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Image Fusion and Subpixel Parameter 
Estimation for Automated Optical 

Inspection of Electronic Components 
James M. Reed, Student Member, IEEE, and Seth Hutchinson, Member, IEEE I 

Abstract- We present a new approach to automated optical 
inspection (AOI) of circular features that combines image fusion 
with subpixel edge detection and parameter estimation. In our 
method, several digital images are taken of each part as it moves 
past a camera, creating an image sequence. These images are 
fused to produce a high-resolution image of the features to be 
inspected. Subpixel edge detection is performed on the high- 
resolution image, producing a set of data points that is used for 
ellipse parameter estimation. The fitted ellipses are then back- 
projected into 3-space in order to obtain the sizes of the circdar 
features being inspected, assuming that the depth is known. The 
method is is accurate, efficient, and easily implemented. We 
present experimental results for real intensity images of circu- 
lar features of varying sizes. Our results demonstrate that our 
algorithm shows greatest improvement over traditional methods 
in cases where the feature size is small relative to the resolution 
of the imaging device. 

I. INTRODUCTION 

ARTS WITH circular features, such as holes, are com- P mon in the microelectronics industry. For example, holes 
used for mounting integrated circuits and other electronic 
components are found on printed circuit boards. If the holes 
in these circuit boards are not located or shaped correctly, 
electronic components may not fit into them correctly. Due 
to the small size of many electronic components, holes must 
be manufactured precisely; therefore, inspecting the circular 
shape of these holes requires a high degree of accuracy. 

The research that we report in this paper is intended for use 
in automated optical inspection of via holes in printed circuit 
boards. Via holes are used to provide electncal connections 
between different sides or layers of a printed circuit board. 
In such an inspection system, circuit boards move along a 
conveyer at a fixed velocity. Several images are taken of 
each part as if passes beneath the camera, creating an image 
sequence Q = {q(1)  . . . q(n)}.  The vias are inspected one-at- 
a-time, and the entlre shape of each hole being inspected is 
visible in every image in Q. The images in the image sequence 
are perspective projections of the scehe; therefore, the via 
holes appear as ellipses in these images [l]. Given the image 
sequence, Q, our task is to estimate the parameters of the 

Manuscnpt received February 8, 1995, revised November 30, 1995. 
J. M. Reed is with the Artificial Intelligence Laboratory, The University of 

Michigan, Ann Arbor, MI 48109-2110 USA. 
S Hntchinson is with the Department of Electncal and Computer Engineer- 

ing, The Beckman Institute for Advanced Science and Technology, University 
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. 

Publisher Item Identifier S 0278-0046(96)02367-2 

elliptical shape of the via holes with subpixel accuracy. From 
these estimates, we can infer the properties of the shape of the 
actual via holes, and use this information to decide whether a 
via hole is properly shaped. 

Our method combines image fusion (inlcuding image regis- 
tration and image enhancement) with subpixel edge detection, 
and subpixel parameter estimation of ellipses to perform the 
inspection task described above. In Sections I1 and I11 we 
describe how, given the input image sequence Q, we perform 
image enhancement using Peleg and Irani's superresolution 
algorithm [2]. The superresolution algorithm creates a high- 
resolution image 3.1 that has t y k e  the resolution of the indi- 
vidual images in Q. In Section IN, we describe how subpixel 
arc-edge detection is performed on the high-resolution estimate 
3.1, yielding a list of data points. The arc-edge detector is a 
sample-moment-based edge detector that locates data points 
that lie on a circular arc with subpixel accuracy [3]. Then, in 
Section V, we describe how these data points ,are used by an 
ellipse parameter estimation algorithm [4]. Among the benefits 
of our system are increased noise tolerance and reduced 
hardware requirements. Because image sequence analysis is 
used for image enhancement, high-resolution cameras and 
high-precision positioning equipment are not needed. Our 
research was conducted using off-the-shelf hardware and tested 
on real images. 

' LI. IMAGE REGISTRATION 

Given a sequence of images, Q = {q ( l )  . . , q(n) 
task is to bring these images into registration, produ 
image sequence, Qa, in which all of the images are aligned. In 
the image sequence Qa, the pixels corresponding to a circular 
feature being inspected occupy the same locations in each 
image. The registration process that we describe in this section 
was introduced by bani and Peleg in [Z]. 

vector for each image, then shifting each image 
its motion vector. The motion vectors are estimated in an 
iterative process and expressed with respect to a reference 
image, q(?),  chosen from Q. For a particular image ~ ( ~ 1 ,  
let T = (tz  + p z ,  t ,  + p,) represent an initial estimate of 
the motion between images q(?) and q(,.), where ( t z ,  tY) 'is 
the integer part of the motion and ( p z , p y )  is the fractional 
part. Motion vector estimation is performed by repeating the 
following steps. First, we shift the image according to its 

Image registration is accomplished by estimatin 
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motion estimate. Second, we compute a correction to the 
motion estimate by solving a system of linear equations given 
by (3). When the changes to the motion estimate are less than 
a threshold value, motion estimation stops. 

Because each motion vector has both an integer and a 
subpixel part, we shift an image in two steps. In the first part 
of the shifting operation, qC) is shifted according to the integer 
part of the motion. No intensity values are changed during this 
integer shift; therefore, the intensity of each pixel after shifting 
by (tx,ty) can be expressed as 

where I(z, y) is the intensity of the pixel at position (z, y), 
and I’(z + t , ,  y + tY )  is the intensity of the pixel at position 
(x + t,, y + tY) in the shifted image. 

In the second part of the shifting process, the subpixel part 
of the motion is used to estimate new intensities for the shifted 
pixels. This is accomplished by approximating the intensity 
function, I(z, y), by a plane, and using bilinear interpolation 
to compute the intensity values at subpixel locations. To avoid 
the accumulation of errors, the motion estimation algorithm 
always shifts the original image q(c).  

In the second part of the motion estimation algorithm, a 
correction to the current motion estimate is calculated by 
solving a set of linear equations derived by Keren et al. in 
[5].  In general, motion in two dimensions can be described 
by a translation (a, b) and a rotation, 8, assumed to be about 
an axis at the center of the image. In terms of the motion 
vector T, the components of the motion are a = tx + p, and 
b = t ,  +py. In terms of the parameters a, b, 8, the relationship 
between q(,.) and q(c) is given by 

q(c)(z,y) = q(,)(zcos8-ysin8+a,ycos8+xsin8+b).  

(2) 

As shown in [5] ,  an approximation to the sum-of-squares 
error between q(,) and q(:) can be derived by linearization 
of (2). Setting partial denvatives of this approximate error 
function to zero, we obtain the system 

where 

Solving (3) for a,b, and 8 yields a vector that is used 
to update the current motion estimate at the end of each 
iteration, until the magnitude of the correction vector is 
below a predefined threshold. The motion estimation algorithm 
produces an aligned sequence of images, e,, and list of motion 
vectors. C. 

111. CREATING THE HIGH-RESOLUTION IMAGE 

We use the superresolution method of Irani and Peleg [2] 
to create a high-resolution image using the aligned image 
sequence, Q,, and the list of motion vectors, 13. The result is a 
fused image that has twice the resolution of the input images. 
An alternative approach is given in [6],  which describes a 
system that uses subpixel camera displacements to create the 
high resolution image. 

The superresolution algorithm works by creating an initial 
estimate of the high-resolution image, ‘FI, and then using 
an iterative refinement procedure to improve that estimate 
by exploiting known characteristics of the imaging process. 
The iterative refinement proceeds as follows. A sequence 
of low resolution images S = { s ( ~ )  . - . s ( ~ ) }  is created by 
subsampling E, and then shifting each subsampled image 
according to the corresponding motion vector in L. If the high- 
resolution estimate is correct, then the actual and simulated 
image sequences will be identical, i.e., S = &. If S # 
Q the difference images between Q and S are calculated, 
creating a sequence of difference images Q - S = { (q(1)  - 
s ( ~ ) )  . . (q(n)  - s(~))}. Corrections to the high-resolution es- 
timate are based on the values of these difference images, as 
described below in Section 111-B. 

A. Computing Simulated Low Resolution Images 
Let q ( z , y )  represent a low resolution image pixel. Pixel 

q(x,y) corresponds to a photosite in the CCD camera [l]. 
The intensity at q(z ,y )  is determined by the receptive field 
of the photosite, which is sensitive to light emanating from 
a scene region that is defined by the center, size, and shape 
of the photosite’s receptive field 171. The receptive fields of 
adjacent photosites overlap due to the proximity and spacing 
of the sites; therefore, light emanating from any given point 
in the scene influences the intensity of several pixels in the 
low resolution image. The point spread function of the sensor 
describes which low resolution pixels are influenced by a given 
point in the scene. Because CCD cameras use an array of 
photosites, we assume that the receptive fields and point spread 
functions of the photosites are identical. 

The camera produces a discretized, low resolution version 
of the original scene. The imaging model is a mathematical 
representation of the imaging process. We use the model 
presented by Irani and Peleg in [8] 

Q ( k ) ( Z ,  Y> = . (k)(h(f(4d> + r l ( k ) ( i , j ) )  (4) 

where q ( k )  is the kth image of the image stream &. Equation 
(4) represents a transformation from the scene f to a digital 
image q ( k ) .  The blurring operator, h, is defined by the point 
spread function of the sensor. Because we do not actually 
know the sensor’s properties, we assume that the point spread 
function is a Gaussian smoothing operator. Additive noise is 
represented by ~ ( k ) .  The function a ( k )  digitizes the image into 
pixels and quantizes the resulting pixel intensities into discrete 
gray levels. 

The imaging process model (4) describes how low- 
resolution input images are produced. To create simulated 



348 EEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 3, JUNE 1996 

/ 

low-resolution images, we approximate (4) by 

s"(z,y) = C3-1"(i,j)hPsF(i - 

P 

in which s" is a low-resolution image, and 321" is the high- 
resolution image produced in the nth iteration of the refine- 
ment algorithm. Each simulated low resolution pixel s " ( ~ ,  y) 
is the weighted average of the high-resolution pixels, 321"(i, j), 
that are in the low-resolution pixel's receptive field; the set of 
these high-resolution pixels is denoted by p. The point spread 
function of the imaging system, h in (4), is represented by a 
mask that is denoted by hPSF in (5) .  The image coordinates of 
the center of this mask, ( z z ,  zy), are used to select the mask 
value for a given high-resolution pixel ( i , j ) .  

In (4) a blurred version of the continuous image f is 
discretized to produce input low-resolution images, while 
in (5) a discretized high-resolution image 321" is blurred to 
produce simulated low-resolution images. 

Each simulated low-resolution image sc, is created by 
shifting sn according to the motion estimate that corresponds 
to the image q(2) in Q. This shifting operation produces a 
simulated image that is in congruence with q(2).  Simulated 
images are created for each image in the input image stream. 

B. Iterative ReJnement 

After creating simulated images, improvements to the high- 
resolution estimate are calculated using the updating formula 

I 

k,cu 

where q ( k )  is the kth image of the input image stream Q, 
and s i ,  is the kth simulated low-resolution image. The 
function hBP represents a back-projection kernel that is used to 
calculate improvement values for the high resolution estimate. 
The contribution of the back-projection kernel is normalized 
using a constant, e. The choice of hBP is discussed in [2]. We 
use a normalized, 5 x 5 mask representing a Gaussian operator 
in our work. The proper back-projection kernel value is chosen 
using the low-resolution image coordinates of the center of 
the back-projection kernel, ( ,zz, xy ). The improvement value 
for a given high-resolution pixel is the weighted average of 
the contributions of the low-resolution pixels in its receptive 
field; the set of all such pixels is denoted by a. Given the 
high-resolution estimate in the nth iteration of the refinement 
algorithm 3-1", the refinement algorithm creates a new high- 
resolution estimate, ?in+', by calculating improvement values 
for the pixels of 3-1". 

The initial high-resolution estimate 3.c is created by av- 
eraging the values of pixels in the aligned image sequence 
Qa = {%(I) . . . 4 a ( n ) )  

K(22,  Zy) = K(22,Zy + 1) = X ( 2 2  + 1,Zy) 
1 

= 3-1(22 + 1,2y  + 1) = ; qa(2 ,y ) .  (7) 
Qa €ea 

IV. SUBPIXEL EDGE DETECTION 
There are many methods of edge detection (see, e.g., [9]). 

Standard edge operators are easy to implement; however, in 
their simplest forms they are pixel-level edge detectors, which 
can only localize edges to the nearest pixel. Although efforts 
have been made to increase the accuracy of these methods, 
they cannot be used for subpixel edge detection unless some 
form of interpolation is used [lo]. The limited resolution of 
early edge detectors led to the development of subpixel edge 
detection algorithms, which localize edges to within a fraction 
of a pixel precision. A number of subpixel edge detectors rely 
on some form of interpolation, e.g., [11]-[13]. Others rely on 
moment analysis, e.g., [31, [81, [lo], [141, [151. 

We use the arc-edge detector described in [3]. In the 
first step, we apply bilevel thresholding and simple edge 
detection to the high-resolution image K to create an edge 
map. The following operations are done on 3.c at each location 
specified in the edge map. First, we approximate the circular 
arc with straight-line segments. The parameters of these line 
segments are calculated to subpixel accuracy using Tabatabai 
and Mitchell's moment-based straight-line-edge detector [ 101. 
Given the straight-line approximation of the circular shape, 
we calculate the coordinates of the points 'that lie on the 
circular border curve. These data points are used in the ellipse 
parameter estimation des2ribed in Section V. 

A. Building the Initial Edge Map 

The arc-edge detector is applied to points of interest in the 
high resolution image 321. These points are indicated on an 
edge map that is created by performing bilevel thresholding 
on 321, then using simple edge detection to locate edge points 
in the binary image. We use Tsai's sample moment preserving 
bilevel thresholding algorithm to threshold 3-1 [16]. Given an 
input image, this algorithm locates the threshold value t such 
that the first four sample moments of the image histogram are 
preserved. The zth sample moment of the image data is 

where 321(t(.,y) is the pixel intensity at location (z,y) in 3-1, 
and n denotes the number of pixels in 3-1. By this definition, 
MO = 1. Sample moments can also be computed from the 
histogram of E 

(9) 

where n is the number of pixels in the image, n3 is the number 
of pixels in 3-1 with intensity value z3,  and pJ  = 2. 

For bilevel thresholding, let Zb and zf be the representative 
intensity values for the two regions of a binary image. The 
moment-preserving thresholding algorithm selects a threshold 
such that if the below-threshold pixels are replaced by z b  and 
the above-threshold pixels are replaced by zf, then the first 
four sample moments will be preserved in the resulting bilevel 
image. Let ub represent the fraction of below-threshold pixels 
in X, and uf represent the fraction of above-threshold pixels 

n 
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in 'H, with U b  + ~f = 1. The first four sample moments of 
the bilevel image are given by 

hfl = (&) iUb  + ( Z f ) i u f ,  i = 0, 1, 2 ,  3. (10) 

To preserve the first four moments in the bilevel image, 
Mi = Mi for i = 0,1 ,2 ,3 ,  leading to 

The system (1 1) is solved for Zb,  ~ f ,  U b ,  and uf. The 
threshold value t is chosen by examining the histogram of 
the image. Beginning with the lowest intensity value in the 
histogram, we begin summing the number of pixels of each 
intensity value. The threshold value is chosen as the first 
intensity value that makes this sum of pixels greater than or 
equal to the fraction of below-threshold pixels, U b .  Given t ,  we 
perform thresholding on 'FI to produce a binary image. Simple 
edge detection is performed on the binary image to produce 
the edge map. 

B. Straight-Line-Edge Detection 

Given the high-resolution estimate 'H and the edge map, 
sample moment preserving straight-line-edge detection is per- 
formed on 'FI at locations specified by the edge map using 
Tabatabai and Mitchell's subpixel straight-line-edge detector 
[3], [lo]. We summarize the procedure below. 

The straight-line-edge detector locates lines that lie within 
a circular detection area. The detection circle consists of 69 
pixels that are weighted to approximate a circle of radius 4.5 
pixel units. Each pixel in the detection circle is weighted by 
the amount of the circle area it occupies. For each location 
(z, y) stored in the edge map, we center the detection area at 
location (z, y) and perform straight-line-edge detection in 'FI. 

The parameters of the straight-line-edge model are shown 
in Fig. 1. Let T represent the radius of the detection circle. 
A straight-line-edge divides the detection circle into the two 
regions Ai and AS. We assume that the edge can be modeled 
as a step, with pixels of a given intensity on one side of the 
edge and pixels of a different intensity on the other. These 
intensities are the characteristic intensities of the regions that 
border the straight-line-edge. 

The two regions that border the edge are described by ai, the 
area of the region i ;  h,, the characteristic intensity of region 
i ;  and p i ,  the relative frequency of occurrence of pixels with 
intensity h, within the detection circle. The straight-line-edge 
detector locates the edge by solving for the unknowns a,, h,, 

To facilitate this discussion, consider a line segment drawn 
from the center of the detection circle to the straight-line-edge, 
and normal to the straight-line-edge (see Fig. 1). The length of 
this normal, denoted by L, is the perpendicular distance from 
the center of the detection circle to the straight-line-edge. The 
angle of orientation of the straight-line-edge, a, is defined as 
the angle between the normal and the horizontal axis of the 
detection circle. In the following discussion, we will refer to 
the center of gravity, G, of A2. 

and P,.  

Region A 

Fig. 1. The parameters of the edge model. 

The straight-line-edge detector is also based on sample 
moments. Edges are located such that the first four sample 
moments of the image data are preserved. This is similar to 
the moment-preserving thresholding that was used in creating 
the edge map. In creating the edge map, the moments were 
calculated for the entire image 'FI. Here, the moments are 
calculated for the pixels within the detection circle. The first 
four sample moments are defined as 

X Y  

i = 0,1 ,2 ,3;  (z, y) E detection circle. (12) 

The weight of pixel 'H(z, y) is denoted by u(z - d,, y - dy), 
where (dx, dy )  is the center of the detection circle. The 
summation (12) is taken over the pixels in the detection circle. 

The equations that describe the sample moments used in 
edge detection are similar to the equations used for bilevel 
thresholding in Section IV-A. To preserve the first four sample 
moments, the following relations must be satisfied 

P l + P 2  =MO 
hip i  + h 2 p 2  = Mi 

(h i )  PI + ( h d 3 p 2  = ~2 

} (13) ( q P l +  ( h 2 I 2 p 2  = M2 

where h,, and p ,  are described above. 
Tabatabai and Mitchell present the following solutions for 

(13) in [lo]. After computing the first four moments, the 
frequencies of occurrence p l  and p2 are calculated 

Pl = 1 - P 2  (14) 

where 
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The characteristic intensities are calculated using pi and pa  

h2 = MI + 
After computing pl , p2 ,  hl , and h2 for the pixels within the 

detection circle, we determine whether an edge is present by 
using a threshold on the difference between the characteristic 
intensities of Al and A2. A lower bound for this threshold is 
derived using (18) and (19) ’ 

Because p1 + p2 = 1, and pip2 6 a, 
(hi - h2)’ 2 4 2 ,  

which yields 

If (22) is satisfied, then we say that there is an edge within 
the detection circle. 

Once an edge has been detected, its angle of orientation, a, 
and normal distance from the center of the detection circle, L, 
are calculated. Refer to Fig. 1. Edges are described by their 
normal equation with respect to the coordinate system of the 
detection circle 

x c o s a + y s i n a = - L  i f p l  < p 2  

x cos CY + y sin a = L otherwise. (23) 

Values for cos CY and sin a are calculated using the center of 
gravity G = (Gx, GY) of the data within the detection circle. 
The coordinates of the center of gravity are calculated using 

The summations in (24) land (25) are performed for all 
pixels (z, y) within the detection circle. The angle a can be 
calculated using 

G 
tan(a)  = 2. 

GX 
Referring to Fig. 1, the normal distance L is found by 

calculating the area enclosed between the edge line and the 
detection circle, i.e., the area, a2, of region Az. As shown in 
[3], this leads to the following solutions for L, 

r2 arcsin ( y) - Ld- - a2 = 0 

\ 

if Pl L P2 

0 . 5 7 ~ ~  - L d m  - r2 arcsin (4) - a 2 = 0  

otherwise. 

I 
Fig. 2. Arccdge data points. 

C. Arc-Edge Data Point Calculation 

In the previous section the circular border curve was ap- 
proximated using line segments defined by the parameters a 
and L. In this section, we will show how these parameters 
are used to calculate the coordinates of the data points that lie 
on the circular border curve. These data points will be called 
arc-edge data points. As shown in Fig. 2, arc-edge data points 
are the intersection points of the straight-line approximation 
of the border curve and the border curve itself. 

We assume that the border curve can be approximated by a 
circle of radius R, which can be described by 

where ( X O ,  YO) are the coordinates of the center of the circle. 
In [ 3 ] ,  Tchoukanov et al. derive a geometric relationship 
between the locations of the arc-edge data points and the 
parameters of the approximating line, based on the assumption 
that the position of the arc-edge data point is a weak function 
of R (i.e., the choice of R has so little effect on the position 
of the arc-edge data points that it can be ignored). This as- 
sumption is used to derive equations that allow us to calculate 
the coordinates of the arc-edge data points. The following 
derivation of these equations follows that of Tchoukanov et 
aZ. in [3]. 

Fig, 3 illustrates the arc-edge data points in greater detail. 
The circular border curve is centered at the point (XO, YO), 
has radius R, and intersects the detection circle at the points 
(x1,yl) and (x2,y2). The arc-edge data points are located at 
( 5 3 ,  y3) and (34, y4). We now derive equations to calculate 
the coordinates of (z3,y3) and (x4,y4), given L and a. 

To facilitate this derivation, the detection circle is rotated 
counterclockwise through an angle of ( 0 . 5 ~  - a)i to align the 
normal L with the Y-axis. Let (Xb ,  Y:) be the coordinates of 
the center of the rotated circular arc. The coordinates of the 
rotated arc-edge points, (zQ, y;) and (--xi, y;), are given by 

xi = x3sina - yscosa 
yk = L = x3cosa + y3sina. 

(30) 
(31) 
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Fig. 3. Parameters used in arc-edge data point calculation. 

The area of region A2 is 

a2 = pZr2.lr = 2 Jo A J dxdy. (32) 
Y; - d i K 7  

Tchoukanov et al. [3] derive the following equations for x i  
by solving the integral in (32) 

1 2' X I  
r2 arcsin -2 + R2 arcsin -2 - x:Yd - a2 = 0 

r r 
if Pl L P2 

X I  2' 
0 . 5 1 ~ ~  + r2 arccos -2 + R2 arcsin 2 - xiyo - a2 = 0 

r r 
(otherwise) 

(33) 

where 

Y; = L + 4% (34) 

)2 .  (35) 
r2 - L2 + 2LYd - xi2 

2Yd 
$l = .Jr2 - ( 

Tchoukanov et al. have used the approximation 

where a look-up table of K values is created off-line, indexed 
on values of L in the range ( -4 .5- . .4 .5)  pixel units. The 
coordinates of the arc-edge data points ( 2 3 ,  y3)  and (x4, y 4 )  
are calculated with 

(37) x3 = Lcosa  + K J m s i n a  

y4 = L s i n a  + K.\/r2 - L2'cosa. (40) 

The complete subpixel arc-edge detector is illustrated in 
Fig. 4. Given an input image X, we perform bilevel thresh- 
olding and simple edge detection to create an edge map. 
Moment-preserving straight-line-edge detection is performed 

on 3-1 at locations specified in the edge map, producing a list 
of straight-line segments that approximate the circular border 
curve. Each line segment is defined by its normal distance from 
the center of the detection circle L and its angle of orientation 
a. The coordinates of the arc-edge data points are calculated 
with (37)-(39), and (40). 

V. ELLIPSE PARAMETER ESTIMATION 
Under perspective projection, a circle in the scene will 

appear as an ellipse in the digital image; therefore, we use 
the data point list that was described in Section IV to perform 
ellipse parameter estimation. Let P = {PI . . P,} represent 
the list of n data points. Given P, our task is to estimate the 
center point coordinates ( X O ,  YO), the major axis length A, 
minor axis length B, and the angle or orientation 0 of the 
ellipse that fits the data points. 

Various methods have been reported for ellipse parameter 
estimation, including [4], [17]-[19]. We use the area-based 
parameter estimation algorithm described by Safaee-Rad et al. 
[4]. Parameter estimation proceeds as follows. In the first step, 
we estimate the parameters of an initial optimal ellipse. These 
parameters are used to generate weights for the data points. 
The weights normalize the contribution of each data point to 
the parameter estimation. In the final step, the weighted data 
points are used to find the parameters of the ellipse. 

We write the implicit equation of an ellipse as 

W ( X ,  Y )  = 0 (41) 

where 

W ( X ,  Y )  = a x 2  + bXY + c y 2  + dX + eY + 1. (42) 

The typical approach to fitting an ellipse to data points is 
to minimize an error residual 30, given by 

n 

(43) 
i=l 

It is well known that (42) does not give the geometric 
distance from the point ( X ,  Y )  to the ellipse given by (41), and 
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X * 
Fig. 5 The area difference between two concentnc ellipses. 

therefore, that minimizing (43) gives an ellipse that minimizes 
the algebraic distance from the ellipse to the data points, 
not the geometric distance. To correct for this, Safaee Rad et 
al. introduce an error function that weights each data point’s 
contribution in the minimization according to the ratio between 
the point’s geometric and algebraic distance to the ellipse [4]. 
We summarize their derivation here. 

First, we will derive a new error function, 31, that is 
based on the difference in the areas of two concentric ellipses 
with equal eccentricity. We then show that minimizing 31 is 
equivalent to minimizing (43). Finally, we construct 3; by 
weighting the data points based on the ratio of geometric 
versus algebraic distance. 

Let (A, B ,  8, Xo, Yo) be the parameters of the ellipse that 
best fits the data points, and (A’, B’, tI,Xo,Yo) be the pa- 
rameters of the ellipse passing through a given data point 
P, = (X , ,  y Z ) .  These ellipses will be referred to as the 
optimal ellipse and the data point ellipse. The two ellipses 
are concentric and have the same eccentricity and orientation 
(see Fig. 5). 

If D’ is the area of the data point ellipse and D is the area 
of the optimal ellipse, then an error function can be defined 
as the difference between these areas as 

e, = D - D‘. (4) 

Consider a line that passes through a data point P, = 
(X, ,Y,)  and the center point (X0,Yo). Let Pi = ( X , ’ , y )  
be the intersection point of this line and the optimal ellipse. 
To aid in this discussion, we define the following quantities. 
Let d: be the distance from the center of the ellipse to the point 
P: and let d,  be the distance from the center of the ellipse to 
the point P,. 

Given that the two concentric ellipses are similar, i.e., they 
have the same orientation angle and eccentricity, an expression 
for the area difference of the ellipses can be derived from (44) 
as follows 

A Area = e, = D - D‘ 
= T A B  - TA’B‘ 

Y 
Data 

X 
c 

Fig. 6. Distances d, and d: of an ellipse. 

Bookstein has shown that the following proportionality 
holds [20] 

where S, = d, - d:. After a bit of algebraic manipulation, we 
obtain 

Therefore, (45) is proportional to (42), and consequently, we 
may now define a new error function, J1, in terms of (45) 

1 2  n r 7 2  

Thus, minimizing (48) is equivalent to mnimizing (43). 
Distance d: is maximum for points along the ellipse’s major 

axis and minimum for points along its minor axis; therefore, 
(45) is maximum for data points near the minor axis of the 
ellipse and minimum for data points near the major axis of the 
ellipse. For this reason, the contributions of the data points are 
normalized by defining a weighting factor that is a function 
of each data point’s position relative to the major axis of the 
optimal ellipse. Let d,  be the distance of a data point P, to the 
optimal ellipse, i.e., distance IP,P:l in Fig. 6. The geometric 
distance from the center of the optimal ellipse to the optimal 
ellipse, distance (X0,Yo)P’ in Fig. 6, is represented by d:. 
Using the expression for the error e, of a data point given by 
(43, after some algebraic manipulation, we obtain 

~ 

Equation (49) is the general expression for the error due to 
data point P,. This error will be a minimum when P, is near 
the major axis of the ellipse. If P, is on the major axis of the 
optimal ellipse and has the same distance d,, the error will 
be given by e2 
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The ratio e z l e ;  is given by 

where the final approximation follows because typically S is 
much smaller than either A' or d:. We now construct an error 
function using these weights as follows 

n 

i=l 

The error function described in (52) minimizes the area- 
based error function described by (44), and normalizes the 
contributions of the data points. 

Equations for the ellipse parameters can be derived by 
computing the derivatives of 3; with respect to the unknowns, 
leading to 

2cd - be xo = ~ 

b2 - 4ac 
2ae - bd 

Yo = ~ 

b2 - 4ac 

(53) 

(54) 

] (55)  
(c - U) + J ( c  - a)2  + b2 

b 
6' = arctan 

2(1  - Fs) [ ( e  + U) + J(c - u ) ~  + b2] (56) [ b2 - 4ac]  

where 

(58)  
bde - ae2 - cd2 

b2 - 4ac 
Fs = 

Thus, we have a two-stage algorithm. In the first stage, 31 

is used to generate the parameters of an initial estimate of the 
ellipse. These parameters are then used to estimate the value of 
A' and d; for each data point. The data point weighting values 

are calculated using A' and d:. The weighted data points 
are used in J'i, in the second stage, to find the parameters of 
the final optimal ellipse. This method of parameter estimation 
is noniterative and produces good results. 

VI. EXPERIMENTAL RESULTS 

Our method of ellipse parameter estimation was tested 
on real image sequences of circles with diameters of one- 
eighth inch, one-fourth inch, one-half inch, one inch, and 
two inches. The high-resolution parameter estimation method 
produced good results for each circle. Fig. 7 shows the results 
of parameter estimation for a one-inch-diameter circle. 

For each image sequence, our algorithms were used to 
estimate the major and minor axis lengths for the image 

Fig. 7. Estimated ellipse plotted onto 1-in-diameter circle. 

ellipses. Given these estimates, in pixel units, an estimate of 
the axis length in inches is calculated in the following manner. 
First, the endpoints of each axis are located in the image. Then, 
Tsai's camera calibration [7] method was used to compute 
the world coordinates that correspond to the axis endpoints. 
Finally, each axis length is calculated as half the Euclidean 
distance between the world coordinates of its endpoints. 

For comparison, results for five different methods of edge 
detection were obtained. In simple edge detection, we perform 
moment-based binary thresholding, see [16], on the high- 
resolution image produced by the superresolution algorithm. 
In the binary image, pixels that border regions of different 
intensities are treated as data points. Canny 1 edge detection 
is the Canny edge detector without subpixel interpolation. 
Canny 2 edge detection is the Canny edge detector with 
subpixel interpolation. The interpolation is accurate to within 
a tenth of a pixel dimension. Both the Canny 1 and Canny 
2 edge detectors were run on low resolution input images. 
To investigate the benefit of performing superresolution, the 
arc-edge detector was also run on low-resolution input images. 
High-resolution edge detection is the method of edge detection 
that was described in Section IV and is used in our method 
of ellipse parameter estimation. This edge detection method 
performs arc-edge data point detection on the high-resolution 
image produced by the superresolution algorithm. In each 
experiment, parameter estimation was performed using the 
area-based algorithm described in Section V. 

Table I lists the average percent error of the axis length 
estimates. The percent error, A, is calculated using 

((Estimated A - RI + (Estimated B - RI) A =  x 100 
2 x R  

(59) 
where R is the actual radius of the circle. 

The high-resolution method consistently provides accurate 
parameter estimates. The greatest benefit is seen when inspect- 
ing small circles. The high-resolution method benefits from 
both subpixel accuracy and superresolution. The improvement 
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Average Percent Error of Circle Radius Estimates. 
Method 11 Cicle Diameter in Inches. 

J 0.125 I 0.25 I 0.5 I 1 1  2 
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TABLE I 
AVERAGE PERCENT ERROR 

gained by using the high-resolution inspection method de- 
creases as the radius of the circle increases. For large circles, 
the methods provide virtually the same results. 

VII. CONCLUSION 
We have presented a new method of parameter estimation 

for circular shapes that uses image sequences. In this method, 
an image sequence is used to create a fused, high-resolution 
image. A moment-based edge detector that locates points that 
lie along a circular arc with subpixel accuracy is used to 
locate data points in the high-resolution image, creating a data 
point list. Given the data point list, parameter estimation is 
performed using an area-based ellipse parameter estimation 
algorithm. Once the ellipse parameters have been estimated, 
camera calibration techniques are used to translate distances 
in the image plane into distances in the real-world results. 
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