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Abstract- Gross-motion planning for assembly is commonly 
considered as a distinct, isolated step between task sequenc- 
ingscheduling and fine-motion planning. In this paper we for- 
mulate a problem of delivering parts for assembly in a manner 
that integrates it with both the manufacturing process and the 
fine motions involved in the final assembly stages. One dis- 
tinct characteristic of gross-motion planning for assembly is the 
prevalence of uncertainty involving time-in parts arrival, in 
request arrival, etc. We propose a stochastic representation of 
the assembly process, and design a state-feedback controller that 
optimizes the expected time that parts wait to be delivered. 
This leads to increased performance and a greater likelihood 
of stability in a manufacturing process. Six specific instances of 
the general framework are modeled and solved to yield optimal 
motion strategies for different robots operating under different 
assembly situations. Several extensions are also discussed. 

I. INTRODUCTION 

ODERN manufacturing systems are confronted with 
planning problems at many scales, ranging from long- 

term production control, which deals with entire factories and 
time scales on the order of weeks, or even years, to fine- 
motion planning, which deals with individual robot assembly 
operations. Fig. 1 illustrates a typical manufacturing system. 

At the highest level, planning problems (usually called 
scheduling problems at this level) address the flow of parts 
through the assembly system. Production control determines 
what the assembly plant should be producing from, for exam- 
ple, month to month [6], [20], [39]. Given a set of production 
goals, the shop scheduler is given the task of determining how 
each robot cell will respond as parts arrive at its input buffers 
[5], [26], [29], [33]. For example, in Fig. 1, workcell RC5 
receives parts from the three workcells RC2, RC3, and RC6, 
as well as some parts that are directly fed to RC5 as input to 
the assembly system (i.e., parts P4, P7, P8, P9, P10, and P11). 
It is the task of the shop scheduler to determine the order in 
which workcell RC5 will process these parts. 
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Fig. 1. An assembly plant with multiple robot cells. P’s are the parts, B’s 
are the subassemblies, A’s are the assemblies, and RC’s are the assembly 
robot workcells. 

At a lower level, each workcell confronts a number of 
more specialized planning problems [l 11. Fig. 2 provides a 
more detailed, stylized view of an individual robot workcell. 
A sequence planner determines constraints on the order in 
which the robot will perform assembly operations [7], [14], 
[13], 1161, [27], [42]. A gross-motion planner constructs the 
trajectories that the robot will execute in performing the tasks 
[23]. And, finally, a fine-motion planner determines robust, 
local strategies for the assembly operations, that are guaranteed 
to succeed, even in the presence of significant uncertainty [9], 
[lo], [28]. Most often, as illustrated by the work cited above, 
each of these planning problems is treated in isolation. 

In this paper, we take a first step toward integrating several 
levels of planning within a unified framework. In particular, 
we consider the problem of optimal gross-motion planning for 
a robot in an individual assembly cell, within the larger context 
of a full manufacturing environment. In the past, gross-motion 
planning has been treated as either a purely geometric problem 
(e.g., plan motion from point a to point b,  avoiding collision 
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Fig. 2. The mooon planning problem in the robot workcell RCI, for multiple 
assembly from multiple components, with the robot R1 and the additional 
obstacles 01, 02,  and 03. 

with obstacles), or as an optimal control problem (e.g., find the 
time-optimal, or minimum energy path between point a and 
point b ) .  In either case, the context in which the gross motion 
commands wiIl be executed is ignored. In particular, motions 
are initiated at the request of a higher-level scheduling system, 
and at the end of the gross motion, a fine motion assembly 
operation is performed. 

If all aspects of the manufacturing system behaved deter- 
ministically, we could, in principal, treat gross-motion plan- 
ning as a path optimization problem: derive the optimal path to 
move the parts from their initial positions to their destinations, 
on a schedule given a priori by the scheduler. However, 
real manufacturing systems are not deterministic. There is 
uncertainty in parts arrival time, position and orientation 
of parts to be manipulated, robot control, dimensions of 
manufactured parts, etc. Therefore, a reasonable goal of gross- 
motion planning would be to optimize the average or expected 
performance over time. 

We characterize the problem of gross-motion planning for 
assembly as follows. A scheduler issues requests to the robot 
to grasp a particular part from a specified source, and to 
deliver the part to a specified destination. A priori, the only 
information regarding how these requests will be issued, is in 
the form of a probability distribution on the set of possible 
part/source/destination requests. Because a fine-motion plan 
will often follow the execution of the gross motion, a source or 
destination is typically not specified as a single configuration, 
but is specified as a subset of the configuration space (which 
could in general be disconnected). The gross-motion planning 
problem is to derive a set of motion strategies that will produce 
optimal throughput of the assembly cell, in an expected sense. 

Our gross-motion planning technique handles the stochastic 
nature of the assembly system by expanding the concept 
of planning in a configuration space that is combined 
with a Markov chain of modes. Each combination of 
partlsourceldestination request corresponds to a distinct 

assembly mode. In general each distinct manipulation that 
the robot performs (e.g., grasping a part, moving a part 
across the workcell) potentially changes the motion model 
or geometric model for the robot in its workcell. By using 
these concepts, we are able to optimize over a discrete set 
of possible state spaces, each corresponding to a unique 
combination of configuration space and assembly mode. 

An important feature of our approach is the use of motion 
strategies. In classical geometric robot motion planning ap- 
proaches, the output is usually a “motion plan” for a given 
description of the robot’s configuration space, the initial, 
and the goal positions. When unpredictable changes occur 
in the workcell, dynamic replanning is often used. This has 
been used, for example, in the context of error-detection and 
recovery [SI, and task-level reasoning [ 121. Alternatively, a 
fixed command might be given to the robot, and local collision 
avoidance would be performed to handle unexpected aspects 
of the environment [43]. In the probabilistic framework that 
we propose, a motion strategy provides a motion command 
for the robot for each contingency that might confront it. 
This motion strategy can be considered as a state-feedback 
stochastic controller [21] on a state space that simultaneously 
considers the assembly mode and the robot configuration. 
Replanning is not needed when the assembly mode changes, 
because the robot responds appropriately in different regions of 
the state space during execution. In addition, a state-feedback 
controller is advantageous since it will typically be robust 
to small modeling errors that can develop during execution 
[19], [4]. To select a motion strategy, we formulate an explicit 
performance criterion (or loss functional) that evaluates a 
trajectory executed by the robot. This allows a variety of 
factors, such as time, distance, or energy, to be optimized 
through the selection of a strategy. 

The rest of the paper is organized as follows. Section I1 
motivates the work by describing the specific features of 
gross-motion planning that are unique to assembly. Section 111 
develops the mathematical model for the desired elements 
of assembly while Section IV gives a computational scheme 
based on dynamic programming that determines optimal robot 
motion strategies. Section V presents a variety of specific 
assembly situations in which the model and computational 
technique is applied to obtain the optimal motion strategies. 
Section VI discusses some applications and generalization of 
the technique to other assembly situations. 

11. BACKGROUND AND PROBLEM DESCRIPTION 

In this section we consider those aspects of the gross- 
motion planning that are specific to the assembly situation. 
The discussion provides the basis for the models introduced 
in Section 111. 

A. Gross-Motion Planning with Changing 
Geometry and Motions 

A robot is assumed to operate in a workcell, W .  In ad- 
dition to static obstacles, the workcell contains a set of S 
source regions, denoted by {SI, . . . , Ss} ,  and D destination 
regions, denoted by { D1, . . . , DD}.  Let { P I ,  . . . , T’p} denote 
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a collection of P rigid parts. At various points in time, the 
robot will be requested to deliver some part from a source to 
destination. One important aspect in this problem is to establish 
the mapping from the w e c e l l ,  W ,  to the configuration space, 
C,  of the robot. A standard gross-motion planning task is to 
determine a configuration-space path yhoSe image lies in the 
space of collision-free configurations, Cfree [23]. 

When the robot is carrying a part or subassembly, the 
effective shape of the robot and load ensemble changes. Thus 
for each part P, that the robot carries, the free configuration 
space is different. This concept of “changing” configuration 
space is an important aspect of the formulation of the motion 
planning problem as part of the assembly process. Related 
issues have been studied in the context of motion planning 
with movable obstacles [ll,  E411. 

In addition to the geometric changes, the dynamics of the 
robot could change during the different stages of the assembly 
process due to the variation in loads [37]. Thus it is useful to 
incorporate the resulting changes into a motion planner. The 
models presented in Section I11 permit changes in the robot 
motion equation by allowing for different velocity commands 
for different parts to be manipulated. 

B. Preconditions for Fine-Motion Planning 

The initial and final stages of moving a part for assem- 
bly involve fine-motion planning. During these stages the 
clearances between parts becomes significant relative to the 
uncertainties involved (e.g., [SI, [9], [28]); hence sensing (e.g., 
force or torque sensing [ 171) becomes an important part of the 
motion strategy. For gross-motion planning the usual approach 
is to ignore the fine-motion plan and consider the task of 
moving the robot between two points in its configuration 
space. Instead of defining a point-to-point motion goal, we 
allow the goals to be regions in the configuration space for 
both the grasp and ungrasp operations, based on relationships 
between the robot, the part, and the subassembly. Fig. 3 shows 
an example of a source region and a destination region with 
respect to which appropriate initial and goal conditions for the 
gross-motion planning will be defined. In Section IJI-C we 
formalize these concepts to include generalizations such as 
disconnected source and destination regions, and fine-motion 
planning costs that depend on the configuration of the robot 
when it arrives in the region. This allows a better interface 
to be established between the gross-motion planning and the 
fine-motion planning for increasing the overall efficiency of 
the assembly process. 

C. The Concept of an Assembly Mode 
The overall efficiency of a manufacturing facility can be 

improved if the gross-motion planning for assembly factors 
in more time-varying elements besides the ones considered 
so far. This includes, for example, the priorities and costs 
involved in the individual assembly motion subgoals. The 
priorities of a given operation in turn will be tied to the 
scheduling of the entire manufacturing facility as we will 
discuss in Section II-D. Thus, for the gross-motion planning, 
a useful concept for describing the current environment is 

w c c  region 
for pickup 
(e”cl0Sure) 

demnauon region 
far ““g 
(eontact) 

I V I  

Fig. 3. An example of (a) a source region and (b) a destination region, 
used for defining the gross-motion planning problem, while establishing good 
preconditions for fine-motion planning. 

Fig. 4. The abstract representation of the motion planning with the assembly 
in mode ( p , s , d , C / W ) ,  the last component being C when the robot is 
carrying the part and W otherwise. 

an assembly mode. An assembly mode represents assembly 
information that is not part of standard gross-motion planning, 
including information that ties it to scheduling and fine-motion 
planning. The operation of the assembly robot can then be 
described in terms of a finite set of the assembly modes. 
The robot could cause a switch to new assembly mode by 
arriving at a particular region in its configuration space. We 
refer to a particular assembly mode in terms of the four-tuple: 
( p ,  s, d ,  C/W).  This mode corresponds to the request that part 
Pp is to be transferred from source region s, to destination Dd 
(see Fig. 4). The fourth component indicates whether the part 
is being carried (C) by the robot or is waiting to be carried 
(W) .  We next discuss how the concept of assembly mode 
helps us define an important class of uncertainty in assembly 
involving time. 

D. Scheduling and the Assembly Process 

From the viewpoint of an individual workcell, the assembly 
process consists of a sequence of parthourceldestination re- 
quests issued by a scheduler. These requests must be serviced 
by the robot according to a scheduling policy thereby inducing 
a sequence of assembly modes. Further, in each assembly 
mode, a particular fine-motion strategy might be used to 
initially grasp the specified part, or to place the part in its goal 
position. In order for our new gross-motion planning approach 
to effectively optimize trajectories in an expected sense, the 
gross-motion planner must have some characterization of the 
anticipated behavior of the scheduling system in terms of 
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the sequencing of requests and the fine-motion plans that 
must be executed for each request. In this section, we give 
a brief overview of scheduling methods, and describe how the 
resulting behavior of an individual workcell can be viewed as 
a Markov chain of assembly modes. 

There have been many approaches to scheduling in large 
scale manufacturing systems. These range from heuristic meth- 
ods for global optimization (e.g., [26]), to relaxation-based 
global methods (e.g., [ 5 ] )  to distributed, real-time scheduling 
policies (e.g., [33], [29]). In this paper, we will assume that 
a distributed, real-time scheduling approach is used, since 
such approaches scale to arbitrarily complex manufacturing 
systems, including job shops, flow shops, and reentrant lines 
Wl. 

There are two primary concerns in designing a distributed 
scheduling system: system stability and system pedormance. If 
the system is not stable, the number of pending requests for a 
particular workcell may grow without bound, and as a result, 
the delay experie’nced by a part in the system may become 
unbounded. System performance is measured in terms of total 
throughput of the assembly system, both in terms of the mean 
delay experienced by a part in the system (cycle time) and the 
variance in the delay. The goal of a scheduling system is to 
optimize performance while ensuring overall system stability. 
One of the goals of our gross-motion planning system is to 
improve system performance (by increasing throughput), while 
preserving system stability, given a specific, stable scheduling 
policy. 

The overall manufacturing system can be characterized 
as a stochastic process. In particular, the behavior of each 
individual workcell can be characterized as a random process 
that is conditioned on the behavior of a finite set of neighbor- 
ing workcells. For example, in Fig. 1, the behavior of RC3 
depends only on the output of RC1, while the behavior of RC6 
depends only on the output of RC1 and RC3. We assume that 
a scheduler has been chosen that will lead to stability of the 
manufacturing system. Since the manufacturing system is a 
stochastic process, a scheduler will also behave stochastically. 
This in turn implies that the arrival of requests can be modeled 
as a stochastic process. The final process will be termed an 
assembly process, and is discussed in detail in the next section. 

let N R  E M ,  denote a special mode that represents the 
condition in which no requests are to be processed. We assume 
here that the scheduling is done separately, and at a given time 
only one request can be waiting. Hence there are 2 P S D  + 1 
assembly modes. This choice was made to allow an external 
system to perform the scheduling, since it might be difficult or 
impossible for a robot acting in a workcell to make appropriate 
scheduling decisions that can affect an entire assembly process. 
This assumption is certainly not required, and Section VI 
discusses the implications of considering multiple requests and 
allowing our system to alternatively perform the scheduling. 

In general, to uniquely identify all of the possible situations 
that can occur in our problem, a state space is defined as a 
subset of the Cartesian product, X C x M .  The assembly 
modes can be used to form a partition of the state space, X .  
Each time the assembly mode changes, the robot is forced 
into a different layer (or portion) of X .  The set of free 
configurations varies across different layers. Let Mw c M 
be the set of all modes such that a part is waiting to be picked 
up, and Mc c M be the set of of all modes such that the robot 
is carrying a part. If m = ( p ,  s, d ,  W )  E Mw, then 

C ~ e , = { q ~ C J A ( ~ ) n ( B u S 1 u . . . S  ,-, 
US,,l.~.SS) = 0} (1) 

in which d(q) denotes the robot at configuration q, and B 
denotes the static obstacle region (see [23]). In addition to 
avoiding collision with static obstacles, we also assume that 
the robot must avoid other source regions (this constraint can 
be removed for some applications). 

Suppose m = ( p , s , d , C )  E Mc, which implies that 
the robot is carrying some part, Pp. Let P(q) denote the 
transformed part, when grasped by the robot, which is at 
configuration q. As discussed in Section 11-A, when a part 
is being carried by the robot, the effect is that of the “new” 
robot described as d(q) U Pp(q).  Thus the free configuration 
space becomes 

‘Fee  = E C l ( 4 ~ )  U Pp(q))  
. n(B U S1 U . . U . . Ss) = 0). (2) 

The only remaining assembly mode on M is m = N R ,  in 
which 111. MATHEMATICAL MODELING 

In this section we develop the mathematical concepts that 
model the gross-motion planning for assembly as discussed so 
far. Section 111-A introduces the finite-state Markov process 
that is used to model the behavior of assembly modes, and the 
relationship of this process to the configuration space of the 
robot. Section 111-B defines state-feedback motion strategies. 
Section 111-C introduces source and destination regions in the 
robot’s configuration space that develop an explicit interface 
between the gross and fine motion planning for assembly 
through the definition of a performance criterion. 

A. Basic DeJinitions 
Let M denote the set of assembly modes, as discussed in 

Section 11-C. In addition to modes of the form ( p ,  s ,  d, C / W ) ,  

B. Controlling the Robot and the Assembly Process 
In this subsection we describe how motion commands 

are given to a robot, and how these commands influence 
both the configuration of the robot and the assembly mode. 
These concepts lead to the definition of a strategy, which 
characterizes a given behavior that will be implemented in 
the robot. 

We define a discretized representation of time by a set of 
stages, with an index k E { 1 , 2 ,  . . . , K } ,  and stage k refers 
to time ( k  - 1 ) A t .  We generally take At  sufficiently small to 
approximate continuous trajectories. This appropriately reflects 
a situation in which a real robot is limited to some sampling 
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rate for acquiring sensor information and executing motion 
commands. A final stage, K ,  is defined to preclude a special 
treatment of infinite stages, and in practice, Kat  can be 
considered as the total time that the robot is in operation. An 
explicit choice of K does not need to be made, which will be 
discussed in Section IV. An action (or command), u k ,  can be 
issued to the robot at each stage, k .  We let U denote the action 
space for the robot, while requiring that U k  E U. These actions 
can cause state transitions, which will be discussed shortly. 

The behavior of assembly modes is modeled with a discrete- 
time Markov process, called the assembly process, which 
accounts for the uncertainty in future modes. At stage k ,  
the probabilistic of the next assembly mode is given as 
P(mk+l  Ixk, uk), which generally depends on the current 
mode, mk, current configuration, q k ,  and the current action, 
U k .  Although the probabilities can be chosen to model a 
wide variety of stochastic processes, we have derived the 
probabilities from a few basic transition types. In practice, any 
other Markovian model could be substituted in our approach 
without additional difficulty. We have considered the following 
three types of probabilistic state transitions. 

1) The probability of receiving a p , s , d  request while in 

2) The probability that the destination will change to a new 

3) The probability that the source will change to a new 

The first transition type is the most fundamental, and can be 
generally expressed as P(mk+llmk = NR) 2 0 if mk+l E 
M,,,, and P(mk+llmk = NR) = 0, otherwise. The second 
transition type can be expressed as P(mk+l lmk E M c ) ,  which 
we allow to be nonzero only if mk and mk+l correspond 
to the same part and source. Ideally, the destination remains 
fixed, and P(mk+llmk E M c )  = 1 if mk+l = m k ,  and 
0 otherwise. Similarly, the third type can be expressed as 
P(mk+llmk E M,,,), which we allow to be nonzero for any 
value of mk+l E M .  Ideally, P(mk+llmk E M w )  = 1 if 
mk+1 = mk, and 0 otherwise. 

Any of these transition probabilities can be derived from an 
underlying Poisson process, which has been used extensively 
in the modeling of scheduling systems. The Poisson process is 
a reasonable choice for many problems because it captures 
several realistic properties: i) the probabilities that arrivals 
occur in two nonoverlapping time intervals are independent 
of each other; ii) the probability that an arrival will occur in 
an interval is proportional to the length of the interval; and 
iii) the probability that an arrival will occur in an interval 
becomes arbitrarily small if the interval is made sufficiently 
small. Let X denote a Poisson arrival rate. The density for the 
time of the first arrival is p( t , )  = XePxta. The probability that 
a transition will occur in time At is 

mode N R. 

destination while in a carrying mode. 

source while in a waiting mode. 

Thus, a choice of P results in an implicit choice of A. In 
many manufacturing systems, stochastic models are assumed 
to be given. If this assumption is not made, however, values 

for X can be estimated by merely observing the system for a 
period of time and collecting statistics. In particular, a Poisson 
frequency parameter, A, can be estimated by counting the 
number of arrivals in the assembly system, and dividing by 
the period of time over which this counting occurs. 

In addition to the three transitions listed earlier, there are 
several other key transitions that we model deterministically: 
from elements in M,,, to elements in Mc, and from elements in 
Mc to NR. Suppose that the robot has an action, F M P  E U, 
that represents fine-motion planning. To grasp or ungrasp a 
part, the robot can choose this action from state xk (causing 
the fine-motion operation to be performed), and the robot is 
retumed to our gross motion planning system in some state 

We assume that the fine-motion operation can only be 
performed to pick up a part when the robot has reached the 
correct source region, and to deliver a part when the robot has 
reached the correct destination region. We, have considered 
two alternative ways to map source and destination regions 
into the configuration space (and state space). 

Contact: In the workcell, the robot must only come into 
contact with the source (or destination) region to apply 
FMP,  
Enclosure: In the workcell, the robot must be completely 
contained in the source (or destination) region to apply 
FMP. 

When the action F M P  is executed, we assume that the 
assembly mode changes with probability one. At a source 
region, m k  = ( p , s , d , W )  changes to mk+l = ( p , s , d ,  C), 
and at a destination region, mk = ( p , s , d , C )  changes to 
mk+l = NR. Section VI discusses how the model can be 
extended for error-handling by defining failure modes in case 
F M P  is not satisfactorily executed. 

A state transition distribution is defined as P(xk+l l i c k ,  uk). 
This represents a probability distribution over a finite set of 
next states, given xk as the initial state, and an action uk. This 
relationship is probabilistic because the final component of the 
state vector (which corresponds to the assembly mode) cannot 
be completely predicted. Since the remaining components 
of the state space correspond to the configuration space of 
the robot, we assume that these can be predicted once xk 
and U k  are given. This implies that we have perfect control 
of the robot (i.e., the response of the robot to a given 
command is assumed to be executed by an exact, deterministic 
relationship). In addition, the use of xk in the conditional 
of the state transition distribution implies that the robot has 
perfect information regarding its current state. These choices 
were made to focus entirely on the most important form 
of uncertainty for assembly. Section VI, discusses how other 
forms of uncertainty can be incorporated into our approach. 

We present a state transition distribution that applies to the 
case in which C C g 2 ,  and the robot is limited to translational 
motion. More complicated motions will be considered in 
Section V, including modeling of a redundant manipulator. 
The motion of the robot could also strongly depend on the 
assembly mode; for example, the velocity bound, 1 1 ~ 1 1 ,  might 
depend on the part that the robot is carrying. We define the 

Xk+l. 
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action space as U = [0,27r) U (0, F M P } .  If uk E [ 0 , 2 ~ ) ,  
then A attempts to move a distance 1 1  w I I At toward a direction 
in C ,  in which ))w)) denotes some fixed speed for A. If U k  = 0, 
then the robot remains motionless. 

Consider the case in which xk E Cfree is at a distance of at 
least IlwllAt from the obstacles. If A chooses action uk # 0 
from state zk, then’ 

n 
destination region 

subassembly 

in which the assembly mode m k + l  is known to be sampled 
from P(mk+llxk,uk). If Uk = 0, then x k [ 1 ]  = xk+l[l] and 
xk[2] = zk+1[2]; however, mk+l is not necessarily equal 
to mk because the assembly transition equation determines 
mk+1. We prohibit the robot from considering actions that pro- 
duce an obstacle collision; however, one could also consider 
compliant or constrained motions [24], [31], [32], [40]. 

We now define the notion of a robot strategy for our context. 
A strategy at stage k of A is a function yk: x -+ U. For each 
state, xk, the function yk yields an action ‘uk = yk(xk). The 
set of mappings (71, yz, . . . , y ~ }  is denoted by y and termed 
a strategy. This is equivalent to a control law or policy in 
stochastic control theory [21]. For the examples that we present 
in this paper, yk will be the same for all k (i.e., each robot 
action depends only on the current state, and not the particular 
stage). In Section VI we discuss how assembly situations that 
require the yk to be a function of time may also be handled 
by extending our model. 

C. Evaluating Robot Pe$ormance 

functional 
This section describes how a strategy is evaluated. A loss 

K 

~ ( ~ 1 , ” ’ ~ 1 ( , ~ 1 , ” ’ , U K )  = x b ( x k , u k )  (6) 
k=l 

is defined in a form that is often used in stochastic control 
theory [21]. Each of the K terms corresponds to costs that are 
received at a single stage during the execution of the strategy. 
The ultimate goal of the planner is to determine an optimal 
strategy y* = {Ti, yz , . . . , y&} that causes L to be minimized 
in an expected sense.2 

A specific form for ZI, is now defined. Let z f ( x k )  denote 
the expected time to complete a fine-motion planning task 
(which results in a new assembly mode) by choosing the action 
uk = F M P  from state xk. Fig. 5 illustrates how the exact 
position where the motion planning “switches” from gross- 
motion planning to fine-motion planning effects the (expected) 
time to completing the fine operation. By accounting for this 
dependence we can improve the overall motion plan, especially 
when the time for fine-motion planning is significant as is 

‘ We use the notation X k  [PI  to refer to the r t h  element of the vector Zk . 
’The optimal solutions will technically exist in the closure of the free 

configuration space, as in [23] for a basic motion planning problem; however, 
we do not consider these topological issues since numerical computation is 
performed. 

Fig. 5. An example of the variation of the cost of the fine motion planning 
depending on the contact position with the destination region. Contact at A 
will give rise to a smaller expected time for mating compared to B. 

typical in assembly. Recall that xk simultaneously represents 
q k , p s ,  and d and C/W. If mk E Mw then Xf(xk)  represents 
the expected time to grasp the part. If mk E Mc then X f ( x k )  

represents the expected time for an ungrasp operation for the 
part (mating with a subassembly, machining, or some other 
fine motion). In general we have 

mk E N R  

{ :t otherwise. 
z l~(xk ,u l~)= t f ( x k )  U ~ C  = F M P  (7) 

The cost that is minimized for our problem thus becomes 
the aggregate of times that parts wait before being delivered. 
If there are no requests (i.e., mk = N R ) ,  then no penalty is 
received. To reduce the loss over a long period of time, the 
robot will prefer actions that bring the assembly mode back 
to N R  as quickly as possible. 

This loss functional can also be used to derive appropriate 
strategies when the source regions are disconnected. In terms 
of scheduling, having multiple disjoint source regions may be 
considered as an implementation of a buffer. The interpretation 
is that there are multiple locations from which a part can 
be picked up. The robot must make decisions that optimize 
the loss functional. Decisions of this nature do not affect 
the stability of the global scheduling algorithm since the 
corresponding constraints are not affected. 

Analogously, our framework can handle multiple disjoint 
destination regions. The interpretation of this is that to com- 
plete a given fine-motion planning task (e.g., mating) there 
could be disjoint regions in the configuration space that thus 
form the goal for the gross-motion planning. For example, 
see Fig. 6,  which shows the two directions from which the 
part can be inserted into the hole in the subassembly thus 
giving rise to two disjoint destination regions. In Section V, 
we show computed examples that contain disjoint sources and 
destinations. 

IV. COMPUTATIONAL SCHEME 

One of the primary advantages of our framework is that 
a straightforward computation procedure can be used to de- 
termine optimal strategies. In this section, we show how the 
principle of optimality can be applied to our problem to 
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subassembly 

region A I I region B 

Fig. 6. An example where the destination for the gross motion planning is 
split into two disjoint regions from where the fine motion of mating the part 
into the subassembly can occur. 

obtain solutions through dynamic programming, and discuss 
the related computational issues. 

A. Applying the Principle of Optimalio 

Suppose that for some k ,  the optimal strategy is known for 
each stage i E { k ,  . . . , K } .  The expected loss obtained by 
starting from stage k ,  and implementing the portion of the 
optimal strategy, { 7; , . . . , y& }, can be represented as 

K 

G ( . k )  = E  ~ l z ( X z , ~ : ( 2 % ) )  } (8) i,* 
in which E{ } denotes expectation. The expectation is taken 
over the possible assembly sequences, m. The function E;(xk) 
is sometimes referred to as the cost-to-go function in dynamic 
optimization literature [3]. 

The principle of optimality [21] states that zl(zk) can be 
obtained from (zk+l) by the following recurrence: 

f 

+ LC;+1(2k+l)P(2k+llXk,Uk) . (9) 
x k + l  1 

Note that the sum in (9) is taken over a finite number of states, 
which can be reached using (5). 

The goal is to determine the optimal action, 'ILk, for every 
value of L C ~ ,  and every stage k E { 1, . . . , K ) .  One can begin 
with stage K+l ,  and repeatedly apply (9) to obtain the optimal 
actions. At stage K + I, we declare that T>+,(ZK+~) = 0. 
The cost-to-go, E>,  can be determined from L;+, through 
(9). Using the UK E U that minimizes (9) at XK, we define 
y i ( ~ ~ )  = U K .  We then apply (9) again, using xk to obtain 
L K - 1  and $-,. These iterations continue until k = 1. 
Finally, we take y* = {y:, . . . , r&}. 

The loss function T;(X~) shares similarities with the con- 
cept of a global navigation function in motion planning [23], 
[34]. Also, different forms of dynamic programming have been 
successfully applied to many other motion planning problems 

- 
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[2], [15, 1381; for instance, the wavefront expansion method 
that is described in [23] can be viewed as a special form of 
dynamic programming. 

E.  Computational Issues 

In our implementation, we determine optimal strategies 
numerically, by successively building approximate represen- 
tations of through the use of (9). This offers flexibility, 
since analmcal solutions are very difficult to obtain for gross 
motion planning problems with this form of uncertainty, 
and have only been previously obtained by considering very 
specific cases [35],  [36]. Each dynamic programming iteration 
can be considered as the construction of an approximate 
representation of E;.  We decompose the state space into cells 
of uniform size; however, it is important to note the differences 
between the use of this decomposition in our context and 
the traditional use of decompositions in geometric motion 
planning. Our primary interest in using the decomposition is 
to construct a good approximation of the function E ; .  

We obtain the value for z*,(zk) by computing the right side 
of (9) for various values of uk, including uk = 0. Values 
of uk that cause collision are excluded from consideration. 
To increase computational performance, we compute a binary 
bitmap representation of the configuration space for each 
assembly mode. Such representations are fast and straightfor- 
ward to use [18]. Much of the configuration space is identical 
for different modes. For example, the static obstacles lead to 
the same C-space collision regions for N R  and all modes in 
M,. The value for L;(zk) is obtained by linear interpolation 
between neighboring cells. This significantly reduces the level 
of resolution that must be considered. Other schemes, such 
as quadratic interpolation, can be used to further improve 
numerical accuracy [22]. 

After some finite number of iterations, for every state, 
the optimal action becomes fixed with respect to additional 
iterations. The resulting optimal strategy is considered sta- 
tionary, since it only depends on the state, as opposed to 
additionally requiring the stage index. Note that no choice 
of K is necessary as long as it is larger than the number of 
iterations involved in the convergence. Also, at each iteration 
of the dynamic programming algorithm, we only retain the 
representation of while constructing E;.  

To execute a strategy, final cost-to-go representation (called 
L,) is used. The robot is not confined to move along the 
quantization grid that is used for determining the cost-to- 
go functions. The optimal action can be obtained from any 
real-valued location 2 E X though the use of (9), linear 
interpolation, and the approximate representation of LT. A 
real-valued initial state is given (the final component represents 
the assembly mode, and is an integer). The application of the 
optimal action will yield a new real-valued configuration for 
the robot. 

To evaluate computational performance, there are two 
phases to consider: determination of the optimal strategy and 
execution of the optimal strategy. The iterated dynamic pro- 
gramming computations are performed off-line to determine 
the optimal strategy. The time complexity is linear in both the 

-* 
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sourca 1 Source 2 iili 
Problem 1 Problem 2 

Problem 3 Problem 4 
Fig. 7. 
planning is given in the text. 

Four problems involving a rigid robot, several parts, source regions, and destination regions. The details of the model used for gross-motion 

number of quantized points and the assembly modes; however, 
it is exponential in the dimension of the state configuration 
space, as is typically the case for approaches to basic motion 
planning problems that do not involve uncertainty (see [23]). 
For problems in two-dimensional configuration space, this 
off-line computation takes a couple of minutes, while three- 
dimensional configuration-space problems take a few hours. 
These times correspond to a prototypical implementation 
of the planner on a standard SPARC 10 workstation. We 
typically use about 50 cells per dimension of the configuration 
space. Significant improvement of these off-line computations 
can be obtained through additional code optimization and 
parallelization; however, these implementation issues are 
beyond the focus of this research. 

The online execution of the optimal strategy proceeds very 
quickly. For each stage, a single evaluation of the dynamic 
programming equation is performed to yield the optimal 
action. This computation is on the order of a few milliseconds, 
and is therefore quite reasonable for practical applications. 

v. SOLUTIONS FOR SPECIFIC ASSEMBLY SITUATIONS 

In this section we present computed solutions for six differ- 
ent problems that involve the transfer of parts in a workcell for 
assembly. The problems are chosen to illustrate the flexibility 

and generality of our approach. The first four problems involve 
a rigid robot in the workcell. The rigid robot could be the 
representation of the end-effector that is relevant for gross- 
motion planning. Examples of industrial robot systems for 
which the results could be applied (by considering only the 
relevant joints) are the SCAM-type robots, e.g., AdeptOne of 
the Adept Technology Inc. or a Cartesian robot, e.g., the IBM 
7565 robotic system. The final two problems involve three- 
link articulated-manipulators, for which optimal strategies are 
derived directly on the joint space. The three-dimensional con- 
figuration space used in the examples has the same complexity 
as the first three joints of a PUMA-type robot or a SCARA- 
type robot [30]. This section concludes with a discussion of 
the benefits that were observed in our simulations. 

A. Rigid-Robot Simulations 

I )  Problem I :  The first example is designed to illustrate 
many of the basic concepts. It involves a rigid robot that 
translates in a planar workcell cluttered with obstacles (see 
Fig. 7). There are two different parts that can be moved from 
either of two sources to either of two destinations. There are 
consequently 17 possible assembly modes. The probability that 
a request will appear at stage k + 1 while mk = N R  is given 
to be 0.05. All the p ,  s, d combinations are equally likely to 
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Fig. 8. 
field for e = ( l , l , l , W ) ;  (d) the optimal actions for e = ( l , l , l ,C ) .  

(a) Level-set contours of the cost-to-go function for e = (1,1,1, W ) ;  (b) the contours for e = (1,1,1, C); (c) the optimal actions as a vector 

occur. We assume that once a p , s , d  combination is given 
to the robot, it will not change or be retracted until part p is 
delivered to destination d. The robot moves with llvllQt = 3.0 
under (5) ,  with workcell being 100 units square. 

Fig. 8(a) and (b) depict the level-set contours of the cost- 
to-go function, LT(z1) for assembly modes (1,1,1, W )  and 
(1,1,1, C ) ,  respectively. In Fig. S(a) there is a minimum at 
the first source region, and in Fig. 8(b) a minimum appears at 
the destination region. For translational motion, the negative 
gradient of the cost-to-go function represents the direction 
of motion of the robot. Hence, the cost-to-go function is 
similar to a numerical navigation function [191, [23], 2341. 
Fig. S(c) and (d) depict the optimal strategy y* for assembly 
modes (1,1,1, W )  and (1,1,1, C ) ,  respectively. The direction 
of each arrow indicates the direction of motion (specified as 
uk = r * ( z k ) )  for the robot, from that particular state. The 
motion directions are shown at fewer state locations than 
appear in the machine implementation to add clarity to the 
figure. The places in which there are no arrows correspond to 
configurations in which the robot (or possibly the part) is in 
collision with a static obstacle. 

Fig. 9 presents a simulation of the robot in the workcell 
over a period of time, under the implementation of y*. The 

beginning of the trajectory is depicted in Fig. 9(a), and it 
concludes in Fig. 9(i). To save space in the figure, many 
frames are superimposed, and a new picture is shown only 
when the assembly mode changes. The first column of Fig. 9 
corresponds to execution during the N R  mode. The second 
column corresponds to modes in M,, and the final column 
corresponds to modes in M,. In the last two columns, the 
source and destination regions that correspond to the issued 
request are shaded. In the final column, the part that is 
carried by the robot is shaded in black. There are at least 
two interesting behaviors to note in this solution. When the 
assembly mode is N R ,  the robot moves to a location in the 
lower portion of the workcell. This behavior naturally occurs 
through the optimization of the criterion. It is best for the robot 
to wait near sources while there are no requests, to reduce 
the expected time to deliver a part that might appear. This 
corresponds to reducing the setup time in a scheduling system, 
and is hence a preferred behavior for the robot. Another 
behavior to note is how the changing geometry affects the 
trajectory of the robot. In Fig. 9(b) and (d) the robot does 
not carry a part, and hence is able to move through a narrow 
opening. However, in Fig. 9(c) the robot carries a part, and 
consequently must take a longer route to reach the destination. 
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For the remaining problems in this section, we will show 
figures that indicate the sample path under the implementation 
of the optimal strategy, and are similar to Fig. 9. 

2 )  Problem 2: This example (Fig. 7) involves a translating 
robot in which there are 6 parts, 4 sources, and 3 destinations. 
In addition, Destination 1 has two disconnected components, 
and the robot must choose the best delivery point to reduce 
loss. For this problem there are 72 different kinds of requests 
(which are equally likely to occur), which results in 145 
assembly modes. Fig. 10 shows a sample of the execution 
under y*. Note the behavior of the robot with respect to the 
disconnected components of the Destination 1. At the start of 
the time period captured in Fig. 10(h), the robot receives a 
request to move Part 6 from Source 3 to Destination 1. The 
robot picks up the part from Source 3, and chooses to deliver it 
to the lower component of the Destination 1 (Fig. lO(i)). This 
behavior was based on the computation of the optimal strategy 
for that particular position of the robot in the N R  mode. 

3) Problem 3: In the previous two examples, the robot 
was only allowed to translate. This helped in illustrating the 
solution in greater detail for Problem 1 and in allowing us 
to study a more complex assembly situation involving fairly 
large number of assembly modes in Problem 2. In Problem 
3 we additionally allow the robot to rotate, thus making the 
state space three-dimensional. This example (Fig. 7) involves 
an assembly situation in which there is a rotating robot, 1 part, 
2 sources, and 2 destinations. We must update (5) to model the 
rotational motion of the robot. We assume that the robot can 
rotate in place, or translate along its axis of orientation. Other 
motion models (such as nonholonomic, radius-constrained 
motion) that are compatible with the framework presented 

in this work can be found in [25]. Fig. 11 shows a sample 
of the execution under y*. Because the manner in which the 
obstacles are arranged and because the part that the robot could 
carry is large relative to the opening, the optimal position of 
the robot in the N R  mode (Fig. ll(a)) is important since it 
can significantly affect the carrying time when the request 
arrives. In this problem there are 4 possible request ( p ,  s, d 
combinations) and 9 assembly modes. 

4) Problem 4: In all the three problems discussed so far, 
the stochastic model of the assembly process was defined in 
terms of the transition probabilities from the N R  mode of 
the robot. In Problem 4 we discuss an alternative stochastic 
model that defines the transition probabilities with respect 
to the destination regions (as discussed in Section 111-B). 
The specific feature that this model induces on the behavior 
of the robot is its ability to change destinations while it 
is already carrying a part. Problem 4 (Fig. 7) considers an 
assembly situation involving a translating robot with 2 parts, 
1 source, and 3 destinations. For this problem, the destination 
is allowed to change while the robot is carrying a part. The 
probability that the destination will change in a given stage 
is 0.02. The probability for changing to each of the other two 
destinations is 0.01. The robot models the changing destination 
probabilistically as discussed in Section 111-B. Fig. 12 shows 
a sample of the execution under y*. The destination changes 
during execution depicted in Fig. 12(c) and (g). In both cases, 
the robot immediately responds by delivering the part to the 
new destination. This kind of assembly situation can arise 
when there is online monitoring of the assembly process and 
the robot has access to the current demand at a particular 
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A simulation result under the implementatlon of the optimal strategy 
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Fig. 12. 
Y* for Problem 4. 

A simulation result under the implementation of the optimal strategy 

destination at any given time. For example, suppose the same 
part is needed by two destination regions D1 and 0 2  at a 
given time. The scheduler schedules the part to be delivered 

to D1, but due to an error there is a delay in its previous 
operation and D1 is not ready for that part while the robot is 
in the process of carrying it. This would be detected by online 
plan monitoring and the part rescheduled to arrive at 0 2 .  The 
probabilistic modeling of such an assembly situation helps in 
improving the gross-motion planning. 

B. Articulated-Manipulator Simulations 

In this section we consider motion planning for three- 
link articulated manipulators performing assembly operations. 
Several additional concerns must be addressed that pertain to 
collision detection of the whole arm and the state transition 
distribution. To define the source and destination regions in the 
configuration space, we only consider the end-effector of the 
robot. This is a reasonable choice since fine-motion planning 
essentially would involve only the end-effector along with the 
part that it could be carrying (see Section 111-A). 

We define the motion strategies directly in terms of the joints 
(that can be independently controlled), instead of considering 
their representation in the workspace. The collision detection 
for the articulated arm in our implementation is done in terms 
of the coordinate space of the workcell. For the examples 
that we consider, the planar robot manipulator has redundant 
degrees of freedom. This is due to the fact that even though the 
robot has three degrees of freedom, the source and destination 
regions lie in the plane. 

5) Problem 5: For the first manipulator problem, there are 
two parts, two sources, and two destinations (see Problem 5 in 
Fig. 13). There are three links that move in the plane, and an 
end-effector that always maintains the same orientation. The 
figure can be considered as a side view of a problem in which 
objects are to be moved from trays that exist at different levels. 
There are joint limits that prevent the joints from executing a 
circular motion. Fig. 14 shows a sample of the execution. The 
third column shows the part being "carried" to the destination 
region, and the transition to fine-motion planning occurs when 
the end-effector contacts the destination region. 

6) Problem 6: For the second manipulator problem, there 
are one part, two sources, and four destinations (see Problem 
6 in Fig. 13). One of the sources has two disconnected 
components. There are three links that move in the plane. The 
problem can be considered as a top view of a workspace in 
which objects are to be moved between locations on a planar 
surface. There are fixed limits for each joint. Fig. 15 shows 
a sample of the execution. Note the behavior of the robot 
induced by the fact that there are two disconnected components 
for the Source 1. Thus every time a request arrives involving 
Source 1, the motion of the robot varies depending on its 
current position and the destination region which is also part 
of the request. For example, in the segment of its execution 
captured in Fig. 15, there were two requests involving Source 
1 (seen in terms of the shaded regions of Fig. 15(e) and (h)). 
For the first such request (second row), the robot chooses to 
pick the part from the upper component of Source 1, although 
it was nearer to the lower component of Source 1 when the 
request arrived. This was due to the fact that the corresponding 
destination was nearer to the upper component. In the other 
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Problem 5 Problem 6 
Fig. 13. Two assembly planning problems involving articulated manipulators with three links. The details of the model used for gross-motion planning 
is given in the text. 

(g) (h) ( 9  
Fig. 14. 
y* for Problem 5 .  

A simulation result under the implementation of the optimal strategy 

two cases involving Source 1 (see the third and fourth rows 
of Fig. 15), the robot chose the lower component instead. 

C. Concluding Remarks on Simulation Studies 
In the simulation experiments, we repeatedly observed be- 

haviors that indicate the improvement in expected performance 
over planning for each request as it arrives. The assembly 
process allows partial prediction of future requests to occur. 
The strategies obtained by our computational approach op- 
timally incorporate this predictive information. Most of the 
savings due to partial prediction occur when mk = NR.  
During this mode, the robot moves to certain locations in 

(g) (h) (0  

Fig. 1.5. 
y* for Problem 6.  

A simulation result under the implementation of the optimal strategy 

the workcell in anticipation of future requests. In a particular 
instance, the robot might make a poor prediction about where 
the next source will be; however, on average the robot is 
guaranteed to exhibit the time-optimal behavior. 

Several of the computed examples clearly illustrate the 
benefits due to prediction. Fig. 9(a), (d), and (8) shows motions 
that occur while m k  = NR.  In each case the robot was 
much closer to the future requested source than it would 
have been without this anticipatory motion. In comparison 
with the case when such anticipatory motion is absent, the 
improvement in performance (measured in stages) is nearly 
equal to the number of stages that occurred while m h  = N R .  
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One might alternatively consider defining heuristics for the 
behavior of the robot; however, our strategies are selected 
automatically and guaranteed to yield the best performance 
in the expected sense. Several other computed examples show 
similar behaviors; see Figs. ll(a) and 14(d). While improving 
the expected performance of the individual robot cell, these 
optimal motions can be an important factor in maintaining 
the stability of the entire manufacturing plant (as discussed in 
Section 11-D). 

VI. EXTENSION TO OTHER ASSEMBLY SITUATIONS 

Apart from the specific assembly situations presented, our 
framework is capable of representing a larger class of motion 
planning problems, making it applicable to more assembly 
situations. In this section we discuss some of these applications 
and the modifications to the model that would be necessary to 
the handle these extensions. 

1) Time-Varying Models of the Assembly Process: The 
motion strategies that have been considered in Section V are 
stationary in the sense that the optimal robot actions depend 
only on the state. The optimal strategy for the robot does 
not depend on time since the model components such as 
the state transition distribution, or the environment transition 
probabilities, do not depend on the particular stage index, 
k E { 1, . . . , K } .  However, the model components can be 
allowed to vary over time. This affords the opportunity to 
model many interesting problems. For example, by allowing 
the assembly mode transition probabilities to vary, many 
more statistical processes can be modeled. For instance, if 
the demand arrival varies according to the stage of some 
other process in the assembly plant, this can be factored 
into the motion optimization to improve the performance of 
the assembly cell. Another possibility is to let the source or 
destination region move over time as would be true if the 
assembly part is actually on a conveyor belt (Fig. 16) that 
moves with a constant known velocity. In this case, the robot 
must “intercept” the moving source or destination region as a 
terminating condition for the gross-motion planning. In fact, 
in such a situation, the consideration of fine-motion planning 
(see Section 111-C) may be even more important than the 
case with stationary sourceldestination regions. The trade- 
off, however, is that since the optimal strategy depends on 
stages, more storage is required. There would be a state-space 
mapping for each stage, which is at least reasonable for two- 
dimensional configuration space problems, given the current 
implementation. The space requirements could be significantly 
reduced if the initial state is known, because at certain stages 
many portions of the state space will never be reached. 

2 )  Processing Simultaneous Requests: As stated in 
Section 111, we decided to consider only the arrival of a 
single request at a time, with the assumption that a global 
scheduler that was external to the workcell provided the 
requests. We can alternatively process simultaneous requests, 
and plact: the scheduling burden on the robot. This requires 
defining additional assembly modes that correspond to 
various combinations of requests. The loss functional for 
this extension can be defined in a number of ways. One 
reasonable way is to assign one unit of loss for each waiting 
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Fig. 16. 
mated to subassemblies on conveyor belts. 

Motion planning for assembly when parts are picked up from and 

part that has not yet been delivered during the current stage. 
This will force the robot to clear the requests as quickly as 
possible, while making decisions about the order of delivery 
partly on the basis of the geometry of the motion planning 
problem. Under this condition, the computational approach 
remains the same, while the robot additionally performs the 
scheduling. One implication of this choice, however, is that 
the most appropriate ordering of part deliveries for the robot 
might not necessarily correspond to the most appropriate 
ordering for the manufacturing system. For example, certain 
parts might be more urgent than others due to other modules 
in the manufacturing process, which can only be inferred by 
a more global analysis. 

3) Assembly with Failure Modes: Another interesting ex- 
tension of the model would be for a situation in which 
failures could occur in the assembly operation. Such failures 
could arise, for example, in machining a part when a preset 
specification is not met. A subassembly that was supposed to 
be built might fail because a part breaks or has unacceptable 
dimensions. Failures of this type can be represented in terms of 
additional assembly modes and incorporated into our motion 
planning scheme. The robot would then respond optimally 
to the failures, under an appropriate probabilistic model of 
failures. 

4)  Incorporating Other Forms of Uncertainty: In this pa- 
per we have focused primarily on the form of uncertainty 
in assembly involving time since this can play a key role in 
the efficiency of gross motions. The positional and control 
uncertainty associated with the robot are more relevant in the 
final stages of the assembly, i.e., for fine-motion planning. 
However, other forms of uncertainty can be factored into the 
same probabilistic approach. In fact, the framework presented 
here can facilitate such a combination. As a first step toward 
this combination, we incorporated the expected costs involved 
in the fine-motion planning (see Section 111-C) for evaluating 
the performance of gross motions. However, the uncertainty 
involved in fine-motion planning can be included directly into 
the model. A treatment of additional forms of uncertainty in 
fine-motion planning (position and control uncertainty) that is 
compatible with our treatment of the uncertainty with respect 
to time is reported in [24]. 
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