image
vision
COMPUTING

www.elsevier.com/locate/imavis

Image and Vision Computing 20 (2002) 47-58

Estimating uncertainty in SSD-based feature tracking

Kevin Nickels**, Seth Hutchinson®

*Department of Engineering Science, Trinity University, San Antonio, TX 78212, USA
Department of Electrical and Computer Engineering and The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received 18 October 1999; received in revised form 11 June 2001; accepted 16 July 2001

Abstract

Sum-of-squared-differences (SSD) based feature trackers have enjoyed growing popularity in recent years, particularly in the field of
visual servo control of robotic manipulators. These trackers use SSD correlation measures to locate target features in sequences of images.
The results can then be used to estimate the motion of objects in the scene, to infer the 3D structure of the scene, or to control robot motions.

The reliability of the information provided by these trackers can be degraded by a variety of factors, including changes in illumination,
poor image contrast, occlusion of features, or unmodeled changes in objects. This has led other researchers to develop confidence measures
that are used to either accept or reject individual features that are located by the tracker. In this paper, we derive quantitative measures for the
spatial uncertainty of the results provided by SSD-based feature trackers. Unlike previous confidence measures that have been used only to
accept or reject hypotheses, our new measure allows the uncertainty associated with a feature to be used to weight its influence on the overall
tracking process. Specifically, we scale the SSD correlation surface, fit a Gaussian distribution to this surface, and use this distribution to
estimate values for a covariance matrix. We illustrate the efficacy of these measures by showing the performance of an example object
tracking system with and without the measures. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A growing number of applications in robotics and compu-
ter vision rely on real-time tracking of features in image
sequences. These applications include estimating the
motion of autonomous mobile vehicles, inferring the 3D
structure of an environment from 2D image data, and
controlling robotic manipulators. The reliability of feature
trackers can be degraded by many factors, e.g. changes in
illumination or poor image contrast. Nevertheless, many
feature trackers treat all features in a uniform manner, with-
out considering in any way the uncertainty associated with
the feature tracking process. In this paper, we present a
formalism by which the uncertainty associated with indivi-
dual features can be assessed and subsequently used in the
tracking process. This allows features to be accorded a level
of confidence commensurate with the uncertainty in their
measurement, which enables applications to weight features
appropriately, depending on the associated confidence level
and on the application’s needs.
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In this paper, we consider only the case of feature trackers
that use the sum-of-squared-differences (SSD) correlation
method [1-3]. In SSD-based feature tracking, a feature
template is compared to portions of an image to locate
that feature. A similarity metric is used to rate the similarity
of the template and the image patch. The image region
found to be the most similar to the template is typically
taken to be the location of the feature. In our work, we
consider features that are defined as given grayscale patterns
in an image.

We are specifically concerned here with the uncertainty
in the computation of the (2D) location of features in an
image. These feature uncertainties can then be used by
higher level application software. For example, in related
work, we have used the methods presented in this paper to
drive an uncertainty estimation process for an object
tracking system that also takes into account kinematic and
imaging uncertainties in tracking complex articulated
objects [4].

There have been several other attempts to incorporate
feature uncertainty into the tracking process. In the
work described by Gennery [S] and Lowe [6], object
tracking is performed by tracking salient features on
the image of an object, and this information is used
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to compute the object motion that gave rise to the
observed feature motion. Gennery tracks estimated
error in the position, orientation, velocity, and angular
velocity of the rigid object to aid in prediction of object
motion. He uses naturally occurring edges on the poly-
hedral object as features. Lowe distinguishes between
two different types of errors, matching errors and
measurement errors, and attempts to utilize separate
mechanisms to deal with each. Matching errors,
mismatches between feature points on the object
model and feature points in the image, are dealt with
by removing outliers. Measurement errors are dealt with
by using the variance in the object location, orientation,
and configuration to compute the expected variance in
measurements. In Ref. [3], estimates from regions of
high confidence are used to improve estimates in
regions of low confidence. To facilitate this, a metric
for the confidence in a motion estimate is developed.
Finally, feature tracking confidence measures have been
used in visual servo control to increase the robustness
of the control [2]. In each of these cases, the uncer-
tainty characterizations are used only to reject or accept
features. In contrast, the approach presented here refers
to the certainty of the location of the feature rather than
the certainty in the measurement of that feature. It gives
a quantitative evaluation of uncertainty that can be used
to weight feature measurements in proportion to their
reliability in various directions in the image.

In our research, we assume that the shape and appearance
of the object being tracked are known. This is a particular
version of the model-based tracking problem, which is of
current interest in both the robotics and computer vision
communities (see Refs. [7-9]). By exploiting the informa-
tion contained in shape and appearance models, we are able
to generate templates for the predicted appearance of
features of interest in a given configuration. An alternative
to this model-based approach is to use features gathered on-
line [2], which may help to ensure the quality of the features
tracked, since feature templates exactly match previous
feature appearance. However, this method neglects any a
priori information about the geometric relationship of the
individual features to the object.

The remainder of the paper is organized as follows. We
begin with a review of the SSD-based feature tracking
method. Following this, we describe our goals with respect
to characterizing the spatial discrimination of features. We
illustrate how these goals allow a system to account for both
occlusion of features and suboptimal feature performance
during object tracking. Then we present a Gaussian approx-
imation and describe how sufficient statistics can be used to
characterize this approximation. Finally, we present some
feature tracking results taken from our implemented track-
ing system, illustrating the information gained from these
error estimates and show a case study illustrating the degra-
dation in our system when uncertainty estimation informa-
tion is ignored.

2. Correlation and feature templates

The following sections discuss the three areas that are
most crucial to the performance of correlation based track-
ing: the content of the feature templates, the definition and
use of a specific similarity metric for tracking, and the defi-
nition of confidence measures on the tracking results.

2.1. Feature template generation

The content of the template is an important choice in
feature tracking. If the template faithfully reproduces the
actual appearance of the feature in the image, tracking
will work well. However, if a template is oversimplified
or does not match the appearance of a feature in the
image due to unmodeled effects, feature tracking will almost
certainly perform poorly.

A template could be generated from a canonical view
of the feature, and template matching done in a search
window centered about the predicted position of the
image. Brunelli and Poggio give a good review of this
technique in the context of facial feature tracking [10].
The main problem with this straightforward approach is
that the simple template is a 2D entity, and the image
patch may undergo transformations that the template
cannot model, such as rotation, shear, and changes in
illumination [11].

A more complex algorithm that also works in certain
situations is to use an image patch from the previous
image, taken from the area around the last computed posi-
tion of the feature in that image, for the template. Hager [12]
uses this approach for visual servoing. Hager and Belhu-
meur [11] have also used previous tracking information to
warp this image patch before use as a feature template to
account for illumination and geometric changes, which
increases the flexibility of this approach. The main difficulty
with this approach is feature drift. Feature drift occurs when
the computed position of the feature is slightly incorrect.
This causes the next template to be slightly offset from the
true feature location, and the next computed position of the
feature to be slightly more incorrect. Slowly, the computed
position migrates off the feature of interest, and the template
contains image structure divergent from the feature of
interest.

If object and scene modeling are part of the tracking
framework, it is possible to create templates solely from
this information, neglecting image content from previous
images. Lopez et al. [9] have a 3D registered texture of a
face as part of their object model. Computer graphics
(CG) techniques are used to texture-map the texture
onto a wire-frame model of the face to estimate the
appearance of a feature in the image. This image patch
is then used as a template in the feature tracking portion
of the system.

Our work uses 3D models for complex articulated
objects, also in a CG based framework (specifically,
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Fig. 1. Approximation of an example response distribution by a density function. Pixels are along the x and y axes, and SSD score or probability mass is along
the z axis. (a) Negative of SSD Surface; (b) RD from Ref. [15]; (c) Gaussian Density Function approximating (b); (d) RD (e) Gaussian Density Function

approximating (d).

OpenGL [13]), to generate feature templates. Imaging and
object models are used to produce a CG image of the scene
in the estimated configuration. Since the CG scene is
completely known, the 2D image locations of salient

features on the CG object are known. Portions of this
image are then used as feature templates to compare against
the input image. More information on our method for
feature template generation is given in Ref. [14].
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2.2. The SSD similarity metric

In correlation-based tracking, a similarity metric is used
to compare the feature template described above to areas of
the image to locate the feature in the image.

The standard SSD metric for grayscale images is defined
as:

SSD(u,v) = > [T(m,n) — I(u+m,v+ ), (1)

mneN

where T is the template image and [ is the input image. The
location (u, v) represents some location in the input image
whose content is being compared to the content of the
template. Papanikolopoulos [2] uses the SSD measure to
generate tracking results that are then used for robotic visual
servoing experiments. Anandan [3] and Singh and Allen
[15] use this SSD metric for the computation of image
flow. Alternative dissimilarity measures can be found in
Refs. [16-19].

2.3. Windowing

Often, the SSD measure is not computed for the entire
input image, but only for some search window in the input
image. Primarily for computational reasons, this restriction
also serves as a focus of attention for the feature tracking
algorithm. Singh and Allen [20,15] define a fixed size square
search window surrounding the previous location of the
feature. Kosaka and Kak [21] consider at length the shape
and location of the search window. They model the scene
and compute a spatial probability density function for the
location of each feature, then search the image area corre-
sponding to 85% of the probability mass.

Our work uses a constant-velocity model for an articu-
lated object to predict 3D positions for relevant points on the
object. Imaging models are then used to project these loca-
tions to points on the image plane. A fixed size rectangular
search window centered at these locations is established in
the input image. See Ref. [22] for more details on the
models used in this work.

3. Confidence measures and spatial uncertainty

It has been noted [3] that popular similarity measures
often lead to some unreliable matches, particularly in
image regions with little textural information. For this
reason, it is often helpful to compute a confidence on the
match found, as well as a location. This confidence measure
typically gives information regarding the reliability of the
match score. This scalar score often is used to estimate the
reliability of the feature, e.g. for use in later tracking opera-
tions or to propagate image flow information from one
portion of an image to another [15]. Below, we will describe
a matrix-valued measure that contains information both
about the overall confidence in a feature measurement and

(c)

Fig. 2. Inputs to tracking for gripper feature (unoccluded) (a) Full Input
Image with search region marked; (b) Template; (c) Actual area searched.

information about how accurate the measurement is in all
image directions.

Anandan [3] used the SSD matching scores of a template
with a 5 X5 image region to develop a match confidence
measure based on the variation of the SSD values over the
set of candidate matches. Anandan argued that if the varia-
tion of the SSD measure along a particular line in the search
area surrounding the best match is small, then the compo-
nent of the displacement along the direction of that line
cannot be uniquely determined. Conversely, if there is
significant variation along a given line in the search area,
the displacement along this line is more likely correct.

Singh and Allen define a response distribution based on
the SSD metric (1) as

RD(u,v) = exp (—k SSD(u, v)), 2)

where k is used as a normalization factor. The normalization
factor k was chosen from Ref. [15] so that the maximum
response was 0.95. Singh and Allen then argue that each
point in the search area is a candidate for the ‘true match’.
However, a point with a small response is less likely to be
the true match than a point with a high response. Thus, the

{b)

(a) (c)

Fig. 3. Inputs to tracking for gripper feature (occluded) (a) Full Input Image
with search region marked; (b) Template; (c) Actual area searched.
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Fig. 4. Tracking results for unoccluded gripper feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature

location determined; (b) Negative SSDS; (c) GRV density.

response distribution could be interpreted as a probability
distribution on the true match location — the response at a
point depicting the likelihood of the corresponding match
being the true match. This interpretation of the response distri-
bution allows the use of estimation-theoretic techniques.

Under the assumption of additive zero mean independent
errors, a covariance matrix P,, is associated with each loca-
tion estimate. This matrix is constructed from information
about the shape of Eq. (2) as u and v (the horizontal and
vertical pixel locations) change.

[ > RD@w v~ u,) > RD@, ) = ) = v) ]
u,yEN u,yEN
> RD@,v) > RD@,v)
P _ u,veN uveN
" D RD@u, v)(ut = t,)(v = v,,) > RD,v)(v = v,,)*
uveEN u,yEN

> RD(.v) > RD@,v)

| u,vyeN u,yEN .

3)

where u,, and v,, are the estimated locations, in the u and v
directions, of the feature and N is the neighborhood of the
pixel. Expressions for the normalized variance in the hori-
zontal and vertical directions appear along the diagonal of
Eq. (3), and an expression for the normalized covariance

x10°

5
|
(=]
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—

40 40

appears in both off-diagonal elements of P,,. See Ref. [15]
for more in-depth discussion of this formulation. The reci-
procals of the eigenvalues of the covariance matrix are used
as confidence measures associated with the estimate, along
the directions given by the corresponding eigenvectors. To
our knowledge, Singh and Allen are the first researchers to
treat the location of the best match as a random vector and to
use the (normalized) SSD surface (SSDS) to compute the
spatial certainty of the estimate of this vector. These confi-
dence measures are then used in the propagation of high
confidence measurements for local image flow to regions
with lower confidence measurements, such as those caused
by large homogeneous regions.

As the SSD measure is used to compare the template to
areas of the image near the area generating the minimum
SSD score, some measure of the spatial discrimination
power of the template can be generated [3]. Spatial discri-
mination is defined as the ability to detect feature motion
along a given direction in the image. This concept is quite
similar to the confidence measures discussed above that
estimate the reliability of the location estimate. However,
we interpret the confidences as spatial uncertainties in the
returned location. Papanikolopoulos explains the concept of
spatial discrimination in detail, giving examples of corner

Fig. 5. Tracking results for occluded gripper feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature location

determined; (b) Negative SSDS; (c) GRV density.
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features, edge features, and homogeneous features, along
with their respective autocorrelation SSDSs [2]. We illus-
trate the effect on several features in Section 5.

While conclusions about the efficacy of a given template
for feature localization can be drawn from the fully
computed SSDS, it is both computationally expensive and
memory intensive to maintain the complete surface for this
purpose. In Section 4, we derive an approximation for RD
that is more practical to maintain and propagate.

4. A practical approximation for RD

In order to maintain and use relevant information about
the shape of the response distribution, we introduce a math-
ematical approximation to the distribution given in Eq. (2).
By suppressing the off peak response of the feature tracking
result, this response distribution function converts the SSDS
into an approximately Gaussian distribution that contains
the feature tracking information we wish to maintain.

4.1. Uncertain feature measurements

The measurement vector z; is interpreted as an uncertain
location in the (u, v) plane, and modeled as a 2D Gaussian
random vector. It is illustrative to analyze the behavior of
the density function for this vector with respect to the spatial
certainty of the feature tracking result as Ry, the covariance
matrix for the vector, changes. For example, if R, = oI,
where o is the variance of the vector, the location is equally
certain in each direction. The ellipses of equal probability
on the density surface are circles. If o, # o, where o',f and
a'v2 are the variances in the u and v directions, the location is
more certain in one direction (given by the minor axis of the
ellipses of equal probability) than in the other direction
(given by the major axis). As the length of the major axis
approaches infinity, complete uncertainty on the location
along this dimension is asserted. It is well-known that the
mean and covariance are sufficient statistics for a Gaussian
random variable. Therefore, if this Gaussian density surface
is sufficient to model the tracking behavior, it is no surprise
that the mean and covariance suffice to maintain this
information. In Section 4.2, we explain how we estimate
these quantities from RD.

4.2. Parameter estimation from the SSDS

This section describes a process for analyzing the SSDS
to arrive at estimates for the mean and variance of a
Gaussian random vector. The density function of this vector
acts as an approximation to the response distribution RD
(see Eq. (2)) for the purpose of tracking features.

Our work develops a different normalization procedure
for RD that is useful for the evaluation of isolated feature
measurements from template images. This procedure differs
from that described above in several ways. First, Singh and
Allen were comparing quite similar image patches, leading

. (b)
(a)

(c)

Fig. 6. Inputs to tracking for edge feature (diagonal configuration) (a) Full
Input Image with search region marked; (b) Template; (c) Actual area
searched.

to a very peaked response distribution. Our work compares
CG generated template images to actual captured images,
leading to a much less peaked distribution. Second, we
emphasize the importance of suppressing the off peak
response, so that only the image areas with significant agree-
ment to the template image affect the uncertainty.

Our computation of the normalization factor k in Eq. (2)
differs from that of Singh and Allen [15]. We chose k such
that

Z RD(u,v) = 1. “4)

u,vyEN

As can be seen in Fig. 1, this has the effect of suppressing
the off peak response of the feature detector, when
compared with Singh and Allen’s normalization. We
believe this to be a more appropriate normalization for our
situation.

As described in Section 4.2, we compute one covariance
matrix and one location for each feature, and use this infor-
mation in a model-based object tracking framework. We do

. |
(a)

(c)

Fig. 7. Inputs to tracking for edge feature (vertical configuration) (a) Full
Input Image with search region marked; (b) Template; (c) Actual area
searched.



K. Nickels, S. Hutchinson / Image and Vision Computing 20 (2002) 47-58 53

(a) (b)

0.02-

0.015- 4

30
(c)

Fig. 8. Tracking results for diagonal edge feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature location

determined; (b) Negative SSDS; (c) GRV density.

not reject any tracking information but instead weight each
measurement on the basis of this covariance matrix, using as
much information as possible from the feature tracking.

The mode, or most probable value, of a random vector is
located at the peak of the density function. We take the
location of the minimum of the SSDS as our value for the
mode of the vector,

z;, = argmin,,SSD(u, v). (%)

The variance of u (a,f), the variance of v (O'VZ), and the
covariance between u and v (p,,0,0,) can be estimated
directly from the response distribution using Eqgs. (2) and
(3), yielding the desired covariance matrix,

—

) —
gy Puy 0y Oy
Rk = —~ ) (6)
— )
P00y gy

which, as described above, contains complete information
about the orientation and shape of the error ellipsoids.

By computing the covariance as well as the variances, we
retain information about the orientation of the ellipsoids of
constant probability, as well as their intersection with the u
and v axes. Therefore, we gain the ability to maintain infor-
mation about directions of good spatial discrimination.

Of course, as we are only maintaining the mean and
variance of the random vector, and not the complete
SSDS, this is only an approximation to the complete infor-
mation about local image structure given by the SSD.
However, it does give an indication of both the absolute
quality of the match and, in cases where edge features'
exist, the direction of the edge.

' Our references to edge features can refer to any features with low
discrimination power in one direction in the current configuration of the
object, even if the 3D structure which gave rise to the feature has good
texture in multiple directions. See Section 5.3 for more explanation of this
case.

5. Results

In this section, we review the results of feature tracking
with measurement uncertainty estimation. We examine some
illustrative examples graphically and quantitatively, and
describe the use of this information. Finally, we present a
brief example from our related work in object tracking that
uses this uncertainty information to aid in tracking an object.

5.1. Gripper feature

The feature considered in this section is a portion of the end-
effector of arobot. Figs. 2 and 3 show the inputs used for these
searches. Two situations will be considered: a reasonably stan-
dard input image with the gripper visible as expected and an
input image in which the gripper is completely occluded by an
external object. The tracking results and computed uncertain-
ties will be shown in both cases.

Figs. 4 and 5 show the tracking results for these cases. In
each figure, the feature location is shown by a cross in (a),
the negative SSDS is shown in (b), and the computed prob-
ability density function of this location (see Section 4 for
details on this computation) is shown in (c). In Fig. 4, both
the SSDS and GRYV density surfaces indicate equal accuracy
of the tracking result in all directions.

In Fig. 5, we present an illustration of the usefulness of
the on-line estimation of template efficacy. By calling this
estimation ‘on-line’, we do not mean to imply that this
method is real-time. With no hardware acceleration for
the SSD computations or the response distribution normal-
ization, this algorithm is actually quite slow. On a Sparc 10,
each feature takes approximately 15 s to compute. Instead,
we mean to point out that since the templates used and input
images acquired both change as a function of time and
configuration, the efficacy measures used must be computed
within the tracking loop.

The feature shown in Fig. 5 has the same template as in
the previous case. However, a person has stepped between
the camera and the feature, occluding the feature.

A 2D measurement, represented by the cross in Figs. 4(a)
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Fig. 9. Tracking results for vertical edge feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature location

determined; (b) Negative SSDS; (c) GRV density.

and 5(a), and a 2 X 2 covariance measurement are the output
of the feature tracking, and are used directly in the EKF
framework described in Ref. [14].

5.2. Edge feature

This case illustrates the usefulness of the measurement
uncertainty estimation for tracking features with poor
spatial discrimination in one direction. An edge feature
can be tracked well only in the direction orthogonal to the
edge. This feature arises from a point on the edge of the
robotic arm. Thus, the orientation of the edge in the feature
depends on the configuration of the robot. As the configura-
tion of the robot changes, the direction of the edge projected
onto the image plane will change. Figs. 6 and 7 show the
inputs used for this search.

In Fig. 8, the edge is in a diagonal orientation. The nega-
tive of the SSDS shown in (b) has a ridge along this direc-
tion, indicating good match scores along the ridge. The
location of the absolute maximum of the SSDS (i.e. the
returned feature location), is shown by the cross in (a).
After normalization, the density function shown in (c) exhi-
bits the same ridge, while suppressing the off peak match

(b)

(c)

Fig. 10. Inputs to tracking for point feature (nondegenerate) (a) Full Input
Image with search region marked; (b) Template; (c) Actual area searched.

(a)

scores on both sides of the ridge. Similarly, the edge in Fig.
9isin a vertical orientation, so the ridges in (b) and (c) are in
the vertical direction, and the returned feature location
shown by the cross in (a) is known to be accurate only in
the horizontal direction only.

By maintaining this information, the system can exploit
the feature tracking information to its fullest extent. The
result is neither endowed with inappropriate confidence
due to the good accuracy in the direction orthogonal to
the edge nor unduly devalued due to the poor accuracy in
the direction along the edge.

5.3. Degenerate point feature

In this section, we illustrate another aspect of the useful-
ness of on-line estimation of template efficacy. Since our
object-tracking system is intended to work under widely
varying configurations of the object, the appearance of
features may change significantly during tracking. A single
feature acceptance or rejection decision will not suffice in
this case.

Figs. 10 and 11 show the inputs used for this search. Figs.
12 and 13 show tracking results for a feature that undergoes

. |
(a)

(c)

Fig. 11. Inputs to tracking for point feature (degenerate — acting as a line
feature) (a) Full Input Image with search region marked; (b) Template; (c)
Actual area searched.
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Fig. 12. Tracking results for nondegenerate point feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature

location determined; (b) Negative SSDS; (c) GRV density.

such a change in appearance, a point of intersection of a
black line on the edge of the robotic arm with the rear edge
of the arm.

This feature is a point of high texture in both directions
when the arm is approximately parallel to the image plane,
as shown in Fig. 10(a), and acts like a point feature. This
feature location, shown in Fig. 12(a) by the cross, can be
found with high accuracy in all directions as shown in the
Negative SSDS shown in (b) and the final density shown in (c).

However, this feature acts like an edge feature in other
configurations, such as the configuration shown in Fig. 11,
where the arm is pointing roughly toward the camera. In this
configuration, the feature appears as a vertical edge feature,
as can be seen in the search image shown in Fig. 11(c). The
location of the feature in this case (shown by the cross in
Fig. 13(a)) can be found with high accuracy in only the
horizontal direction. This fact can be seen in the Negative
SSDS (b) and the final density (c).

Again, the maintenance of the covariance matrix instead
of a single confidence measure makes this suboptimal track-
ing result not only tolerable, but also useful.

5.4. Object tracking using uncertainty

In each of the previous results, we have shown how the

(a)

results from tracking a single feature can be analyzed to
arrive at an efficacy measure for the location of that feature.
In this section, we briefly describe how this type of informa-
tion from several distinct features can be used to track the
movements of an articulated object. We will also demon-
strate a case in which the ignorance of this uncertainty
information leads to losing track of the object. As we are
using the absolute minimum of the SSDS for the feature
measurement in both experiments, the accuracy of the
feature tracking information is not changed. The indepen-
dent variable in the two experiments is instead the asso-
ciated uncertainty information. Kalman Filter divergence
due to incorrect uncertainty information is a well-known
phenomenon in the radar tracking literature [23,24], and
has received some attention in the computer vision and
robotics community as well [25].

In this example, we are tracking a two degree of freedom
planar arm with unknown link lengths. Thus, the system has
four total degrees of freedom. We utilize an extended
Kalman filter to track this system. For an in-depth look at
this object tracking system, see Ref. [4]. We present a brief
look at the system, from the point of view of utilizing
feature tracking information, below. The system used in
this example is identical except for the use of measurement
uncertainty as described below.

Fig. 13. Tracking results for degenerate point feature. (a) Results Image with a dotted box showing the area searched and a cross illustrating the feature location

determined; (b) Negative SSDS; (c) GRV density.
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Fig. 14. Object Tracking Results and Measurement Uncertainty — Joint Estimates.

The measurement function is the composition of the arm
Jacobian and the image Jacobian (i.e. the mapping from
joint angles to image location of features). Using this frame-
work, the measurement equations are implicitly inverted
[26] and feature measurements from the images are used
to update the configuration of the arm.

We define the state vector for this extended Kalman filter
to be
(N

. . T
Xk:[% 91 40 491 Qo 01],

where g; is the angle of the ith joint, and ¢; is the length of
the ith link. We assume constant velocity motion in the
joints and fixed unknown link lengths. Measurements for
this system are the (u, v) locations in the image plane of
salient predefined features on the arm,

(®)

Zk:[ul Vi Uur VF]T

where there are F features being tracked. Each feature
measurement has an uncertainty matrix R associated with
it. These measurements are combined into a system
measurement uncertainty matrix, as shown below.

o
R/ — ty Pugy ‘Tzuf Ty
Puyv; Tu, O, o,
CRi(1,1) Ri(1,2) - 0 0 ]
Ri(2,1) R.(2,2) 0 0
R, =
0 0 R{(1,1) Ri(1,2)
. 0 0 RE2, 1) RE(2,2)
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Fig. 15. Object Tracking Results and Measurement Uncertainty — Link Length Estimates.

Fig. 14 shows the results from two object tracking
runs. Both runs utilized the same sequence of input
images. In the first case, the uncertainty estimates
described in this paper are used. In the second, an
experimentally  determined constant experimental
variance was used. The object tracking portion of the
algorithm was identical in both cases. The computation
of the feature tracking uncertainty was the only change.
The solid lines marked x, (with MU) and x; (with MU)
in Fig. 14 represent the angle estimates for joints 0 and
1 respectively, with measurement uncertainty informa-
tion. The dashed lines marked x, (without MU) and x;
(without MU) represent the angle estimates for joints 0
and 1, respectively, replacing the actual measurement
uncertainty information with the identity matrix multi-
plied by an experimentally determined scalar variance.
This variance was chosen to optimize performance in

the system, and worked well in many situations.
However, in the case shown the initial link lengths
were incorrect by a factor of approximately 2, and
the latter system breaks down. Since these tracking
results are from an uninstrumented human arm, ground
truth is not available. Qualitatively, the estimates given
by the former system track the object while the esti-
mates given by the latter system diverge from the
actual angles.

By ignoring the augmented feature tracking measure-
ments, the system is not able to identify correctly when
the system is doing well and when it has lost track. This
fact is more evident in Fig. 15, where the estimates for the
link lengths are shown. Again, the solid lines indicate the
system using measurement uncertainty and the dashed lines
indicate the use of an experimentally determined scalar
variance.
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6. Conclusions

The method presented uses the SSDS, a common inter-
mediate result in correlation-based feature tracking, to
compute quantitative estimates for the spatial accuracy of
the feature tracking result. This estimate consists of a covar-
iance matrix for a Gaussian random vector. Analysis of this
matrix yields information about the directions (if any) in
which the template is discriminating the feature from the
image background, and provides a quantitative measure of
confidence in each direction.

Several examples were given illustrating the intuitive
nature of this quantitative uncertainty estimate. This esti-
mate is particularly useful in long sequences, when a given
feature can perform well at some times, and poorly at other
times. An example of one use of this information was also
presented, in the context of articulated object tracking. More
examples of the use of this matrix in model-based tracking
of complex articulated objects can be found in [4], along
with a more thorough explanation of the Kalman filter based
system.

The feature tracking results, combined with the measure-
ment uncertainty matrix, yield a composite measure that is
useful when analyzing the tracking results. Analysis of the
feature tracking results can detect templates that do not
discriminate effectively in any direction. By associating
spatial confidence measures with feature tracking results,
those results can be more fully exploited: the fact that
some directions may have high confidence does not lead
us to accept the entire measurement, and the fact that
some directions may have low confidence does not lead us
to disregard useful data.

References

[1] J. Shi, C. Tomisito, Good features to track, Proceedings of IEEE
Computer Society Conference on Computer Vision Pattern Recogni-
tion 1994 pp. 593-600.

[2] N.P. Papanikolopoulos, Selection of features and evaluation of visual
measurements during robotic visual servoing tasks, Journal of Intel-
ligent and Robotic Systems 13 (3) (1995) 279-304.

[3] P. Anandan, A computational framework and an algorithm for the
measurement of visual motion, International Journal of Computer
Vision 2 (3) (1989) 283-310.

[4] K. Nickels, S. Hutchinson, Model-based tracking of complex articu-
lated objects, IEEE Transactions on Robotics and Automation 17 (1)
(2001) 28-36.

[5] D.B. Gennery, Visual tracking of known three-dimensional objects,
International Journal of Computer Vision 7 (3) (1992) 243-270.

[6] D. Lowe, Robust model-based motion tracking through the integra-
tion of search and estimation, International Journal of Computer
Vision 8 (2) (1992) 113-122.

[7] S. Lee, B. You, G. Hager, Model-based 3-D object tracking using

projective invariance, Proceedings of IEEE International Conference

Robotics and Automation, Detroit, MI 1999 pp. 1589-1594.

J.E. Lloyd, J.S. Beis, D.K. Pai, D.G. Lowe, Model-based telerobotics

with vision, Proceedings of IEEE International Conference Robotics

and Automation, Albuquerque, NM, vol. 2 1997 pp. 12977-1304.

R. Lopez, A. Colmenarez, T.S. Huang, Vision-based head and facial

feature tracking, Advanced Displays and Interactive Displays Feder-

ated Laboratory Consortium, Annual Symposium, Advanced

Displays and Interactive Displays Federated Laboratory Consortium,

1997.

[10] R. Brunelli, T. Poggio, Face recognition: features versus templates,
IEEE Transactions on Pattern Analysis and Machine Intelligence 15
(10) (1993) 1042-1052.

[11] G. Hager, P. Belhumeur, Efficient region tracking with parametric
models of geometry and illumination, IEEE Transactions on Pattern
Analysis and Machine Intelligence 20 (10) (1998) 1025-1039.

[12] G. Hager, Real-time feature tracking and projective invariance as a
basis for hand—eye coordination, Proceedings of IEEE Computer
Society Conference on Computer Vision Pattern Recognition 1994
pp. 533-539.

[13] M. Woo, J. Neider, T. Davis, The OpenGL Programming Guide,
Addison-Wesley, Reading, MA, 1996.

[14] K. Nickels, S. Hutchinson, Weighting observations: the use of kine-
matic models in object tracking, Proceedings of IEEE International
Conference Robotics and Automation, 1998.

[15] A. Singh, P. Allen, Image flow computation: an estimation-theoretic
framework and a unified perspective, Computer Vision Graphics and
Image Processing: Image Understanding 56 (2) (1992) 152-177.

[16] S. Birchfield, C. Tomasi, A pixel dissimilarity measure that is insen-
sitive to image sampling, IEEE Transactions on Pattern Analysis and
Machine Intelligence 20 (4) (1998) 401-406.

[17] P.J. Burt, C. Yen, X. Xu, Local correlation measures for motion
analysis: a comparative study, Proceedings of IEEE Conference
Pattern Recognition Image Processing 1982 pp. 269-274.

[18] G. Hager, P. Belhumeur, Real-time tracking of image regions with
changes in geometry and illumination, Proceedings of IEEE Compu-
ter Society Conference on Computer Vision Pattern Recognition 1996
pp. 403-410.

[19] A. Rosenfeld, A. Kak, Digital Picture Processing, 2nd ed, Academic
Press, Cambridge, MA, 1982.

[20] A. Singh, An estimation-theoretic framework for image-flow compu-
tation, Proceedings of International Conference on Computer Vision
1990 pp. 168-177.

[21] A. Kosaka, A.C. Kak, Fast vision-guided robot navigation using
model-based reasoning and prediction of uncertainties, Computer
Vision and Image Understanding 56 (3) (1992) 271-329.

[22] K. Nickels, S. Hutchinson, Integrated object models for robust visual
tracking, Proceedings of Workshop on Robust Vision for Vision-
based Control of Motion, 1998.

[23] A.J.Isaksson, F. Gustafsson, Comparison of some Kalman filter based
methods for manoeuvre tracking and detection, Proceedings of the
Conference on Decision and Control 1995 1525-1531.

[24] A. Zolghadri, An algorithm for real-time failure detection in Kalman
filters, IEEE Transactions on Automatic Control 41 (10) (1996)
1537-1539.

[25] R. Deriche, O. Faugeras, Tracking line segments, Image and Vision
Computing 8 (4) (1991) 261-270.

[26] W.J. Wilson, C.C.W. Hulls, G.S. Bell, Relative end-effector control
using Cartesian position based visual servoing, IEEE Transactions on
Robotics and Automation 12 (5) (1996) 684—696.

[8

—_

[9

—



