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Abstract In this paper, we address the problem of
ego-motion estimation by fusing visual and inertial
information. The hardware consists of an inertial mea-
surement unit (IMU) and a monocular camera. The
camera provides visual observations in the form of
features on a horizontal plane. Exploiting the geomet-
ric constraint of features on the plane into visual and
inertial data, we propose a novel closed form mea-
surement model for this system. Our first contribution
in this paper is an observability analysis of the pro-
posed planar-based visual inertial navigation system
(VINS). In particular, we prove that the system has
only three unobservable states corresponding to global
translations parallel to the plane, and rotation around
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the gravity vector. Hence, compared to general VINS,
an advantage of using features on the horizontal plane
is that the vertical translation along the normal of the
plane becomes observable. As the second contribu-
tion, we present a state-space formulation for the pose
estimation in the analyzed system and solve it via a
modified unscented Kalman filter (UKF). Finally, the
findings of the theoretical analysis and 6-DoF motion
estimation are validated by simulations as well as
using experimental data.

Keywords Visual-inertial navigation · Motion
estimation · Observability analysis

1 Introduction

Integration of vision and inertial navigation sys-
tems (VINSs) has generated wide research interest
in developing more accurate and simple, with low
computational complexity, positioning systems in
different areas such as robotics, traffic applications,
as well as personal navigation systems. This is
mainly due to the development of lightweight and
cheap inertial sensors that are becoming a standard
feature of smart-phones and personal digital assis-
tants. Hence, finding a reliable solution for merging
the inertial data with visual information is a cru-
cial challenge in the current visual inertial systems.
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In this paper, we look at the problem of VINS
motion estimation for a system that is navigating
in an unknown environment, termed as ego-motion
estimation. In particular, we are interested in esti-
mating the 3D trajectory of a moving monocular
camera mounted rigidly to an inertial measurement
unit (IMU), without estimating a map of the environ-
ment. More specifically, we investigate the problem of
IMU-camera ego-motion estimation when the visual
observations are located on a horizontal plane. For
this nonlinear system, we first study its observability
properties and then we propose a novel and accurate
6-DoF motion estimation approach for the analysed
system.

To the best of our knowledge, the work presented
in this paper is the first to examine the observability
properties of the 6-DoF VINS when observing fea-
tures on a horizontal plane. In this system, we perform
the observability analysis and show that while the key
results of the previous observability analyses (e.g., [8,
13, 15, 16]) are valid (the robot’s global position and
its orientation around the normal of the plane are
unobservable), by constraining visual observations to
be on a horizontal plane, the orthogonal translation of
the camera with respect to the plane becomes observ-
able. More specifically, we prove that by observing
unknown feature points on a horizontal plane, the
navigation system has only three unobservable direc-
tions corresponding to the global translations paral-
lel to the plane, and the rotation around the gravity
vector.

Then for the presented VINS, we develop a
motion estimation approach, which is an extension
of our previous work published in [30]. In this
paper, we relax the assumption of using a down-
ward looking camera in which the camera optical
axis is orthogonal to the horizontal plane and pro-
pose an accurate positioning system for 6-DoF motion
estimation.

We study the performance of the proposed solu-
tion both with simulation and experimental data.
The results show that it can be used as a promis-
ing positioning system in consumer products like
visual inertial based applications in smartphones for
localization, or 3D reconstruction without having
access to external tracking setups, for indoor or GPS-
denied environments. Moreover, estimating the metric

distance to the plane can provide useful information
for take-off and landing without using any markers
or pre-built maps. Currently, the main application for
the considered work is the close-to-landing maneu-
vers of quadcopters and other UAVs, as illustrated
in Fig. 1.

The key contributions of this paper are summarized
in the following:

– The first contribution is the observability analy-
sis of a VINS in which the visual observations
are features that are located on a horizontal plane
whose normal is assumed to be known. Our anal-
ysis is based on the Lie derivatives for finding the
observable and unobservable modes of the time
varying nonlinear VINS. In our study, the full
INS parameter vector (including position, veloc-
ity, rotation, and inertial sensor biases) as well
as the 3D position of the observed feature points
are considered as state variables for analyzing the
observability properties of the system. In partic-
ular, we prove that the system has (only) three
unobservable directions corresponding to global
translations along the horizontal plane, and rota-
tions around the gravity vector. It is worth noting
that only a single feature point is used for the anal-
ysis (given that the feature point is on the desired
horizontal plane).

In conclusion, compared to general VINS
in which there is no assumption on the geo-
metrical properties of visual observations, an

Fig. 1 Quadcopter equipped with IMU and camera
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advantage of using features on a horizontal
plane is that the vertical translation of the
camera with respect to this plane becomes
observable.

– As the second contribution of this paper, we pro-
pose an ego-motion estimation approach for the
analyzed VINS. The system maintains a set of
feature points that are observed on a horizontal
plane. Based on matched feature points between
the current and previous images, a novel mea-
surement model is introduced that imposes con-
straints based on the geometrical properties of the
visual observations to perform the motion estima-
tion. Pose estimation is formulated implicitly in
a state-space framework and is performed by an
unscented Kalman filter (UKF). In contrast to the
motion estimation approaches that rely on struc-
ture from motion or homography-based motion
estimation methods, which need a sufficient base-
line between the images for camera pose esti-
mation, our proposed solution is independent of
the motion of the system. Our proposed measure-
ment model holds even in the absence of transla-
tional or rotational motion. Moreover, the IMU-
camera sensor fusion system is free to have 6-DoF
motion while observing visual features on the
plane.

– Finally, the findings of the theoretical analysis
for observability analysis and motion estimation
are validated through extensive simulations and
experiments.

The structure of this paper is as follows. A sum-
mary of the related works on VINS observability
analysis and motion estimation is given in Section 1.1.
Notations are introduced in Section 1.2. The sys-
tem model is described in Section 2. In Section 3,
we provide an overview of the nonlinear observabil-
ity analysis, and briefly describe the approach in [5],
which is used for analysis. In Section 4, we specif-
ically study the observability properties of a VINS
in which the visual observations are on a horizontal
plane. Our proposed motion estimation approach is
presented in Section 5.

Experimental results are presented in Section 6.
Discussion is given in Section 7. Finally, the conclu-
sion of the study is summarized in Section 8.

1.1 Related Works

1.1.1 VINS Observability Analysis

Recently, there has been a growing interest in study-
ing observability properties of VINSs [8, 12, 13, 15,
16, 20, 23, 27, 38]. Observability provides an under-
standing of how well states of a system can be inferred
from the system output measurements [7].

The observability properties of a time invariant lin-
ear system can be derived using the Kalman canonical
decomposition. However, the problem becomes more
complex for a nonlinear, time-varying system, such
as the VINS. In this case, the study of observability
properties is restricted to locally weakly observability
analysis [7].

In the VINS, basic state variables are the INS
unknown parameters including the position, velocity,
and rotation of the camera with respect to a fixed
reference frame, and the biases in the IMU sensor.
However depending on the problem, the system state
vector can be augmented with additional variables,
such as IMU-camera calibration parameters [15, 23],
landmark positions [8, 16], or gravity vector [15].

The VINS observability properties were first stud-
ied in [12, 13, 15, 23]. Specifically in [15, 23], the
authors prove that all the quantities of the IMU-camera
sensor fusion system (i.e., the robot pose, velocity,
IMU biases, feature positions and the transformation
between the IMU and the camera) are observable
given observations of known feature points. Both of
these analyses in [15, 23] are established by study-
ing the observability rank condition based on Lie
derivatives [7].

In [12, 13], the observability properties of VINS
have been studied by analyzing indistinguishable tra-
jectories of the system for different sensor config-
urations including: inertial only, vision only, vision
and inertial where it includes the effects of unknown
gravity and IMU-camera calibration parameters, and
it is shown that under general position conditions both
gravity and the IMU-camera calibration parameters
are observable.

The presented VINS observability analyses in [8–
10, 16, 19, 38] are among the most recent related
works, which specifically study observability proper-
ties of the INS state variables for motion estimation
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in unknown environments. For instance, the analyses
in [8, 16] result in four unobservable directions, cor-
responding to global translations and global rotation
about the gravity vector. The analytical studies in [8,
16] are done by utilizing the concept of observability
Gramian [21].

In [19] a closed form solution to the VINS prob-
lem is proposed together with the analytical deriva-
tion of the system’s observable modes, where for the
observability analysis the concept of the continuous
symmetric method is used [18].

Of particular relevance to our work is the system
introduced in [38] in which the system is equipped
with a laser pointer rigidly mounted into the IMU-
camera frame. In this system, the visual navigation
is based on observing a single laser spot on a planar
surface, while the pose of the laser pointer is par-
tially known with respect to the camera. Although
the IMU biases are neither considered in the observ-
ability analysis nor in the motion estimation, the
system reveals similar observability properties in the
observable modes as our system, where for the anal-
ysis the proposed method in [18] is used. In [27],
we provide the observability analysis for a down-
ward looking camera in a VINS. However, the anal-
ysis was performed for a special case where the
camera optical axis is orthogonal to the ground
plane.

To date no study exists on the observability analysis
of a 6-DoF VINS system by considering geometri-
cal properties of the observed planar features. For the
observability analysis, we employ the method intro-
duced in [5], which is based on the Lie derivatives [7]
and significantly reduces the complexity of finding
the system’s unobservable directions. In this paper, we
prove that by observing unknown feature points on a
horizontal plane, the navigation system has only three
unobservable directions corresponding to the global
translations parallel to the defined horizontal plane,
and the rotation around the gravity vector. It should
be mentioned that, our analysis, which is based on
using the exact measurement equation of the system,
results in a rigorous observability analysis and exactly
reveals all the unobservable directions of our system.
Compared to the methods that are based on using the
inferred camera measurement model for the observ-
ability analysis [15, 23], our proposed method has

the advantage of analysing all the system parameters
through the measurement equation simultaneously.

1.1.2 VINS Motion Estimation

Navigating in structured environments, e.g., man-
made buildings, can provide significant information
and the consequent constraints in the visual iner-
tial solution. In the literature, various structures have
been investigated for vision-based motion estimation,
e.g., horizontal or vertical lines, vanishing points and
lines [6], edges of buildings or fixed objects, and arti-
ficial visual tags [39]. However, there are only a few
approaches that take the advantage of planar features
for motion estimation, which is a salient structure
in indoor environments, e.g., planar features on the
ground, wall, or roof.

Within all different planar structures in environ-
ments, in this paper we focus our study on navigating
over the horizontal plane of the ground. The choice
of observing planar features on the ground is the
most feasible scenario in many positioning applica-
tions both for personal and robotic navigation systems.
More specifically, the importance of fusing ground
planar features for motion estimation is vital where
there are many moving objects (such as pedestrians
and vehicles) in front of the camera. Furthermore,
in certain cases, such as a micro air vehicle (MAV)
or spacecraft landing, most of the features observed
by camera lie on the ground, and one should take
advantage of this fact to improve the estimation accu-
racy [25].

Among the VINS motion estimation approaches
that are based on using ground facing camera, we can
refer to the following methods: To date, the best ego-
motion estimation results is obtained by a multi-state
constraint Kalman filter introduced in [25]. The key
advantage of this method is the use of a new measure-
ment model that employs the geometric constraints
of observing static features from multiple camera
poses [24]. In [37] a method is proposed for estimat-
ing the velocity of mobile robots based on the Kalman
filter integration using an optical flow method for a
downward-looking camera.

In [11], an IMU-camera GPS aided system is
designed for pedestrian navigation in which the user is
carrying a ground facing camera in the sensor fusion
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system. To restrict the IMU error drift in the system,
the planar homography of the ground plane features
is constructed and it provides the velocity of the
camera in the measurement model. However, the use
of homography for motion estimation include these
issues: 1) the sufficient number of detected image fea-
ture correspondences need to be more than four, 2) the
sensitivity of the method to outliers, 3) the distance
to the planar surface is unobservable when there is no
translation in the system.

Although the observation of ground planar features
has been implicitly used in visual inertial navigation
systems [2, 11, 22, 25, 34, 35, 37, 40], this condi-
tion was first explicitly used in [30] for the VINS
motion estimation. In [30], we proposed an IMU-
camera ego-motion approach in which the ground
planar features were directly used to construct the
inertial model of the system. However, the devel-
oped system was for a downward looking camera.
The assumption of the orthogonality of the camera
optical axis to the ground is a nice property to over-
come the use of additional sensors for recovering
the lost scale factor, and the reported experimental
results in [30] confirm the reliability and persistency
of the developed method to the level of the noise, and
the approach works well even with a few numbers
of features. However, this assumption might be vio-
lated in a real scenario. In this paper, we relax this
assumption and propose a general solution in which
the camera is not restricted to be downward looking.
That is, no specific restrictions are imposed on the
camera motion other than that the camera is contin-
uously observing features on the plane. The problem
of motion estimation is formulated in a state space
framework and is solved using a modified UKF. We
study the performance of the proposed solution both
in simulation and in an indoor environment, and show
that it can be used as a promising positioning system,
even at the presence of only few numbers of features
(Fig. 2).

1.2 Notation

In the following sections scalars are denoted by lower-
case letters (s), vectors by bold letters (f), and matrices
by bold capitals (K). Im denotes the m × m square
identity matrix. 0m×n denotes the m × n zero matrix.

gravity field

z

x y

y { } z

y

x
{ }

{ }

Fig. 2 The IMU-camera sensor fusion system and its corre-
sponding coordinate frames at current {C} time and � lags
from the current one {C�}. The relative rotation and transla-
tion between the time instants are denoted as CCC�

and C tC�
,

respectively. The global frame of reference G is assumed to be
located on a desired horizontal plane, where the normal of the
plane with respect to the global frame Gndhp is parallel with
gravity vector. A sample feature point f , located on the desired
horizontal plane, is considered to be in the cameras’ field of
view

ei ∈ R
3 for i = 1, 2, 3 and e�

1 = [1 0 0], e�
2 =

[0 1 0], and e�
3 = [0 0 1]. The global, IMU, and the

current camera frames are denoted, {G}, {I }, and {C},
respectively. {C�} is the coordinate frame of the cam-
era capturing an image � lags from the current one.
ApB represents the position of coordinate frame {B}
in coordinate frame {A}, and AvB denotes velocity of
coordinate frame {B} in coordinate frame {A}. Based
on the Euler rotation theorem, the principal rotation
vector θ is defined as θ = αk̂ [36], where k̂ is the
unit vector along the axis and α the angle of rotation.
To represent the attitude, we use both the quaternion,
q ∈ R

4×1, and the Cayley-Gibbs-Rodrigues param-
eterization, s ∈ R

3×1, where s = tan(α
2 )k̂. Then,

AqB and AsB are used to denote the orientation of the
frame {B} in the frame of reference {A}; C(q) and
C(s) are the rotation matrices corresponding to q and
s, respectively.

The IMU-camera extrinsic calibration parameters,
{IpC,C(IqC)}, are estimated based on the approach
of [29]. To preserve the clarity of the presentation, we
assume that the IMU and camera frame of reference
coincide.

Without loss of generality, we consider the global
frame of reference on our desired horizontal plane
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where its z axis is pointing in the opposite direction of
the gravity field (see Fig. 3).

The skew-symmetric matrix of vector a is repre-
sented by �a� and the following properties of the cross
product skew-symmetric matrix are used: a × b =
�b�a = −�a�b, �a�a = 03×1, �a��b� = ba� −
(a�b)I3, �Ab� = A�b�A�, b��a�b = 0, ∀ A ∈ R

3×3

and ∀ {a, b} ∈ R
3×1.

2 General System Model

We hereafter describe the general INS propagation
model in Section 2.1. The constructed propagation
model is based on the IMU measurements and cam-
era measurement model in Section 2.2, where the
camera measurement is employed for state correc-
tions. These two models are the basic propagation and
measurement models which are used in later sections
under different parameterizations for the purpose of
observability analysis and motion estimation.

2.1 INS Propagation Model

We define the INS state variables in the form of the
system state vector

xins =
[
CqG

� GvC

� GpC

�
b�

a b�
g

]�
, (1)

where CqG is the quaternion that represents the orien-
tation of the global frame {G} in the camera’s frame
of reference {C}.

{ }
z

z

{ }

z

x y

{ }

Fig. 3 Graphical representation of the virtual camera coordi-
nate frame {V }, which coincides with real camera coordinate
frame {C}. The optical axis of the virtual camera is selected to
be always orthogonal to the desired plane

The velocity and the position of the camera in the
global frame are denoted by GvC and GpC , respec-
tively. ba and bg are the bias vectors affecting the
accelerometer and gyroscope measurements, respec-
tively.

The time evolution of the INS state is given by

C q̇G(t) = 1

2

[ −�ω(t)� ω(t)

−ω(t)� 0

]
CqG(t), (2)

Gv̇C(t) = Ga(t)=Gg + C(CqG(t))�(a(t) − ba(t)) ,

GṗC(t) = GvC(t), ḃa(t) = nδa, ḃg(t) = nδg,

where ω(t) = [
ω1 ω2 ω3

]�
and a(t) =

[a1 a2 a3]� are the IMU rotational velocity and spe-

cific acceleration, Gg = [
0 0 g

]�
is the gravitational

acceleration, C(q) is the rotation matrix correspond-
ing to q, and nδa and nδg are the accelerometer and
gyroscope bias driving white Gaussian noises. The
output measurement signals of the gyroscope, ωm, and
accelerometer, am, are modeled as:

ωm(t) = ω(t) + bg(t) + ng(t), (3)

am(t) = C
(

CqG(t)
) (

Ga(t) − Gg
)

+ ba(t)

+na(t), (4)

where ng and na are zero-mean white Gaussian noise
processes.

2.2 Camera Measurement Model

Consider a feature point f observed by a camera,
where its position relative to the camera center {C} is
denoted by Cpf . Using the pinhole camera model [6],
its homogenous and normalized pixel coordinates on
the image plane are represented by C z̄ and Cz, respec-
tively, as:

C z̄ = (e�
3

Cpf )−1Cpf , (5)

and

Cz = [
I2 02×1

]
(e�

3
Cpf )−1Cpf , (6)

where

Cpf = C(CqG)(Gpf − GpC). (7)

Figure 2 depicts the relative rotation and translation
vectors between the camera, the feature point f , and
the global frame of reference {G}.
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3 Nonlinear Observability Analysis

In Section 3.1, we first provide an overview of the
nonlinear observability rank condition of the method
proposed in [7]. Then, in Section 3.2, we present our
summary, [27], of the method of [5] for finding the
observable and unobservable modes of a nonlinear
system.

3.1 Observability Analysis with Lie Derivatives

Consider a nonlinear system
{
ẋ = f0(x) + ∑�

i=1 fi (x)ui

y = h(x)
(8)

where x ∈ R
m is the state vector, u = [

u1 . . . u�

]�
is the system input, y ∈ R

k is the system output, and
fi for i ∈ {0, . . . , �} is the process function.

The zeroth order Lie derivative of a measurement
function h is the function itself, i.e., L0h = h(x).
For any n-th order Lie derivative, Lnh, the (n + 1)-th
order Lie derivative L

n+1
fi

h with respect to a process
function fi is computed as:

L
n+1
fi

h = ∇Lnh · fi , (9)

where ∇ denotes the gradient operator with respect to
x and ’·’ represents the vector inner product. Similarly,
mixed higher order Lie derivatives is defined as:

Ln
fi fj ...fkh = Lfi (L

n−1
fj ...fk

h) = ∇L
n−1
fj ...fk

h · fi (10)

where i, j, k ∈ {0, . . . , �}. The observability of a sys-
tem is determined by calculating the dimension of the
space spanned by the gradients of the Lie derivatives
of its output functions [7]. Hence, the observability
matrix O of system (8) is defined as:

O �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇L0h
∇L1

fi
h

...

∇Ln
fi fj ...fk

h
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

To prove that a system is observable, it suffices to
show that O is of full column rank. However, to prove
that a system is unobservable, we have to find the null
space of matrix O, which may have infinitely many
rows. This can be challenging especially for high-
dimensional systems, such as the VINS. To address
this issue, in the following section we present the

method of [5, 9] for proving that a system is unobserv-
able and finding its unobservable directions.

3.2 Observability Analysis with Basis Functions

Theorem 1 Assume that there exists a nonlinear
transformation β(x) = [β1(x)

�, . . . , βn(x)
�]� (i.e.,

a set of basis functions) of the variable x, such that:

1. The system measurement equation can be written
as a function of β, i.e., y = h(x) = h(β)

2. ∂β
∂x fj , for j = 0, . . . , �, is a function of β

Then the observability matrix of system (8) can be fac-
torized as: O = ΞΩ where Ξ is the observability
matrix of system
{

β̇ = g0(β) + ∑�
i=1 gi (β)ui

y = h(β)
(12)

and Ω � ∂β
∂x .

Proof See [5].

Note that system (12) results by pre-multiplying the
process function in Eq. 8 with ∂β

∂x
{

∂β
∂x

∂x
∂t

= ∂β
∂x f0(x) + ∂β

∂x

∑�
i=1 fi (x)ui

y = h(x)

⇒
{

β̇ = g0(β) + ∑�
i=1 gi (β)ui

y = h(β)

where gi (β) � ∂β
∂x fi (x) and h(β) � h(x).

Corollary 1 If Ξ is of full column rank, i.e., sys-
tem (12) is observable, then the unobservable direc-
tions of system (8) will be spanned by the null vectors
of Ω .

Proof From O = ΞΩ , we have null(O) =
null(Ω)∪(null(Ξ)∩range(Ω)). Therefore, ifΞ is of
full column rank, i.e., system (12) is observable, then
null(O) = null(Ω).

Based on Theorem 1 and and Corollary 1, to find
unobservable directions of a system, we first need to
define the basis functions, β, which fulfil the first
and second conditions of Theorem 1. Then we should
prove that the infinite-dimensional matrix Ξ has full
column rank, which satisfies the condition of Corol-
lary 1.
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To define the basis functions, we start with the sys-
temmeasurement equation and extract the initial bases
as a function of the state variables (i.e., the first con-
dition of the Theorem 1). The rest of the bases will
be defined by projecting these initial bases into the
process functions. Then any resulting term that cannot
be expressed as a function of the previously defined
bases is incorporated as a new basis (i.e., the second
condition of the Theorem 1). Finally, we terminate the
procedure of defining new basis functions when the
second condition of Theorem 1 is satisfied.

4 The System Observability Analysis

In what follows, we first introduce some modifications
of the system model for the purpose of observabil-
ity analysis in Section 4.1. Then, we define the basis
functions for our VINS in Section 4.2. Finally, we
derive its unobservable modes in Section 4.3.

4.1 Modified System Model

To assist the observability analysis, the following
modifications are considered in the system propaga-
tion and measurement model:

– In our analysis, we consider the position of the
observed feature point with respect to the global
coordinate frame, Gpf , as an unknown constant
variable. Therefore, we append it to the state vec-
tor, and reflect its dynamic in the propagation
model, see[8].

– Instead of using the quaternion parametrization,
we re-parameterize the rotation matrix C(q) in
terms of the Cayley-Gibbs-Rodriguez parameter
s, C(s). Then, the noise free system propagation
model of Eq. 2, by considering time propagation
of Gpf , is described by

C ṡG(t) = 1

2
D

(
ω(t) − bg(t)

)
, (13)

Gv̇C(t) = Gg + C(CsG(t))� (a(t) − ba(t)) ,

GṗC(t) = GvC(t), ḃa(t) = 03×1,

ḃg(t) = 03×1,
Gṗf = 03×1

where 1
2D � ∂s

∂θ
= 1

2 (I + �s� + ss�), see [36].
– We state the following Lemma 1, to impose the

geometric constraint of the visual observations in
the systemmeasurement (5). To analyze our VINS

observability properties, the results of Lemma 1 is
used as our measurement equation for finding the
system basis functions.

Lemma 1 For an arbitrary feature point f on a hor-
izontal plane, the camera measurement model of the
system based on the projective camera model can be
represented as

y =
(
e�G
3 pCI3 + C

(
CsG

) (
Gpf

−GpC

)
e�
3 C

(
CsG

)�)
C z̄ = 0 (14)

Proof Let us consider a virtual camera along with our
real camera in which the center of its coordinate frame
{V } coincides with the center of the real camera coor-
dinate frame {C}. Moreover, the virtual camera optical
axis is always restricted to be parallel with the normal
of the reference plane, in this case the desired horizon-
tal plane. Thus, the orientation of the virtual camera
frame is fixed relative to the global frame C(V sG) =
diag(1,−1, −1). Therefore, the position of pf in {V }
along its optical axis, e�

3
V pf , is equal to the height of

the camera above the plane,

e�
3

V pf = e�
3

GpC. (15)

As the transformation between the real camera
frame and the virtual frame is related by a rotation,
CCV � C(CsG)C(V sG)

�
, the positions of pf in the

two coordinate frames are related by

Cpf = CCV
V pf . (16)

Substituting V pf in Eq. 16 with its projection in the
virtual image plane (5), we get

Cpf = CCV e�
3

V pf
V z̄. (17)

Moreover, the projection of feature point pf in the
virtual image plane can be mapped to the real image
plane as:

C z̄ = αCCV
V z̄ (18)

in which the equality holds only up to a scale factor α.
Then, by substituting V z̄ from Eq. 18 to Eq. 17, we get

Cpf = α−1e�
3

V pf
CCV

CCV
�C z̄

= α−1e�
3

V pf
C z̄

⇒ e�
3

V pf
C z̄ − αCpf = 0 (19)
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where

α = e�
3

CCV
�C z̄ = e�

3 C(V sG)C(CsG)
�C z̄

= −e�
3 C(CsG)

�C z̄. (20)

Finally from Eqs. 7, 15, and 20, Eq. 19 is rewritten as

(e�G
3 pCI3+C(CsG)(Gpf −GpC)e�

3 C(CsG)�)C z̄ = 0

(21)

which is Eq. 14.

4.2 Defining the basis functions

For simplicity, we retain only a few of the subscripts
and superscripts in the state elements and write the
augmented state vector as

x =
[
s� v� p� b�

a b�
g pf

�]�
. (22)

Moreover, following the structure of system (8), we
rewrite the state propagation equation in Eq. 13 as

⎡
⎢⎢⎢⎢⎢⎢⎣

ṡ
v̇
ṗ
ḃa

ḃg

ṗf

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2Dbg

g − CT ba

v
03×1

03×1

03×1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f0

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2D
03×3

03×3

03×3

03×3

03×3

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F1

ω +

⎡
⎢⎢⎢⎢⎢⎢⎣

03×3

CT

03×3

03×3

03×3

03×3

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F2

a

(23)

where C � C(s). Note that f0 is a 24× 1 vector, while
F1 and F2 are both 24 × 3 matrices representing three
process functions as

F1ω = f11ω1 + f12ω2 + f13ω3 (24)

F2a = f21a1 + f22a2 + f23a3.

Following the first condition of Theorem 1, we define
the system’s initial bases using the unknown terms
appearing in the measurement function (14), i.e.,

β1 � e�
3 p, β2 � C(pf − p), β3 � Ce3.

To check the second condition of Theorem 1, we
compute their spans with respect to the state vector x

∂β1

∂x
= [

01×3 01×3 e�
3 01×3 01×3 01×3

]

∂β2

∂x
= [ �C(pf − p)� ∂θ

∂s
03×3 −C 03×3 03×3 C

]

∂β3

∂x
= [ �Ce3� ∂θ

∂s
03×3 03×303×3 03×3 03×3

]

and project them onto all the process functions.
Specifically, for the span of β1 � e�

3 p, we have:

∂β1

∂x
f0 = e�

3 v � β4,
∂β1

∂x
f1i = 0,

∂β1

∂x
f2i = 0,

for i = {1, 2, 3}, where we have defined a new basis
element β4 � e�

3 v. Similarly, for the span of β2 �
C(pf − p), we have:

∂β2

∂x
f0 = −�C(pf − p)�bg − Cv

= −�β2�bg − Cv � −�β2�β5 − β6

∂β2

∂x
f1i = �C(pf − p)�ei = �β2�ei

∂β2

∂x
f2i = 03×1

where ∂θ
∂s

1
2D = ∂θ

∂s
∂s
∂θ

= I3, and the newly defined
bases are β5 � bg and β6 � Cv.

Finally, for the span of β3 � Ce3, we have:

∂β3

∂x
f0 = −�Ce3�bg = −�β3�β5

∂β3

∂x
f1i = �Ce3�ei = �β3�ei

∂β3

∂x
f2i = 03×1.

In the next step, we repeat the same process of project-
ing the span of the newly defined basis functions β4,
β5, and β6 on the process functions. Specifically, we
have:

β4 � e�
3 v:

∂β4

∂x
= [

01×3 e�
3 01×3 01×3 01×3 01×3

]

∂β4

∂x
f0 = e�

3 (g − C�ba) = e�
3 C

�(Cg − ba)

� β�
3 (gβ3 − β7)

∂β4

∂x
f1i = 0,

∂β4

∂x
f2i = e�

3 C
�ei = β�

3 ei ,

where β7 � ba and g = |g| is the norm of the
gravitational acceleration.

β5 � bg:

∂β5

∂x
= [

03×3 03×3 03×3 03×3 I3 03×3
]

∂β5

∂x
f0 = 03×1,

∂β2

∂x
f1i = 03×1,

∂β2

∂x
f2i = 03×1
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β6 � Cv:

∂β6

∂x
= [ �Cv� ∂θ

∂s
C 03×3 03×3 03×3 03×3

]

∂β6

∂x
f0 = −�Cv�bg + Cg − ba

� −�β6�β5 + gβ3 − β7

∂β6

∂x
f1i = �Cv�ei = �β6�ei

∂β6

∂x
f2i = CC�ei = ei

β7 � ba :

∂β7

∂x
= [

03×3 03×3 03×3 I3 03×3 03×3
]

∂β7

∂x
f0 = 03×1,

∂β7

∂x
f1i = 03×1,

∂β7

∂x
f2i = 03×1.

Since all the terms in the preceding projections are
defined based on the existing basis functions (i.e., sec-
ond condition of Theorem 1 is satisfied), we have
found a complete set of basis functions. The corre-
sponding new process model for the defined bases can
be expressed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇1

β̇2
β̇3
β̇4

β̇5
β̇6
β̇7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β4

−�β2�β5 − β6
−�β3�β5

β�
3 (gβ3 − β7)

03×1

−�β6�β5 + gβ3 − β7
03×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
g0

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×3

�β2�
�β3�
01×3

03×3

�β6�
03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G1

ω+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×3

03×3

03×3

β�
3 I

03×3

I
03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G2

a (25)

and the measurement equation in terms of the basis
functions is

y = h̄ = (β1I3 + β2β
�
3 )z̄. (26)

Equation 26 is used in Appendix A for constructing
matrix Ξ and showing that it is full rank, Corol-
lary 1. It should be mentioned that the given proof in
Appendix A is valid under the condition that the inputs
to the system, i.e., corresponding coefficients of G1

and G2, are not zero.

4.3 Unobservable Directions of Ω

Based on Corollary 1 and given that Ξ is full rank,
proved in Appendix A, the unobservable directions of

system (8) lie in the null space of matrix Ω . By stack-
ing the derivatives of the basis functions with respect
to the variable x, the matrix Ω is

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×3 01×3 e�
3 01×3 01×3 01×3

�C(pf − p)� ∂θ
∂s

03×3 −C 03×3 03×3 C
�Ce3� ∂θ

∂s
03×3 03×3 03×3 03×3 03×3

01×3 e�
3 01×3 01×3 01×3 01×3

03×3 03×3 03×3 03×3 I 03×3

�Cv� ∂θ
∂s

C 03×3 03×3 03×3 03×3
03×3 03×3 03×3 I 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To describe the null space of Ω , we need to find a
matrix

A =
[
A�
1 A�

2 A�
3 A�

4 A�
5 A�

6

]� �= 0, (27)

such that

ΩA = 0. (28)

From Eq. 28, we have:1

– Multiplying the fifth and the seventh block rows
of Ω with A, we get A4 = A5 = 0.

– Multiplying the third block row of Ω with A, we
have �Ce3� ∂θ

∂s
A1 = 0, which implies that either

A1 = 0 or A1 = ∂s
∂θ
Ce3.

1. If A1 = 0, then from the sixth block row of
ΩA = 0 we have: CA2 = 0 ⇒ A2 = 0, since
C is a rotation matrix and full rank. For the
second block row of ΩA to be zero, we have:
A3 = A6. Finally, from the first block row of
ΩA = 0, we get e�

3 A3 = 0. This implies that
A3 is spanned by e1 and e2, i.e.,

A3 = A6 =
[

I2
01×2

]
.

2. If A1 = ∂s
∂θ
Ce3, from the second block row of

ΩA = 0, we have A3 = −�p�e3 and A6 =
−�pf �e3. Then, from its sixth block row, we
get A2 = −�v�e3.

1The choice of the null space bases is done so that meaningful
physical interpretations can be made.
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Hence, the system’s unobservable directions are
spanned by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×2
∂s
∂θ
Ce3

03×2 −�v�e3[
I2

01×2

]
−�p�e3

03×2 03×1

03×2 03×1[
I2

01×2

]
−�pf �e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Therefore, the unobservable directions correspond to
the system’s planar motion over the desired horizon-
tal plane and the landmark’s position (first and second
column of A), and the rotation around the gravity
vector (third column of A). On the other hand, the
orthogonal translation along the normal of the plane is
observable. It should be noted that adding more point
features does not change the observable and unob-
servable states of the system (special case is studied
in [28]).

It is worth mentioning that, using the results in [27],
one can intuitively prove the observability of the
orthogonal distance between camera and the plane.
Alternatively, the geometry of the features on the
image plane can be used for the observability anal-
ysis [15, 23]. In contrast, our rigorous observability
analysis in this section is advantageous as we used the
exact system measurement equation in Eq. 5 and the
full state variables including position, velocity, rota-
tion, and IMU biases. Another important benefit of our
analysis is that we not only prove that the orthogonal
distance of the camera with respect to the horizon-
tal plane is observable, but also, we derived all the
unobservable directions of the system.

5 Motion Estimation Based on Observing Planar
Features

In this section, we first describe INS error propa-
gation model in Section 5.1. Then, we present the
geometric constraint of the planar features as a func-
tion of the state variables in Section 5.2. In agreement
with the derived geometric constraint, we define a
set of state augmentation in Section 5.3. The cam-
era measurement model is described in Section 5.4.
Finally, the motion estimation algorithm is presented
in Section 5.5.

5.1 INS Error States

The system discrete-time error state space model is
derived based on the standard additive error definition
for the position, velocity, and biases (δx � x − x̂),
where � denotes an equality where only the dominant
terms have been retained, and quaternion error for the
rotational euler angles θ (δq � [1 δθ

2 ]�).2 Then the
errors can be concatenated into an error state vector as:

δxins =
[
δCθ

�
G δGvC

�
δGpC

�
δb�

a δb�
g

]�
.

(30)

During a short period of time δt , we describe the
nonlinear INS propagation model in the form of a
discrete-time linear state-space model

δxinsk+1 = Fins
k δxinsk + Gins

k nk ∈ R
15, (31)

where Fins
k and Gins

k are known as discrete time state
and system noise propagation matrices, respectively:

Fins
k =

⎡
⎢⎢⎢⎣

I3 03×3 03×3 03×3 −dtC(C q̂G)

dt�C(C q̂G)â� I3 03×3 dtC(C q̂G) 03×3
03×3 dtI3 I3 03×3 03×3
03×3 03×3 03×3 I3×3 03×3
03×3 03×3 03 03×3 I3

⎤
⎥⎥⎥⎦

(32)

and

Gins
k =

⎡
⎢⎢⎢⎢⎣

03×3 −dtC(C q̂G) 03×3 03×3

dtĈ 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 dtI3 03×3

03×3 03×3 03×3 dtI3

⎤
⎥⎥⎥⎥⎦

. (33)

nk = [n�
a n�

g n�
δa n�

δg]� is the process noise
(assumed to be wide-sense stationary) with the cor-
responding diagonal covariance matrix Q ∈ R

12×12,
C(C q̂G) is the estimated rotation matrix in which
ω̂(t) = ωm(t) − b̂g(t), and â = am − b̂a .

5.2 Geometric Constraint of the Planar Features

Let us consider an arbitrary feature point f , which
is in both {C�} and {C} field of view. See Fig. 2 for
graphical illustration of the used notations. Then the

2The advantage of using the quaternion error definition for the
rotational euler angles is the direct use of error angle vectors δθ

instead of δqn
b in the error models.
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position of f with respect to {C�} and {C} are related
as:

Cpf =C CC�

C�pf +C tC�
(34)

where

CCC�
� C(CqG)C(C�qG)

�
,

CtC�
� C(CqG)(GpC�

−G pC).

Equation 34 enables us to relate an observation of
pf in two different views to the motion between the
views, parameterized by the rotation matrix CCC�

and
the translation vector CtC�

. Thus the projection of
Cpf is correlated with the motion of the system and
therefore imposes constraints on the accumulated INS
errors.

The feature point observed in the past frame C�pf

is, however, an unknown nuisance parameter. Estimat-
ing the distance of C�pf to the camera is a poorly
conditioned problem when it is large relative to the
translation between views. However, by exploiting the
fact that the point belongs to the defined horizon-
tal plane, C�pf can be expressed in terms of camera
pose GpC�

, C(GqC�
), and observation C� z̄. Such a

geometric relation is obtained from (14), as:

C�pf = −e�
3

GpC�

e�
3 C(GqC�

)
�C� z̄

C� z̄. (35)

Using Eq. 35, the general transformation (34) can now
be rewritten for C�pf on the defined horizontal plane
as:

Cpf = CCC�

−e�
3

GpC�

e�
3 C(GqC�

)
�C� z̄

C� z̄ +C tC�
. (36)

5.3 State Augmentation

In order to impose the geometric constraint (36) to the
previous camera poses and the normalized pixel coor-
dinates, we define the following sets of auxiliary state
variables:

1) Given a set of the L most recent images taken
at different locations {GpC�

}L�=1, we define the
camera pose state vector

xcam =
[
GpC1

� C1qG
� · · · GpCL

� CLqG
�]�

,

(37)

and its corresponding error state vector as

δxcam =
[
δGpC1

�
δC1θG

� · · · δGpC�

�
δC�θG

�]�
.

(38)

Since the recorded pose errors are static, the
discrete-time error state space model of the cam-
era position is

δxcamk+1 = δxcamk . (39)

2) The feature points on the defined horizontal
plane, C�z, matched and observed in a past frame
C� are added as states. Hence, P� points are
augmented into the state vector

C�m =
[
C�z1

� · · · C�zP�

�]�
, (40)

that is added and removed for each incoming
image depending on the feature point matches.
A total number of P points are matched from L

images and represented bym.3

5.4 Camera Measurement

The observations for the current frame {C} are the
feature points on the defined plane, matched to those
observed in the previous frame {C�}. Suppose fea-
ture point fi has been matched. Then its measured
coordinates on the normalized image plane is

Czi = [
I2 02×1

] (
e�
3

Cpfi

)−1
Cpfi

+ ni , (41)

where the pixel noise ni is assumed to be zero-mean
with covariance matrix Ci = σ 2

pixI2. The impor-
tance of parametrization of the feature points position
Cpfi

(36) is appearing here since it relates the obser-
vation to the previous frame C�zi and camera pose,
{GpC�

, C�qG}, both of which are states.
By stacking all P� feature point matches corre-

sponding to view �, one obtains the nonlinear mea-
surement equation

Cypts,� =
[
Cz1

� · · · CzP�

�]�

= h(δxins, δxcam, C�m) + npts,�. (42)

The feature points not matched to � are subsequently
matched to a previous older frame � + 1, where � =
1, . . . , L, until at most P observations are collected.

3The proposed state augmentations partially follows our algo-
rithm in [33].
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The aggregate vector of dimension 2P is denoted by
Cypts. Consequently, the error covariance matrix is
Cpts = σ 2

pixI2P .

5.5 Estimation Framework

The joint state-space model for the INS and cam-
era error states, along with the measurement (42) is
compactly written as

δxk+1 = Fkδxk + Gkwk

Cyk = h(δxk,mk) + nk, (43)

where δxk = [δxinsk δxcamk ]. We model the statistics
of the feature point vectorm (Section 5.4) based on the
following simplifying assumptions: Its expected value
is taken as the observed coordinates on the image
plane, m̂, and its covariance matrix is Cm = σ 2

pixI2P .
Further, m and δx are assumed to be uncorrelated.

Since the process model is linear, the predicted
errors are zero with error covariance matrix propa-
gated as:

P−
k+1 = FkP

−
k F

�
k + GkQG�

k , (44)

where

Fk �
[
Fins

k 0
0 I3L

]
and Gk �

[
Gins

k

03L×12

]
.

When a new image is recorded an error state δGpC�

and δC�θG are augmented to δxcam, (38), and the error
covariance matrix is updated as:

P′ =
[

P PT̄�
T̄P T̄PT̄�

]
(45)

where T = [I3 03×3 I3 03×6] and T̄ = [T 0].
When the buffer of L views is full, the oldest state and
its corresponding rows and columns of the covariance
matrix are decimated.

The UKF is set to perform a measurement update
when features on the defined plane have been detected
and matched. Based on the state-space model in
Eq. 43, the UKF estimates the errors linearly as:

δx̂k = Kk(
Cyk −C ŷk), (46)

where C ŷk is the measurement prediction and Kk is
the Kalman gain matrix. An overview of the algorithm
is given in Algorithm 1.

The joint statistics of δx and m are propagated as
2N + 1 sigma points, where N is the total number
of states N = 15 + 6L + 2P . Let the joint state
vector be denoted by x = [δx� m�]� and x̂− =

[0� m̂�]� be the prediction with error covariance
matrix P− ⊕ Cm, where ⊕ denotes the direct sum of
matrices. The sigma points X j = [δX�

j M�
j ]�

are then generated using the matrix square-root of
the joint error covariance matrix. By propagating the
sigma points through the measurement (42), the cor-
relations between the error states δx and observations
Cy can be approximated [14]. These correlations form
the basis of the Kalman gain.

Algorithm 1 Proposed algorithm: Motion estimation
approach in UKF framework for N = 15 + 6L + 2P

1: Initialize P−
0

2: for k = 0, . . . do
3: Update INS state estimates
4: if new image ∃ then
5: Extract and match feature points {Czi}
6: Detect feature points on defined plane
7: end if
8: if Cypts exists then
9: %Generate sigma points and prediction:
10: X j = x̂−

k ± η · column[(P−
k ⊕ Cm)1/2]j

11: Y j = h(δX j , M j )

12: C ŷk = ∑2N
j=0 wm

j Y j

13: %Measurement update:
14: Ce,k = ∑2N

j=0 wc
j (Y j −C ŷk)(Y j −C ŷk)

� +
Cn,k

15: Dk = ∑2N
j=0 wc

j δX j (Y j − ŷc
k)

�

16: Kk = DkC
−1
e,k

17: δx̂k = Kk(
Cyk −C ŷk)

18: Pk = P−
k − KkCe,kK�

k

19: Use δx̂k to correct state estimates
20: P := Pk

21: else
22: P := P−

k

23: end if
24: if new image ∃ then
25: Record view pose Gp̂C�

and C� q̂G

26: Decimate and augment error states δGpC�
and

δC� θ̂G

27: Update P correspondingly
28: end if
29: %Prediction:
30: P−

k+1 = FkPF�
k + GkQG�

k

31: end for

The weights in the UKF are set as wc
l = wm

l =
1

2(N+λ)
for l = 1, . . . , 2N . For l = 0, wc

0 = λ
N+λ

+
(1−α2+β) andwm

0 = λ
N+λ

. Here λ = α2(N+κ)−N ,
with parameters set to α = 0.1, β = 2 and κ = 0 that
also determine the spread of the sigma points through
the weight η �

√
N + λ, [14].
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6 Results

The key findings of our observability analysis and
the performance of our proposed estimator are vali-
dated both with simulation and experimental data. The
results indicate the accuracy and reliability of our pro-
posed method where only a few features are used for
motion estimation. In this section, we present some of
the results from the simulation studies (Section 6.1)
and experiments (Section 6.2).

6.1 Simulation results

For the simulation study, we consider the following
setting: The sampling rate of the accelerometer and
gyroscope output signals of the IMU, am andωm, is set
to 100 Hz. The IMU accelerometers and gyros biases
are [2, 2, 2] ·10−3 m/s2 and [−4, 4, 2] ·10−4 rad/s and
the standard deviations of the corresponding incre-
mental noise processes, nδa and nδg , are 6 · 10−3 and
3 · 10−3, respectively. For the camera, we consider the
pinhole model, with the focal length of 833 mm, and
sampling rate 10 Hz. Zero-mean white Gaussian noise
with standard deviation of σpixel = 2 pixel is added
to the projected image. We set maximum number of
tracked feature points between successive images to
be 10 over the whole simulation process between two
consecutive images.

The estimated trajectory along with the ground
truth are plotted in Fig 4. The simulated trajectory is
for about 360 s and final estimated error in the position
is about [0.28, −0.31, 0.019] meters.

Furthermore to validate the accuracy of the esti-
mator, the estimated errors of the position, attitude,
and velocity along with the ±σ -bounds are plot-
ted in Fig 5. The σ -bounds are computed from the
corresponding diagonal elements of the filter’s error
covariance matrix that provides a representation of its
estimate uncertainty. The results indicates the capacity
of the filter to constrain the rate of the error growth.

Moreover, the estimated value of the accelerome-
ter and gyro biases are plotted in Fig 6. The results
show that the estimated value of the biases both for
the accelerometers and gyroscopes are approximately
stable over time.

6.2 Experimental Validation

Figure 7a shows the hardware used for this exper-
iment. The camera is an AVT Guppy monochrome

−15 −10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

10

x[m]

y[
m

]

Estimated trajectory
True trajectory

(a) Position along the horizontal plane

0 50 100 150 200 250 300
1

1.2

1.4

1.6

1.8

2

t[s]

z[
m

]

Estimated height True height

(b) Height along the axis

Fig. 4 Estimated trajectory over the ground truth along x, y

and z-axes over 320 s

camera that is rigidly mounted on top of a MicroStrain
3DMGX2 IMU with sampling rate 250 Hz. Images
are captured with resolution 752 × 480 pixels, the
camera sampling rate is 10 Hz. The camera internal
calibration parameters are estimated using [1], and
the IMU-camera calibration parameters are estimated
from [29]. For the feature extraction and matching,
the MATLAB Computer Vision Toolbox implementa-
tion of SURF is used. The ground plane features are
selected using a predefined box in the lower part of the
image while the outliers are rejected using the filters
estimates over time. Detail studies about the ground
plane feature detection and outlier removal are given
in [31, 32]. Time synchronization and temporal order-
ing between the IMU and the camera measurements
are based on methods in [26].

The initialization of the IMU gyro and accelerom-
eter biases and their corresponding covariance values
in the filter was done by placing the IMU in a static
position for a few seconds prior to each experiment.
The mean and variance of biases during the stationary
phase are then used as initial values in the filter.

We consider ground plane as our desired hori-
zontal plane. Such that we can run the experiment
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frame with corresponding σ -bounds

over larger area and for longer period. To evaluate
the performance of the proposed method in real sce-
nario, a controlled test environment was set up in an
underground hall (R1) at the university of KTH [3].
Figure 7b depicts some sample images from the test
environment. The underground location of the test
environment provides a controlled level of radio inter-
ference for a reference commercial ultra-wideband
(UWB) system [17] used as a ground truth for eval-
uating the results, more details on the accuracy of
the UWB system are given in [3]. When line-of-
sight is lost, however, the UWB position estimates
become unreliable. During the experiments all data
were stored on a computer and processing was done
off-line.
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Fig. 6 Estimated biases in accelerometers and gyroscopes of
the IMU over 320s
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Figure 8a depicts an example of estimated trajec-
tories for an experiment along with the UWB data
used as the ground truth over the map of the test envi-
ronment. In this experiment 3081 image frames were
recorded within 304 seconds. The IMU and camera
were placed at the height of about 21 cm on a trol-
ley, moving in a closed loop trajectory. The system
was initialized at the measured height of 21 cm above
the ground. The roll and pitch were estimated using
the gravitational force during first samples when the
system was stationary [4]. In the implementation, the
number of views in memory was set to L = 5.

To evaluate the performance of the estimator, we
have plotted the estimated trajectory under different
settings for the maximum number of matched fea-
tures, {1, 3, 7, 10, 15}. The results show that the UKF
is capable of drastically reducing the growth rate of
the accumulated INS errors over the experiment. The
trajectories follow the UWB position estimates rea-
sonably well, although the UWB sensors were not in
line-of-sight during a substantial part of the trajectory.
Moreover, similar patterns are observed for different
maximum number of matched features, especially for
{3, 7, 10, 15}, which in turn show that the proposed
system is able to achieve a good performance even for
low number of features.

Furthermore, the estimated height of the mobile
system is shown in Fig. 8b, for the corresponding
estimated trajectories in Fig. 8a. As can be seen in
the figure, the system is capable of good error cor-
rection that leads to a quite accurate estimate for the
height. Also, note that the estimated height has briefly
deviated from the reference height (21 cm) at around
210–230 seconds, which can be explained by consid-
ering the potential problems in accurately detecting

(a) System-hardware (b) Test environment

Fig. 7 a An AVT Guppy monochrome camera, with resolu-
tion 752 × 480 that is rigidly mounted on top of a MicroStrain
3DMGX2 IMU. b Sample images from the test environment
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Fig. 8 The estimated trajectory of the IMU along with the
UWB reference data, overlaid on the map of the test envi-
ronment. The estimated trajectories are plotted for different
maximum number of tracked features, {1, 3, 7, 10, 15}

and matching the feature points. However, this devia-
tion does not last long and the algorithm corrects the
height quickly.

To provide a representation of the estimation uncer-
tainty the 3σ -bounds for the error in the camera posi-
tion, orientation, and velocity along the three axes are
shown in Fig 9. As it is depicted in Fig. 9a, the uncer-
tainty of the position along the x and y axes grows
slowly since the system has no access to the absolute
position update. The behavior of the 3σ -bounds for
the position uncertainty along the z axis confirms the
findings of our observability analysis, i.e., the height
is observable. These results indicate that the proposed
method is capable of achieving a rough estimate of the
states even when maximum number of features is set
to one. However, in this case the errors have higher
uncertainties, especially for the unobservable states.

Based on our theoretical results for the system
unobservable modes, we expect increasing uncertain-
ties of the estimators along the unobservable modes.
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Fig. 9 The 3σ -bounds for the error in a position, b velocity, and
c attitude. The σ values are the square root of the corresponding
diagonal elements of the states error covariance matrix
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Fig. 10 Estimated height along the z axis, where the x and y

positions were fixed

However, as it is illustrated in Fig. 9a for the positions
along the x and y axis and heading, the estimation
uncertainties are decreasing at some regions. This
behavior, known as estimator inconsistency, has been
recently studied in [8, 10, 16] for a VINS. This estima-
tor inconsistency might be explained by considering
that the filter employs a linearized state-space model,
where the unobservable subspace of the obtained sys-
tem has a lower dimension than the unobservable
subspace of the underlying nonlinear system [16].
Hence, the estimator gains spurious information from
the measurements and therefore incorrectly reduces
the estimated covariance.

As a future work, a further study with more focus
on estimator inconsistency is therefore suggested for
our system.

Moreover, to evaluate the performance of our pro-
posed method for the height estimation, we performed
the following experiment: the IMU-camera was placed
on a table, and without having any motion along the
x − y plane the table was lifted up and down using a
step motor. Figure 10 illustrates the estimated height
of the system for about 373 seconds. The initial and
the final measured height was approximately 68 cm
and height of the peaks was in the range of 113±2 cm.
It is worth mentioning that the estimated error along
the x and y directions was in the order of millimeter.
For this estimate, the maximum number of features
was set to 7 between two successive images.

For the reported experiments in this section, we
have tried to capture different types of motions, such
as sharp and smooth turns, constant speed and sudden
acceleration. Moreover, in all the experiments, for
some period of time the sensors were left station-
ary, without any movement. The stationary periods are
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well depicted in Fig. 10. Additionally, in a separate
experiment, to investigate the stability of the system
under stationary conditions over a long period of time,
we evaluated the performance of the system for a case
where the system was left stationary on a table with-
out any movement. The results show that after about
30 min the error along the x and y axes were about
50 cm and along the z axis it was about 150 cm. The
estimated biases of the accelerometer gyro for this
experiment are plotted in Fig. 11, where it can be seen
that the biases are quite stable for a long period of
time.

It is worth mentioning that, for this case where there
is no excitation in the system (linear acceleration and
rotational velocity), the observability analysis is not
strictly valid since the required conditions regarding
existence of excitation are not satisfied.

As was mentioned earlier, the focus of this paper
is mainly theoretical in nature and the considered
simulations and experiments target the validation of
the main results, rather than the full behavior of an
UAV close to landing. Such system performance eval-
uation is of importance, but the outcome will also
depend on the physical platform and its configuration.
Accordingly, such full-scale experiments are beyond
the scope of the paper.

7 Discussion

Imposing the IMU and camera data to the geomet-
rical derivations in Section 5, we develop a 6-DoF
motion estimation approach. Moreover, we have care-
fully implemented and analyzed the performance of

our proposed system. The achieved results validate
both the findings of our observability analysis in
Section 4 and the accuracy of the developed nonlin-
ear filter in Section 5. Compared to the state-of-the-art
VINS ego-motion estimation [25] or SLAM-type of
approaches, our developed closed-form measurement
model significantly reduces the filter computational
complexity. Since the length of the state vector in
our method is 15 + 6L (ignoring the feature points
positions in the image plane which are just nuisance
parameters). Additionally, our measurement equation
is independent of movements in the system. That is,
the system provides reliable information even when
the camera is static, and there is no motion in the sys-
tem. Because the validity of Eq. 36 is preserved even
when the camera does not move or is subject to very
slow motions.

In this work, we focus on the problem of 6-
DoF IMU-camera motion estimation when the camera
observations are features on a horizontal plane. It
should be noted that, the choice of selecting features
on any planar surface whose normal is known does
not influence the results. That is, for any arbitrary pla-
nar surface, we first need to align the virtual camera
optical axis with the normal of the plane. Then, we
have to calculate the corresponding rotation between
the virtual camera coordinate frame and the global
reference frame, C(V qG). It should be noted that,
changing the direction of the plane normal affects the
observability properties of the system. That is, the
observable mode of the translation, CpG, is always the
orthogonal translation of the camera along the nor-
mal of the plane. For instance, for the entire horizontal
planes only the vertical translation is observable while

(a) Estimated accelerometer’s biases (b) Estimated gyro’s biases

Fig. 11 Estimated accelerometer and gyro biases, where the system was left stationary for about 1784 seconds
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for vertical planes depending on their normal direc-
tions planar translation along the x or y axis becomes
observable.

For the observability analysis, we consider the full
INS parameter vector (including position, velocity,
rotation, and inertial sensor biases) as well as the 3D
position of the observed feature point. It is straightfor-
ward to show that by concatenating the IMU-camera
calibration parameters and the value of the gravity
acceleration into our state vector, while our current
results for the system is preserved, these additional
parameters are observable, as it is shown in [15, 23].

8 Conclusion

In this paper, we have introduced a visual inertial nav-
igation system, which is based on tracking features
on a horizontal plane. For this nonlinear system, we
first study its observability properties. We show that
compared to the general VINS, where features are not
constrained to be all planar, the orthogonal translation
of the camera to the plane is observable. Furthermore,
we have derived all the observable and unobservable
directions of the system using only one feature point
as the camera measurement. Secondly, we seek to
the problem of ego-motion estimation for the pro-
posed system. We solve the 6-DoF VINS motion
estimation using the state space formulation in the
unscented Kalman filter framework. The key advan-
tages of our solution is the proposed newmeasurement
equation, which reflects both the geometric of the
planar features and the state of the system. Finally,
we have experimentally verified the key features of
our observability analysis and motion estimation. The
experimental results are provided under different con-
ditions where accurate results with low computational
complexity are achieved. Accordingly, the method
presented in this paper forms a basis for many appli-
cations, e.g., accurate UAV landing systems.

Acknowledgment The authors would like to thank Prof.
Stergios Roumeliotis for the discussions on the observability
techniques that are used in this paper.

Appendix A

We study the observability of system (12) (or specif-
ically for our system (25) and (26)) by the algebraic

test. In the algebraic test, the gradients of the Lie
derivatives of the measurement functions are first
derived.

To prove that matrix Ξ is full column rank, it
suffices to show that a subset of its rows, whose
dimension is the same or larger than the number of
columns, is linearly independent. To show this, it is
sufficient to construct a sub-matrix of Ξ by selecting
the minimum number of Lie derivative gradients of
the measurement functions that leads to a full column
rank matrix.

In the following, we compute only those Lie deriva-
tives of h̄ whose spans are used to prove that Ξ is of
full column rank.

– The zeroth order Lie derivatives of the measure-
ment function is

L0h̄1 =
(
β1I3 + β2β

�
3

)
z̄ = 03×1

Then, its gradient (the span) is

∇L0h̄1 = ∂h̄1
∂β

= [
z̄ β�

3 z̄I3 β2z̄
� 03×1 03×3 03×3 03×3

]

– The first order Lie derivatives of h̄1 with
respect to g0, and g1i are computed, respectively,
as:

L1
g0 h̄1 = ∇L0h̄1g0= z̄β4+β�

3 z̄(−�β2�β5 − β6)

−β2z̄
��β3�β5

L1
g1i h̄1 =∇L0h̄1g1i = β�

3 z̄�β2�ei + β2z̄
��β3�ei

and their corresponding gradients are given by

∇L1
g0 h̄1 = ∂L1

g0 h̄1
∂β

= [
03×1 Π2 Π3 z̄ Π5 −β�

3 z̄I3 03×3
]
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where

Π2 = β�
3 z̄�β5� − z̄��β3�β5I3,

Π3 = (−�β2�β5 − β6)z̄
� + β2z̄

��β5�,
Π5 = −β�

3 z̄�β2� − β2z̄
��β3�.

∇L1
g1i h̄1 = ∂L1

g1i h̄1
∂β

=
[
03×1 − β�

3 z̄�ei�
+z̄��β3�eiI3�β2�ei z̄�

−β2z̄
��ei� 03×1 03×3 03×3 03×3

]

– Second order Lie derivatives, and their corre-
sponding gradients are:4

L2
g1ig0 h̄1 = ∇L1

g1i h̄1g0

= (−β�
3 z̄�ei� + z̄��β3�eiI3)

×(−�β2�β5 − β6)

−(�β2�ei z̄� − β2z̄
��ei�)�β3�β5

L2
g0g2i h̄1 = ∇L1

g0 h̄1g2i = z̄β�
3 ei − β�

3 z̄ei

∇L2
g1ig0 h̄1 = ∂L2

g1ig0 h̄1
∂β

= [
03×1 Π̄2i Π̄3i 03×1 Π̄5i β�

3 z̄�ei�
−z̄��β3�eiI3 03×3

]

∇L2
g0g2i h̄1 = ∂L2

g0g2i h̄1
∂β

= [
03×1 03×3 z̄e�

i

−ei z̄� 03×1 03×3 03×3 03×3
]

4Π̄ij and Π̃ij will be removed later on through Gaussian
elimination, thus we do not show their explicit expressions
here.

– Third order Lie derivatives, and their correspond-
ing gradients:

L3
g1ig0g0 h̄1 = ∇L2

g1ig0 h̄1g0

= Π̄2i (−�β2�β5 − β6)

+Π̄3i (−�β3�β5)

+(β�
3 z̄�ei� − z̄��β3�eiI3)

×(−�β6�β5 + gβ3 − β7))

L3
g0g2ig1j h̄1 = ∇L2

g0g2i h̄1g1j

= (z̄e�
i − ei z̄�)�β3�ei

∇L3
g1ig0g0 h̄1 = ∂L3

g1ig0g0 h̄1
∂β

= [
03×1 Π̃2i Π̃3i Π̃4i Π̃5i Π̃6i

−β�
3 z̄�ei� + z̄��β3�eiI3

]

∇L3
g0g2ig1j h̄1 =

∂L3
g0g2ig1j h̄1

∂β

= [
03×1 03×3 −(z̄e�

i − ei z̄�)�ej �
03×1 03×3 03×3 03×3

]

for i = j

∇L3
g0g2ig1i h̄1 = ∂L3

g0g2ig1i h̄1
∂β

=
[
03×1 03×3 ei z̄��ei� 03×1 03×3

03×3 03×3
]

– Fourth order Lie derivatives, and their correspond-
ing gradients:

L4
g0g2ig1ig0 h̄1 = ∇L3

g0g2ig1i h̄1g0

= ei z̄��ei��β3�β5

∇L4
g0g2ig1ig0 h̄1 =

∂L4
g0g2ig1ig1j h̄1

∂β

= [
03×1 03×3 −ei z̄��ei��β5�
03×1 ei z̄��ei��β3� 03×3 03×3

]
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Stacking together the computed span of the Lie
derivatives, a subset of the observability matrix Ξ is
constructed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇L0h̄1
∇L1

g0 h̄1
∇L1

g11 h̄1
∇L1

g12 h̄1
∇L1

g13 h̄1
∇L2

g11g0 h̄1
∇L2

g12g0 h̄1
∇L2

g13g0 h̄1
∇L2

g0g21 h̄1
∇L2

g0g22 h̄1
∇L2

g0g23 h̄1
∇L3

g11g0g0 h̄1
∇L3

g12g0g0 h̄1
∇L3

g13g0g0 h̄1
∇L4

g0g21g11g0 h̄1
∇L4

g0g22g12g0 h̄1
∇L4

g0g23g13g0 h̄1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̄ β�
3 z̄I3 β2 z̄

� 03×1 03×3 03×3 03×3

03×1 Π2 Π3 z̄ Π5 −β�
3 z̄I3 03×3

03×1 −β�
3 z̄�e1� + z̄��β3�e1I3 �β2�e1 z̄� − β2 z̄

��e1� 03×1 03×3 03×3 03×3

03×1 −β�
3 z̄�e2� + z̄��β3�e2I3 �β2�e2 z̄� − β2 z̄

��e2� 03×1 03×3 03×3 03×3

03×1 −β�
3 z̄�e3� + z̄��β3�e3I3 �β2�e3 z̄� − β2 z̄

��e3� 03×1 03×3 03×3 03×3

03×1 Π̄21 Π̄31 03×1 Π̄51 β�
3

¯̄z�e1� − z̄��β3�e1I3 03×3

03×1 Π̄22 Π̄32 03×1 Π̄52 β�
3

¯̄z�e2� − z̄��β3�e2I3 03×3

03×1 Π̄23 Π̄33 03×1 Π̄53 β�
3

¯̄z�e3� − z̄��β3�e3I3 03×3

03×1 03×3 z̄e�
1 − e1 z̄� 03×1 03×3 03×3 03×3

03×1 03×3 z̄e�
2 − e2 z̄� 03×1 03×3 03×3 03×3

03×1 03×3 z̄e�
3 − e3 z̄� 03×1 03×3 03×3 03×3

03×1 Π̃21 Π̃31 Π̃41 Π̃51 Π̃61 −β�
3 z̄�e1� + z̄��β3�e1I3

03×1 Π̃22 Π̃32 Π̃42 Π̃52 Π̃62 −β�
3 z̄�e2� + z̄��β3�e2I3

03×1 Π̃23 Π̃33 Π̃43 Π̃53 Π̃63 −β�
3 z̄�e3� + z̄��β3�e3I3

03×1 03×3 −e1 z̄��e1��β5� 03×1 e1 z̄��e1��β3� 03×3 03×3

03×1 03×3 −e2 z̄��e2��β5� 03×1 e2 z̄��e2��β3� 03×3 03×3

03×1 03×3 −e3 z̄��e3��β5� 03×1 e3 z̄��e3��β3� 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One way to show that matrix (43) is full rank is
through performing Gauss elimination. The elimina-
tion is performed based on the knowledge that the
following matrices are of full column rank:

A =
⎡
⎣

−β�
3 z̄�e1� + z̄��β3�e1I3

−β�
3 z̄�e2� + z̄��β3�e2I3

−β�
3 z̄�e3� + z̄��β3�e3I3

⎤
⎦ ,

B =
⎡
⎣
z̄e�

1 − e1z̄�
z̄e�

2 − e2z̄�
z̄e�

3 − e3z̄�

⎤
⎦ , D =

⎡
⎣
e1z̄��e1��β3�
e2z̄��e2��β3�
e3z̄��e3��β3�

⎤
⎦ .

Performing elementary column and row operations
on (43), we finally get:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×3 01×3 01×3 01×3 01×3 03×3

01×1 01×3 01×3 1 01×3 01×3 01×3

03×1 I 03×3 03×1 03×3 03×3 03×3

03×1 03×3 03×3 03×1 03×3 I3 03×3

03×1 03×3 I3 03×1 03×3 03×3 03×3

03×1 03×3 03×3 03×1 03×1 03×3 I3
03×1 03×3 03×3 03×1 I3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which clearly is a full column rank matrix.
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