effects of modeling errors on tracking perfor-
tion), as well as parameters that define any internal degree jnce. It then deals with the specific issues of generating ap-

fretidom obflthe o?jectt_ [3]1.[9]’ t[hl8].' n cor;trastt., featufr(fa trtaCk'n%earance templates, assimilating feature tracking results into the
IS the problem of esimaling the Image locations of features 6@2’ect-tracking system, and dealing with feature occlusion. In

an '.mtage sfe:[(guetncek['ll]. In g;e V'.Su?l servto cI(;anungy, anfotrée ction 1V, we describe several increasingly complex tracking
va:!a ion ottne ra% Itrrl19 tpro _?_m IS (;;:ont rolthe rtr;]o 10N OF aldiy, ations that the framework can handle. Each situation illus-
active camera such that positions of features in the Image gig.q 5 particular portion of the overall tracking system. In Sec-

regulated to desired locations [28]. tion V, we present experimental results that illustrate the effec-
tiveness of the tracking system in several situations. Finally, in

Manuscr(ijptdriceivegl_'\/lay 185 15/3\99: r_evisegdquneH&ZZhOOO- Thisdpéﬂg_er waection VII, we offer some conclusions that can be drawn from
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The second approach, which we use in our work, is based on the
correspondence of discrete features on an object in one imag:
with those features in a subsequent image. This approach, dis
cussed in Section II-A, typically searches for the locations of

For each time step k
1. Capture new image I of scene
2. For each feature f € 1..F
(a) Use object geometric model M and estimated

configuration X x_; to:
i. determine visibility of f in the image,
ii. create appearance template T of f,
iii. compute expected location h(Xy;_1) of f.
(b) Compute SSD error measure between T and im-
age patch surrounding image location h(Xgx_1).
(c) Take min. SSD score as measurement z; .
(d) Estimate covariance R£ of measurement by
analysis of SSDS in local area surrounding zi.
3. Combine feature measurements z’} and covariances

features in an image by template matching or through other
search techniques, and then infers object motion from these cor
respondences. The use of the results from this search for the put
pose of object tracking is reviewed in Section II-B.

A. Feature Tracking

Feature tracking provides estimates of the image locations of
features in successive images. Commonly, edges, corners, an
regions of high visual contrast are used as features in tracking
research [9], [18], [4], although any measurable relationship in
an image could be used. There is a large and rapidly growing
literature on feature tracking; summaries can be found in [7],
[15], and [20].

Much recent work has focused on the computation of new in-
variants for use as features in feature tracking. Instead of stan:
dard features such as corners and lir@sjective invariants
have been used by Hagar [11]. Projective invariants are image
features that are independent of camera position. Hagar and Bel-
humeur [12] have proposed parametric measures that are insefRecently, several research efforts have aimed at tracking
sitive to both changes in geometry such as pose changes reldiiygan motion in image sequences [16], [2], [4]. In [16],
to the camera and changes in illumination such as pose charfgjggans are modeled as a set of connected planar patches.
relative to light sources. These measures are combined to!8{6], a cylinder model of the body is used. In [8], tapered
rive at feature similarity measures that are insensitive to theséper-quadrics are used as 3-D limb models. In [2], eigenspace

changes, and are used to track image regions in sequencestechniques are used to track objects that change shape as they
move (in this paper, a human hand). In [4], the kinematics of

the human body are modeled using the exponential map that
_ ) ) o ) has become popular in the robotics literature (see, e.g., [19]).
The motion of a three-dimensional (3-D) rigid object can be || these systems have the unifying characteristic that there is
extracted by analyzing the motion of features in a sequencefunderlying object model, and results from the tracking of fea-
images. This is a well-established area of research, for whigltes are used to update the object parameters. One advantage
overviews can be found in [20], [14], and [7]. If geometrigg thjs extra modeling is the ability to treat features as items of
models for the object are knovenpriori, these can be exploitedsecondary interest, and to track the object in spite of the occlu-
in determining the object’s motion [10], [5], [6]. If multiple sjon of some features. Therefore, if an individual feature tracker
viewpoints of the object are available [8], [17], tracking resuligjis put other trackers succeed in localizing their features, the
from each viewpoint can be integrated to aid in the objeghject will still be tracked. Kakadiaris and Metaxas [17] utilize
tracking. For example, Gennery [9] tracks rigid polyhedrgdpject models with multiple cameras to compute expected vis-
objects. His object model includes a wire frame of the objemi"ty of body parts from each camera. Hashimetbal. [13]
and constant reflectivity coefficients for each face of thgaye shown, for example, that increasing the number of redun-

object. His dynamic model includes the position, velocityjant features increases the robustness of visual servoing.
and acceleration of the object. Bray [3] also tracks polyhedral

objects, utilizing a similar object model. Dellaest al. [5]
track a planar patch, simultaneously estimating the pose of
the patch and the texture appearing on the planar portion ofin this section, our system for model-based object tracking is
the object. Lowe [18] tracks objects with internal degrees dfescribed. A high-level algorithm describing the system is given
freedom, for example, a box with one degree of freedom {f@Fig. 1. This system updates the internal parameters of an ob-
hinged lid). The object model is a wire frame model, witliect model from monocular grayscale images of that object. The
parameters for the position and orientation of the base andsystem accounts for both self-occlusion and external occlusion
extra parameter for the angle between the box body and laf.features, and weights feature observations according to their
Not all object models must have a geometric interpretatiopredicted usefulness in disambiguating the state, as well as by
however. Stephens [27] tracks rigid polyhedral objects usitige amount of spatial uncertainty present in the feature observa-
a local Hough transform, so his object model is a point in thén.

six-dimensional Hough space. In [24], frequency analysis of We begin by presenting a summary of the various models
the spatio-temporal curves recovered from human activity ised by our system. We then examine several components used
used to recognize and categorize semirepetitive activities. in the tracking algorithm: feature tracking and measurement

Ri, f = O..F into aggregate measurement z; with
measurement covariance Ry.

. Combine z;, Ry with current state estimate Xjjx_;
and current state covariance Py;_; to arrive at opti-
mal updated state estimate X, and updated covari-
ance Py

1. TRACK-OBJECT, an algorithm for object tracking.

B. Object Tracking

I1l. A M ODEL-BASED OBJECT TRACKING SYSTEM
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uncertainty estimation, assimilation of feature-tracking resultsacking a robot armx;, contains the joint angleg (which can
and finally provisions for self-occlusion and external occlusiobe used to define a configuration space) and joint veloaities
of features. Most issues related to using the EKF in our trackitige object dynamic model thus describes movement through the

system are deferred to Section IV. robot’s state space.
The state will generally include velocity information (i.e.,
A. Models Used xx = [ax qx]%). Motion modelsf could also be formulated to

Our system uses five models: the overall system moggjodel constgnt worksp:_ice end-effector velocities or a number
the object geometric model, the object appearance modRijother feasible dynamic models. _
the imaging model, and the object dynamic model. We nowln_ tracking research, the.type of motion allowed is gften con-
describe these models and discuss the assumptions that cafiiganed [1]. Sometimes this constraint is on the relative motion
made for each. We conclude this section with a brief discussiBhth® camera and the object, as in our case, and sometimes the
of the effects of errors in the model on system performance. constraint is on _the mternal motion of the object, for example,
We use a general nonlinesystem model The other models DY assuming rigid objects [9]. .
we will describe relate to assumptions about object geometryFach of these models affects the robustness of the visual
appearance, and dynamics, as well as the imaging system, Bfgking process, and errors in each model will degrade the
are realized by instantiating functions in this system model. TRE"formance in different ways. We now discuss the impact of
system state at tinfeis denoted by thetate vectox;,. The non- €70rs in each model described above.

linear system model specifies... by the vector valued func- E'TOrs in the appearance and imaging models affect the
tion, £1,(xy,), plus additive noisev;. Observations of the Systemappearance of the generated feature templates and degrade

are given by another vector valued functiap, also a function the ability of the_ system to tr.ack individual feature;. While
of statex;, and additive noise,. The equations for the modelth€ System monitors the quality of the feature tracking [22],

are of the form serious errors in these models will cause feature tracking to fail
completely.
Xpi1 = F(z1) + W zi = hy(xp) + Vi Errors in the object geometric model affect the system in two

ways. The forward kinematics of the object describe the map-

We make the usual (in the Kalman filtering literature) assumping between the object configuration space and the workspace.
tions with respect to the correlation of the noise and initial cofhus, the first effect of errors in this mapping is that the feature
ditions. That is, the noise sequences andv;, are zero-mean trackers are initialized at incorrect positions in the image. This
white noise sequences, uncorrelated with each other and vfild cause the feature tracking to fail. Secondly, the EKF uses
the initial statexo. this model to perform a minimum least squares fit of the mea-

Theobject geometric modeldescribes the size and shape ofurement to the object feature locations. Thus, the estimates of
each link of the articulated object under consideration and hde object parameters based on these locations would be incor-
the links move with respect to one another. This model is a digct.
perset of the standard kinematic model used in robotics, whichErrors in the dynamic model will draw the state estimate off
defines only the interrelation of the coordinate systems of ea@Hring the time projection portion of the object-tracking algo-
link, but not the shapes of the links [26]. Thus, the object geithm. As long as the actual feature locations still fall within the
metric model will determine the position of all features in thé€arch regions, the only result is that the correction portion of
world coordinate frame, given the robot’s configuration paranti€ prediction-correction update equation (6) will be larger.
eters. We assume that the object geometric model is kreown
priori, and that it is either constant or can be parameterized By Generating Feature Appearance Templates

a small number of variables. The object geometric model and configuration completely
The object appearance modelescribes the color, texture,gpecify the relative locations of the link coordinate frames with
and materials used on each link described by the object g@gspect to the world coordinate frame. In order to determine the
metric model. The combination of the object appearance mog@lpearance of the scene, an imaging model such as described
and the object geometric model defines the position and appegrsection I11-A is assumed. With these models in place, a syn-

ance of every point on the object. thetic scene such as that shown in Fig. 2 can be generated.
The imaging model mathematically describes the camera Feature points are currently manually specified as 3-D points
used to image the scene. This is a superset of the perspeqfivg |ink coordinate system. Given the geometric model and an
or orthogonal projection models, including any lens modelingstimated configuration, the (estimated) position of these points
(such as vignetting, lens distortion, or focusing effects) for thg the world coordinate frame can be determined. We define the
camera. We include the position of the camera in the scenedgpected feature locaticas the projection of each feature point

this model. A fixed camera position could also be assumeghto the image plane. An example set of these locations is shown
by including the object position relative to the camera in thg Fig, 2.

object geometric model. This model is assumed to be known
and constant, and in our experiments we have used perspective
projection. INote that the image produced by the program uses 24 bits of grayscale and

Thed . deld ibes th ti bout ti currently is produced at a resolution of 54285. Therefore, the quality of the
edynamic modeldescribes the assumptons about MOUGH 4ge in this paper does not reflect the quality of the synthetic scene actually

through thestate spacdn our case, for experiments that involveused by the system.
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extent that the erroneous feature-tracking information causes er-
rors in the state estimate.

We defineoff-screenocclusion to be the case that a feature
projects to a portion of the (infinite) image plane that is not ob-
served. We defineelf-occlusiono be the occlusion of a feature
by another part of the modeled object. If a featiris found to
be not visible due to being off-screen or due to self-occlusion,
the relevant elements of th@bservation functiorof the EKF
(h3 (%) andh3 1 (x;), see (1) of Section IV-A) are set to a
constant. This will cause

ony!
an

2 1
_ ahkf-l-
an

(%) (%k) =0

and results from tracking the nonvisible feature will not be used
in the state update [(3) of Section IV-A]. Indeed, in the interest
of performance, tracking is not even performed on nonvisible
features.

External occlusioris occlusion that cannot be predicted from
the object model and estimated configuration. This includes fea-
Fig. 2. A synthetic image, showing expected feature locations. tures predicted to be visible that are not visible, as well as fea-

tures that have some unmodeled object obscuring the visibility

If a feature point is visible in a given configuration, it carof the feature.
be expected that the area in the input image surrounding thaWhen a feature is externally occluded, the template will not
feature point will resemble the area in the synthetic image sunatch any area of the image very well. The feature tracking
rounding the expected feature location. This is the principigill detect this (see [22] for a discussion of the estimation of
upon which we base our method for automatically generatingeasurement uncertainty in feature tracking), and the feature-
templates for arbitrary complex features. A fixed rectangulatacking algorithm will indicate high spatial uncertainty on the
area of the synthetic image called tleature appearance tem-returned feature location. Measurements with high spatial un-
plate, centered on the expected feature location, is saved for @getainty due to occlusion will be selectively ignored according

during feature tracking. to the weights computed in (4) in Section IV-A. Therefore, the
assumed dynamic model will be used to a greater extent when
C. Assimilation of Feature-Tracking Results updating the state estimate.

When the individual feature measuremenfsand their co-
variancesR; have been computed by the individual feature V. APPLICATION OFKALMAN FILTERING FRAMEWORK

trackers, they are combined to make observation and covariyp, this section, we apply the extended Kalman filtering frame-
ance vectors for the system as a whole. These are denoteq,gg to several examples of interest. We begin by describing the
the2F" x 1 vectorz,, and the2F" x 2F" block-diagonal matrix general case, where a general kinematic structure is assumed.
Ry, and defined by Then, we see how this would be used in the simple case of a
! FT 1 F three-degree-of-freedom (3-DOF) PUMA robotic arm. Finally,
ze =l o 7l Ry = diag(Ry, ..., Ry, ) we show how this framework can be used in the case of a par-

in which there areF” features. These definitions assume thdi@lly unspecified kinematic chain, such as one with unknown
the additive noise in the feature measurements is independépift constant) link lengths.
and thus that the covariance af is a block-diagonal matrix

. . . . A, General Case
whose nonzero entries are the individual covariance matrices. . _ _ .
Modeling the interactions between thecertaintieof the indi- ~ The EKF is a flexible and robust tool for tracking. In this
vidual feature trackers is a nontrivial task [25] and is a topic f€ction, we describe its use, in conjunction with the modeling
future research. The interactions of theationsof the features described above, for the visual tracking of complex articulated

are modeled, in that the movement of each feature plays a reliects.
in updating the state estimatgs. The state vector will in general contain the joint angigs=

[q1 -~ ¢.]* and velocities for each of the joints of the robot.
D. Treatment of Feature Occlusion The evolution of this state vector is predicted by the constant

Feature occlusion occurs when a feature is not completdf!ocity dynamic model as described in Section I1I-A

visible from the viewpoint of the camera. Whether a particular N Qr + Ady
feature is occluded is a function of the camera viewpoint, the ob- Xp = [ . } i = [ . }
ject configuration, and the position of external objects that may 4k

obstruct the view of the object. Note that in our framework, the of [In A x In}

qk

loss of a feature due to occlusion causes mistracking only to the oxi, | On L,
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wherel,, is an x n identity matrix, andd,, is ann x n matrix whereh;(x;) is given in (1). Themeasurement noise covari-
of zeros. anceR; is based on analysis of the observations, describing
The observation function is determined by the object gethie efficacy of the measurements in each dimension of the ob-
metric model, the imaging model, and the position of the camesarvation space. See for more discussion on the computation
in space. The position of the camera in the world coordinaté R;,. The process noise covariandg;. is a measure of how
system is known and fixed, given by a homogeneous transfomuch uncertainty is introduced into the state estimate at each
mation matrixC. We will now introduce some additional nota-iteration. This parameter is often sepriori. The state uncer-
tion to simplify the observation function. A feature is describethinty P, ; monitors the amount of confidence in the state esti-
by a vectorp, specifying the location of the point that projectsnatex;,;.. TheKalman gain matrixk; determines the relative
onto the feature, and a number, specifying the link to whiakieighting of thea priori state estimate with the update in the
the coordinate system containipgis specified. We will de- prediction-correction equation (6).
scribe a pointp in some coordinate frame by a four-vector Note that the derivation of a closed-form solution of obser-
p = [zy=z1]*, wherez, y, andz are the coordinates of thevation equation is the main modeling task in implementing this
point. We define the functio( f, x; ) to be the transformation framework. As described above, the observation equation is the
from the world frame to the frame containing featyte composition of the location of the feature set with respect to the
The function BRSPECT( ) returns the perspective projectiorrobot’s links, the forward kinematics of the arm, the camera’s
of the point specified, as a column vector. The observation eqi@eation in space with respect to the robot, and the camera’s
tion, as a function of the current state, is comprised of the coimaging model. Once a composite function has been found, the
position of the forward kinematics of the robot arm, the positiopartials of this function with respect to each state element must
of the feature with respect to the link, the transformation fromlso be found in closed form. This algebraic and trigonometric
the world coordinate system to the camera coordinate systamgnipulation eliminates the need to compute differences of dis-
and the imaging transform. With this additional notation, therete quantities, a process well known to be sensitive to noise in

observation equation becomes the quantities.
PersPECT(CT(1, x)p)*
hy(xp) = : 1) B. Case 1: 3-DOF PUMA Robotic Arm
PERSPECT(O.T(F, x)p) 7 In this section, we present a tracking scenario driving this re-

where there arel” features to be observed. Note tHaf) S€&rch. thatof a 3-DOF robotic arm under perspective projec-
n. In this case, the three degrees of freedom used to position

is a column vector and contains the projected image pIaH% o :
coordinates of each feature. Althoubltxy) is dependent on the tool at any position in the workspace are tracked. The final

the state, the existence of a fully specified geometric modgfee degrees of freedom determine the orientation of the tool
allows closed-form solutions fdx(xy.) and(dhy, /dx;.)(xx.) to about this point in space, and are not currently trackeq. _

be found. We assume for simplicity that the process noise doed'S described above, we assume a constant velocity motion
not vary with the state. model in state space. We again use a state vector containing

With the above model definitions, the EKE for this genera{he joint angles and velocities for each o_f the fi_rst three joints,
tracking scenario is given by Xr = [q1 2 @3 ¢1 G2 g3]*. We assume a fixed pinhole camera

of Of T imaging model, with perspective projection as above. With these
Pi 1= [ kol (ﬁk_l)} Pr_1 11 [ kol (ﬁk_l)} assumptions, a closed-form solution is found ax(x;, ), and
O%1—1 Ox1—1 expressions are derived off-line f6Ph; /0x;.)(x). These ex-
+ Qr_1 pressions are not given here due to space constraints, but can be
|:In AIn} . [ ; n} o o found in [23].
= k—1,k—1 + Qi1
0, I, AL, I, C. Case 2: Incomplete Object Model
) ) qr—1 + Aék_l This section describes the application of a tracking system to
Rppk—1 =fo1(Xno1) = A ) atwo-link arm with two degrees of freedom under perspective
Ar—1 projection, where the lengths of the two links will be estimated
ohy, . T along with the configuration parameters.
Ki =Py, k-1 [E (Xklk—l)} A simple augmentation afy, is all that is required to use the
system in this case. The state vector in this case contains the joint
x [% (&klkl):| Pr i1 anglesq of the robot, the velocities of those angles, and the link
Oxy lengthsa of the robotx;. = [q1 g2 ¢1 42 a1 a2]*. Note that the
. 1 velocities of the lengths are not included in the state vector, as
o % (% ) +R @) we assume that the lengths are unknown constants. The dynamic
Ixy, Xhlk—1 K model incorporating these assumptions is given by

o fu(xz) = [0 + 1A @+ @A ¢ d@ o a) .
Pri= [I - K, [—k(ﬁk|k_1)” Pri1 (5) The observation function remains the same as in the previous
Oxy case, except that there are four configuration parameters, and
Xt = Xiji—1 + Ki(zr — hp(Xpjp—1)) (6) the link lengthsa; andas are now variable.



NICKELS AND HUTCHINSON: MODEL-BASED TRACKING OF COMPLEX ARTICULATED OBJECTS 33

@)

Feature O
Feature 1
Feature 2
Feature 3
Feature 4
Peature 5
Feature 6
Feature 7
Feature 8
Feature &
Feature 10
Feature 11
Feature 12
Feature 13
Feature 14

Feature 15
Feawre 17 |
Feature 18

Peature 19
Feature 20
Peature 21
Feature 22
=0 k=60
(b)

k:
Fig. 3. Tracking results for case 1b. (a) State and uncertainty estimates. Uncertainty estimates have been subsampled for display. (b)ifyatatienztsis.

V. EXPERIMENTAL RESULTS A. Case 1b: 3-DOF PUMA: Self-Occlusion of Features

In this section, we illustrate the effectiveness of the tracking In this section, we illustrate how the system handles self-oc-
system in several situations. Each situation illustrates a palusion of features. An overview of the theory of this operation
ticular feature of the tracking system. We begin by showing given in Section Ill-D. For example, in certain configurations
tracking results for an arm with three degrees of freedom of the object, the upper arm link of the robot is between the
several situations, and we use this case to illustrate the featwrasera and the gripper. In these configurations, any features on
of the systemt. Then we show the flexibility of the system, bythe gripper would be said to be self-occluded.
showing the tracking of a two-degree-of-freedom (2-DOF) arm Fig. 3(a) illustrates the evolution of the state and uncertainty
with unknown link lengths. In this case, the object appearanestimates during tracking. Fig. 3(b) shows the expected visi-
model for the arm is also extremely simple, illustrating the flexbility of each of the features throughout tracking.
ibility of the object models for gross motion tracking.

In these experiments, the position of the object is manually Case 1c: 3-DOF PUMA: External Occlusion of Features
initialized (although not always correctly—see Section V-D). ) ) .

As can be seen from the results, the joint angle estimates a_rén this section, we |IIu§trate t_he treatment of external occlu-

not always highly accurate, particularly when movement of th&{on: Such as described in Section I1l-D. Recall that external oc-
joint causes motion orthogonal to the (single) camera. One jusion is deflr!ed as occlusion of features that cannot be pre-
teresting aspect of this work is its ability to characterize arﬂiaed from object models, such as a person walking between
tolerate this uncertainty. Many systems exist that use multigfe® c@mera and the tracked object. Fig. 4 illustrates the evolu-
cameras (e.g., [8] and [17]) to avoid this situation. tion of the state and uncertainty estimates during tracking.

Due primarily to the SSD computation, this system was im-
plemented off-line on Sparc-10 workstations. Interframe poift. Case 1d: 3-DOF PUMA: General Case

feature motion is limited by the search regions of the feature\yhen the system is in full operation, the features described
tracking, set to 3939 regions in these experiments. in the previous sections operate as appropriate, yielding an ob-

2These results are more easily seen using 3-D animations. At the time of ﬂrﬁgt'tra?kmg system 'that gan track featu.res from W|de|y varying
writing, these results can be found at http://www.engr.trinity.edu/~knickels/ Viewpoints and can intelligently deal with the appearance and
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Fig. 6. Initial conditions for Case 2b.
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disappearance of features on an object. In this section, we illu
trate this with a tracking example without the restrictions im- °|
posed above. Fig. 5 illustrates the evolution of the state and u-ost
certainty estimates during tracking. 1

D. Case 2h: 2-DOF ARM: Incorrect Link Lengths 15

In this experiment, the lengths of the arm and the initial joinr _
angles are initialized in substantially incorrect values. Fig. 6 il

oL

lustrates the initial conditions of the filter with respect to the2%; 0 50 00 150 200 250 300
initial conditions of the actual arm, and Figs. 7 and 8 show the o
tracking behavior of the system. In this experiment, the_: JOlﬁ en subsampled for display.
angles of the arm do not change for approximately the first 15

frames of the sequence.

Joint angle tracking results for Case 2b. Uncertainty estimates have

not been developed to their full extent and that could benefit
from more sophisticated techniques. In this section, we will in-

The framework introduced in this paper is general and flexestigate some directions these extensions could take, as well
ible, and could be applied in many situations not covered in tras some novel situations that could benefit from such a general
paper. However, there are many portions of the system that héraanework.

VI. FUTURE WORK
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One aspect of the system that could be extended is the chaioesidering what point feature motion reveals about object mo-
for the search area and template size. Currently, a fixed-stizen in images. Each of these represents a contribution to the
rectangular search area and fixed-size rectangular templatefeaiel of computer vision, and an advance in the state of the artin
used, regardless of the size and expected motion of the featursing object geometric models in tracking complex articulated
Knowledge about the object geometric model and expected fedjects.

ture motion could be used to define an image region most likely
to contain the feature, for the purpose of using as a search re-
gion.

The extension of the observation equations to the case Wherﬁ]
there are multiple cameras is straightforward. This would
allow better 3-D feature localization, and improved accuracy
in tracking. This would be particularly helpful in cases like the [
PUMA described in Section 1V-B where the workspace is large
relative to the feature size. The observation equations could3]
also be parameterized to allow active vision. [4]

This framework is easily adaptable to the case where an op-
timal object trajectory is known. This would allow noncontact
monitoring in certain situations of articulated object under ex- 5
ternal control. This has many potential applications in the fields
of visual servoing, automated assembly, augmented reality, and

human—computer interaction. [6]
[71
VIl. CONCLUSIONS 8]

This paper presents a model-based object-tracking system ca-
pable of tracking complex articulated objects on the basis of!
monocular grayscale images of that object as it moves. The olpto)
ject model at the heart of the system is assumed to be known
a priori, and is assumed to be perfect. In certain cases, this rer)
striction can be relaxed by parameterizing unknown facets of
the object model.

We have described the synergy that exists between the obje[&gl
model and the low-level feature tracking used in the system. The
optimal filtering framework exploits the object model to over [13]
constrain the feature trackers to operate in a manner consiste[m]
with the known kinematics of the object under consideration,
so that the inaccurate feature-tracking results are not fatal to tHd]
system. The feature-tracking results are used in turn to optimaIIMG]
update the state vector, so that the object model is incremen-
tally brought into accordance with observed data. This system
combines the top-down approach of imposing an integral obt’
ject model on the observed data with the bottom-up approach of
using observed data to modify the assumptions of the system in
a mathematically robust framework. [18

The use of spatial certainty measures allows the fea-
ture-tracking algorithm to convey the quality of the fea-[19]
ture-tracking results to the object-tracking algorithm. Thusy,,
the information that the feature-tracking algorithm obtains
can be used to its maximum effectiveness. A system that onl
extracts the location of the minimum SSD score will not haveé
this information available, and will implicitly assign the same
confidence to every feature-tracking resuilt. [22]

Several features of this tracking system are novel. We have
developed a method for generating feature templates for cone3]
plex features from widely varying viewpoints, a method for esti- 24
mating the reliability of feature-tracking results during tracking
[21], and a characterization of the use of the object models in
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