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Model-Based Tracking of Complex Articulated
Objects

Kevin Nickels, Member, IEEE,and Seth Hutchinson, Senior Member, IEEE

Abstract—In this paper, we present methods for tracking com-
plex, articulated objects. We assume that an appearance model
and the kinematic structure of the object to be tracked are given,
leading to what is termed amodel-basedobject tracker. At each
time step, this tracker observes a new monocular grayscale image
of the scene and combines information gathered from this image
with knowledge of the previous configuration of the object to esti-
mate the configuration of the object at the time the image was ac-
quired. Each degree of freedom in the model has an uncertainty
associated with it, indicating the confidence in the current esti-
mate for that degree of freedom. These uncertainty estimates are
updated after each observation. An extended Kalman filter with
appropriate observation and system models is used to implement
this updating process. The methods that we describe are potentially
beneficial to areas such as automated visual tracking in general, vi-
sual servo control, and human computer interaction.

Index Terms—Kalman filtering, object tracking.

I. INTRODUCTION

W ITH recent advances in computing power and image in-
terpretation algorithms, it is now feasible totrack the

movements of complex objects in a scene. This allows the con-
struction of systems that can, for example, recognize objects
and allow a remote operator to specify tasks in terms of objects
rather than directly manipulating a robotic arm. The task ofob-
ject trackingis a necessary prerequisite to complex systems such
as this. In this paper, we consider the problem of tracking com-
plex, articulated objects in a scene, such as an articulated robotic
arm.

Object tracking is the problem of estimating and updating the
configuration of an object over time. An object’s configuration
is defined by its pose parameters (both position and orienta-
tion), as well as parameters that define any internal degrees of
freedom of the object [3], [9], [18]. In contrast, feature tracking
is the problem of estimating the image locations of features in
an image sequence [11]. In the visual servo community, another
variation of the tracking problem is to control the motion of an
active camera such that positions of features in the image are
regulated to desired locations [28].
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In this paper, we present a model-based object-tracking
system. Our system exploits known geometric, kinematic,
dynamic, and appearance models of the object (in our ex-
periments, a robot arm and a human arm) during tracking.
Thus, object tracking becomes the problem of instantiating the
parameters of the models given an observed image sequence.
Our approach iteratively updates selected model parameters
(e.g., internal joint angles or kinematic parameters of an
arm) each time a new image in the sequence is observed. In
particular, for each frame in the image sequence, the following
operations are performed. First, the current estimate of the
object configuration is used by a graphics engine to compute
feature templates. These feature templates are then used by
a sum of squared differences (SSD) tracker to estimate the
feature locations in the current image. Finally, these observed
feature locations are then used to drive an extended Kalman
filter (EKF), which updates both the estimate of the object
configuration and the internal state of the EKF.

Our system functions on a sequence of monocular grayscale
images. It accounts for both self-occlusion and external occlu-
sion of features, and it weights feature observations according
to their expected value in disambiguating the state, as well as the
amount of spatial uncertainty present in the feature observation.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe our approach to feature tracking and the
assimilation of feature tracking results into an object-tracking
framework. This section includes a review of the related litera-
ture on tracking. In Section III, we give a high-level description
of our tracking system. This section begins with a more detailed
discussion of the models that are used, along with a qualitative
evaluation of the effects of modeling errors on tracking perfor-
mance. It then deals with the specific issues of generating ap-
pearance templates, assimilating feature tracking results into the
object-tracking system, and dealing with feature occlusion. In
Section IV, we describe several increasingly complex tracking
situations that the framework can handle. Each situation illus-
trates a particular portion of the overall tracking system. In Sec-
tion V, we present experimental results that illustrate the effec-
tiveness of the tracking system in several situations. Finally, in
Section VII, we offer some conclusions that can be drawn from
this research, and discuss possible future work.

II. FEATURE AND OBJECTTRACKING

There are two main approaches to object tracking. The first
derives anoptical flow field, or a dense motion field, for the
sequence, then analyzes the structure of this flow field to infer
structure, motion, or both for the objects in the image [25], [2].
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The second approach, which we use in our work, is based on the
correspondence of discrete features on an object in one image
with those features in a subsequent image. This approach, dis-
cussed in Section II-A, typically searches for the locations of
features in an image by template matching or through other
search techniques, and then infers object motion from these cor-
respondences. The use of the results from this search for the pur-
pose of object tracking is reviewed in Section II-B.

A. Feature Tracking

Feature tracking provides estimates of the image locations of
features in successive images. Commonly, edges, corners, and
regions of high visual contrast are used as features in tracking
research [9], [18], [4], although any measurable relationship in
an image could be used. There is a large and rapidly growing
literature on feature tracking; summaries can be found in [7],
[15], and [20].

Much recent work has focused on the computation of new in-
variants for use as features in feature tracking. Instead of stan-
dard features such as corners and lines,projective invariants
have been used by Hagar [11]. Projective invariants are image
features that are independent of camera position. Hagar and Bel-
humeur [12] have proposed parametric measures that are insen-
sitive to both changes in geometry such as pose changes relative
to the camera and changes in illumination such as pose changes
relative to light sources. These measures are combined to ar-
rive at feature similarity measures that are insensitive to these
changes, and are used to track image regions in sequences.

B. Object Tracking

The motion of a three-dimensional (3-D) rigid object can be
extracted by analyzing the motion of features in a sequence of
images. This is a well-established area of research, for which
overviews can be found in [20], [14], and [7]. If geometric
models for the object are knowna priori, these can be exploited
in determining the object’s motion [10], [5], [6]. If multiple
viewpoints of the object are available [8], [17], tracking results
from each viewpoint can be integrated to aid in the object
tracking. For example, Gennery [9] tracks rigid polyhedral
objects. His object model includes a wire frame of the object
and constant reflectivity coefficients for each face of the
object. His dynamic model includes the position, velocity,
and acceleration of the object. Bray [3] also tracks polyhedral
objects, utilizing a similar object model. Dellaertet al. [5]
track a planar patch, simultaneously estimating the pose of
the patch and the texture appearing on the planar portion of
the object. Lowe [18] tracks objects with internal degrees of
freedom, for example, a box with one degree of freedom (a
hinged lid). The object model is a wire frame model, with
parameters for the position and orientation of the base and an
extra parameter for the angle between the box body and lid.
Not all object models must have a geometric interpretation,
however. Stephens [27] tracks rigid polyhedral objects using
a local Hough transform, so his object model is a point in the
six-dimensional Hough space. In [24], frequency analysis of
the spatio-temporal curves recovered from human activity is
used to recognize and categorize semirepetitive activities.

Fig. 1. TRACK-OBJECT, an algorithm for object tracking.

Recently, several research efforts have aimed at tracking
human motion in image sequences [16], [2], [4]. In [16],
humans are modeled as a set of connected planar patches.
In [6], a cylinder model of the body is used. In [8], tapered
super-quadrics are used as 3-D limb models. In [2], eigenspace
techniques are used to track objects that change shape as they
move (in this paper, a human hand). In [4], the kinematics of
the human body are modeled using the exponential map that
has become popular in the robotics literature (see, e.g., [19]).

All these systems have the unifying characteristic that there is
an underlying object model, and results from the tracking of fea-
tures are used to update the object parameters. One advantage
to this extra modeling is the ability to treat features as items of
secondary interest, and to track the object in spite of the occlu-
sion of some features. Therefore, if an individual feature tracker
fails but other trackers succeed in localizing their features, the
object will still be tracked. Kakadiaris and Metaxas [17] utilize
object models with multiple cameras to compute expected vis-
ibility of body parts from each camera. Hashimotoet al. [13]
have shown, for example, that increasing the number of redun-
dant features increases the robustness of visual servoing.

III. A M ODEL-BASED OBJECTTRACKING SYSTEM

In this section, our system for model-based object tracking is
described. A high-level algorithm describing the system is given
in Fig. 1. This system updates the internal parameters of an ob-
ject model from monocular grayscale images of that object. The
system accounts for both self-occlusion and external occlusion
of features, and weights feature observations according to their
predicted usefulness in disambiguating the state, as well as by
the amount of spatial uncertainty present in the feature observa-
tion.

We begin by presenting a summary of the various models
used by our system. We then examine several components used
in the tracking algorithm: feature tracking and measurement
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uncertainty estimation, assimilation of feature-tracking results,
and finally provisions for self-occlusion and external occlusion
of features. Most issues related to using the EKF in our tracking
system are deferred to Section IV.

A. Models Used

Our system uses five models: the overall system model,
the object geometric model, the object appearance model,
the imaging model, and the object dynamic model. We now
describe these models and discuss the assumptions that can be
made for each. We conclude this section with a brief discussion
of the effects of errors in the model on system performance.

We use a general nonlinearsystem model. The other models
we will describe relate to assumptions about object geometry,
appearance, and dynamics, as well as the imaging system, and
are realized by instantiating functions in this system model. The
system state at timeis denoted by thestate vector . The non-
linear system model specifies by the vector valued func-
tion, , plus additive noise . Observations of the system
are given by another vector valued function, also a function
of state and additive noise . The equations for the model
are of the form

We make the usual (in the Kalman filtering literature) assump-
tions with respect to the correlation of the noise and initial con-
ditions. That is, the noise sequences and are zero-mean
white noise sequences, uncorrelated with each other and with
the initial state .

Theobject geometric modeldescribes the size and shape of
each link of the articulated object under consideration and how
the links move with respect to one another. This model is a su-
perset of the standard kinematic model used in robotics, which
defines only the interrelation of the coordinate systems of each
link, but not the shapes of the links [26]. Thus, the object geo-
metric model will determine the position of all features in the
world coordinate frame, given the robot’s configuration param-
eters. We assume that the object geometric model is knowna
priori , and that it is either constant or can be parameterized by
a small number of variables.

The object appearance modeldescribes the color, texture,
and materials used on each link described by the object geo-
metric model. The combination of the object appearance model
and the object geometric model defines the position and appear-
ance of every point on the object.

The imaging model mathematically describes the camera
used to image the scene. This is a superset of the perspective
or orthogonal projection models, including any lens modeling
(such as vignetting, lens distortion, or focusing effects) for the
camera. We include the position of the camera in the scene in
this model. A fixed camera position could also be assumed,
by including the object position relative to the camera in the
object geometric model. This model is assumed to be known
and constant, and in our experiments we have used perspective
projection.

Thedynamic modeldescribes the assumptions about motion
through thestate space. In our case, for experiments that involve

tracking a robot arm, contains the joint angles (which can
be used to define a configuration space) and joint velocities;
the object dynamic model thus describes movement through the
robot’s state space.

The state will generally include velocity information (i.e.,
). Motion models could also be formulated to

model constant workspace end-effector velocities or a number
of other feasible dynamic models.

In tracking research, the type of motion allowed is often con-
strained [1]. Sometimes this constraint is on the relative motion
of the camera and the object, as in our case, and sometimes the
constraint is on the internal motion of the object, for example,
by assuming rigid objects [9].

Each of these models affects the robustness of the visual
tracking process, and errors in each model will degrade the
performance in different ways. We now discuss the impact of
errors in each model described above.

Errors in the appearance and imaging models affect the
appearance of the generated feature templates and degrade
the ability of the system to track individual features. While
the system monitors the quality of the feature tracking [22],
serious errors in these models will cause feature tracking to fail
completely.

Errors in the object geometric model affect the system in two
ways. The forward kinematics of the object describe the map-
ping between the object configuration space and the workspace.
Thus, the first effect of errors in this mapping is that the feature
trackers are initialized at incorrect positions in the image. This
could cause the feature tracking to fail. Secondly, the EKF uses
this model to perform a minimum least squares fit of the mea-
surement to the object feature locations. Thus, the estimates of
the object parameters based on these locations would be incor-
rect.

Errors in the dynamic model will draw the state estimate off
during the time projection portion of the object-tracking algo-
rithm. As long as the actual feature locations still fall within the
search regions, the only result is that the correction portion of
the prediction-correction update equation (6) will be larger.

B. Generating Feature Appearance Templates

The object geometric model and configuration completely
specify the relative locations of the link coordinate frames with
respect to the world coordinate frame. In order to determine the
appearance of the scene, an imaging model such as described
in Section III-A is assumed. With these models in place, a syn-
thetic scene such as that shown in Fig. 2 can be generated.1

Feature points are currently manually specified as 3-D points
in a link coordinate system. Given the geometric model and an
estimated configuration, the (estimated) position of these points
in the world coordinate frame can be determined. We define the
expected feature locationas the projection of each feature point
onto the image plane. An example set of these locations is shown
in Fig. 2.

1Note that the image produced by the program uses 24 bits of grayscale and
currently is produced at a resolution of 512�485. Therefore, the quality of the
image in this paper does not reflect the quality of the synthetic scene actually
used by the system.
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Fig. 2. A synthetic image, showing expected feature locations.

If a feature point is visible in a given configuration, it can
be expected that the area in the input image surrounding that
feature point will resemble the area in the synthetic image sur-
rounding the expected feature location. This is the principle
upon which we base our method for automatically generating
templates for arbitrary complex features. A fixed rectangular
area of the synthetic image called thefeature appearance tem-
plate, centered on the expected feature location, is saved for use
during feature tracking.

C. Assimilation of Feature-Tracking Results

When the individual feature measurementsand their co-
variances have been computed by the individual feature
trackers, they are combined to make observation and covari-
ance vectors for the system as a whole. These are denoted as
the vector and the block-diagonal matrix

, and defined by

in which there are features. These definitions assume that
the additive noise in the feature measurements is independent,
and thus that the covariance of is a block-diagonal matrix
whose nonzero entries are the individual covariance matrices.
Modeling the interactions between theuncertaintiesof the indi-
vidual feature trackers is a nontrivial task [25] and is a topic for
future research. The interactions of thelocationsof the features
are modeled, in that the movement of each feature plays a role
in updating the state estimates.

D. Treatment of Feature Occlusion

Feature occlusion occurs when a feature is not completely
visible from the viewpoint of the camera. Whether a particular
feature is occluded is a function of the camera viewpoint, the ob-
ject configuration, and the position of external objects that may
obstruct the view of the object. Note that in our framework, the
loss of a feature due to occlusion causes mistracking only to the

extent that the erroneous feature-tracking information causes er-
rors in the state estimate.

We defineoff-screenocclusion to be the case that a feature
projects to a portion of the (infinite) image plane that is not ob-
served. We defineself-occlusionto be the occlusion of a feature
by another part of the modeled object. If a featureis found to
be not visible due to being off-screen or due to self-occlusion,
the relevant elements of theobservation functionof the EKF
( and , see (1) of Section IV-A) are set to a
constant. This will cause

and results from tracking the nonvisible feature will not be used
in the state update [(3) of Section IV-A]. Indeed, in the interest
of performance, tracking is not even performed on nonvisible
features.

External occlusionis occlusion that cannot be predicted from
the object model and estimated configuration. This includes fea-
tures predicted to be visible that are not visible, as well as fea-
tures that have some unmodeled object obscuring the visibility
of the feature.

When a feature is externally occluded, the template will not
match any area of the image very well. The feature tracking
will detect this (see [22] for a discussion of the estimation of
measurement uncertainty in feature tracking), and the feature-
tracking algorithm will indicate high spatial uncertainty on the
returned feature location. Measurements with high spatial un-
certainty due to occlusion will be selectively ignored according
to the weights computed in (4) in Section IV-A. Therefore, the
assumed dynamic model will be used to a greater extent when
updating the state estimate.

IV. A PPLICATION OFKALMAN FILTERING FRAMEWORK

In this section, we apply the extended Kalman filtering frame-
work to several examples of interest. We begin by describing the
general case, where a general kinematic structure is assumed.
Then, we see how this would be used in the simple case of a
three-degree-of-freedom (3-DOF) PUMA robotic arm. Finally,
we show how this framework can be used in the case of a par-
tially unspecified kinematic chain, such as one with unknown
(but constant) link lengths.

A. General Case

The EKF is a flexible and robust tool for tracking. In this
section, we describe its use, in conjunction with the modeling
described above, for the visual tracking of complex articulated
objects.

The state vector will in general contain the joint angles
and velocities for each of the joints of the robot.

The evolution of this state vector is predicted by the constant
velocity dynamic model as described in Section III-A
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where is a identity matrix, and is an matrix
of zeros.

The observation function is determined by the object geo-
metric model, the imaging model, and the position of the camera
in space. The position of the camera in the world coordinate
system is known and fixed, given by a homogeneous transfor-
mation matrix . We will now introduce some additional nota-
tion to simplify the observation function. A feature is described
by a vector , specifying the location of the point that projects
onto the feature, and a number, specifying the link to which
the coordinate system containingis specified. We will de-
scribe a point in some coordinate frame by a four-vector

, where , , and are the coordinates of the
point. We define the function to be the transformation
from the world frame to the frame containing feature.

The function PERSPECT returns the perspective projection
of the point specified, as a column vector. The observation equa-
tion, as a function of the current state, is comprised of the com-
position of the forward kinematics of the robot arm, the position
of the feature with respect to the link, the transformation from
the world coordinate system to the camera coordinate system,
and the imaging transform. With this additional notation, the
observation equation becomes

... (1)

where there are features to be observed. Note that
is a column vector and contains the projected image plane
coordinates of each feature. Although is dependent on
the state, the existence of a fully specified geometric model
allows closed-form solutions for and to
be found. We assume for simplicity that the process noise does
not vary with the state.

With the above model definitions, the EKF for this general
tracking scenario is given by

(2)

(3)

(4)

(5)

(6)

where is given in (1). Themeasurement noise covari-
ance is based on analysis of the observations, describing
the efficacy of the measurements in each dimension of the ob-
servation space. See for more discussion on the computation
of . Theprocess noise covariance is a measure of how
much uncertainty is introduced into the state estimate at each
iteration. This parameter is often seta priori. Thestate uncer-
tainty monitors the amount of confidence in the state esti-
mate . TheKalman gain matrix determines the relative
weighting of thea priori state estimate with the update in the
prediction-correction equation (6).

Note that the derivation of a closed-form solution of obser-
vation equation is the main modeling task in implementing this
framework. As described above, the observation equation is the
composition of the location of the feature set with respect to the
robot’s links, the forward kinematics of the arm, the camera’s
location in space with respect to the robot, and the camera’s
imaging model. Once a composite function has been found, the
partials of this function with respect to each state element must
also be found in closed form. This algebraic and trigonometric
manipulation eliminates the need to compute differences of dis-
crete quantities, a process well known to be sensitive to noise in
the quantities.

B. Case 1: 3-DOF PUMA Robotic Arm

In this section, we present a tracking scenario driving this re-
search, that of a 3-DOF robotic arm under perspective projec-
tion. In this case, the three degrees of freedom used to position
the tool at any position in the workspace are tracked. The final
three degrees of freedom determine the orientation of the tool
about this point in space, and are not currently tracked.

As described above, we assume a constant velocity motion
model in state space. We again use a state vector containing
the joint angles and velocities for each of the first three joints,

. We assume a fixed pinhole camera
imaging model, with perspective projection as above. With these
assumptions, a closed-form solution is found for , and
expressions are derived off-line for . These ex-
pressions are not given here due to space constraints, but can be
found in [23].

C. Case 2: Incomplete Object Model

This section describes the application of a tracking system to
a two-link arm with two degrees of freedom under perspective
projection, where the lengths of the two links will be estimated
along with the configuration parameters.

A simple augmentation of is all that is required to use the
system in this case. The state vector in this case contains the joint
angles of the robot, the velocities of those angles, and the link
lengths of the robot, . Note that the
velocities of the lengths are not included in the state vector, as
we assume that the lengths are unknown constants. The dynamic
model incorporating these assumptions is given by

The observation function remains the same as in the previous
case, except that there are four configuration parameters, and
the link lengths and are now variable.
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(a)

(b)

Fig. 3. Tracking results for case 1b. (a) State and uncertainty estimates. Uncertainty estimates have been subsampled for display. (b) Feature visibility estimates.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the effectiveness of the tracking
system in several situations. Each situation illustrates a par-
ticular feature of the tracking system. We begin by showing
tracking results for an arm with three degrees of freedom in
several situations, and we use this case to illustrate the features
of the system.2 Then we show the flexibility of the system, by
showing the tracking of a two-degree-of-freedom (2-DOF) arm
with unknown link lengths. In this case, the object appearance
model for the arm is also extremely simple, illustrating the flex-
ibility of the object models for gross motion tracking.

In these experiments, the position of the object is manually
initialized (although not always correctly—see Section V-D).
As can be seen from the results, the joint angle estimates are
not always highly accurate, particularly when movement of that
joint causes motion orthogonal to the (single) camera. One in-
teresting aspect of this work is its ability to characterize and
tolerate this uncertainty. Many systems exist that use multiple
cameras (e.g., [8] and [17]) to avoid this situation.

Due primarily to the SSD computation, this system was im-
plemented off-line on Sparc-10 workstations. Interframe point
feature motion is limited by the search regions of the feature
tracking, set to 39 39 regions in these experiments.

2These results are more easily seen using 3-D animations. At the time of this
writing, these results can be found at http://www.engr.trinity.edu/~knickels/

A. Case 1b: 3-DOF PUMA: Self-Occlusion of Features

In this section, we illustrate how the system handles self-oc-
clusion of features. An overview of the theory of this operation
is given in Section III-D. For example, in certain configurations
of the object, the upper arm link of the robot is between the
camera and the gripper. In these configurations, any features on
the gripper would be said to be self-occluded.

Fig. 3(a) illustrates the evolution of the state and uncertainty
estimates during tracking. Fig. 3(b) shows the expected visi-
bility of each of the features throughout tracking.

B. Case 1c: 3-DOF PUMA: External Occlusion of Features

In this section, we illustrate the treatment of external occlu-
sion, such as described in Section III-D. Recall that external oc-
clusion is defined as occlusion of features that cannot be pre-
dicted from object models, such as a person walking between
the camera and the tracked object. Fig. 4 illustrates the evolu-
tion of the state and uncertainty estimates during tracking.

C. Case 1d: 3-DOF PUMA: General Case

When the system is in full operation, the features described
in the previous sections operate as appropriate, yielding an ob-
ject-tracking system that can track features from widely varying
viewpoints and can intelligently deal with the appearance and
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Fig. 4. Tracking results for Case 1c. Uncertainty estimates have been
subsampled for display.

Fig. 5. Tracking results for Case 1d. Uncertainty estimates have been
subsampled for display.

disappearance of features on an object. In this section, we illus-
trate this with a tracking example without the restrictions im-
posed above. Fig. 5 illustrates the evolution of the state and un-
certainty estimates during tracking.

D. Case 2b: 2-DOF ARM: Incorrect Link Lengths

In this experiment, the lengths of the arm and the initial joint
angles are initialized in substantially incorrect values. Fig. 6 il-
lustrates the initial conditions of the filter with respect to the
initial conditions of the actual arm, and Figs. 7 and 8 show the
tracking behavior of the system. In this experiment, the joint
angles of the arm do not change for approximately the first 15
frames of the sequence.

VI. FUTURE WORK

The framework introduced in this paper is general and flex-
ible, and could be applied in many situations not covered in this
paper. However, there are many portions of the system that have

Fig. 6. Initial conditions for Case 2b.

Fig. 7. Link length estimation results for Case 2b. Link length and uncertainty
estimates have been subsampled for display.

Fig. 8. Joint angle tracking results for Case 2b. Uncertainty estimates have
been subsampled for display.

not been developed to their full extent and that could benefit
from more sophisticated techniques. In this section, we will in-
vestigate some directions these extensions could take, as well
as some novel situations that could benefit from such a general
framework.
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One aspect of the system that could be extended is the choice
for the search area and template size. Currently, a fixed-size
rectangular search area and fixed-size rectangular template are
used, regardless of the size and expected motion of the feature.
Knowledge about the object geometric model and expected fea-
ture motion could be used to define an image region most likely
to contain the feature, for the purpose of using as a search re-
gion.

The extension of the observation equations to the case where
there are multiple cameras is straightforward. This would
allow better 3-D feature localization, and improved accuracy
in tracking. This would be particularly helpful in cases like the
PUMA described in Section IV-B where the workspace is large
relative to the feature size. The observation equations could
also be parameterized to allow active vision.

This framework is easily adaptable to the case where an op-
timal object trajectory is known. This would allow noncontact
monitoring in certain situations of articulated object under ex-
ternal control. This has many potential applications in the fields
of visual servoing, automated assembly, augmented reality, and
human–computer interaction.

VII. CONCLUSIONS

This paper presents a model-based object-tracking system ca-
pable of tracking complex articulated objects on the basis of
monocular grayscale images of that object as it moves. The ob-
ject model at the heart of the system is assumed to be known
a priori, and is assumed to be perfect. In certain cases, this re-
striction can be relaxed by parameterizing unknown facets of
the object model.

We have described the synergy that exists between the object
model and the low-level feature tracking used in the system. The
optimal filtering framework exploits the object model to over
constrain the feature trackers to operate in a manner consistent
with the known kinematics of the object under consideration,
so that the inaccurate feature-tracking results are not fatal to the
system. The feature-tracking results are used in turn to optimally
update the state vector, so that the object model is incremen-
tally brought into accordance with observed data. This system
combines the top-down approach of imposing an integral ob-
ject model on the observed data with the bottom-up approach of
using observed data to modify the assumptions of the system in
a mathematically robust framework.

The use of spatial certainty measures allows the fea-
ture-tracking algorithm to convey the quality of the fea-
ture-tracking results to the object-tracking algorithm. Thus,
the information that the feature-tracking algorithm obtains
can be used to its maximum effectiveness. A system that only
extracts the location of the minimum SSD score will not have
this information available, and will implicitly assign the same
confidence to every feature-tracking result.

Several features of this tracking system are novel. We have
developed a method for generating feature templates for com-
plex features from widely varying viewpoints, a method for esti-
mating the reliability of feature-tracking results during tracking
[21], and a characterization of the use of the object models in

considering what point feature motion reveals about object mo-
tion in images. Each of these represents a contribution to the
field of computer vision, and an advance in the state of the art in
using object geometric models in tracking complex articulated
objects.
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