
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 2, APRIL 1996 160

obot Motion Strategies
odds of the Assem

Rajeev Sharma, Member, IEEE, Steven M. LaValle, and Seth Hutchinson, Member, IEEE

Abstract- Gross-motion planning for assembly is commonly
considered as a distinct, isolated step between task sequenc-
ingscheduling and fine-motion planning. In this paper we for-
mulate a problem of delivering parts for assembly in a manner
that integrates it with both the manufacturing process and the
fine motions involved in the final assembly stages. One dis-
tinct characteristic of gross-motion planning for assembly is the
prevalence of uncertainty involving time-in parts arrival, in
request arrival, etc. We propose a stochastic representation of
the assembly process, and design a state-feedback controller that
optimizes the expected time that parts wait to be delivered.
This leads to increased performance and a greater likelihood
of stability in a manufacturing process. Six specific instances of
the general framework are modeled and solved to yield optimal
motion strategies for different robots operating under different
assembly situations. Several extensions are also discussed.

I. INTRODUCTION

ODERN manufacturing systems are confronted with
planning problems at many scales, ranging from long-

term production control, which deals with entire factories and
time scales on the order of weeks, or even years, to fine-
motion planning, which deals with individual robot assembly
operations. Fig. 1 illustrates a typical manufacturing system.

At the highest level, planning problems (usually called
scheduling problems at this level) address the flow of parts
through the assembly system. Production control determines
what the assembly plant should be producing from, for exam-
ple, month to month [6], [20], [39]. Given a set of production
goals, the shop scheduler is given the task of determining how
each robot cell will respond as parts arrive at its input buffers
[5], [26], [29], [33]. For example, in Fig. 1, workcell RC5
receives parts from the three workcells RC2, RC3, and RC6,
as well as some parts that are directly fed to RC5 as input to
the assembly system (i.e., parts P4, P7, P8, P9, P10, and P11).
It is the task of the shop scheduler to determine the order in
which workcell RC5 will process these parts.

Manuscript received November 1, 1994; revised June 23, 1995. This work
was supported in part by the National Science Foundation under Grant IRI-
9216428 and the Energy Power Research Institute (EPRI) under Contract RP
8030-14.

R. Sharma and S. Hutchinson are with the Beckman Institute for Advanced
Science and Technology, University of Illinois, Urbana, IL 61801 USA.

S. M. LaValle is with the Department of Computer Science, Stanford
University, Stanford, CA 94305 USA.

Publisher Item Identifier S 1042-296X(96)02537-2.

, (P4. P7. P8, P9, P10, PI I)

Fig. 1. An assembly plant with multiple robot cells. P’s are the parts, B’s
are the subassemblies, A’s are the assemblies, and RC’s are the assembly
robot workcells.

At a lower level, each workcell confronts a number of
more specialized planning problems [l 11. Fig. 2 provides a
more detailed, stylized view of an individual robot workcell.
A sequence planner determines constraints on the order in
which the robot will perform assembly operations [7], [14],
[13], 1161, [27], [42]. A gross-motion planner constructs the
trajectories that the robot will execute in performing the tasks
[23]. And, finally, a fine-motion planner determines robust,
local strategies for the assembly operations, that are guaranteed
to succeed, even in the presence of significant uncertainty [9],
[lo], [28]. Most often, as illustrated by the work cited above,
each of these planning problems is treated in isolation.

In this paper, we take a first step toward integrating several
levels of planning within a unified framework. In particular,
we consider the problem of optimal gross-motion planning for
a robot in an individual assembly cell, within the larger context
of a full manufacturing environment. In the past, gross-motion
planning has been treated as either a purely geometric problem
(e.g., plan motion from point a to point b, avoiding collision

1042-296X/96$05.00 0 1996 IEEE

SHARMA ef al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 161

B8 B1 B2

E=====?

P1 P2 p3 A1 ’

Fig. 2. The mooon planning problem in the robot workcell RCI, for multiple
assembly from multiple components, with the robot R1 and the additional
obstacles 01, 02, and 03.

with obstacles), or as an optimal control problem (e.g., find the
time-optimal, or minimum energy path between point a and
point b) . In either case, the context in which the gross motion
commands wiIl be executed is ignored. In particular, motions
are initiated at the request of a higher-level scheduling system,
and at the end of the gross motion, a fine motion assembly
operation is performed.

If all aspects of the manufacturing system behaved deter-
ministically, we could, in principal, treat gross-motion plan-
ning as a path optimization problem: derive the optimal path to
move the parts from their initial positions to their destinations,
on a schedule given a priori by the scheduler. However,
real manufacturing systems are not deterministic. There is
uncertainty in parts arrival time, position and orientation
of parts to be manipulated, robot control, dimensions of
manufactured parts, etc. Therefore, a reasonable goal of gross-
motion planning would be to optimize the average or expected
performance over time.

We characterize the problem of gross-motion planning for
assembly as follows. A scheduler issues requests to the robot
to grasp a particular part from a specified source, and to
deliver the part to a specified destination. A priori, the only
information regarding how these requests will be issued, is in
the form of a probability distribution on the set of possible
part/source/destination requests. Because a fine-motion plan
will often follow the execution of the gross motion, a source or
destination is typically not specified as a single configuration,
but is specified as a subset of the configuration space (which
could in general be disconnected). The gross-motion planning
problem is to derive a set of motion strategies that will produce
optimal throughput of the assembly cell, in an expected sense.

Our gross-motion planning technique handles the stochastic
nature of the assembly system by expanding the concept
of planning in a configuration space that is combined
with a Markov chain of modes. Each combination of
partlsourceldestination request corresponds to a distinct

assembly mode. In general each distinct manipulation that
the robot performs (e.g., grasping a part, moving a part
across the workcell) potentially changes the motion model
or geometric model for the robot in its workcell. By using
these concepts, we are able to optimize over a discrete set
of possible state spaces, each corresponding to a unique
combination of configuration space and assembly mode.

An important feature of our approach is the use of motion
strategies. In classical geometric robot motion planning ap-
proaches, the output is usually a “motion plan” for a given
description of the robot’s configuration space, the initial,
and the goal positions. When unpredictable changes occur
in the workcell, dynamic replanning is often used. This has
been used, for example, in the context of error-detection and
recovery [SI, and task-level reasoning [121. Alternatively, a
fixed command might be given to the robot, and local collision
avoidance would be performed to handle unexpected aspects
of the environment [43]. In the probabilistic framework that
we propose, a motion strategy provides a motion command
for the robot for each contingency that might confront it.
This motion strategy can be considered as a state-feedback
stochastic controller [21] on a state space that simultaneously
considers the assembly mode and the robot configuration.
Replanning is not needed when the assembly mode changes,
because the robot responds appropriately in different regions of
the state space during execution. In addition, a state-feedback
controller is advantageous since it will typically be robust
to small modeling errors that can develop during execution
[19], [4]. To select a motion strategy, we formulate an explicit
performance criterion (or loss functional) that evaluates a
trajectory executed by the robot. This allows a variety of
factors, such as time, distance, or energy, to be optimized
through the selection of a strategy.

The rest of the paper is organized as follows. Section I1
motivates the work by describing the specific features of
gross-motion planning that are unique to assembly. Section 111
develops the mathematical model for the desired elements
of assembly while Section IV gives a computational scheme
based on dynamic programming that determines optimal robot
motion strategies. Section V presents a variety of specific
assembly situations in which the model and computational
technique is applied to obtain the optimal motion strategies.
Section VI discusses some applications and generalization of
the technique to other assembly situations.

11. BACKGROUND AND PROBLEM DESCRIPTION

In this section we consider those aspects of the gross-
motion planning that are specific to the assembly situation.
The discussion provides the basis for the models introduced
in Section 111.

A. Gross-Motion Planning with Changing
Geometry and Motions

A robot is assumed to operate in a workcell, W . In ad-
dition to static obstacles, the workcell contains a set of S
source regions, denoted by {SI, . . . , Ss} , and D destination
regions, denoted by { D1, . . . , DD}. Let { P I , . . . , T’p} denote

162 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

a collection of P rigid parts. At various points in time, the
robot will be requested to deliver some part from a source to
destination. One important aspect in this problem is to establish
the mapping from the w e c e l l , W , to the configuration space,
C, of the robot. A standard gross-motion planning task is to
determine a configuration-space path yhoSe image lies in the
space of collision-free configurations, Cfree [23].

When the robot is carrying a part or subassembly, the
effective shape of the robot and load ensemble changes. Thus
for each part P, that the robot carries, the free configuration
space is different. This concept of “changing” configuration
space is an important aspect of the formulation of the motion
planning problem as part of the assembly process. Related
issues have been studied in the context of motion planning
with movable obstacles [ll, E411.

In addition to the geometric changes, the dynamics of the
robot could change during the different stages of the assembly
process due to the variation in loads [37]. Thus it is useful to
incorporate the resulting changes into a motion planner. The
models presented in Section I11 permit changes in the robot
motion equation by allowing for different velocity commands
for different parts to be manipulated.

B. Preconditions for Fine-Motion Planning

The initial and final stages of moving a part for assem-
bly involve fine-motion planning. During these stages the
clearances between parts becomes significant relative to the
uncertainties involved (e.g., [SI, [9], [28]); hence sensing (e.g.,
force or torque sensing [171) becomes an important part of the
motion strategy. For gross-motion planning the usual approach
is to ignore the fine-motion plan and consider the task of
moving the robot between two points in its configuration
space. Instead of defining a point-to-point motion goal, we
allow the goals to be regions in the configuration space for
both the grasp and ungrasp operations, based on relationships
between the robot, the part, and the subassembly. Fig. 3 shows
an example of a source region and a destination region with
respect to which appropriate initial and goal conditions for the
gross-motion planning will be defined. In Section IJI-C we
formalize these concepts to include generalizations such as
disconnected source and destination regions, and fine-motion
planning costs that depend on the configuration of the robot
when it arrives in the region. This allows a better interface
to be established between the gross-motion planning and the
fine-motion planning for increasing the overall efficiency of
the assembly process.

C. The Concept of an Assembly Mode
The overall efficiency of a manufacturing facility can be

improved if the gross-motion planning for assembly factors
in more time-varying elements besides the ones considered
so far. This includes, for example, the priorities and costs
involved in the individual assembly motion subgoals. The
priorities of a given operation in turn will be tied to the
scheduling of the entire manufacturing facility as we will
discuss in Section II-D. Thus, for the gross-motion planning,
a useful concept for describing the current environment is

w c c region
for pickup
(e”cl0Sure)

demnauon region
far ““g
(eontact)

I V I

Fig. 3. An example of (a) a source region and (b) a destination region,
used for defining the gross-motion planning problem, while establishing good
preconditions for fine-motion planning.

Fig. 4. The abstract representation of the motion planning with the assembly
in mode (p , s , d , C / W) , the last component being C when the robot is
carrying the part and W otherwise.

an assembly mode. An assembly mode represents assembly
information that is not part of standard gross-motion planning,
including information that ties it to scheduling and fine-motion
planning. The operation of the assembly robot can then be
described in terms of a finite set of the assembly modes.
The robot could cause a switch to new assembly mode by
arriving at a particular region in its configuration space. We
refer to a particular assembly mode in terms of the four-tuple:
(p , s, d , C/W). This mode corresponds to the request that part
Pp is to be transferred from source region s, to destination Dd
(see Fig. 4). The fourth component indicates whether the part
is being carried (C) by the robot or is waiting to be carried
(W) . We next discuss how the concept of assembly mode
helps us define an important class of uncertainty in assembly
involving time.

D. Scheduling and the Assembly Process

From the viewpoint of an individual workcell, the assembly
process consists of a sequence of parthourceldestination re-
quests issued by a scheduler. These requests must be serviced
by the robot according to a scheduling policy thereby inducing
a sequence of assembly modes. Further, in each assembly
mode, a particular fine-motion strategy might be used to
initially grasp the specified part, or to place the part in its goal
position. In order for our new gross-motion planning approach
to effectively optimize trajectories in an expected sense, the
gross-motion planner must have some characterization of the
anticipated behavior of the scheduling system in terms of

SHARMA et al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 163

the sequencing of requests and the fine-motion plans that
must be executed for each request. In this section, we give
a brief overview of scheduling methods, and describe how the
resulting behavior of an individual workcell can be viewed as
a Markov chain of assembly modes.

There have been many approaches to scheduling in large
scale manufacturing systems. These range from heuristic meth-
ods for global optimization (e.g., [26]), to relaxation-based
global methods (e.g., [5]) to distributed, real-time scheduling
policies (e.g., [33], [29]). In this paper, we will assume that
a distributed, real-time scheduling approach is used, since
such approaches scale to arbitrarily complex manufacturing
systems, including job shops, flow shops, and reentrant lines
Wl.

There are two primary concerns in designing a distributed
scheduling system: system stability and system pedormance. If
the system is not stable, the number of pending requests for a
particular workcell may grow without bound, and as a result,
the delay experie’nced by a part in the system may become
unbounded. System performance is measured in terms of total
throughput of the assembly system, both in terms of the mean
delay experienced by a part in the system (cycle time) and the
variance in the delay. The goal of a scheduling system is to
optimize performance while ensuring overall system stability.
One of the goals of our gross-motion planning system is to
improve system performance (by increasing throughput), while
preserving system stability, given a specific, stable scheduling
policy.

The overall manufacturing system can be characterized
as a stochastic process. In particular, the behavior of each
individual workcell can be characterized as a random process
that is conditioned on the behavior of a finite set of neighbor-
ing workcells. For example, in Fig. 1, the behavior of RC3
depends only on the output of RC1, while the behavior of RC6
depends only on the output of RC1 and RC3. We assume that
a scheduler has been chosen that will lead to stability of the
manufacturing system. Since the manufacturing system is a
stochastic process, a scheduler will also behave stochastically.
This in turn implies that the arrival of requests can be modeled
as a stochastic process. The final process will be termed an
assembly process, and is discussed in detail in the next section.

let N R E M , denote a special mode that represents the
condition in which no requests are to be processed. We assume
here that the scheduling is done separately, and at a given time
only one request can be waiting. Hence there are 2 P S D + 1
assembly modes. This choice was made to allow an external
system to perform the scheduling, since it might be difficult or
impossible for a robot acting in a workcell to make appropriate
scheduling decisions that can affect an entire assembly process.
This assumption is certainly not required, and Section VI
discusses the implications of considering multiple requests and
allowing our system to alternatively perform the scheduling.

In general, to uniquely identify all of the possible situations
that can occur in our problem, a state space is defined as a
subset of the Cartesian product, X C x M . The assembly
modes can be used to form a partition of the state space, X .
Each time the assembly mode changes, the robot is forced
into a different layer (or portion) of X . The set of free
configurations varies across different layers. Let Mw c M
be the set of all modes such that a part is waiting to be picked
up, and Mc c M be the set of of all modes such that the robot
is carrying a part. If m = (p , s, d , W) E Mw, then

C ~ e , = { q ~ C J A (~) n (B u S 1 u . . . S ,-,
US,,l.~.SS) = 0} (1)

in which d(q) denotes the robot at configuration q, and B
denotes the static obstacle region (see [23]). In addition to
avoiding collision with static obstacles, we also assume that
the robot must avoid other source regions (this constraint can
be removed for some applications).

Suppose m = (p , s , d , C) E Mc, which implies that
the robot is carrying some part, Pp. Let P(q) denote the
transformed part, when grasped by the robot, which is at
configuration q. As discussed in Section 11-A, when a part
is being carried by the robot, the effect is that of the “new”
robot described as d(q) U Pp(q). Thus the free configuration
space becomes

‘Fee = E C l (4 ~) U Pp(q))
. n(B U S1 U . . U . . Ss) = 0). (2)

The only remaining assembly mode on M is m = N R , in
which 111. MATHEMATICAL MODELING

In this section we develop the mathematical concepts that
model the gross-motion planning for assembly as discussed so
far. Section 111-A introduces the finite-state Markov process
that is used to model the behavior of assembly modes, and the
relationship of this process to the configuration space of the
robot. Section 111-B defines state-feedback motion strategies.
Section 111-C introduces source and destination regions in the
robot’s configuration space that develop an explicit interface
between the gross and fine motion planning for assembly
through the definition of a performance criterion.

A. Basic DeJinitions
Let M denote the set of assembly modes, as discussed in

Section 11-C. In addition to modes of the form (p , s , d, C / W) ,

B. Controlling the Robot and the Assembly Process
In this subsection we describe how motion commands

are given to a robot, and how these commands influence
both the configuration of the robot and the assembly mode.
These concepts lead to the definition of a strategy, which
characterizes a given behavior that will be implemented in
the robot.

We define a discretized representation of time by a set of
stages, with an index k E { 1 , 2 , . . . , K } , and stage k refers
to time (k - 1) A t . We generally take At sufficiently small to
approximate continuous trajectories. This appropriately reflects
a situation in which a real robot is limited to some sampling

164 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

rate for acquiring sensor information and executing motion
commands. A final stage, K , is defined to preclude a special
treatment of infinite stages, and in practice, Kat can be
considered as the total time that the robot is in operation. An
explicit choice of K does not need to be made, which will be
discussed in Section IV. An action (or command), u k , can be
issued to the robot at each stage, k . We let U denote the action
space for the robot, while requiring that U k E U. These actions
can cause state transitions, which will be discussed shortly.

The behavior of assembly modes is modeled with a discrete-
time Markov process, called the assembly process, which
accounts for the uncertainty in future modes. At stage k ,
the probabilistic of the next assembly mode is given as
P(mk+l Ixk, uk), which generally depends on the current
mode, mk, current configuration, q k , and the current action,
U k . Although the probabilities can be chosen to model a
wide variety of stochastic processes, we have derived the
probabilities from a few basic transition types. In practice, any
other Markovian model could be substituted in our approach
without additional difficulty. We have considered the following
three types of probabilistic state transitions.

1) The probability of receiving a p , s , d request while in

2) The probability that the destination will change to a new

3) The probability that the source will change to a new

The first transition type is the most fundamental, and can be
generally expressed as P(mk+llmk = NR) 2 0 if mk+l E
M,,,, and P(mk+llmk = NR) = 0, otherwise. The second
transition type can be expressed as P(mk+l lmk E M c) , which
we allow to be nonzero only if mk and mk+l correspond
to the same part and source. Ideally, the destination remains
fixed, and P(mk+llmk E M c) = 1 if mk+l = m k , and
0 otherwise. Similarly, the third type can be expressed as
P(mk+llmk E M,,,), which we allow to be nonzero for any
value of mk+l E M . Ideally, P(mk+llmk E M w) = 1 if
mk+1 = mk, and 0 otherwise.

Any of these transition probabilities can be derived from an
underlying Poisson process, which has been used extensively
in the modeling of scheduling systems. The Poisson process is
a reasonable choice for many problems because it captures
several realistic properties: i) the probabilities that arrivals
occur in two nonoverlapping time intervals are independent
of each other; ii) the probability that an arrival will occur in
an interval is proportional to the length of the interval; and
iii) the probability that an arrival will occur in an interval
becomes arbitrarily small if the interval is made sufficiently
small. Let X denote a Poisson arrival rate. The density for the
time of the first arrival is p(t ,) = XePxta. The probability that
a transition will occur in time At is

mode N R.

destination while in a carrying mode.

source while in a waiting mode.

Thus, a choice of P results in an implicit choice of A. In
many manufacturing systems, stochastic models are assumed
to be given. If this assumption is not made, however, values

for X can be estimated by merely observing the system for a
period of time and collecting statistics. In particular, a Poisson
frequency parameter, A, can be estimated by counting the
number of arrivals in the assembly system, and dividing by
the period of time over which this counting occurs.

In addition to the three transitions listed earlier, there are
several other key transitions that we model deterministically:
from elements in M,,, to elements in Mc, and from elements in
Mc to NR. Suppose that the robot has an action, F M P E U,
that represents fine-motion planning. To grasp or ungrasp a
part, the robot can choose this action from state xk (causing
the fine-motion operation to be performed), and the robot is
retumed to our gross motion planning system in some state

We assume that the fine-motion operation can only be
performed to pick up a part when the robot has reached the
correct source region, and to deliver a part when the robot has
reached the correct destination region. We, have considered
two alternative ways to map source and destination regions
into the configuration space (and state space).

Contact: In the workcell, the robot must only come into
contact with the source (or destination) region to apply
FMP,
Enclosure: In the workcell, the robot must be completely
contained in the source (or destination) region to apply
FMP.

When the action F M P is executed, we assume that the
assembly mode changes with probability one. At a source
region, m k = (p , s , d , W) changes to mk+l = (p , s , d , C),
and at a destination region, mk = (p , s , d , C) changes to
mk+l = NR. Section VI discusses how the model can be
extended for error-handling by defining failure modes in case
F M P is not satisfactorily executed.

A state transition distribution is defined as P(xk+l l i c k , uk).
This represents a probability distribution over a finite set of
next states, given xk as the initial state, and an action uk. This
relationship is probabilistic because the final component of the
state vector (which corresponds to the assembly mode) cannot
be completely predicted. Since the remaining components
of the state space correspond to the configuration space of
the robot, we assume that these can be predicted once xk
and U k are given. This implies that we have perfect control
of the robot (i.e., the response of the robot to a given
command is assumed to be executed by an exact, deterministic
relationship). In addition, the use of xk in the conditional
of the state transition distribution implies that the robot has
perfect information regarding its current state. These choices
were made to focus entirely on the most important form
of uncertainty for assembly. Section VI, discusses how other
forms of uncertainty can be incorporated into our approach.

We present a state transition distribution that applies to the
case in which C C g 2 , and the robot is limited to translational
motion. More complicated motions will be considered in
Section V, including modeling of a redundant manipulator.
The motion of the robot could also strongly depend on the
assembly mode; for example, the velocity bound, 1 1 ~ 1 1 , might
depend on the part that the robot is carrying. We define the

Xk+l.

SHARMA et al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 165

action space as U = [0,27r) U (0, F M P } . If uk E [0 , 2 ~) ,
then A attempts to move a distance 1 1 w I I At toward a direction
in C , in which))w)) denotes some fixed speed for A. If U k = 0,
then the robot remains motionless.

Consider the case in which xk E Cfree is at a distance of at
least IlwllAt from the obstacles. If A chooses action uk # 0
from state zk, then’

n
destination region

subassembly

in which the assembly mode m k + l is known to be sampled
from P(mk+llxk,uk). If Uk = 0, then x k [1] = xk+l[l] and
xk[2] = zk+1[2]; however, mk+l is not necessarily equal
to mk because the assembly transition equation determines
mk+1. We prohibit the robot from considering actions that pro-
duce an obstacle collision; however, one could also consider
compliant or constrained motions [24], [31], [32], [40].

We now define the notion of a robot strategy for our context.
A strategy at stage k of A is a function yk: x -+ U. For each
state, xk, the function yk yields an action ‘uk = yk(xk). The
set of mappings (71, yz, . . . , y ~ } is denoted by y and termed
a strategy. This is equivalent to a control law or policy in
stochastic control theory [21]. For the examples that we present
in this paper, yk will be the same for all k (i.e., each robot
action depends only on the current state, and not the particular
stage). In Section VI we discuss how assembly situations that
require the yk to be a function of time may also be handled
by extending our model.

C. Evaluating Robot Pe$ormance

functional
This section describes how a strategy is evaluated. A loss

K

~ (~ 1 , ” ’ ~ 1 (, ~ 1 , ” ’ , U K) = x b (x k , u k) (6)
k=l

is defined in a form that is often used in stochastic control
theory [21]. Each of the K terms corresponds to costs that are
received at a single stage during the execution of the strategy.
The ultimate goal of the planner is to determine an optimal
strategy y* = {Ti, yz , . . . , y&} that causes L to be minimized
in an expected sense.2

A specific form for ZI, is now defined. Let z f (x k) denote
the expected time to complete a fine-motion planning task
(which results in a new assembly mode) by choosing the action
uk = F M P from state xk. Fig. 5 illustrates how the exact
position where the motion planning “switches” from gross-
motion planning to fine-motion planning effects the (expected)
time to completing the fine operation. By accounting for this
dependence we can improve the overall motion plan, especially
when the time for fine-motion planning is significant as is

‘ We use the notation X k [PI to refer to the r t h element of the vector Zk .
’The optimal solutions will technically exist in the closure of the free

configuration space, as in [23] for a basic motion planning problem; however,
we do not consider these topological issues since numerical computation is
performed.

Fig. 5. An example of the variation of the cost of the fine motion planning
depending on the contact position with the destination region. Contact at A
will give rise to a smaller expected time for mating compared to B.

typical in assembly. Recall that xk simultaneously represents
q k , p s , and d and C/W. If mk E Mw then Xf(xk) represents
the expected time to grasp the part. If mk E Mc then X f (x k)

represents the expected time for an ungrasp operation for the
part (mating with a subassembly, machining, or some other
fine motion). In general we have

mk E N R

{ :t otherwise.
z l~(xk ,u l~)= t f (x k) U ~ C = F M P (7)

The cost that is minimized for our problem thus becomes
the aggregate of times that parts wait before being delivered.
If there are no requests (i.e., mk = N R) , then no penalty is
received. To reduce the loss over a long period of time, the
robot will prefer actions that bring the assembly mode back
to N R as quickly as possible.

This loss functional can also be used to derive appropriate
strategies when the source regions are disconnected. In terms
of scheduling, having multiple disjoint source regions may be
considered as an implementation of a buffer. The interpretation
is that there are multiple locations from which a part can
be picked up. The robot must make decisions that optimize
the loss functional. Decisions of this nature do not affect
the stability of the global scheduling algorithm since the
corresponding constraints are not affected.

Analogously, our framework can handle multiple disjoint
destination regions. The interpretation of this is that to com-
plete a given fine-motion planning task (e.g., mating) there
could be disjoint regions in the configuration space that thus
form the goal for the gross-motion planning. For example,
see Fig. 6, which shows the two directions from which the
part can be inserted into the hole in the subassembly thus
giving rise to two disjoint destination regions. In Section V,
we show computed examples that contain disjoint sources and
destinations.

IV. COMPUTATIONAL SCHEME

One of the primary advantages of our framework is that
a straightforward computation procedure can be used to de-
termine optimal strategies. In this section, we show how the
principle of optimality can be applied to our problem to

166 IEEE TR

subassembly

region A I I region B

Fig. 6. An example where the destination for the gross motion planning is
split into two disjoint regions from where the fine motion of mating the part
into the subassembly can occur.

obtain solutions through dynamic programming, and discuss
the related computational issues.

A. Applying the Principle of Optimalio

Suppose that for some k , the optimal strategy is known for
each stage i E { k , . . . , K } . The expected loss obtained by
starting from stage k , and implementing the portion of the
optimal strategy, { 7; , . . . , y& }, can be represented as

K

G (. k) = E ~ l z (X z , ~ : (2 %)) } (8) i,*
in which E{ } denotes expectation. The expectation is taken
over the possible assembly sequences, m. The function E;(xk)
is sometimes referred to as the cost-to-go function in dynamic
optimization literature [3].

The principle of optimality [21] states that zl(zk) can be
obtained from (zk+l) by the following recurrence:

f

+ LC;+1(2k+l)P(2k+llXk,Uk) . (9)
x k + l 1

Note that the sum in (9) is taken over a finite number of states,
which can be reached using (5).

The goal is to determine the optimal action, 'ILk, for every
value of L C ~ , and every stage k E { 1, . . . , K) . One can begin
with stage K+l , and repeatedly apply (9) to obtain the optimal
actions. At stage K + I, we declare that T>+,(ZK+~) = 0.
The cost-to-go, E>, can be determined from L;+, through
(9). Using the UK E U that minimizes (9) at XK, we define
y i (~ ~) = U K . We then apply (9) again, using xk to obtain
L K - 1 and $-,. These iterations continue until k = 1.
Finally, we take y* = {y:, . . . , r&}.

The loss function T;(X~) shares similarities with the con-
cept of a global navigation function in motion planning [23],
[34]. Also, different forms of dynamic programming have been
successfully applied to many other motion planning problems

-

ANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

[2], [15, 1381; for instance, the wavefront expansion method
that is described in [23] can be viewed as a special form of
dynamic programming.

E. Computational Issues

In our implementation, we determine optimal strategies
numerically, by successively building approximate represen-
tations of through the use of (9). This offers flexibility,
since analmcal solutions are very difficult to obtain for gross
motion planning problems with this form of uncertainty,
and have only been previously obtained by considering very
specific cases [35], [36]. Each dynamic programming iteration
can be considered as the construction of an approximate
representation of E;. We decompose the state space into cells
of uniform size; however, it is important to note the differences
between the use of this decomposition in our context and
the traditional use of decompositions in geometric motion
planning. Our primary interest in using the decomposition is
to construct a good approximation of the function E ; .

We obtain the value for z*,(zk) by computing the right side
of (9) for various values of uk, including uk = 0. Values
of uk that cause collision are excluded from consideration.
To increase computational performance, we compute a binary
bitmap representation of the configuration space for each
assembly mode. Such representations are fast and straightfor-
ward to use [18]. Much of the configuration space is identical
for different modes. For example, the static obstacles lead to
the same C-space collision regions for N R and all modes in
M,. The value for L;(zk) is obtained by linear interpolation
between neighboring cells. This significantly reduces the level
of resolution that must be considered. Other schemes, such
as quadratic interpolation, can be used to further improve
numerical accuracy [22].

After some finite number of iterations, for every state,
the optimal action becomes fixed with respect to additional
iterations. The resulting optimal strategy is considered sta-
tionary, since it only depends on the state, as opposed to
additionally requiring the stage index. Note that no choice
of K is necessary as long as it is larger than the number of
iterations involved in the convergence. Also, at each iteration
of the dynamic programming algorithm, we only retain the
representation of while constructing E;.

To execute a strategy, final cost-to-go representation (called
L,) is used. The robot is not confined to move along the
quantization grid that is used for determining the cost-to-
go functions. The optimal action can be obtained from any
real-valued location 2 E X though the use of (9), linear
interpolation, and the approximate representation of LT. A
real-valued initial state is given (the final component represents
the assembly mode, and is an integer). The application of the
optimal action will yield a new real-valued configuration for
the robot.

To evaluate computational performance, there are two
phases to consider: determination of the optimal strategy and
execution of the optimal strategy. The iterated dynamic pro-
gramming computations are performed off-line to determine
the optimal strategy. The time complexity is linear in both the

-*

SHARMA et al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 167

Deslinalion 1 Dealmatbn 2

sourca 1 Source 2 iili
Problem 1 Problem 2

Problem 3 Problem 4
Fig. 7.
planning is given in the text.

Four problems involving a rigid robot, several parts, source regions, and destination regions. The details of the model used for gross-motion

number of quantized points and the assembly modes; however,
it is exponential in the dimension of the state configuration
space, as is typically the case for approaches to basic motion
planning problems that do not involve uncertainty (see [23]).
For problems in two-dimensional configuration space, this
off-line computation takes a couple of minutes, while three-
dimensional configuration-space problems take a few hours.
These times correspond to a prototypical implementation
of the planner on a standard SPARC 10 workstation. We
typically use about 50 cells per dimension of the configuration
space. Significant improvement of these off-line computations
can be obtained through additional code optimization and
parallelization; however, these implementation issues are
beyond the focus of this research.

The online execution of the optimal strategy proceeds very
quickly. For each stage, a single evaluation of the dynamic
programming equation is performed to yield the optimal
action. This computation is on the order of a few milliseconds,
and is therefore quite reasonable for practical applications.

v. SOLUTIONS FOR SPECIFIC ASSEMBLY SITUATIONS

In this section we present computed solutions for six differ-
ent problems that involve the transfer of parts in a workcell for
assembly. The problems are chosen to illustrate the flexibility

and generality of our approach. The first four problems involve
a rigid robot in the workcell. The rigid robot could be the
representation of the end-effector that is relevant for gross-
motion planning. Examples of industrial robot systems for
which the results could be applied (by considering only the
relevant joints) are the SCAM-type robots, e.g., AdeptOne of
the Adept Technology Inc. or a Cartesian robot, e.g., the IBM
7565 robotic system. The final two problems involve three-
link articulated-manipulators, for which optimal strategies are
derived directly on the joint space. The three-dimensional con-
figuration space used in the examples has the same complexity
as the first three joints of a PUMA-type robot or a SCARA-
type robot [30]. This section concludes with a discussion of
the benefits that were observed in our simulations.

A. Rigid-Robot Simulations

I) Problem I : The first example is designed to illustrate
many of the basic concepts. It involves a rigid robot that
translates in a planar workcell cluttered with obstacles (see
Fig. 7). There are two different parts that can be moved from
either of two sources to either of two destinations. There are
consequently 17 possible assembly modes. The probability that
a request will appear at stage k + 1 while mk = N R is given
to be 0.05. All the p , s, d combinations are equally likely to

168 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

. .
$ 1 1
I l l
\ I I
I / /
, I , , , , , , * - ,,,,,,-----
, I , , - , " - -
/,.,.-----

- - - \.-- , * - - - - _ _ _ _

(c) (4

Fig. 8.
field for e = (l , l , l , W) ; (d) the optimal actions for e = (l , l , l ,C) .

(a) Level-set contours of the cost-to-go function for e = (1,1,1, W) ; (b) the contours for e = (1,1,1, C); (c) the optimal actions as a vector

occur. We assume that once a p , s , d combination is given
to the robot, it will not change or be retracted until part p is
delivered to destination d. The robot moves with llvllQt = 3.0
under (5) , with workcell being 100 units square.

Fig. 8(a) and (b) depict the level-set contours of the cost-
to-go function, LT(z1) for assembly modes (1,1,1, W) and
(1,1,1, C) , respectively. In Fig. S(a) there is a minimum at
the first source region, and in Fig. 8(b) a minimum appears at
the destination region. For translational motion, the negative
gradient of the cost-to-go function represents the direction
of motion of the robot. Hence, the cost-to-go function is
similar to a numerical navigation function [191, [23], 2341.
Fig. S(c) and (d) depict the optimal strategy y* for assembly
modes (1,1,1, W) and (1,1,1, C) , respectively. The direction
of each arrow indicates the direction of motion (specified as
uk = r * (z k)) for the robot, from that particular state. The
motion directions are shown at fewer state locations than
appear in the machine implementation to add clarity to the
figure. The places in which there are no arrows correspond to
configurations in which the robot (or possibly the part) is in
collision with a static obstacle.

Fig. 9 presents a simulation of the robot in the workcell
over a period of time, under the implementation of y*. The

beginning of the trajectory is depicted in Fig. 9(a), and it
concludes in Fig. 9(i). To save space in the figure, many
frames are superimposed, and a new picture is shown only
when the assembly mode changes. The first column of Fig. 9
corresponds to execution during the N R mode. The second
column corresponds to modes in M,, and the final column
corresponds to modes in M,. In the last two columns, the
source and destination regions that correspond to the issued
request are shaded. In the final column, the part that is
carried by the robot is shaded in black. There are at least
two interesting behaviors to note in this solution. When the
assembly mode is N R , the robot moves to a location in the
lower portion of the workcell. This behavior naturally occurs
through the optimization of the criterion. It is best for the robot
to wait near sources while there are no requests, to reduce
the expected time to deliver a part that might appear. This
corresponds to reducing the setup time in a scheduling system,
and is hence a preferred behavior for the robot. Another
behavior to note is how the changing geometry affects the
trajectory of the robot. In Fig. 9(b) and (d) the robot does
not carry a part, and hence is able to move through a narrow
opening. However, in Fig. 9(c) the robot carries a part, and
consequently must take a longer route to reach the destination.

SHARMA et al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 169

For the remaining problems in this section, we will show
figures that indicate the sample path under the implementation
of the optimal strategy, and are similar to Fig. 9.

2) Problem 2: This example (Fig. 7) involves a translating
robot in which there are 6 parts, 4 sources, and 3 destinations.
In addition, Destination 1 has two disconnected components,
and the robot must choose the best delivery point to reduce
loss. For this problem there are 72 different kinds of requests
(which are equally likely to occur), which results in 145
assembly modes. Fig. 10 shows a sample of the execution
under y*. Note the behavior of the robot with respect to the
disconnected components of the Destination 1. At the start of
the time period captured in Fig. 10(h), the robot receives a
request to move Part 6 from Source 3 to Destination 1. The
robot picks up the part from Source 3, and chooses to deliver it
to the lower component of the Destination 1 (Fig. lO(i)). This
behavior was based on the computation of the optimal strategy
for that particular position of the robot in the N R mode.

3) Problem 3: In the previous two examples, the robot
was only allowed to translate. This helped in illustrating the
solution in greater detail for Problem 1 and in allowing us
to study a more complex assembly situation involving fairly
large number of assembly modes in Problem 2. In Problem
3 we additionally allow the robot to rotate, thus making the
state space three-dimensional. This example (Fig. 7) involves
an assembly situation in which there is a rotating robot, 1 part,
2 sources, and 2 destinations. We must update (5) to model the
rotational motion of the robot. We assume that the robot can
rotate in place, or translate along its axis of orientation. Other
motion models (such as nonholonomic, radius-constrained
motion) that are compatible with the framework presented

in this work can be found in [25]. Fig. 11 shows a sample
of the execution under y*. Because the manner in which the
obstacles are arranged and because the part that the robot could
carry is large relative to the opening, the optimal position of
the robot in the N R mode (Fig. ll(a)) is important since it
can significantly affect the carrying time when the request
arrives. In this problem there are 4 possible request (p , s, d
combinations) and 9 assembly modes.

4) Problem 4: In all the three problems discussed so far,
the stochastic model of the assembly process was defined in
terms of the transition probabilities from the N R mode of
the robot. In Problem 4 we discuss an alternative stochastic
model that defines the transition probabilities with respect
to the destination regions (as discussed in Section 111-B).
The specific feature that this model induces on the behavior
of the robot is its ability to change destinations while it
is already carrying a part. Problem 4 (Fig. 7) considers an
assembly situation involving a translating robot with 2 parts,
1 source, and 3 destinations. For this problem, the destination
is allowed to change while the robot is carrying a part. The
probability that the destination will change in a given stage
is 0.02. The probability for changing to each of the other two
destinations is 0.01. The robot models the changing destination
probabilistically as discussed in Section 111-B. Fig. 12 shows
a sample of the execution under y*. The destination changes
during execution depicted in Fig. 12(c) and (g). In both cases,
the robot immediately responds by delivering the part to the
new destination. This kind of assembly situation can arise
when there is online monitoring of the assembly process and
the robot has access to the current demand at a particular

170 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

(8) (h) (1)

Fig 11.
) * for Problem 3

A simulation result under the implementatlon of the optimal strategy

(g) (b) (0
Fig. 12.
Y* for Problem 4.

A simulation result under the implementation of the optimal strategy

destination at any given time. For example, suppose the same
part is needed by two destination regions D1 and 0 2 at a
given time. The scheduler schedules the part to be delivered

to D1, but due to an error there is a delay in its previous
operation and D1 is not ready for that part while the robot is
in the process of carrying it. This would be detected by online
plan monitoring and the part rescheduled to arrive at 0 2 . The
probabilistic modeling of such an assembly situation helps in
improving the gross-motion planning.

B. Articulated-Manipulator Simulations

In this section we consider motion planning for three-
link articulated manipulators performing assembly operations.
Several additional concerns must be addressed that pertain to
collision detection of the whole arm and the state transition
distribution. To define the source and destination regions in the
configuration space, we only consider the end-effector of the
robot. This is a reasonable choice since fine-motion planning
essentially would involve only the end-effector along with the
part that it could be carrying (see Section 111-A).

We define the motion strategies directly in terms of the joints
(that can be independently controlled), instead of considering
their representation in the workspace. The collision detection
for the articulated arm in our implementation is done in terms
of the coordinate space of the workcell. For the examples
that we consider, the planar robot manipulator has redundant
degrees of freedom. This is due to the fact that even though the
robot has three degrees of freedom, the source and destination
regions lie in the plane.

5) Problem 5: For the first manipulator problem, there are
two parts, two sources, and two destinations (see Problem 5 in
Fig. 13). There are three links that move in the plane, and an
end-effector that always maintains the same orientation. The
figure can be considered as a side view of a problem in which
objects are to be moved from trays that exist at different levels.
There are joint limits that prevent the joints from executing a
circular motion. Fig. 14 shows a sample of the execution. The
third column shows the part being "carried" to the destination
region, and the transition to fine-motion planning occurs when
the end-effector contacts the destination region.

6) Problem 6: For the second manipulator problem, there
are one part, two sources, and four destinations (see Problem
6 in Fig. 13). One of the sources has two disconnected
components. There are three links that move in the plane. The
problem can be considered as a top view of a workspace in
which objects are to be moved between locations on a planar
surface. There are fixed limits for each joint. Fig. 15 shows
a sample of the execution. Note the behavior of the robot
induced by the fact that there are two disconnected components
for the Source 1. Thus every time a request arrives involving
Source 1, the motion of the robot varies depending on its
current position and the destination region which is also part
of the request. For example, in the segment of its execution
captured in Fig. 15, there were two requests involving Source
1 (seen in terms of the shaded regions of Fig. 15(e) and (h)).
For the first such request (second row), the robot chooses to
pick the part from the upper component of Source 1, although
it was nearer to the lower component of Source 1 when the
request arrived. This was due to the fact that the corresponding
destination was nearer to the upper component. In the other

SHARMA ef al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 171

Problem 5 Problem 6
Fig. 13. Two assembly planning problems involving articulated manipulators with three links. The details of the model used for gross-motion planning
is given in the text.

(g) (h) (9
Fig. 14.
y* for Problem 5 .

A simulation result under the implementation of the optimal strategy

two cases involving Source 1 (see the third and fourth rows
of Fig. 15), the robot chose the lower component instead.

C. Concluding Remarks on Simulation Studies
In the simulation experiments, we repeatedly observed be-

haviors that indicate the improvement in expected performance
over planning for each request as it arrives. The assembly
process allows partial prediction of future requests to occur.
The strategies obtained by our computational approach op-
timally incorporate this predictive information. Most of the
savings due to partial prediction occur when mk = NR.
During this mode, the robot moves to certain locations in

(g) (h) (0

Fig. 1.5.
y* for Problem 6.

A simulation result under the implementation of the optimal strategy

the workcell in anticipation of future requests. In a particular
instance, the robot might make a poor prediction about where
the next source will be; however, on average the robot is
guaranteed to exhibit the time-optimal behavior.

Several of the computed examples clearly illustrate the
benefits due to prediction. Fig. 9(a), (d), and (8) shows motions
that occur while m k = NR. In each case the robot was
much closer to the future requested source than it would
have been without this anticipatory motion. In comparison
with the case when such anticipatory motion is absent, the
improvement in performance (measured in stages) is nearly
equal to the number of stages that occurred while m h = N R .

172 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

One might alternatively consider defining heuristics for the
behavior of the robot; however, our strategies are selected
automatically and guaranteed to yield the best performance
in the expected sense. Several other computed examples show
similar behaviors; see Figs. ll(a) and 14(d). While improving
the expected performance of the individual robot cell, these
optimal motions can be an important factor in maintaining
the stability of the entire manufacturing plant (as discussed in
Section 11-D).

VI. EXTENSION TO OTHER ASSEMBLY SITUATIONS

Apart from the specific assembly situations presented, our
framework is capable of representing a larger class of motion
planning problems, making it applicable to more assembly
situations. In this section we discuss some of these applications
and the modifications to the model that would be necessary to
the handle these extensions.

1) Time-Varying Models of the Assembly Process: The
motion strategies that have been considered in Section V are
stationary in the sense that the optimal robot actions depend
only on the state. The optimal strategy for the robot does
not depend on time since the model components such as
the state transition distribution, or the environment transition
probabilities, do not depend on the particular stage index,
k E { 1, . . . , K } . However, the model components can be
allowed to vary over time. This affords the opportunity to
model many interesting problems. For example, by allowing
the assembly mode transition probabilities to vary, many
more statistical processes can be modeled. For instance, if
the demand arrival varies according to the stage of some
other process in the assembly plant, this can be factored
into the motion optimization to improve the performance of
the assembly cell. Another possibility is to let the source or
destination region move over time as would be true if the
assembly part is actually on a conveyor belt (Fig. 16) that
moves with a constant known velocity. In this case, the robot
must “intercept” the moving source or destination region as a
terminating condition for the gross-motion planning. In fact,
in such a situation, the consideration of fine-motion planning
(see Section 111-C) may be even more important than the
case with stationary sourceldestination regions. The trade-
off, however, is that since the optimal strategy depends on
stages, more storage is required. There would be a state-space
mapping for each stage, which is at least reasonable for two-
dimensional configuration space problems, given the current
implementation. The space requirements could be significantly
reduced if the initial state is known, because at certain stages
many portions of the state space will never be reached.

2) Processing Simultaneous Requests: As stated in
Section 111, we decided to consider only the arrival of a
single request at a time, with the assumption that a global
scheduler that was external to the workcell provided the
requests. We can alternatively process simultaneous requests,
and plact: the scheduling burden on the robot. This requires
defining additional assembly modes that correspond to
various combinations of requests. The loss functional for
this extension can be defined in a number of ways. One
reasonable way is to assign one unit of loss for each waiting

conveyor MI

s3

s2

s1

Fig. 16.
mated to subassemblies on conveyor belts.

Motion planning for assembly when parts are picked up from and

part that has not yet been delivered during the current stage.
This will force the robot to clear the requests as quickly as
possible, while making decisions about the order of delivery
partly on the basis of the geometry of the motion planning
problem. Under this condition, the computational approach
remains the same, while the robot additionally performs the
scheduling. One implication of this choice, however, is that
the most appropriate ordering of part deliveries for the robot
might not necessarily correspond to the most appropriate
ordering for the manufacturing system. For example, certain
parts might be more urgent than others due to other modules
in the manufacturing process, which can only be inferred by
a more global analysis.

3) Assembly with Failure Modes: Another interesting ex-
tension of the model would be for a situation in which
failures could occur in the assembly operation. Such failures
could arise, for example, in machining a part when a preset
specification is not met. A subassembly that was supposed to
be built might fail because a part breaks or has unacceptable
dimensions. Failures of this type can be represented in terms of
additional assembly modes and incorporated into our motion
planning scheme. The robot would then respond optimally
to the failures, under an appropriate probabilistic model of
failures.

4) Incorporating Other Forms of Uncertainty: In this pa-
per we have focused primarily on the form of uncertainty
in assembly involving time since this can play a key role in
the efficiency of gross motions. The positional and control
uncertainty associated with the robot are more relevant in the
final stages of the assembly, i.e., for fine-motion planning.
However, other forms of uncertainty can be factored into the
same probabilistic approach. In fact, the framework presented
here can facilitate such a combination. As a first step toward
this combination, we incorporated the expected costs involved
in the fine-motion planning (see Section 111-C) for evaluating
the performance of gross motions. However, the uncertainty
involved in fine-motion planning can be included directly into
the model. A treatment of additional forms of uncertainty in
fine-motion planning (position and control uncertainty) that is
compatible with our treatment of the uncertainty with respect
to time is reported in [24].

SHARMA er al.: OPTIMIZING ROBOT MOTION STRATEGIES FOR ASSEMBLY 173

VII. CONCLUSION [8] B. R. Donald, Error Detection and Recovery in Robotics. New York
Springer-Verlag, 1989.

uncertainty,” Int. J. Robot. Res., vol. 5, no. 1, pp. 194.5, 1986.
Robot motion Optimization Over time is important Since ef- [9] M. Erdmann, “Using backprojections for fine motion planning with

ficient motion planning eventually translates into an increased
[lo] A. Fox and S. Hutchinson, “Exploiting visual constraints in the synthesis

throughput in an system* Optimizing the of uncertainty-tolerant motion plans,” IEEE Trans. Robot. Automat., vol.
efficiency of the individual robot cell can play a significant 11. DD. 56-71. 199.5.
role in insuring the stability of the entire assembly plant.

part of assembly planning, the results in this paper show how

1111 S. Gittschlich, C. R ~ ~ o s , and D. Lyons, “Assembly and task planning:
A taxonomy,” IEEERobot Automat. Mag., vol. 1, no. 3, pp. 4-12, 1994.

mains,” in Proc. DARPA Workshop Knowledge-Bused Planning Systems,
gross-motion planning is not ‘Onsidered [12] J. A. Hendler and J, C. Sanbom, “Planning and reaction in dynamic do-

the assembly performance can be improved by considering
gross-motion planning as part of the assembly process. At
one level, this helps in developing an interface between
gross-motion planning and scheduling, and at another level it
develops better interface between gross-motion planning and
fine-motion planning in the presence of uncertainty. This work
has exploited these interactions by delivering a framework for
gross-motion planning in an assembly system.

Analytical solutions to stochastic optimal control problems
are quite difficult to obtain; thus the dynamic programming-
based numerical solution offers a practical altemative. Within
the computational limits of the approach, many realistic assem-
bly situations can be treated. This was demonstrated by our
simulation studies on a variety of specific assembly situations.

There are several directions for future research, some of
which were discussed in the paper. To handle assembly
planning problems that have a greater deal of complexity,
additional computational techniques may need to be devel-
oped. The use of the stochastic assembly process provides a
flexible way to capture the time-varying element of assembly

1987.
[13] L. S. Homem de Mello and S. Lee, Computer-Aided Mechanical

Assembly Planning.
[I41 L. S. Homem de Mello and A. C. Sanderson, “A correct and complete

algorithm for the generation of mechanical assembly sequences,” IEEE
Trans. Robot. Automat., vol. 7, no. 2, pp. 228-240, 1991.

[15] H. Hu, M. Brady, and P. Probert, “Coping with uncertainty in control
and planning for a mobile robot,” in Proc. IEEE/RSJInt. Con$ Iatelligent
Robots and Systems, 1991, pp. 1025-1030.

1161 Y. F. Huang and C. S. G. Lee, “A framework of knowledge-based
assembly planning,” in Proc. IEEE Int. Con$ Robotics and Automation,
1991, pp. 599-604.

[I71 H. Inuoe, “Force Feedback in Precise Assembly Tasks, vol. 2. Cam-
bridge, MA: M.I.T. Press, 1981, pp. 219-241.

[181 L. E. Kavraki, “Computation of configuration-space obstacles using
the fast fourier transform,” IEEE Trans. Robot. Automat., vol. 11, pp.
408-412, 1995.

[19] D. Koditschek, “Robot planning and control via potential function,” in
0. Khatib, J. J. Craig, and T. Lozano-PCrez, editors, The Robotics Review
1.

[20] V. S . Kouikoglou and Y . A. Phillis, “Discrete event modeling and
optimization of unreliable production lines wth random rates,” IEEE
Trans. Robot. Automat., vol. 10, no. 2, pp. 153-159, 1994.

[21] P. R. Kumar and P. Varaiya, Stochastic Systems. Englewood Cliffs,
NJ: Prentice Hall, 1986.

[22] R. E. Larson and J. L. Casti, Principles of Dynamic Programming, Part
II.

Nonvell, MA: Kluwer, 1991.

Cambridge, MA: M.I.T. Press, 1989.

New York: Marcel Dekker, 1982.
operation. However, further research is needed to understand

and scheduling. As illustrated by the specific examples, many
different modeling choices are possible and the right choice
would depend on the particular assembly situation.

[231 J. C. Latombe, Robot Motiotz PlanIzing. Boston, MA: Kluwer, 1991.
[24] S. M. LaValle and S. A. Hutchinson, “An objective-based stochastic

Intelligent Robots and Systems, 1994, pp. 1772-1779.
[251 S. M. LaValle and R. Shama, “A framework for motlon planning

in stochastic environments: Applications and computational issues,” in
Proc. IEEE Int. Con$ on Robotics and Automation, May 1995, pp.
3063-3068.

1261 D. Y . Lee and F. DiCesare, “Scheduling flexible manufacturing systems
using Petri nets and heuristic search,” IEEE Trans. Robot. Automat.,

the Of this to Other Of uncertainty framework for manipulation planning,” in proc, IEEE/RsJ Int, Con$

ACKNOWLEDGMENT
The authors would like to thank P. R. Kumar for helpful

discussions on scheduling and M. Barbehenn for comments
on a draft of this paper. They would also like to thank the
anonymous reviewers whose insightful comments were a great
help in improving the presentation of the paper.

REFERENCES

[l] R. Alami, T. Simkon, and J. P. Laumond, “A geometric approach to
planning manipulation tasks,” in Proc. 5th Int. Svmp. Robotics Research, . .
i989, Pp. 113-119.

121 J. Barraquand and P. Ferbach, “A penalty function method for con- ~~

strained motion planning,” in Pro;. IEEE Int. Con$ Robotics and
Automation, 1994, pp. 1235-1242.

[3] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic
Models.

[4] B. McCarragher and H. Asada, “A discrete event approach to the
control of robotic assembly tasks,” in Proc. IEEE Int. Con$ Robotics
and Automation, 1993, vol. 1, pp. 331-336.

[5] S.-C. Chang and D.-T. Liao, “Scheduling flexible flow shops with no
setup effects,” IEEE Trans. Robot. Automat., vol. 10, no. 2, pp. 99-1 11,
1994.

[6] L. M. M. Custodio, J. J. S. Sentieiro, and C. F. G. Bispo, “Production
planning and scheduling using a fuzzy decision system,” IEEE Trans.
Robot. Automat., vol. 10, no. 2, pp. 160-168, 1994.

[7] T. L. DeFazio and D. E. Whitney, “Simplified generation of all mechan-
ical assembly sequences,” IEEE Trans. Robot. Automat., vol. RA-3, no.

Englewood Cliffs, NJ: Prentice-Hall, 1987.

6, pp. 640-658, 1987.

~271

1281

vol.-lO, no. 2, pp. 123-132, 1994.
S. Lee, “Backward assembly planning with assembly cost analysis,” in
Proc. IEEE Int. Con$ Robotics and Automation, 1992, pp. 2382-2391.

. . T. Lozano-PBrez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” Int. J. Robot. Res., vol. 4, pp.
3-24, 1985.

[29] S. H. Lu and P. R. Kumar, “Distributed scheduling based on due dates
and buffer priorities,” IEEE Trans. Automat. Contr., vol. 36, no. 12, pp.
1406-14 16, 199 1.

[30] H. Makino and N. Furuya, “Scara robot and its family,” in Proc. Int.
Con$ Assembly Automation, 1982, pp. 433444.

[31] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Trans. Syst., Man, Cybern., vol. SMC-11, no. 6,
pp. 418432, 1981.

[32] R. P. Paul and B. Sbimano, “Compliance and control,” in Pmc. Joint
American Automatic Control Con$, 1976, pp. 1694-1699.

[33] J. R. Perkins, C. Humes Jr., and P. R. Kumar, “Distributed scheduling
of flexible manufacturing systems: Stability and performance,” IEEE
Trans. Robot. Automat., vol. 10, no. 2, pp. 133-141, 1994.

[34] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential fields,” IEEE Trans. Robot. Automat., vol. 8, no. 5, pp.

[35] R. Sharma, “Locally efficient path planning in an uncertain, dynamic
environment using a probabilistic model,” IEEE Trans. Robot. Automat.,
vol. 8, no. 1, pp. 105-110, Feb. 1992.

[36] R. Sharma, D. M. Mount, and Y. Aloimonos, “Probabilistic analysis
of some navigation strategies in a dynamic environment,” IEEE Trans.
Syst., Man, Cybern., vol. 23, no. 5 , pp. 1465-1474, Sept. 1993.

New York:
Wiley, 1989.

501-518, Oct. 1992.

[37] M. Spong and I. Vidyasagar, Robot Dynamics and Control.

174 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

[38] S.-H. Suh and K. G. Shin, “A variational dynamic programming
approach to robot-path planning with a distance-safety criterion,” IEEE
Trans. Robot. Automat., vol. 4. no. 3, pp. 334-349, 1988.

[39] C. van Delft, “Approximate solutions for large-scale piecewise deter-
ministic control systems arising in manufacturing flow control models,”
IEEE Trans. Robot. Automat., vol. 10, no. 2, pp. 142-152, 1994.

[40] D. E. Whitney, “Force feedback control of manipulator fine motions,”
J. Dynam. Syst., Meas., Contr., vol. 98, pp. 91-97, 1977.

[41] G. Wilfong, “Motion planning in the presence of movable obstacles,” in
Proc. ACM Symp. Computational Geometry, June 1988, pp. 279-288.

[42] R. H. Wilson, “On geometric assembly planning,” Ph.D dissertation,
Stanford Univ., Stanford, CA, Mar. 1992.

[43] Q. Zhu, “Hidden Markov model for dynamic obstacle avoidance of
mobile robot navigation,” IEEE Trans. Robot. Automat., vol. 7, no. 3,
pp. 390-397, 1991.

Rajeev Sharma (S’84-M’85) received the Ph.D.
degree from the University of Maryland, College
Park, in 1993.

Since then he has been with the University of Illi-
nois, Urbana-Champaign, where he currently holds
the position of Beckman Fellow at the Beckman
Institute and Adjunct Assistant Professor in the De-
partment of Electrical and Computer Engineering.
Prior to this he was employed as a Graduate Re-
search Assistant in the Computer Vision Laboratory
at the University of Maryland. Before starting his

graduate studies, he worked for a year in-the industry. His research interests
include motion planning under uncertainty, vision-based control, active vision,
and vision-based human-computer interaction.

Dr. Sharma is a recipient of the ACM Samuel Alexander Doctoral Dis-
sertation Award, Washington, DC (1992), the IBM Predoctoral Fellowship
(1991-92), the National Talent Search Scholarship of India (1978-85), and the
National Merit Scholarship Award (1978). He is a Co-Editor of the electronic
newsletter of the IEEE Assembly and Task Planning subcommittee.

Steven M. LaValle was born in St. Louis, MO
He received the B S . degree (highest honors) in
computer engineenng, the M S degree in electrical
engmeenng, and the Ph D degree in electrical engi-
neermg, all from the University of Illinois, Urbana-
Champaign, in 1990, 1993, and 1995, respectively.

From 1988 to 1991, he was a Teaching Assistant,
and from 1991 to 1994, he was a Research Assistant,
both in the Department of Electncal and Computer
Engineering, University of Illinois From 1994 to
1995, his doctoral research was supported by a

Mavis Fellowshp and a Beckman Institute research assistantship He is
currently a Postdoctoral Scholar in the Department of Computer Science at
Stanford University, Stanford, CA His research interests include planning
for vision-based tasks in mobile robotics, applications of optimal control and
dynarmc game theory to motion planning, Bayesian modeling and analysis,
and low-level computer vision

Seth Hutchinson (S’85-M’86) received the Ph.D.
degree from Purdue University, West Lafayette, IN,
in 1988.

He spent 1989 as a Visiting Assistant Professor of
Electrical Engineering at Purdue University. In 1990
he joined the faculty at the University of Illinois
in Urbana-Champaign, where he is currently an
Assistant Professor in the Department of Electrical
and Computer Engineering, the Coordinated Science
Laboratory, and the Beckman Institute for Advanced
Science and Technology.

