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An Integrated Architecture for Robot Motion 
Planning and Control in the Presence of 

Obstacles With Unknown Trajectories 
Rob Spence and Seth Hutchinson 

Abstruct- We present an integrated architecture for real-time 
planning and control of robot motions, for a robot operating 
in the presence of moving obstacles whose trajectories are not 
known a priori. The architecture comprises three control loops: 
an inner loop to linearize the robot dynamics, and two outer 
loops to implement the attractive and repulsive forces used by an 
artificial potential field motion planning algorithm. From a con- 
trol theory perspective, our approach is unique in that the outer 
control loops are used to effect both desirable transient response 
and collision avoidance. From a motion planning perspective, 
our approach is unique in that the dynamic characteristics of 
both the robot and the moving obstacles are considered. Several 
simulations are presented that demonstrate the effectiveness of 
the plannerkontroller combination. 

I. INTRODUCTION 

N autonomous robot must be able to maneuver ef- A fectively in its environment, achieving its goals while 
avoiding collisions with obstacles andor other robots. This 
problem has been addressed both by researchers in motion 
planning, who typically focus on the trajectory generation 
problem, and by researchers in control theory, who typically 
focus on the trajectory trucking problem. In this paper, we 
present an integrated architecture for motion planning and 
control in the presence of moving obstacles with unknown 
trajectories. Our system uses a variation of the well-known 
potential fields planning method (first introduced by Khatib 
[13], [12]), combined with a nonlinear control structure. The 
result is a combination plannerkontroller that simultaneously 
satisfies motion planning goals (such as avoiding collisions 
with obstacles), and control goals (such as effecting a desired 

the artificial potential field method for motion planning (see, 
for example, [3], [12], [14], [15], [23]). From a control theory 
perspective, our approach is unique in that the outer control 
loops are used to effect both desirable transient response and 
collision avoidance. From a motion planning perspective, our 
approach is unique in that the dynamic performance of both 
the robot and the moving obstacles are considered, unlike the 
artificial potential field planners cited above, which take into 
account only the instantaneous relative positions of the robot 
and the obstacles, and not relative velocities of the robot and 
the moving obstacles (e.g., [12]). 

The remainder of the paper is organized as follows. In 
Section 11, we provide an overview of research related to 
the problem of motion planning in the presence of obstacles 
moving with unknown trajectories. In Section 111, we present 
a brief review of the artificial potential field method of motion 
planning. Section IV contains a detailed description of our 
system architecture, including design criteria used to construct 
each of the outer control loops. In Section V, we address the 
stability of our system and provide a proof that our system is 
asymptotically stable in the absence of obstacles. This stability 
proof considers the case when the model used by the inner- 
loop controller differs from the nominal model. In Section VI, 
system performance is evaluated in three scenarios: polygons 
moving in the plane; a planar articulated robot; and a Stanford 
arm and a planar robot arm sharing a workspace. Finally, in 
Section VI1 we summarize the contributions of the paper. 

11. RELATED RESEARCH 
transient response). 

Our plannerkontroller architecture, shown in Fig. 1, com- 
prises three control loops. An inner-loop is used to linearize 
the robot dynamics, and two outer control loops are used to 
implement the artificial potential field algorithm. The two outer 
control loops correspond to an attractive force (which attracts 
the robot to its goal configuration), and to repulsive forces 
(which repel the robot from the moving obstacles). 

The inner-loop/outer-loop control structure has been used 
by a number of researchers in the past (see, for example, [l], 
[4], [17], [31], [32]). Likewise, many researchers have used 

The amount of research dedicated to on-line robot navi- 
gation in the presence of moving obstacles with unknown 
trajectories has been surprisingly scarce. To date, the appli- 
cable research has focused almost entirely on the problem 
of estimating or predicting the trajectories of the obstacles. 
These estimatedpredicted obstacle trajectories are used by 
a motion planner to modify the robot trajectory to avoid 
collisions with the obstacles. Since it is assumed that the 
planner has no knowledge of the obstacle trajectories before 
the motion begins, it is necessary for both the analysis of 
obstacle trajectories and the revision of the motion plan to 
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classification scheme to determine the trajectories of mov- 
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that contains both moving and stationary obstacles, with the 
trajectories of the moving obstacles constrained to be along 
linear paths. After the LMSE algorithm determines the obstacle 
trajectories, a method introduced in [36] is used to adjust 
the robot velocity to create a collision-free path. This plan 
is modified every cycle as new information is detected. 

Similar methods are proposed by Zhu [38] and Kehtarnavaz 
and Li [ 111, each of which use statistical methods to estimate 
obstacle locations. Zhu applies a hidden Markov stochastic 
model that is updated periodically throughout the motion. Ke- 
htarnavaz and Li fit the obstacle motion to an auto-regressive 
model. These estimation techniques are reasonably complex 
(from a computational point of view), and to date have been 
implemented only for 2-dimensional polygonal environments. 

De La Madrid and Gini [8] have implemented a path 
tracking system that adjusts a nominal robot trajectory to avoid 
dynamic obstacles. This adjustment is performed under the 
constraints that the adjusted path not deviate by more than 
some threshold from the nominal path, and that the arrival 
time of the robot at the goal position not deviate by more than 
some threshold from the target arrival time. In their approach, 
the robot is modelled as a point and the moving obstacles as 
discs. Once a collision is predicted, the planner determines 
new points where a collision will not occur, and attempts to 
create a path through these points. Both robot and obstacle 
trajectories are constrained to consist only of piecewise linear 
segments, and during each of these segments the robot and 
obstacles move at constant velocity. 

The system developed by Steel, [33] creates a repulsive 
force based on the vector from the robot to the point of closest 
approach to a moving obstacle. This repulsive force is used 
to adjust the trajectory of the robot in both space and time. 
This approzich assumes that the obstacle motion will be along 
a straight line path. This work extends earlier work by Steel, 
and Starr [34]. 

Kyriakopoulos and Saridis [18], [19] present a system 
that adjusts the robot velocity to avoid unexpected moving 
obstacles using an optimal control technique. This approach is 
unique in that it considers robot dynamics (for a mobile robot 
moving in the plane) in determining the path. 

All of these methods have been implemented only for mo- 
bile robots moving in the plane, with restrictive assumptions 
about obstacles’ shape and/or trajectory. Except for determin- 
ing the point of intersection between moving obstacles and 
the robot, no technique has incorporated information about 
obstacle velocity into the planning process. Finally, with the 
exception of [18], [19], none of these techniques consider robot 
dynamics. In fact, the systems of [8], [ 1 I] permit instantaneous 
changes in velocity. 

In addition to the research listed above, there has also been 
work done in the robot motion planning community for the 
case where the trajectories of the moving obstacles are known 
a priori, or where there are multiple robots (which is similar in 
many respects to the case of moving-obstacles). In this case, 
motion planning can be performed in the joint configuration 
space of the robot and moving obstacles (see, e.g., [21, [281), 
or by decoupling the planning into a phase where each moving 
object is treated individually followed by a phase in which the 

individual paths are coordinated (see, e.g., [24], [16], [221, 
[26], [29], 1351). The inherent computational complexity of 
the problem of motion planning in the presence of moving 
obstacles with known trajectories has been addressed in [27]. 

111. POTENTIAL FIELD PLANNING 
In the potential field approach to motion planning, the 

robot is treated as a particle in configuration space, under the 
influence of an artificially created potential field. The value 
of the potential field at a particular configuration will depend 
upon the robot’s goal position and its distance to obstacles 
located in the workspace. The potential function originally 
proposed by Khatib [12] is given by: 

where q is the configuration of the robot, Vat, is the attractive 
potential and Urep is the repulsive potential. 

A standard form for the attractive potential is: 

where pgoal(q) is the metric distance from the current robot 
configuration to the goal configuration, and C is a scaling 
constant that specifies the strength of the attractive potential. 

A standard form for the repulsive potential is: 

where p(q) is the minimum distance from the current robot 
configuration to a configuration in which the robot contacts an 
obstacle, and q is a scaling constant that specifies the strength 
of the repulsive field. The constant po represents a “boundary 
distance,” beyond which the repulsive potential field does not 
affect the robot. 

In order to use gradient descent techniques for motion plan- 
ning, the potential functions are converted into corresponding 
force vectors. The attractive force is give by: 

(4) 

The repulsive force is given by: 

where $p(q) is a unit vector in the direction of the gradient 

The primary problem facing a potential field planner is 
the presence of local minima in the potential field. These 
local minima result from the interaction between the repulsive 
forces due to obstacles and the attractive force due to the 
goal. A number of approaches have been proposed to deal 
with this problem, including using randomized motions [3], 
and carefully constructing the potential field to minimize the 
number of local minima that occur [14]. 

of Urep. 
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Fig. 1. Plannerkontroller architecture. 

A second difficulty that confronts potential field planners is 
the calculation of distances between the robot and obstacles, 
particularly when the robot and/or obstacles are modelled by 
curved surfaces. This difficulty can be reduced by restricting 
the planner to compute potentials only at a fixed number of 
control points [20]. The primary disadvantage to this approach 
is that, while the control points themselves are guaranteed to 
avoid collisions, no such guarantee can be made for the other 
points on the robot. However, the possibility of such collisions 
can be reduced by increasing the number of control points on 
the robot, or by allowing “floating control points” (Le. control 
points that are allowed to move to the point on the robot 
boundary that is nearest an obstacle). Furthermore, the control 
point approach can be implemented in real-time using special 
purpose distance sensors mounted on the robot, for example 
the sensitive skin described in [5],  [6]. 

The real-time capabilities of the potential field planning 
method make it particularly attractive for our problem: avoid- 
ing moving obstacles with unknown trajectories. However, the 
standard potential field algorithm is limited in that it does not 
take advantage of any dynamic information (such as obstacle 
velocity), nor does it explicitly consider the dynamic response 
of the robot. In fact, at each iteration, the standard potential 
field planning algorithm considers only the instantaneous 
positions of the robot and of obstacles. In the next section, we 
describe a new approach, in which a potential field planner 
is directly integrated into a robot control architecture. The 
resulting system is able to exploit the capabilities of inverse 
dynamics control, and to use digital filtering techniques to 
improve the robot’s response to moving obstacles. 

Iv .  THE INTEGRATED PLANNEWCONTROLLER ARCHITECTURE 
As described above, our plannerkontroller comprises three 

control loops: an inner loop (to linearize the robot dynamics), 
and two outer loops (one loop to implement the attractive 
forces, and one to implement the repulsive forces). In this 
section, we describe each of these three control loops. Because 
much work has been done in the area of inverse dynamics 
control, our description of the inner-loop controller is fairly 
brief compared to the description of the outer control loops. 
A block diagram of our plannerkontroller system is shown in 
Fig. 1. 

A. Inverse Dynamics Control 

Inverse dynamics control is achieved by exploiting a model 
of the robot dynamics to linearize the robot system. This 
is typically accomplished by using an inner-looplouter-loop 

control architecture, in which the inner loop is used to linearize 
the system, and the outer loop is used to control the resulting 
linearized system [301. An introduction to inverse dynamics 
can be found in [17] and a more mathematical development 
in [31]. Spong and Vidyasagar [32] added robustness to this 
scheme by compensating for uncertainties in the dynamic 
model using a factorization approach. Other researchers have 
investigated the effects of various types of controllers upon 
the linearized robot, including PI [4] and PID [l] controllers. 

The particular controller that we use is a variation of the 
robust controller described by Spong and Vidyasagar [30]. 
The main distinction of our controller is the outer-loop control 
law. While [30] uses state-feedback for outer-loop control, our 
outer-loop control is comprised of the attractive and repulsive 
control loops, each of which will be discussed in detail in the 
following sections. 

The stability of the resulting controller depends largely on 
the stability of the attractive control loop. In Section V, we 
address the stability of the attractive loop with the repulsive 
loop disconnected (this corresponds to a situation in which no 
obstacles are present). We present a proof that this system is 
asymptotically stable along solution trajectories of the system, 
even when the robot dynamic model is not exactly known. 
With this in mind, in the remainder of the paper we will assume 
that the robot model is exact, and therefore the robot dynamics 
for any particular joint can be treated as a double-integrator 
system, with a transfer function given by Gp(s )  = 5.  

B. The Attractive Loop 

The attractive force, $’att(q) is implemented by the attrac- 
tive control loop, the main functional component of which is 
the attractive Jilter. In a traditional potential field planner, the 
attractive force, given by (4), is the distance from the current 
configuration to the goal, multiplied by a constant gain. The 
primary disadvantage to this formulation is that it does not 
include any of the dynamic effects of the robot. To remedy 
this, we have included a digital filter in the forward path. 
This filter allows the system response to be a function, not 
only of instantaneous distance to the goal, but also of the past 
trajectory of the robot (and its time derivatives). 

The attractive filter must be designed to be stable and 
proper, but this restriction does not significantly reduce the 
design flexibility. In particular, improper compensators, such 
as PD controllers, are typically implemented using either 
digital computers or analog opamp networks. Each of these 
has specific bandwidth limitations, which implies that such 
a controller will have high-order dynamics that are usually 
ignored in the control design (since they have a negligible 
effect on the performance). For example, a PD controller will 
have a pole in the left half-plane. Typically, this pole is over 10 
times the magnitude of the zero of the controller, and therefore 
has little effect on the performance of the closed-loop system. 
However, the pole will serve to make the PD controller proper 
and stable [9]. 

We have chosen to implement the attractive control loop in 
joint space rather than in the Cartesian, or task, space. The 
main reason for this choice is that a task space formulation 
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requires the inclusion of the non-linear forward kinematic 
equations of the robot in the feedback path. While it is possible 
to stabilize the resulting closed-loop system, the robot will 
occasionally undergo severe oscillations in approaching the 
goal [7 ] .  

We use three design criteria for the attractive filter: 
The attractive loop must be asymptotically stable, with 
poles distant from the jw-axis. The latter condition is 
necessary since uncertainties can drive the poles in any 
direction, and if they are not far into the left half-plane, 
the uncertainties could drive the system unstable. 
As is typical for robotics systems, the transient response 
should be either critically damped or overdamped. 
The signals throughout the forward path must not exceed 
a maximum bound. For example, there will be a maxi- 
mum possible voltage that the joint actuators will be able 
to source before they saturate. If we exceed this voltage 
and the actuators saturate, the nominally linear system 
becomes nonlinear and we can no longer guarantee that 
it will remain stable. 

These criteria represent standard problems in linear control 
design. In fact, the above criteria can be met with a simple 
first order controller, such as a lead or lag filter. 

C. The Repulsive Loop 

In the traditional potential field planning algorithm, repul- 
sive forces are a function only of the instantaneous distance 
from the current robot configuration to the nearest configura- 
tion in which a collision would occur. The disadvantage to this 
approach is that the planner cannot exploit any knowledge of 
the dynamic characteristics of obstacle motion. In our system, 
dynamic properties of obstacle motion are incorporated into 
the planningkontrol process by using a digital filter to modify 
the computed repulsive forces. We refer to this filter as the 
repulsive$lter. The frequency response of this filter determines 
how the dynamic characteristics of obstacle motion will affect 
system response. 

When designing the repulsive filter, two issues arise. 
1) If the repulsive forces are implemented in discrete time, 

it is possible that collisions may occur between sampling 
instants. 

2 )  There will always be situations in which the robot will 
be unable to prevent a collision. Hogan [lo] notes that 
this problem can occur with any control structure. 

There are basically two design parameters for the repulsive 
filter: the repulsive force gains (as a function of frequency) 
and the sampling rate of the digital system. The gains of the 
repulsive forces should be large enough to ensure that the robot 
does not collide with obstacles, and the sampling rate should 
be chosen so that the robot will not collide with obstacles 
between sampling instants. We now examine the construction 
of the repulsive forces. 

Construction of the Repulsive Forces: The signal con- 
structed by the repulsive loop is an n-dimensional vector that 
represents a force (or, for revolute joints, a torque) upon the 
joints of the robot. As described in Section 111, our algorithm 
computes repulsive forces only for a discrete set of control 

points on the robot. We define the repulsive force on each 
control point by determining the nearest obstacle to that point, 
and constructing a force vector from the obstacle to the control 
point with a magnitude inversely proportional to the distance 
to the obstacle (the precise formulation is given below in (7)). 
The obstacle region can be defined using surface polynomials 
or by using control points. In the latter case, for each robot 
control point the planner determines the nearest obstacle 
control point. The vector from that obstacle point to the robot 
control point is used to determine the force magnitude and 
direction. 

For an articulated robot, once the forces upon the robot 
control points have been determined, it remains to convert 
these forces to torques upon the joints of the robot. The 
relationship between the end-effector forces and the joint 
torques for an n-link robot is given by 

r = J ~ F ,  (6) 

where r is the vector of joint torques, J is the manipulator 
Jacobian, and F, is a vector of forces applied to the end- 
effector (consisting of three forces and three torques). In 
general, a 6 x i Jacobina matrix, Jip, relates forces exerted 
on a point, p on link i of the robot to torques on the first i 
joints of the robot (since forces exerted on link i will not create 
a torque on any joints beyond that link, assuming friction and 
gravity have already been taken into account). 

Given a collection of control points along the entire length 
of the manipulator, we create the repulsive torque vector as 
follows: 

Ff is the repulsive force exerted on control point p in 
link i, expressed in terms of the inertial frame. In our 
experiments, we have defined the repulsive forces by: 

(7) 

where Xp represents the coordinates of the pth control 
point in link i, and X g B i  represents the coordinates of 
the obstacle point nearest to X f ,  both expressed with 
respect to the world coordinate frame. 
Let Ji, be the 6 x i Jacobian matrix such that 

where ~i is the vector of joint torques for joints 0, . . . , i - 
1. 
J;, = [yip 01 is the 6 x n augmented Jacobina matrix 
where n is the total number of links. 
T ~ ~ ~ ,  the vector of total repulsive torques on all joints of 
the robot, is 

- 

where P; is the total number of repulsive control points 
on link i. 
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Fig. 2. Robust control structure. 

Design of the Repulsive Filter: The goal of the repulsive 
filter is to provide information to the control system about 
obstacle velocity and position. This is accomplished using 
a frequency domain interpretation of obstacle motion. For 
example, repulsive forces that increase rapidly in magnitude 
indicate that either an obstacle is approaching the robot rapidly 
or that the robot is approaching an obstacle rapidly. The system 
can thus determine how quickly obstacles are moving in each 
direction, either in Cartesian or joint space. 

In our system, we have implemented the repulsive filter 
as a lead filter. Filter parameters are chosen so that the 
frequency response is a linear for expected relative speeds of 
the obstacles and the robot. The low frequency cutoff prevents 
arbitrarily small repulsive forces for stationary obstacles. The 
high frequency cutoff reduces the effect of random noise on 
the system. 

v. ROBUST STABILIZATION OF THE ATTRACTIVE LOOP 

In this section we show the conditions under which the 
attractive loop can be proven to be asymptotically stable given 
direct interaction with the robot dynamics. Our proof is similar 
to that presented in [30]. The main distinction of our approach 
is the presence of a compensator (the attractive filter) in the 
forward path instead of full-state feedback. Robustness to plant 

The linearized plant, therefore, has the state-space model 

y = A y + B ( v + q )  (14) 
q = c Y  (15) 

where q is the n x 1 vector of joint variables, and 

A =  [i k]  

Y = I;] 
Our control task is to have the robot approach a set position 

and velocity. We define the error, e, as the difference between 
the current state and the desired state vector. 

e = y - y d =  [z] - [;:I 
From this, we can rewrite our system in terms of the errors 

(21) 

We can further simplify the system by noting that, for 
motion planning purposes, we are not interested in a nonzero 
steady-state acceleration (note that gravity has already been 
taken into account in the initial equations). As such, we can 
set qd = 0. 

There is an attractive filter on each joint. We can represent 
all of these filters-together with the state-space model 

e = Ae + B(v + q - id) 

i = A,z + B,u 
a,  = C,Z + D,u 

(22) 
(23) 

uncertainties is guaranteed by introducing an additional control 
signal Av that is summed with the output of the attractive filter 

controller. This resulting system is shown in Fig. 2. The robust 
control Av will be derived in the course of stability proof. 

The robot dynamic model for an n-link articulated robot is 

where is the difference between the desired and 
current position (the negative of the error as we have defined 

Since this model lumps together the attractive filters for all 
of the joints, it should be noted that both the input and the 
output a, are vectors, with dimension equal to the number of 

= qd - 

to produce a that is presented to the inverse dynamics it) and is the vector of variables of the attractive filter. 

M(q)ijl+ h(q, 4 = 7 (10) 
where h(q,q) represents the combination of the Coriolis, 
centrifugal, and gravitional forces. 

Since the above equation is nonlinear, we choose an inverse 
dynamics control law to cancel the nonlinear terms 

(1  1) 

where &I and h are the approximations of M and h used by 
the inverse dynamics controller. We will show that we can 
stabilize the robot despite errors in these approximations. 

The system that results from the combination of the nonlin- 
ear plant and the inverse dynamics control law is 

(12) 

(13) 

7 = M(q)v + L(q, q) 

4 = v + rl(v,q, 4 

q = E(q)v + M - l A h  

where q is given by 

with E = M-lh;r - I ,  Ah = h - h. 

joints of the robot. 
The input to the attractive filter is zero in steady state, so 

the origin is an equilibrium position for the filter states. We 
will investigate system stability around this equilibrium point. 

As shown in Fig. 2, we define the input v to the nonlinear 
inner-loop controller as 

(24) v = a, + AV 

where Av (which will be derived below) is an input to correct 
for errors in the dynamic model. 

The filter and linearized robot equations become 

e = Ae + B(a,  + Av + q)  
= Ae + B(Caz + D,(qd - q) + Av + q )  
= Ae + BC,z - BD,Ce + BAv + Bq 

= A,z - B,Ce 
(2) = A,z + Ba(qd - 9) 
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We can combine these subsystems into an augmented state 
space representation by defining a new state vector 

which gives us the state-space model 

x = ZX +B(77 + Av) (26) 

where 

1 - A-BD,C BC, 
-BcC A,  A =  [ 

We can design our attractive filters so that is a stable 
matrix. This design can be accomplished by making sure that 
the control loops on each joint are stable (since there is no 
cross-coupling between joints). Each joint will have a double- 
integrator linked with an attractive filter. The attractive filter 
for each joint can be designed using any number of techniques 
from linear system theory. As long as the individual loops for 
each joint are stable, the entire system, given by (26), is stable. 

Given that the nominal system (for 77 = 0) is stable, we 
will now show that we can guarantee stability for 7 # 0 
(i.e. a system in which the model is not perfectly accurate). 
The control input Av can be chosen by the designer to 
accomplish this. Before proceeding with the derivation of Av, 
we make the following assumptions about the magnitudes of 
the uncertainties. 

1. I I M - ~ A ~  - 1 1 1  = 1 1 ~ 1 1  I E < 1 for some E ,  for all 

2. IlAhll 5 q5 ( e , t )  for a known function 4, bounded in t. 
It has been shown in [30] that we can always find h;r that 

will satisfy the first assumption, given known upper and lower 
bounds on M (such bounds on M always exist). 

The process for choosing Av is as follows: 
1) Find a function p(x,t) such that 

g E 72". 

IlAvll I P(X,t) (29) 
117711 5 p(x,t) (30) 

From these restrictions and the two assumptions, we can 
derive a value for p(x,  t )  implicitly using 

l177Il = II-vs)v + M-lAhlI 
I 4 V I l  t )  
I tllAVll + +kll + t )  
- < &, t )  + +%l I1 + Zd(e,  t> 

where 
By setting the term on the right-hand side of the final 
inequality equal to p(x, t ) ,  we can solve for p(x, t )  as 

is the upper bound on M-l .  

1 
p(x,t) = j--[tllaaIl +~q5(e,t)]  (31) 

Note that Q, is a function of x, specifically 

a, = [-D,C CC]X (32) 

105 

Find a positive definite matrix P such that 

(33) 
--T A P+PX+Q=O 

where P and Q are positive definite, symmetric matrices. 
Since 
The control Av is then 

is Hunvitz, this will always be possible. 

where Av has been constructed to satisfy (29). 
We are now in a position to make some assessments of the 

stability of the system. Let 

V(e,z) = X ~ P X  (35) 

where V is a function of the state variables that satisfies the 
following two criteria: 

1) V has a unique minimum, which is achieved when the 

2) Along any trajectory of the system, the value of V never 

That the first criterion is satisfied follows from the fact that 
V is quadratic in the state variables and P is a positive definite 
matrix. Furthermore, the only minimum of V occurs when 
x = 0. This is when the robot is at the goal and the filter 
states are zero. 

For the second criterion, we take the time derivative of V 

= xT(ZTP + PZ)x + 2xTPB(Av + 77) 

manipulator is at the goal configuration. 

increases (i.e., V 5 0). 

v = XTPX + xTPX 

= -xTQx + 2xT PB( AV + 7) (36) 

The term in Q is less than zero away from the equilibrium 
point, since Q is positive definite. It suffices, therefore, to show 
that the rest of the expression is less than or equal to zero. To 
simplify notation, let w = BTPx. If w = 0, then the last 
term of el. (36) is zero and the entire expression is negative 
definite. If w # 0, then 

W 
AV = -p- 

llwll 
(37) 

and the last term of (36) (neglecting the constant factor) 
becomes 

(38) 
-pWTW + WT77 

W 
w-T(-,,,+77 1 =- llwll 

I -PIIWII + llwllll77ll (39) 
= IlWll(-P + 117711) (40) 
I 0  (41) 

since I17711 i P. 
Showing that V satisfies the two criteria given above is not 

sufficient for proving asymptotic stability using Lyapunov' s 
second method [21]. In particular, although we have shown 
that V is negative along solution trajectories of the system, 
we can not guarantee the existence of a solution since V is 
not continuous. In a similar proof, Spong and Vidyasagar [301 
note that it is possible to show the existence of a solution in 
a generalized (set-theoretic) sense. 
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Fig. 3. 2D polygon simulation. 

Fig. 4. Possible collision with moving obstacle. 

VI. RESULTS 

In this section we evaluate our system’s performance in 
three test scenarios: (1) a polygonal robot translating in the 
plane among moving polygonal obstacles, (2) a two-link 
articulated planar arm moving among polygonal obstacles, and 
(3) a Stanford arm moving in a workspace that is shared by 
a two-link planar arm. 

A. A Polygonal Robot Translating Among Polygonal Obstacles 

In this scenario, two rectangular obstacles translate back and 
forth along a “track” as shown in Fig. 3. The robot is shown in 
its initial position, and its goal position is indicated by the ‘ X ’ .  

Fig. 4 illustrates the type of collision that can occur if the 
motion plannerkontroller is not given the ability to consider 
the velocity of the moving obstacles. Such a collision can occur 
in any system with a delay between sensing and action, if 
that system relies only on instantaneous position information. 
The figure also illustrates the possibility of a discontinuity in 
the commanded motion of the robot if a standard repulsive 
potential function is used. (In the figure, this is illustrated by 
showing the position of the robot after the collision as being 
far removed from the point of collision). This discontinuity 
can also be seen the time response of the X and Y position, 
shown in Fig. 5. 

We now examine the performance of our plannerkontroller 
in the same situation. The attractive and repulsive gains are 
unchanged from the previous scenario. However, we now have 
the added benefit of the attractive and repulsive filters. Both 
filters are lead filters, with a pole at s = -20 and a zero at 
a = -0.1, discretized using the bilinear transformation [25]. 
The path is shown in Fig. 6 with a position time response 
in Fig. 7 and associated repulsive forces in Fig. 8. Here, two 
obstacles are in motion (one moves back and forth along the 

Fig. 5. Time response of robot position. 

Fig. 6. Motion of robot under ouor controller/planner system 

P o , .  . . . . . . ‘ 

Fig. 7. Time Response for the motion. 

horizontal direction, while the other moves back and forth 
along the vertical direction), and the robot passes between 
them without collision. Note that since the motion of the 
obstacles is illustrated by showing the obstacles in multiple 
positions, it appears that a collision has occurred. This is 
merely an artifact of the method of display. As can be seen 
from the figures, the motion and the forces are smooth. 

B. A Two-Link Planar Arm 
In the second scenario, our plannerkontroller is used in 

conjunction with a two-link planar arm (i.e., a two-link arm, 
with both links constrained to lie in a plane), as shown in 
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Fig. 8. Repulsive Forces for the motion. 
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Fig. 9. Planar robot initial position and goal. 

Goal Position 

c I 

Fig. 10 Motion of the planner arm motion in the absence of obstacles. 

Fig. 9. Again, both the attractive and repulsive filters are 
implemented as lead filters with pole at -20 and zero at -0.1. 
The first link of the robot is 5 units long and second link 
is 8 units long. We present three separate simulations with 
this scenario: (1) the robot moving with no obstacles in the 
workspace, (2) the robot converging to a local minimum, and 
(3) the robot moving from its goal position to avoid a single 
translating obstacle and then retuming to its goal position. 

The purpose of the first simulation is to examine the 
performance of the attractive loop. Since all of the closed-loop 
poles are real, we expect the motion to be overdamped. That 
this is the case can be seen from Figs. 10-12. Fig. 10 shows 
the motion of &he robot, Fig. 11 shows the position response 
of each joint, and Fig. 12 shows the position response of the 
end effector. As can be seen in the figures, the overshoot is not 
exactly zero. This is a result of discretization, which adds some 
uncertainty to the transient parameters. However, the error is 
small and the overall performance is not significantly affected. 

Joint Ti Rerponrc, of PLaar Arm Wilh NO 0bt.Cler 
1.8, I 

T L ~  (vim =c) 

Fig. 1 1 .  Joint response of the planar arm. 

End-PoritioaofmArmwithNo- 
1s, I 

4 -  

Fig. 12. Time response of the end effector. 
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Fig. 13. The planar arm in a local minimum. 

By introducing a stationary obstacle, we illustrate the per- 
formance of the system as it converges to a local minimum. 
This is shown in Fig. 13. The joint time response, shown in 
Fig. 14, remains overdamped. 

Finally, a moving obstacle is introduced into the workspace, 
as shown in Fig. 15. The obstacle moves to the left at a speed 
of 0.1 units per time step. The boundary distance is the same 
as that for the local minimum simulation, with po = 15. The 
robot is initially placed at the goal position, so the first motion 
in the figure is to avoid moving obstacle. After the obstacle has 
passed, the robot begins to retum to its goal position. We note 
that if the dynamic response of the obstacles is not considered, 
a collision results, similar to the case shown in the previous 
section. This situation is illustrated in Fig. 16. From top to 
bottom in the three frames, the obstacle moves in a straight 
line from right to left. 



108 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 1, JANUARY 1995 

Fig. 14. Joint time response of planar arm in the case of a local minimum. 

7- 
L - - L  1 

Fig. 15. Planar arm in the presence of a moving obstacle. 

Fig. 16. Motion of the planar arm in the presence of a moving obstacle. 

Fig. 17. Repulsive torques without compensation. 

I’t 

Fig. 18. Repulsive torques with compensation. 

In the examples shown thus far, obstacles approach the 
robot, resulting in increased repulsive force. However, what is 
not shown in these examples is that as obstacles move away 
from the robot, a negative repulsive force is created essentially 
pulling the robot into the “wake” of the moving obstacle. 
This problem is alleviated simply by adding a compensator 
to the repulsive loop that zeros such repulsive forces. Fig. 17 
shows the output of the repulsive filter without compensation, 
and Fig. 18 shows the output of the repulsive filter with 
compensation. 

C. Stanford Arm and Planar Arm 

In the final scenario, we examine the behavior of two 
robots moving in a three-dimensional workspace, specifically 
a Stanford arm and a planar robot. Here, we consider only 

Fig. 19. 3D Multi-robot simulation. 

the first four links of the Stanford arm. In this example, we 
use our plannerkontroller only with the Stanford arm, and treat 
the second robot as a moving obstacle. The initial positions for 
the two arms are shown in Fig. 19. The Stanford arm’s goal 
is to proceed to a point beyond the plane of motion of the 
planar arm. The planar arm starts at joint position (0, 0) (i.e. 
horizontal) and moves to joint position (90, 0) (i.e. vertical). 

An important characteristic of the two-robot system is the 
speed of the planar arm relative to the speed of the Stanford 
arm. For example, if the planar arm moves slowly relative to 
the Stanford arm, the plannerkontroller will allow the Stanford 
arm to pass above the planar arm on the way to its goal. If the 
planar arm then moves upward, the Stanford arm will be forced 
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Fig. 20. Stanford ann avoids and passes planar arm. 

back to allow the planar arm to pass. If, on the other hand, the 
planar arm moves at a much higher speed than the Stanford 
arm, the Stanford arm will effectively wait for the planar 
arm to pass before moving to its goal position. This is a key 
distinction between our approach and traditional potential field 
planners (which use only instantaneous position information 
to compute repulsive forces). We note that if the dynamic 
response of the planar arm is not considered, a collision results. 

In our simulation, the speed of the planar arm was much 
higher than that of the Stanford arm. The resulting motion 
is shown in Fig. 20. The planar arm rises steadily toward its 
goal under the control of a standard PD control algorithm. The 
Stanford arm waits until the planar arm has passed and then 
slips around the end-effector of the planar arm to proceed 
toward the goal. 

VII. CONCLUSION 
We have presented an integrated architecture for real-time 

planning and control of robot motions, for a robot operating 
in the presence of moving obstacles whose trajectories are 
not known a priori. The architecture consists of three separate 
control loops. An inner loop is used to linearize robot dynam- 
ics, and two outer loops are used to implement a potential 
field motion planning algorithm. These outer control loops 
correspond to an attractive force (which attracts the robot to 
its goal configuration), and to repulsive forces (which repel 
the robot from the moving obstacles). 

Our architecture is unique in both its control theoretic and 
its motion planning aspects. From a control theory perspective, 
our approach is unique in that the outer control loops are 
used to effect both desirable transient response and collision 
avoidance. From a motion planning perspective, our approach 
is unique in that the dynamic performance of both the robot 
and the moving obstacles are considered, unlike traditional 
artificial potential field planners, which take into account 
only the instantaneous relative positions of the robot and the 
obstacles. 
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