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Abstract

Traditionally, the goal of image segmentation has been to produce a single partition of an image. This partition is compared to some
‘ground truth’, or human approved partition, to evaluate the performance of the algorithm. This paper utilizes a framework for considering a
range of possible partitions of the image to compute a probability distribution on the space of possible partitions of the image. This is an
important distinction from the traditional model of segmentation, and has many implications in the integration of segmentation and
recognition research. The probabilistic framework that enables us to return a confidence measure on each result also allows us to discard
from consideration entire classes of results due to their low cumulative probability. The distributions thus returned may be passed to higher-
level algorithms to better enable them to interpret the segmentation results. Several experimental results are presented using Markov random
fields as texture models to generate distributions of segments and segmentations on textured images. Both simple homogeneous images and
natural scenes are presented.q 1997 Elsevier Science B.V.
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1. Introduction

A common task in computer vision is to partition an
image into regions that are both maximal and homogeneous
in some sense. This task, calledsegmentation, can also be
defined as the process that subdivides a sensed scene into its
constituent parts or objects [1–3]. Segmentation of an image
is a complex but extremely important task in computer
vision, usually conceded to be prerequisite to high-level
vision algorithms such as object description, recognition,
or scene analysis.

To segment an image, one or more features must be
extracted from the image. The termfeature is often used
in computer vision to refer to geometric or structural objects
in an image, such as edges or corners. In statistical pattern
recognition, a feature can be any observable characteristic
of a picture, usually one that varies in an interesting way
over the image. We will take the latter definition, and refer
to features such as color or texture. Afeature vectoris a
vector whose entries are features.

Texture is a popular feature to use when segmenting

images. Texture in this context means a pattern of grey
scale variation in an intensity image. The text in a news-
paper can be considered to have a different texture from the
greyscale pictures or line drawings. This fact can be used,
for example, to allow the computer to read the text in a
newspaper and to ignore the images when doing optical
character recognition [4]. Textiles can be inspected for
defects by searching for the inconsistencies in texture
caused by a manufacturing problem [5]. Mathematical mod-
els for naturally occurring texture are not yet fully devel-
oped. For example, many texture models in use today
cannot discriminate between some synthetic textures that
are visually distinct. Many texture models have difficulty
distinguishing between naturally occurring textures as well.

Most classical segmentation algorithms restrict the set of
possible solutions by using various constraints to obtain a
unique stable solution to the problem [1,6–9]. In contrast to
this, LaValle and Hutchinson [10] introduce a region-based
method that modifies the split-and-merge paradigm to create
a set of possible solutions, and returns this set. The method
was subsequently extended by Castan˜o and Hutchinson [11]
to the problem of identifying symmetries in intensity
images. This new approach allows the representation of
every possible image segmentation, either explicitly or
implicitly, along with an associated probability for each

0262-8856/97/$17.00q 1997 Elsevier Science B.V. All rights reserved
PII S0262-8856(97)00021-8

* Corresponding author. Tel.: +1 217 244-5570; fax: +1 217 244 8371;
e-mail: seth@uiuc.edu

Image and Vision Computing 15 (1997) 781–795



segmentation. Thus, it is possible, for example, to enumer-
ate the most probable segmentations, which provides more
information than the typical approach, in which only a
single segmentation is determined. A second advantage to
the approach is that no thresholds or arbitrary stopping
criteria are needed. Furthermore, no parameter estimation
is performed during the process of determining highly prob-
able segmentations. Thus, the method avoids the problems
encountered by parameter estimation schemes when there
are outliers in the data or when data sets are small, including
the accumulation of errors that can occur when estimated
parameters are used in subsequent grouping steps.

In this paper we extend the probabilistic framework pro-
posed by LaValle [10] to textured images, and we refine
much of the notation proposed by LaValle and Castan˜o
[11]. In Section 2 we present the Markov random field
(MRF) texture model, which will be used for the remainder
of the paper. We then describe how we model the difference
between our predictions and the input textures. Given the
model for texture, in Section 3 we derive the probability that
two disjoint regions are homogeneous. In Section 4 we
combine the texture model from Section 2 and the probabil-
ity of homogeneity expression from Section 3, with the
result being a probability distribution on the space of
possible segments in the image. Precise algorithms are pre-
sented later, in Section 6. The framework for segments
developed in Section 4 is extended in Section 5 to consider
segmentations of an image. Two algorithms are presented in
Section 6. First, an algorithm for finding the distribution of
segments introduced in Section 4 is presented. Second, an
algorithm for finding the distribution of segmentations from
Section 5 is presented. In Section 7, experimental results
showing distributions of segments and segmentations,
with the associated confidence measure from several differ-
ent image sets, are presented and analyzed. Finally, possible
extensions and conclusions to this research are discussed in
Section 8.

2. Markov random fields as texture models

An MRF formulation models the dependency of a pixel’s
intensity value on the intensity values of its neighbors. For
example, for a first-order MRF model, a pixel in a given
texture can be modeled as a linear combination of its four-
neighbors, plus Gaussian white noise.

More formally, let an imageI be anR 3 C lattice whose
sites are denoted by {(r,c)l0 # r , R,0 # c , C}. Let X(r,c)

be a random variable representing the intensity value of
pixel (r,c) in the image. Thenx(r,c) is an observation of
that random variable, or the actual intensity value of pixel
(r,c) in a given image. The range of each random variable is
L ¼ {0,1,…,L} for some integerL. In 8-bit gray-scale inten-
sity images, 8 bits are reserved to hold the intensity value of
each pixel, soL ¼ 28 ¹ 1 ¼ 255. A discrete MRF is defined
as any random field for which the random variable at each

pixel is dependent only on the values taken by the
random variables for its neighboring pixels in some finite
neighborhood which is typically less than the entire image.
Formally,

P[X(r ,c) ¼ x(r, c)lX(r9,c9) ¼ x(r9,c9), (r9, c9) Þ (r, c)]

¼ P[X(r ,c) ¼ x(r, c)lX(r9,c9) ¼ x(r9,c9), (r9,c9) [ N(r, c)]

ð1Þ

whereN(r,c) is the set of neighbors for pixel (r,c).
Theorder of an MRF defines the size ofN(r,c). For exam-

ple, consider a first order MRF. Pixel (r,c) interacts only
with the pixels above, below, to the left, and to the right
of itself. Specifically, if we defineu1, u2, u3, andu4 to be the
relative weighting of the four-neighbors of (r,c), the linear
model for the predicted intensity value of (r,c), defined by a
first-order MRF model, is

x̂(r, c) ¼ u1[x(r ¹ 1,c) ¹ mk] þ u2[x(r þ 1, c) ¹ mk]

þ u3[x(r,c¹ 1) ¹mk] þ u4[x(r,cþ 1) ¹ mk] þ mk ð2Þ

wheremk represents the mean over regionk. We will for-
mally defineregionbelow. More generally, for anmth order
MRF, if we denote the intensity value of thel th neighbor of
ðr,cÞ by Tl(r,c), Eq. (2) becomes

x̂(r, c) ¼
∑N
l ¼ 1

ul [Tl(r,c) ¹ mk]

( )
þmk (3)

where ul again denotes the relative weighting of thel th

neighbor. There areN neighbors interacting with pixel
(r,c). This formulation was introduced by Kashyap and
Chellappa in [12].

If a naturally occurring texture is modeled by a random
field, the actual pixel values are unlikely to be those
predicted by the random field model. This discrepancy
must be modeled. One approach is to model the texture
as an instance of the random field plus additive Gaussian
noise. This enables us to discuss theprobability that the
two regions can be modeled by the same instance of the
random field. This is the approach we take here. We
assume that a pixel (r,c) differs from the prediction
given in Eq. (3) because of additive Gaussian noise. We
use this assumption to derive a probability density for a
given pixel’s intensity value. This density allows us to
relate the intensities for the pixels in some region of the
image to our mathematical model for the texture in that
region.

We define a region,Rk, to be some connected set of
pixels. Regions are disjoint from other regions, and the
union of all regions in an image is that image. It is
useful to discuss vectors of these variables. The vector
of random variables associated with the points in a region
Rk is denotedXk. An instance of this random vector is
denotedxk.
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The probability density for the observed intensity of a
pixel (r,c) is

p(x(r,c)luk) ¼ (2pj2
k)¹

1
2exp ¹

1
2j2

k

(x(r,c) ¹ x̂(r, c))2
� �

(4)

wherejk
2 is the noise variance over the regionRk, uk repre-

sents the vector of relative weights [u1u2u3…uN] for the
neighboring pixels, andx̂(r,c) is as given in Eq. (3).

Since we are assuming pixel interactions of a particular
form, a proper probability density function (pdf) would have
to model these interactions in all possible combinations.
Since we do not do this, the joint density over the points
in a regionRk is not a proper pdf. However, it has been
shown to be a reasonable approximation in many previous
experiments [6,13–16]. Thedegradation modeldefines how
the intensity values differ from those predicted by the linear
model described in Eq. (3). Since we assume the noise to be
an independent identically distributed process, this model is
obtained by taking the product of the densities over each of
the N pixels inRk:

p(xkluk) ¼ (2pj2
k)

¹
lRkl
2 exp ¹

1
2j2

k

∑
(r,c)[Rk

(x(r,c) ¹ x̂(r,c))
2

" #

(5)

The degradation model defines exactly how we assume the
image differs from our model for textures. Recall that each
Rk potentially has a different instance of the random field as
a generating field.

3. Obtaining the probability of homogeneity of two
regions

Of particular interest in region-based algorithms is an
expression for the probability that two disjoint, but usually
adjacent, regions come from the same instance of a random
field, or, equivalently, from instances of random fields with
the same parameters. This probability is called the probabil-
ity of homogeneity. Often, researchers will estimate para-
meters for a random field from the region data and use these
estimated parameters to compute an approximation for this
probability [8]. This leads to many problems relating to
parameter estimation techniques [17].

We will instead follow LaValle and Hutchinson [10],
taking the degradation model from Section 2 and using it
to build a probability distribution over possible segments,
where asegmentis some region grouping in the image. Note
that we require an initial segmentation of the image, where
each region is homogeneous. The degradation model
describes the difference between the predicted intensity
values for a region and the observed intensity values. Next
we will use the degradation model, denoted asp(xkluk), to
derive the probability that two regions are homogeneous.

We assume that each region has a true parameter value
associated with it, which is not known. We denote this value

by uk. Each region has some set of data associated with it,
which we represent as a vector of intensity values,xk. We
will make extensive use of the joint probability density
functions (pdfs) ofXk and Uk (the random variables of
which xk anduk are instances), which we denotep(xk) and
pðukÞ, respectively. Letp(xk,uk) be the combined joint pdf.
The joint pdf can be represented as

p(xk, uk) ¼ p(xkluk)p(uk) (6)

The pdf forxk is given by the marginalizing integral

p(xk) ¼

∫
p(xk,uk)duk ¼

∫
p(xkluk)p(uk)duk (7)

Let H(Ri ∪ Rj) ¼ true if and only if Ri ∪ Rj is homogeneous.
To say that two regions are homogeneous is equivalent to
asserting that the random fields that generated the textures
have identical parameter values, orH(Ri ∪ Rj) ¼ true
implies u i ¼ u j. For notational convenience, we will use
H to represent the conditionH(Ri ∪ Rj) ¼ true.

We now wish to derivePðHlx i,x j), the probability that
Ri ∪ Rj is homogeneous given the data from both regions.
We can apply Bayes’ rule to obtain

P(Hlxi ,xj) ¼
p(xi ,xj lH)P(H)

p(xi ,xj)

¼
p(xi , xj lH)P(H)

p(xi ,xj lH)P(H) þ p(xi ,xj l¬H)P(¬H)
(8)

The denominator of Eq. (8) is the normalizing factor from
Bayes’ rule over the binary sample space, {H,¬H}. The
prior probability of homogeneityP(H) is the a priori prob-
ability that two regions should be merged, and is usually
taken to be 1/2 to denote no prior knowledge of the problem.

We can separate Eq. (8) intol r, those terms dealing with
regionsRi andRj, andlp, those dealing with priors. Speci-
fically, if we define

lp ¼
1¹ P(H)

P(H)
andlr(xi ,xj) ¼

p(xi ,xj l¬H)
p(xi ,xj lH)

(9)

then we can write Eq. (8) as

P(Hlxi ,xj) ¼
1

1þ lplr(xi ,xj)
(10)

We make the assumption that regions that are not homoge-
neous have parameter values that are independent. This is by
no means the only assumption that could be made at this
point. For example, if a facet model is used for the regions,
and it is known that all surfaces are planes and that all planes
are either parallel or perpendicular, this information could
be modeled inpðx i,x jl¬H). Our assumption, formally stated
as

p(xi , xj l¬H) ¼ p(xi)p(xj) (11)
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allows us to writel r(x i,x j) as

lr(xi , xj) ¼
p(xi)p(xj)
p(xi , xj lH)

(12)

Noting that the conditionH states thatu i ¼ u j, we can
expand pðxi ,xj lHÞ as a marginal with respect to
uij ¼ ui ¼ u j:

p(xi , xj lH) ¼

∫
p(xi , xj luij )p(uij )duij (13)

We next state that if two regions,Ri andRj, share the same
parameter value,u ij, then

p(xi , xj luij ) ¼ p(xi luij )p(xj luij ) (14)

which states that if the parameter vector for these two
regions,u ij, is known, the observed intensity values in the
two regions are statistically independent [10]. Combining
these results gives aBayes’ factor

lr(xi , xj) ¼

∫
p(xi lui)p(ui)dui

� � ∫
p(xj luj)p(uj)duj

� �
∫

p(xi luij )p(xj luij )p(uij )duij

(15)

Bayes’ factors have been used to model selection between
nested linear parametric models [18], to model selection
between parametric image models [19], and for evidence
evaluation in forensic science [20,21].

In many cases, especially in classification, an algorithm is
provided with a number ofdesign samples—particular
representatives of the patterns we want to classify [22]. If
these samples are labeled, the algorithm is said to besuper-
vised. If the samples are not labeled, the algorithm is said to
be unsupervised. Note that while statisticians consider a
sample to be a set of class representatives, engineers tend
to consider a sample to be a particular class representative.
We shall follow the latter definition in this paper.

An expansion of Eq. (15) in the supervised case, whereuc

is the class representative for classc and there areC classes,
simply replaces each integration with a summation over the
class representatives:

lr(yi ,yj) ¼

∑C
c¼ 1

p(yi luc)p(uc)

" # ∑C
c¼ 1

p(yj luc)p(uc)

" #

∑C

c¼ 1
p(yi ,yj luc)p(uc)

(16)

There is one class representative per class in Eq. (16). How
this representative parameter vector is chosen has been of
interest to statisticians for some time. One approach is to
separate the training set into classes and find the maximum
likelihood estimate of the parameter valueuc [22]. A sim-
pler approach is taken in this paper. We take one homoge-
neous sample from each class and compute the best estimate
ũc using standard singular value decomposition techniques

[23]. The resultant set ofũc is then used as the set of class
representatives.

4. Segment classes

In this section, we will introduce and illustrate the use of
the concept of asegment class, which is simply a shorthand
representation for groups of segments that share some char-
acteristic. By considering segment classes carefully, we can
discard entire classes of segments from consideration, much
as is done ina ¹ b pruning and several other well-known
techniques in computer science.

4.1. Definitions

The input to the segmentation algorithm will be animage,
I, of intensity values. The elements ofI are assumed to be on
a rectangular lattice, which leads to a standard adjacency
definition. Note that the theory ofsegment classes and
segmentation classes, presented in this section and
Section 5, which was proposed in [13], does not depend
on which adjacency relationship is used. This paper uses a
four-neighbor adjacency relationship, but other relation-
ships could be used.

Two regions will be calledadjacentif there exist some
I ðri ,ci) [ Ri andI(r j,cj) [ Rj that are four-neighbors of each
other. A segment is defined to be a connected set of regions.
We will denote a segment byseg. Consider a small example
to illustrate these definitions. In Fig. 1, there are four
regions,R1 through R4. There are 14 possible segments
shown in Table 1.

We will call a set of segments asegment class. A segment
class can be specified by two sets, an inclusion set,I, and an
exclusion set,E. The inclusion setis a set of regions com-
mon to all segments in the segment class. Theexclusion set
is a set of regions contained in none of the segments in the
segment class. In order to obtain a unique shorthand repre-
sentation for each set of segments, we require each region in

Fig. 1. A simple example for describing segments.
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E to be adjacent to some region inI. A segment class may
contain one or more than one segment. A segment class that
contains only one segment shall be called asingleton, or
groundclass. We shall denote a segment class byseg(I,E),
whereI andE are defined as above.

For example, the most general segment class for Fig. 1 is
seg(À,À). A listing of the segments in this class is given in
Table 2. This class represents all possible segments by
indicating that the inclusion set is null, or that no particular
set of segments must be included. Similarly, no particular
set must be excluded. Therefore, every possible segment is
included inseg(À,À). An example of a class that contains
only one segment isseg({ R1},{ R2,R3}), which corresponds
to the segmentseg1. Note that R4 Ó E, since it is
not adjacent toR1. It can be shown that the triplet
(seg({ Ri},À),PowerSet[seg({ Ri},À)],Pi) is a probability
space, wherePi is a probability mapping onPowerSet
[seg({ Ri},À)].

The next section describes how to select certain elements
of seg({ Ri},À) in an organized manner, and how to apply
evidence obtained by the models described in Section 2
to uncover Pi and find the most probable elements in
seg({ Ri},À).

4.2. Uncovering the probability mapping on classes of
segments

ConsiderRj, a region adjacent toRi. We can useP(Hij) to
describe the probability of the class of segments whereRi

andRj are homogeneous as

P[seg({ Ri ,Rj} , Àlxk;k)] ¼ P(Hij lxk;k) (17)

whereP(Hij) is the probability that regionsRi and Rj are
homogeneous. It has been shown [11] that a reasonable
approximation to Eq. (17) using only information from
regionsRi andRj is

P[seg({ Ri , Rj} , À)lxk;k] < P[seg({ Ri , Rj} , À)lxi ,xj ]

¼ P(Hij lxi ,xj) ð18Þ

which yields

P[seg({ Ri} , { Rj} )lxi ,xj ] ¼ P(¬Hij lxi ,xj) ¼ 1¹ P(Hij lxi , xj)
(19)

neatly splittingseg({ Ri},À) into two sets, the union of which
makes upseg({ Ri},À). These two classes are called a cover
of seg({ Ri},À), and this process of splitting a segment class
is termedrefinement.

For example, Fig. 2 shows three refinements of
segð{ R1} ; ÀÞ, under someP(H12lx1,x2), into smaller classes.
Consistent probabilities of homogeneity have been assigned
in this example. Given the observations fromR1 andR2, the

Table 1
All possible segments from Fig. 1

seg1 { R1}
seg2 { R2}
seg3 { R3}
seg4 { R4}
seg5 { R1 ∪ R2}
seg6 { R1 ∪ R3}
seg7 { R2 ∪ R3}
seg8 { R2 ∪ R4}
seg9 { R3 ∪ R4}
seg10 { R1 ∪ R2 ∪ R3}
seg11 { R1 ∪ R2 ∪ R4}
seg12 { R1 ∪ R3 ∪ R4}
seg13 { R2 ∪ R3 ∪ R4}
seg14 { R1 ∪ R2 ∪ R3 ∪ R4}

Table 2
All possible segment classes from Fig. 1 that containR1

Number seg(I,E) Contains segments

0 seg(À,À) seg1,seg2,seg3,seg4,seg5,seg6,seg7,seg8,seg9,
seg10,seg11,seg12,seg13,seg14

1 segð{ R1} ; ÀÞ seg1,seg5,seg6,seg10,seg11,seg12,seg14

2 seg({ R1},{ R2}) seg1,seg6,seg12

3 seg({ R1},{ R3}) seg1,seg5,seg11

4 seg({ R1},{ R2,R3}) seg1

5 seg({ R1,R2},À) seg5,seg10,seg11,seg14

6 seg({ R1,R2},{ R3}) seg5,seg11

7 seg({ R1,R2},{ R4}) seg5,seg10

8 seg({ R1,R2},{ R3,R4}) seg5

9 seg({ R1,R3},À) seg6,seg10,seg12,seg14

10 seg({ R1,R3},{ R2}) seg6,seg12

11 seg({ R1,R3},{ R4}) seg6,seg10

12 seg({ R1,R3},{ R2,R4}) seg6

13 seg({ R1,R2,R3},À) seg10,seg14

14 seg({ R1,R2,R3},{ R4}) seg10

15 seg({ R1,R2,R4},À) seg11,seg14

16 seg({ R1,R2,R4},{ R3}) seg11

17 seg({ R1,R3,R4},À) seg12,seg14

18 seg({ R1,R3,R4},{ R2}) seg12

19 seg({ R1,R2,R3,R4},À) seg14
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probability that the two regions are homogeneous is 0.7. We
split the segment class shown in Fig. 2(a) according to the
homogeneity ofR1 and R2 in the segments contained in
the class. This yields the two classes shown in Fig. 2(b),
the class containing all segments whereR1 andR2 are homo-
geneous (the left part of Fig. 2(b)), orseg({ R1,R2},À), with
probability (1.0)(0.7)¼ 0.7, and the class containing all
segments whereR1 andR2 are not homogeneous (the right
part of Fig. 2(b)), or seg({ R1},{ R2}), with probability
(1.0)(1¹ 0.7)¼ 0.3. We then refine the highest probability
segment class, which in this case isseg({ R1,R2},À) (the left
part of Fig. 2(b)). Given the observations fromR12 (the
region formed by taking the union ofR1 and R2) and R3,
the probability that the two regions are homogeneous is
0.14. The same grouping process described above is per-
formed again. The segments that haveR12 andR3 homoge-
neous are grouped intoseg({ R1,R2,R3},À), shown on the left
top of Fig. 2(c), which has probability (0.7)(0.14)¼ 0.1.
Those segments that do not haveR12 andR3 homogeneous
are grouped intoseg({ R1,R2},{ R3}), shown on the left

bottom of Fig. 2(c), which has probability (0.7)(1¹ 0.14)
¼ 0.6. Similarly, seg({ R1,R2},{ R3}) (left bottom of Fig.
2(c)) is refined intoseg({ R1,R2},{ R3,R4}) (upper left bottom
of Fig. 2(d)), which has probability (0.6)(0.58)¼ 0.25, and
seg({ R1,R2,R4},{ R3}) (lower left bottom of Fig. 2(d)),
which has probability (0.6)(1¹ 0.58)¼ 0.35.

This procedure takes advantage of the fact that the prob-
ability of a segment class is the sum of the probabilities of
the segments that comprise it [11]. Also note that the prob-
ability of seg({ R1,R2,R4},{ R3}) is guaranteed to be higher
than that of any segment inseg({ R1},{ R2}), because the
probability of seg({ R1},{ R2}) itself is lower than that of
seg({ R1,R2,R4},{ R3}). Therefore, if we are looking for the
single most probable segment inseg({ R1},À), we need not
look further at seg({ R1},{ R2}), even though it contains
multiple segments. The computational savings can be very
significant in large images, for which huge classes of seg-
ments need not be explicitly considered because of their low
probability. Experimentally, we have seen that the number
of segment classes considered is typically between 2 and 4

Fig. 2. The first four covers ofseg({ R1},À), (a) seg({ R1},À): (a) is refined into (b), (b) into (c), and (c) into (d).
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times the number of regions in the image. In comparison, a
(very) loose bound on the number of possible segments
would be exponential. In Section 6.1 we will formalize
the process of refinement.

5. Segmentation classes

In this section, we will introduce and illustrate the use of
the concept of asegmentation class. A segmentation class,
similar in flavor to thesegment classof Section 4, is a
compact representation for sets of segmentations.

5.1. Definitions

We define asegmentation classto be a set of possible
partitions of the imageI. For reasons that will become clear
in Section 5.2, we choose to define a segmentation class in
terms of some set of ground segment classes and at most one
non-ground segment class. Aground segmentation classis
defined to be a segmentation class that contains only ground
segment classes. Just as a ground segment class contains
exactly one segment, a ground segmentation class contains
exactly one segmentation.

5.2. Uncovering the probability mapping on classes of
segmentations

Like segment classes, segmentation classes have prob-

abilities associated with them. The probability of a
segmentation class is defined to be the product of the prob-
abilities of the component segment classes. This implies
certain independence relations, which we describe below.

The ground segments associated with a segmentation
class specify a set of segments that are included in each
segmentation of the segmentation class. For example, one
segmentation class would be all those segmentations that
contain seg({ R1,R2},{ R3,R4}). Like segment classes, seg-
mentation classes that contain multiple elements can be
refined to contain fewer elements.

The procedure for refining a segmentation class relies
heavily on the procedure for refining a segment class.
Specifically, we obtain a ground segment class from the
procedure described in Section 4. Recall that a ground
segment class contains a single segment. We remove this
segment from the image. We then repeat the segment class
refinement procedure to find a ground segment class from
among the remaining regions. This is repeated until every
region in the image has been included in some ground
segment class.

Considering the segmentation classes for our simple
example from Fig. 1 will help to clarify this procedure.
First, we use the procedure described in Section 4 to obtain
all possible segments that containR1. For each of these
segments, we consider the set of regions that remain
after the segment is removed from the image. We refer to
this set of regions as the residue. In the trivial case the
residue is empty (Fig. 3(h)), and we have a ground

Fig. 3. Ground segmentation classes for our simple example in decreasing order of probability.
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segmentation class. If the residue is not empty, the proce-
dure is used again to obtain all possible segments that make
up the residue. If there is only one region left in the residue
(Fig. 3(a),(f),(l)), that region will be returned as a segment.
Otherwise, multiple segments may be obtained from the
residue. This process of finding all possible segments
from a partial image continues until all regions in the
image have been included in exactly one segment.

Recall that in Section 3 we made the assumption that
regions with different parameter values are independent.
Under this assumption, the probability mapping on a seg-
mentation class is the product of the probabilities of the
component classes. For example, consider the segmentation
containingsegð{ R1,R2} , { R3,R4} Þ andseg({ R3},{ R1,R2}) in
Fig. 3. In Section 4.2 we derived the probabilities that cer-
tain segments are in the correct segmentation of the imageI.
We saw that there is a 25% probability that the segment
seg({ R1,R2},{ R3,R4}) is in the correct segmentation of the
image I (upper left bottom of Fig. 2(d). Because this is a
hypothetical example, note that we can define a correct
segmentation. In an actual image, it may not be clear
which segmentation is correct. In the example, we also
saw that there is a 40% probability that the segment
seg({ R3},{ R4}) is in the correct segmentation of the image
I ¹ { R1 ∪ R2}. Therefore, our definition of a (0.25)(0.4)¼
0.1 probability that segmentsseg({ R1,R2},{ R3,R4}) and
seg({ R3},{ R1,R2,R4}) are in the correct segmentation of
image I is reasonable. An illustration of this refinement
process is shown in Fig. 4. In the next section, we shall
formalize procedures for obtaining then most probable
segmentations of an image.

The computational savings of a beam search over an
exhaustive search can be significant in large images, for
which classes of segmentations need not be explicitly con-
sidered because of their low probability. Experimentally, we
have seen that the number of segmentation classes consid-
ered is typically between 2 and 4 times the number of
regions in the image. In comparison, a (very) loose bound
on the number of possible segments would be the Bell num-
ber, which is super-exponential in the number of regions in
the image.

6. Algorithm issues

In Sections 4 and 5 we described procedures for obtaining
the most probable segments and segmentations in an image.
In this section, we will present algorithms for obtaining
these. The first algorithm obtains then segments with the
highest probability from an image. The second algorithm
obtains then segmentations with the highest probability
from an image. The third algorithm uses a beam search to
obtain an approximation to the most probablen segmenta-
tions in an image.

6.1. Computing the most probable segments

Given a list of regions in the image,R , and an initial
region,Ri, the algorithm shown in Fig. 5 determines then
most probable segments and returns them. Two queues,
segQand segQg, are maintained for the segment classes

Fig. 4. Segmentation classes for our simple example; ground segmentations are in bold.
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and ground segment classes that are generated, respectively.
By settingn ¼ 1, the most probable segment can be found.
Since the highest probability segment class is selected to be
refined at each iteration,segQandsegQg are implemented
with priority queues to ensure the efficiency of this
operation.ExtractMax simply extracts the segment class
with the highest probability from the priority queue.

Each iteration of the refinement loop in this algorithm
splits the segment class under consideration into two
segment classes, each of which is smaller than the original.
Probabilities for the two new segment classes are calculated
as discussed in Section 4.2.

It is possible that we will have to refine more thann
segments in order to guarantee that there are no segments
in segment classes fromsegQ that could have higher
probability than thenth ground segment class insegQg.
In this case, we truncatesegQg in step 15 before
terminating.

6.2. Computing the most probable segmentations

The algorithm that computes then most probable seg-
mentations, shown in Fig. 6, utilizes a stepwise refinement
process. The inputs to the algorithm are a list of regions in
the image,R , and an initial region,Ri. Two queues of
segmentation classes,SEGQ and SEGQg, are maintained.
They contain non-ground segmentation classes and ground
segmentation classes, respectively.

A segmentation class is denoted bySEG[S,I,E], whereS
is a list of ground segment classes, andI and E are the
inclusion set and the exclusion set in the one non-ground
segment class in the segmentation class. See Section 4.1 for
a review of these definitions. We denote byS̄ the set of
regions contained in any segment inS.

The only section of this algorithm that is not obviously
part of the refinement described is the section given in lines
17 through 24. In these lines, we deal with the case in which
the segment class under consideration is a ground segment
class, but the segmentation class is not a partition of the

entire image. Therefore, we have to find a new segment
class to refine in the next step. If the next segment class
we obtain happens to be a ground segment class, it cannot
be refined, so we have to select a new segment class after
adding the segment toS. If there are no remaining segment
classes, we have refinedSEGto a ground class, so we add
the segmentation toSEGQg, and begin again.

6.3. Using beam search

We have also implemented a beam search algorithm to
compute an approximation to then most probable segmen-
tations. This algorithm is shown in Fig. 7. In the interest of
computational efficiency,beam-search-segmentations

Fig. 5. An algorithm returning then most probable segments.

Fig. 6. An algorithm returning then most probable segmentations.

Fig. 7. An algorithm that performs beam search on the space of
segmentations.
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only considers the most probable segments at each step in
the refinement process, whereasget-most-probable-
segmentations considers every possible segment. A result
of this is that the segmentation classes are refined one
segment at a time, rather than by regions as before.

The inputs tobeam-search-segmentations are the list
of all regions,R , the number of segmentations to find,n, and
the beam width,b. The refinement process is straight-
forward: a non-ground segmentation class is refined intob
(or fewer) segmentation classes by adding the most probable
b (or fewer) segments obtained fromget-most-probable-

segments. The termination criterion is analogous to that
from get-most-probable-segments.

6.4. Initial region selection

It should be noted that the initial region from which to
expand segment classes (Ri in Fig. 5 and line 15 in Fig. 6)
must be chosen from a group of appropriate regions. We use
a heuristic that selects an initial region by evaluating the
maximum conditional probability of the available regions
with respect to any model in the model database. The idea is

Fig. 8. The 20 top segments. Region size is 64; there are 94 models. This image was used in unsupervised training of the algorithm.
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that if a region fits any one of the models in the database
well, it could be a good one to expand from. Empirically, the
results do not seem to be very sensitive to the heuristic used.

7. Experimental analysis and illustrations

The algorithms presented in Section 6 were implemented
using Cþþ under SunOS 5.4 (Solaris 2.4) and Linux 1.2.
Experiments were conducted using image mosaics with
subimages from the Brodatz album [24] (Figs 8, and 12),
from a book on quilts [25] (Figs 9, and 13), and from [26]
(Figs 10, 11, and 14). Distributions of segments and distri-
butions of segmentations were generated for several test
images.

Since third-order MRFs have a small neighborhood, low-
frequency intensity variations will not be detected using this

model for texture discrimination. It has been noted that even
with the homogeneous, uniformly lit images from the
Brodatz album, small subimage sizes cause misclassifica-
tion of some textures [27]. One consequence of this effect
that was noted in our work is that a larger subimage size
may be required for robust discrimination of textures
without much high-frequency energy. This accounts for
the relatively large region size in the following experiments.

Two sets of class representatives were used in these
experiments. Each class representative in the first set con-
sisted of the estimated parameters of a third-order MRF
fitted to one image from a subset of the Brodatz data-
base. Specifically, we selected 23 images from that database,
each of which contained mostly homogeneous textures
with significant high-frequency information. Each class

Fig. 9. The 20 top segments. Region size is 64; there are 23 models. This
image has not been previously seen by the algorithm.

Fig. 10. The 20 top segments. Region size is 32; there are 94 models. This
image has not been previously seen by the algorithm.
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representative consisted of the estimated parameters of the
MRF model based on one image from this set. Each class
representative in the second set consisted of the estimated
parameters of a third-order MRF fitted to one image from a
much larger subset of the Brodatz database. Specifically, we
selected 94 images from the database for this set. The
parameters that were estimated are those given in Eq. (3).

7.1. Segment distributions

This section presents distributions of segments for some
images. In each case, an initial region was chosen, and a
distribution of segments was returned. The algorithm shown
in Fig. 5 was tested on Brodatz textures (Fig. 8), unfamiliar
textures (Fig. 9), and natural scenes (Figs. 10 and 11).

As described above, a selected group of textures from the
Brodatz database were used in the generation of class
representatives used in the experiments. The first category
of experiments dealt with texture mosaics made from these
textures. Fig. 8 shows a representative segment distribution
produced from one image from this set. This situation,
predictably, gives the best results. Each result is labeled
with the size of the set of class representatives used in the
experiment. For example, the second set was used in Fig. 8
so the caption reads ‘There are 94 models’. Region 0 (the
region in the top left corner) was used as the initial region in
all experiments where the initial region is not labeled in the
caption.

The second category of experiments dealt with texture
mosaics from [25] that were similar to the images used
above. The primary difference is that the textures involved
in this series of experiments were not in any way used in the
generation of class representatives for the algorithm. The
hypothesis being examined here is that the textures used
in these experiments are grouped in the space of possible
class representatives. That is, even though these particular
textures have not been seen before, the textures that have
been seen (during the generation of the class representa-
tives) will provide enough discrimination to segment the
images. The set of experiments supports this idea by show-
ing that the algorithm can discriminate textures that are
unfamiliar to the algorithm. Fig. 9 shows a representative
segment distribution produced from one image from this set.

The final set of experiments involving distributions of
segments examines the algorithm’s performance on more
natural scenes from [26]. Not surprisingly, the performance
on these images, shown in Figs. 10 and 11, was not as good
as seen in the previous two sets of experiments. However,
the algorithm does a reasonable job of finding natural
textures with enough high-frequency content, such as the
trees in the upper portion of Fig. 10.

7.2. Segmentation distributions

Now we turn to full segmentations and compute distribu-
tions of segmentations for the same types of images used
above. The algorithm shown in Fig. 7 was tested on Brodatz
textures (Fig. 12), unfamiliar textures (Fig. 13), and natural
scenes (Fig. 14).

The texture mosaics used in this set of experiments were
the same ones used in Section 7.1, from [24]. Again, this set
of experiments gives the most favorable results because of
two factors: first, the textures are homogeneous and contain
mostly high-frequency information, and second, each
texture was used in the generation of class representatives
for the algorithm. Fig. 12 shows a representative segmenta-
tion distribution produced from one image in this set.

As in the second class of experiments above, these
mostly homogeneous high-frequency textures from [25]
were not in any way used in the generation of class repre-
sentatives for the algorithm. Fig. 13 shows a representative

Fig. 11. The 20 top segments. Region size is 32; there are 94 models. The
initial region was Region 28 (near the center of the water). This image has
not been previously seen by the algorithm.
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segmentation distribution produced from one image from
this set.

The final set of experiments involving distributions of
segmentations examines the algorithm’s performance on
more natural scenes from [26]. Fig. 14 shows that while
the performance is not as good as in the previous experi-
ments the algorithm does tend to group regions containing
homogeneous, high-frequency textures. For example, the
trees in Fig. 14 are grouped, since the leaves have what
could be considered a homogeneous texture.

8. Conclusions and future research

8.1. Extensions

Much more work remains to be done in the area of image
segmentation. The field of modeling texture with mathema-
tical models, in particular, is rife with opportunity. Exten-

sive work has been done in this field, but the results of these
models on natural textures show that there is room for
improvement [28–30].

Also of interest is how domain knowledge could
influence the prior distribution in the Bayesian analysis.
To go back to the example of Section 3, if a facet model
is in use and it is known that all planes meet at right angles,
Eq. (11) could be modified to take this into account. Simi-
larly, if images of newspapers are under consideration, cer-
tain assumptions about newspapers, such as the texture of
news print or the fact that text is usually parallel to the edge
of the page, can be incorporated into this analysis.

8.2. Conclusion

We have extended the probabilistic framework of
LaValle [13] for considering distributions of segmentations
of textured images. A simple probabilistic model for
modeling error and noise has been presented.

Fig. 12. The 20 top segmentations. Region size is 64; there are 94 models. This image was used in unsupervised training of the algorithm.
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Although a third-order Markov random field is not a good
model for naturally occurring textures, this framework gives
us the ability to return a set of possible solutions to the
segmentation problem, along with a confidence measure
for possible use by a higher-level process. Both the
individual values and information about the distribution of
those values are important. For example, if the model used
to evaluate the data gives little information, the shape of
the confidence measures tends to be flat (all solutions
returned have approximately equal probabilities). Model-
ing uncertainty in low-level computer vision and
communicatingthis information along with a solution are
ideas that have begun to be stressed as important [19,31],
and represent promising directions for the integration of
low-level and mid-level computer vision algorithms.
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