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Observer Design for Stochastic Nonlinear Systems
via Contraction-Based Incremental Stability
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Abstract—This paper presents a new design approach to nonlin-
ear observers for Itô stochastic nonlinear systems with guaranteed
stability. A stochastic contraction lemma is presented which is
used to analyze incremental stability of the observer. A bound
on the mean-squared distance between the trajectories of original
dynamics and the observer dynamics is obtained as a function
of the contraction rate and maximum noise intensity. The ob-
server design is based on a non-unique state-dependent coefficient
(SDC) form, which parametrizes the nonlinearity in an extended
linear form. The observer gain synthesis algorithm, called lin-
ear matrix inequality state-dependent algebraic Riccati equation
(LMI-SDARE), is presented. The LMI-SDARE uses a convex
combination of multiple SDC parametrizations. An optimization
problem with state-dependent linear matrix inequality (SDLMI)
constraints is formulated to select the coefficients of the convex
combination for maximizing the convergence rate and robustness
against disturbances. Two variations of LMI-SDARE algorithm
are also proposed. One of them named convex state-dependent
Riccati equation (CSDRE) uses a chosen convex combination of
multiple SDC matrices; and the other named Fixed-SDARE uses
constant SDC matrices that are pre-computed by using conserva-
tive bounds of the system states while using constant coefficients
of the convex combination pre-computed by a convex LMI opti-
mization problem. A connection between contraction analysis and
L2 gain of the nonlinear system is established in the presence of
noise and disturbances. Results of simulation show superiority of
the LMI-SDARE algorithm to the extended Kalman filter (EKF)
and state-dependent differential Riccati equation (SDDRE) filter.

Index Terms—Estimation theory, state estimation, stochastic
systems, observers, optimization methods.

I. INTRODUCTION

THE present paper is motivated by the fact that the state es-
timation for many engineering and robotics applications,

such as simultaneous localization and mapping (SLAM) [1],
[2], has to overcome issues with nonlinearities and stochastic
uncertainty. Itô stochastic nonlinear dynamic systems, driven
by white noise, exhibit a non-Gaussian probability density,
whose time-evolution is characterized by the Fokker-Planck
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equation—a partial differential equation [3], [4]. Both nonlin-
earity and non-Gaussian distribution of the probability den-
sity of the states make the optimal estimation problem very
challenging. A state estimator for nonlinear systems driven by
Cauchy noise is presented in [5]. Popular filtering approaches
for nonlinear systems include the extended Kalman filter (EKF)
[6], the unscented Kalman filter [7], particle filters [8], and
the set membership filter [9]. Conventional nonlinear observer
designs are based on deterministic nonlinear systems (e.g.,
Lipschitz nonlinear systems [10], [11], monotone nonlinearities
[12], and high gain observers [13]).

The observer design methods based on deterministic systems
neglect the stochastic measurement and process noise in the
system. The main objective of such observers is to design
(possibly globally stable) observers for various classes of non-
linearities using a nonlinear transformation of the original sys-
tem into a pseudo-linear form or using a dominant linear time
invariant (LTI) term in the dynamics (i.e., ẋ = Ax+ g(x)).
A nonlinear observer is designed in a recent work [14] for
deterministic systems with a special class of nonlinearities
that satisfy incremental quadratic inequalities. In [15], a state
estimation algorithm for stochastic nonlinear systems is pre-
sented for the nonlinearities satisfying the integral quadratic
constraint (IQC). In [16], EKF algorithms are developed based
on a Carleman approximation (see [17]), which transforms
the original nonlinear system into a polynomial form. The
dimension of the transformed state space is higher than the
original system and increases with the degree of the Carleman
approximation. Note that its first degree is equivalent to the
Jacobian used in the EKF. In [18], [19], a differential mean-
value theorem (DMVT) is used to transform the nonlinearity
into a linear parameter varying (LPV) system which leads to an
LMI feasibility problem. In [20], a simultaneous input and state
estimation method is proposed based on the Gauss-Newton
optimization method.

In contrast with the nonlinear transformations used in a de-
terministic case and the linearization approach used in EKF-like
observers, an alternative approach is based on parametrization
of nonlinear systems into an “extended linear” form or so called
state-dependent coefficient (SDC) form [21], [22]. This paper
addresses the problem of observer design in the presence of
nonlinearities and stochastic noise by rewriting an Itô stochastic
nonlinear system in an SDC form. The SDC parametriza-
tion is not unique and there exist multiple choices of such
parametrization. An algorithm called “linear matrix inequality
state-dependent algebraic Riccati equation” (LMI-SDARE) is
proposed which uses the degree of freedom of the SDC form
to compute the observer gain. A block diagram describing
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Fig. 1. System diagrams describing the LMI-SDARE algorithm: the flow
chart of the LMI-SDARE (top) and the conceptual design of the LMI-SDARE
(bottom).

the LMI-SDARE algorithm is shown in Fig. 1. The observer
gain design problem is cast into a state-dependent linear ma-
trix inequality (SDLMI) feasibility problem. An optimization
problem is formulated with the SDLMI constraints so that the
optimal convex combination of the multiple SDC forms can be
selected to compute the observer gain that achieves desirable
estimator properties, such as the improved convergence rate and
the minimum mean-squared estimation error. The optimization
problem is converted to a convex optimization problem and
can be solved using the polynomial-time interior point meth-
ods [23], [55]. Two variations of the LMI-SDARE algorithm,
called “convex state-dependent Riccati equation” (CSDRE)
filter and “fixed-state-dependent algebraic Riccati equation”
(Fixed-SDARE) filter, are also presented. For the CSDRE
algorithm, a differential Riccati equation is integrated from a
positive definite initial condition or a state-dependent algebraic
Riccati equation is solved using an a priori selected convex
combination of the multiple state-dependent parametrizations
A and C to compute the observer gain. For the Fixed-SDARE
filter, constant (A,C) matrices computed based on the con-
servative upper bounds on the states of the system are used
to solve a linear matrix inequality for computing parameters
of the convex combination of constant (A,C) matrices. The
observer gain for the Fixed-SDARE filter is a constant matrix
which can be computed a priori. Incremental stability of the
proposed observer algorithm is analyzed by using contraction
analysis [24], [25]. Compared to our preliminary work [26], the
present paper shows a more systematic process of the observer
design and provides rigorous stability proofs.

Contribution 1: Stochastic Contraction and Observer De-
sign: Nonlinear stability is analyzed with respect to an equi-
librium point by using Lyapunov-like approaches. In contrast,
incremental stability (e.g., see [27]) analyzes the behavior of
the system trajectories with respect to each other and is very
useful for observer design and synchronization problems [28],
[29]. In this paper, a new lemma is presented which charac-
terizes stochastic incremental stability of the solutions of two
Itô stochastic differential equations driven by different Wiener
processes. The lemma shows that the distance between the
solution trajectories of two systems, with respect to a state-
dependent Riemannian metric, exponentially converges to a
bound. Furthermore, an exponentially stabilizing observer for
Itô stochastic differential equations is designed, which com-
putes the observer gain using state-dependent linear matrix
inequalities (SDLMIs). Stochastic incremental stability of the
observer is analyzed by using the result of the stochastic con-
traction lemma.

In [24], contraction analysis is developed as a tool to study
incremental stability of deterministic systems. The incremen-
tal stability approaches developed in [30]–[32] are similar to
contraction analysis for analyzing stability of differential equa-
tions. Recently, in [25], contraction analysis has been extended
to stochastic nonlinear systems using a state-independent met-
ric. The results in this paper are more general than the observer
example presented in [25], because of the following reasons:
(1) incremental stability of stochastic systems is shown with
respect to a state-dependent metric; (2) explicit algorithms for
observer gain computation are presented; and (3) the observer
can be designed for a nonlinear measurement model. Since a
contracting system is globally exponentially stable, the system
exhibits robustness properties and follows the connection be-
tween L2 gain of the system and time-domain H∞ norm [33],
[34]. A connection between contraction theory and robustness
of the stochastic nonlinear systems, characterized by L2 gain of
the system is established. It is shown that the estimation error
has a finite L2 gain with respect to the noise and disturbance
acting on the system. This provides a property of robustness
against uncertainties in the dynamics.

Contribution 2: Optimal Choice of the Convex SDC Forms
for Observer Design: As pointed out earlier, SDC formulations
are not unique. In general, the choice of parametrization pri-
marily depends on the observability property. In this paper, a
convex combination of such parametrizations is used to achieve
desirable estimator properties in addition to avoiding loss of
observability. Hence, this paper presents the first result that
fully uses the flexibility of SDC form for observer gain design,
thereby providing a systematic algorithm based on SDLMI
constraints solved by convex optimization. The effectiveness of
this algorithm is demonstrated by the results of two simulation
examples; the LMI-SDARE algorithm outperforms the EKF
and conventional SDRE filter.

SDC-based filters for deterministic systems are presented in
[35]–[37]. Most existing approaches to SDC-based filters solve
a state-dependent algebraic Riccati equation (SDARE) at every
time instant to obtain a positive definite (PD) solution used to
construct the observer gain. Some observer design approaches
use a state-dependent differential Riccati equation (SDDRE)
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formulation that propagates a solution to the differential Riccati
equation by integration [36]. The conventional SDARE and
SDDRE filters use a single state-dependent parametrization
(A,C) to solve the Riccati equation. In contrast, the algorithms
presented in this paper use a convex combination of multiple
parametrizations to achieve a better estimation performance as
shown with the help of numerical simulations in Section VI. If
the uniform observability property is satisfied, the SDDRE has
a PD solution. In [38], an algorithm is proposed to re-select the
parametrization at a particular time-instant if the observability
of parametrization is lost.

Notation: Throughout the paper, we adopt the following
notation. For a vector x ∈ R

n, ‖x‖ denotes the Euclidean norm,
xi denotes the ith component of vector x. For a real matrix A ∈
R

n×m, ‖A‖ denotes the induced 2-norm; i.e., the maximum
singular value of A, ‖A‖F denotes the Frobenius norm, Aij de-
notes the component in ith row and jth column, (Aij)a denotes
the partial derivative with respect to vector a, (Aij)aiaj

denotes
the double partial derivative with respect to components of
vector a, (Aij)t denotes the partial derivative with respect to
t; if A is square, λmin(A) and λmax(A) denote minimum and
maximum eigenvalues, and tr(A) denotes the trace of A; I ∈
R

n×n denotes the identity matrix; Co{A1, . . . , An} denotes the
convex hull of matrices A1, . . . , An; E[·] denotes the expected
value operator, Ey0

[y(t)] denotes the expected value of y at the
time instant t given the initial value y(t0) = y0; and the L2

norm of a vector is defined in an L2−extended space.

II. PRELIMINARIES

A. Brief Review of Contraction Analysis

In this section, contraction analysis [24] for analyzing ex-
ponential stability of nonlinear systems is briefly reviewed.
Consider a nonlinear, non-autonomous system of the form

ẋ = f(x, t) (1)

where x(t) ∈ R
n is a state vector and f : Rn × R → R

n is
a continuously differentiable nonlinear function. With the as-
sumed properties of (1), the exact relation δẋ = (∂f(x, t)/
∂x)δx holds, where δx is an infinitesimal virtual displacement
in fixed time. The squared virtual displacement between two
trajectories of (1) with a symmetric, uniformly positive def-
inite metric M(x, t) ∈ R

n×n is given by δxTM(x, t)δx (cf.
Riemannian metric [39]). Its time derivative is given by

d

dt

(
δxTM(x, t)δx

)
= δxT

(
∂f

∂x

T

M(x, t) + Ṁ(x, t) +M(x, t)
∂f

∂x

)
δx. (2)

If the following inequality is satisfied

∂f

∂x

T

M(x, t)+Ṁ(x, t)+M(x, t)
∂f

∂x
≤−2γM(x, t)∀t,∀x

(3)

for a strictly positive constant γ, then the system (1) is said to
be contracting with the rate γ and all the system trajectories

exponentially converge to a single trajectory irrespective of the
initial conditions (hence, globally exponentially stable).

Now consider a perturbed system of (1)

ẋ = f(x, t) + d(x, t) (4)

such that the deterministic disturbance ‖d(x, t)‖ is bounded.
The following lemma shows that the distance between the
trajectory of the perturbed system and the trajectory of the
globally exponentially stable nominal system remains bounded.

Lemma 1: (Robustness of Contracting Dynamics) [24],
[29] Let T1(t) be a trajectory of the globally contracting
system (1) and T2(t) be a trajectory of a perturbed sys-
tem (4). The smallest distance between T1(t) and T2(t)

is defined by S(t)
Δ
=
∫ T2

T1
‖δz‖, where δz

Δ
= Θ(x, t)δx and

ΘT (x, t)Θ(x, t) = M(x, t) satisfies

S(t)≤S(t0)e
−γ(t−t0)+

1−e−γ(t−t0)

γ
sup
x,t

‖Θd‖ ∀t≥ t0. (5)

As t → ∞, S(t) ≤ sup
x,t

‖Θd‖/γ.

Proof: Differentiating the distance S(t), we obtain
Ṡ + γS ≤ ‖Θd‖ [24]. For bounded ‖Θd‖, the estimate in (5)
can be obtained by using the comparison lemma (cf. [40,
Lemma 3.4]). �

If the unperturbed system (1) is globally contracting, the
perturbed system (4) is finite-gain Lp stable with p ∈ [1,∞]
in the sense of the bounded output function y = h(x, d, t)

with
∫ Y2

Y1
‖δy‖ ≤ η0

∫ T2

T1
‖δx‖+ η1‖d‖, ∀η0, η1 > 0 (see [29])

where h : Rn × R
n × R → R

m, Y1(t) and Y2(t) denote the
output trajectories of the globally contracting system (1) and
its perturbed system (4).

III. STOCHASTIC CONTRACTION LEMMA

Consider a stochastically perturbed system of the nomi-
nal system (1) represented using an Itô stochastic differential
equation

dx = f(x, t)dt+B(x, t)dW, x(0) = x0 (6)

and the conditions for existence and uniqueness of a solution
to (6)

∃L1 > 0, ∀t, ∀x1, x2 ∈ R
n :

‖f(x1,t)−f(x2,t)‖+‖B(x1,t)−B(x2,t)‖F≤L1‖x1−x2‖,
∃L2 > 0, ∀t, ∀x1 ∈ R

n :

‖f(x1, t)‖2 + ‖B(x1, t)‖2F ≤ L2

(
1 + ‖x1‖2

)
(7)

where B : Rn × R → R
n×d is a matrix-valued function, W (t)

is a d-dimensional Wiener process, and x0 is a random variable
independent of W [41].

Consider any two systems with trajectories a(t) and b(t)
obtained by the same function f(·) in (6) but driven by inde-
pendent Wiener processes W̄1 and W̄2

dz =

(
f(a, t)
f(b, t)

)
dt+

(
B1(a, t) 0

0 B2(b, t)

)(
dW̄1

dW̄2

)
= fs(z, t)dt+Bs(z, t)dW̄ (8)

where z(t) = (a(t)T , b(t)T )
T ∈ R

2n.
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We present the so-called stochastic contraction lemma that
uses a state-dependent metric, thereby generalizing the main
result presented in [25]. The following lemma analyzes stochas-
tic incremental stability of the two trajectories a(t) and b(t)
with respect to each other in the presence of noise where
the system without noise ẋ = f(x, t) is contracting in a state-
dependent metric M(x(μ, t), t), for μ ∈ [0, 1]. The trajectories
of (6) are parametrized as x(0, t) = a and x(1, t) = b, and
B1(a, t) and B2(b, t) are defined as B(x(0, t), t) = B1(a, t),
and B(x(1, t), t) = B2(b, t), respectively.

Assumption 1: tr(B1(a, t)
TM(x(a, t), t)B1(a, t)) ≤ C1,

tr(B2(b, t)
TM(x(b, t), t)B2(b, t))≤C2, m̄x= sup

t≥0,i,j
‖(Mij(x,t))x‖,

and m̄x2 = sup
t≥0,i,j

‖∂2(Mij(x,t))/∂x
2‖, where C1, C2, m̄x, and

m̄x2 are constants.
Assumption 2: The nominal deterministic system (1) is con-

tracting in a metric M(x(μ, t), t) in the sense that (3) is satisfied

and M(x(μ, t), t) satisfies the bound m
Δ
= inf

t≥0
(λminM). The

function f and the metric M are the same as in (1) and (3).
Lemma 2. (Stochastic Contraction Lemma): Consider the

generalized squared length with respect to a Riemannian
metric M(x(μ, t), t) defined by V (x, δx, t)=

∫ 1

0 (∂x/∂μ)
T

M(x(μ, t), t)(∂x/∂μ)dμ such that m‖a− b‖2 ≤ V (x, δx, t).
If Assumptions 1 and 2 are satisfied then the trajectories a(t)
and b(t) of (8), whose initial conditions, given by a probability
distribution p(a0, b0), are independent of dŴ1 and dŴ2, satisfy
the bound

E
[
‖a(t)−b(t)‖2

]
≤ 1

m

(
C

2γ1
+E [V (x(0), δx(0), 0)] e−2γ1t

)
(9)

where ∃ε > 0 such that γ1
Δ
= γ − ((β2

1 + β2
2)/2m)(εm̄x +

(m̄x2/2)) > 0, γ is the contraction rate defined in (3), C=
C1+ C2+ (m̄x/ε)(β

2
1+ β2

2), β1= ‖B1‖F , and β2= ‖B2‖F .
Proof: By using the Itô formula [3], [41], the stochastic

derivative of the Lyapunov function V (x, δx, t) is given
by dV (x, δx, t) = LV (x, δx, t)dt+

∑n
i=1

∑d
j=1 Vxi

(x, δx, t)
(B(x, t))ij dWj +Vδxi

(x, δx, t)(δB(x, t))ijdWj , where L is
an infinitesimal differential generator such that

LV =Vt +

n∑
i=1

(
Vxi

fi + Vδxi

∂f

∂x
δx

)

+
1

2

n∑
i=1

n∑
j=1

[
Vxixj

(
B(x, t)BT (x, t)

)
ij

+ Vδxiδxj

(
δB(x, t)δBT (x, t)

)
ij

+2Vxiδxj

(
B(x, t)δBT (x, t)

)
ij

]
. (10)

Using (6), (10) can be written as

LV =

1∫
0

(
∂x

∂μ

)T

dM (x(μ, t), t)

(
∂x

∂μ

)
dμ

+

1∫
0

(
∂x

∂μ

)T (
M

∂f

∂x
+

∂f

∂x

T

M

)(
∂x

∂μ

)
dμ+ Vb (11)

such that dMij(x(μ, t), t) = (∂Mij(x(μ, t), t)/∂t) + (Mij)x
f(x(μ, t), t) and

Vb=

1∫
0

n∑
i=1

n∑
j=1

Mij

(
∂B(x, t)

∂μ

∂B(x, t)

∂μ

T
)

ij

dμ

+

1∫
0

⎡
⎣2 n∑

i=1

n∑
j=1

(Mi)xj

(
∂x

∂μ

)(
B(x, t)

∂B(x, t)

∂μ

T
)

ij

⎤
⎦ dμ

+
1

2

1∫
0

⎛
⎝ n∑

i=1

n∑
j=1

(
n∑

k=1

n∑
l=1

(Mkl (x(μ, t), t))xixj

×∂xk

∂μ

∂xl

∂μ

)(
B(x, t)B(x, t)T

)
ij

)
dμ

(12)

where x is a function of μ such that x(0, t) = a and x(1, t) =
b, and Mi is the ith row of M . The following bounds can be
computed:

1∫
0

n∑
i=1

n∑
j=1

Mij

(
∂B(x, t)

∂μ

∂B(x, t)

∂μ

T
)

ij

dμ

≤ tr
(
M(a, t)B1B

T
1

)
+ tr

(
M(b, t)B2B

T
2

)
(13)

1

2

1∫
0

⎛
⎝ n∑

i=1

n∑
j=1

(
n∑

k=1

n∑
l=1

(Mkl(x, t))xixj

×∂xk

∂μ

∂xl

∂μ

)
(BBT )ij

)
dμ

≤ 1

2
m̄x2

(
β2
1 + β2

2

) 1∫
0

∥∥∥∥∂x∂μ
∥∥∥∥
2

dμ (14)

1∫
0

⎡
⎣2 n∑

i=1

n∑
j=1

(Mi)xj

(
∂x

∂μ

)(
B(x, t)

∂B(x, t)

∂μ

T
)

ij

⎤
⎦ dμ

≤ 2m̄x

(
β2
1 + β2

2

) 1∫
0

∥∥∥∥∂x∂μ
∥∥∥∥ dμ

≤ m̄x

(
β2
1 + β2

2

)⎛⎝ 1∫
0

ε

∥∥∥∥∂x∂μ
∥∥∥∥
2

dμ+
1

ε

⎞
⎠ (15)

where the inequality 2a′b′ ≤ ε−1a′2 + εb′2, for scalars a′ and b′

with ε > 0, is used. Using (3) and the bounds in (13), (14), and
(15), the differential generator in (11) can be bounded above as
follows

LV ≤ − 2γ1

1∫
0

(
∂x

∂μ

)T

M (x(μ, t), t)

(
∂x

∂μ

)
dμ

+
m̄x

ε

(
β2
1 + β2

2

)
+ tr

(
M(a, t)B1B

T
1

)
+ tr

(
M(b, t)B2B

T
2

)
(16)
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where γ1
Δ
= γ − ((β2

1 + β2
2)/2m) (εm̄x + (m̄x2/2)) > 0.

Assumptions 1–2 and (16) yield

LV ≤ −2γ1V + C. (17)

Using the stopping time argument, the integral of the last term
in dV = LV dt+

∑n
i=1

∑d
j=1 Vxi

(x, δx, t)(B(x, t))ijdWj +
Vδxi

(x, δx, t)(δB(x, t))ijdWj is a martingale (cf. Theorem 4.1
of [42]). Taking the expectation operator on both the sides of
dV and using (17) along with Dynkin’s formula (pp. 10 of [3])
∀u, t, 0 ≤ u ≤ t < ∞ yields

Ex0
[V (x(μ, t), δx(t), t)]− Ex0

[V (x(μ, u), δx(u), u)]

≤
t∫

u

(−2γ1Ex0
[V (x(μ, s), δx(s), s)] + C) ds (18)

where Fubini’s theorem is used for changing the order of
integration [3]. By using the Gronwall-type lemma (see
Appendix A), the following inequality can be developed:

Ex0
[V (x(μ, t), δx, t)]

≤
[
V (x(0), δx(0), 0)− C

2γ1

]+
e−2γ1t +

C

2γ1
(19)

where [·]+ = max(0, ·). Integrating (19) with respect to x0, and
using mE[‖a− b‖2] ≤ E[V (x, δx, t)], [V (x(0), δx(0), 0)−
(C/2γ1)]

+ ≤ V (x(0), δx(0), 0), and E[V (x(0), δx(0), 0)] =∫
V (x(0), δx(0), 0)dp(x0), the bound on the mean-squared

estimation error given in (9) is obtained. Hence, the mean-
squared estimation error is exponentially bounded. �

A. Choice of ε for Optimal Bound in (9)

The contraction rate γ1 and the uncertainty bound C
in (9) depend on the choice of ε. To derive an optimal
choice of ε so that C/(2mγ1) in (9) is minimized, consider
F (ε) = C/(2mγ1) = (1/(2m)(γ − ((β2

1 + β2
2)/2m) (εm̄x +

(m̄x2/2)))) (C1 + C2 + (L/ε)), where L = m̄x(β
2
1 + β2

2).
Computing dF/dε = 0 yields (C1+C2)(β

2
1+β2

2)m̄xε
2+

2L(β2
1+β2

2)m̄xε−2Lmγ + L(β2
1 + β2

2)(m̄x2/2) = 0, whose
solution minimizes the bound C/(2mγ1) in (9).

Remark 1: In certain cases, such as the observer design
in Section V, the convergence of the trajectories of the solu-
tions of two stochastic systems is difficult to verify by using
a state-independent metric, such as M(t) (cf. [43]). Hence,
generalization of the stochastic contraction result with a state-
dependent metric is important. The bound in (9) reduces to the
one obtained in [25] when M = M(t) or M = constant. It is
easy to verify from (12) that for M = M(t) or M = constant,
the terms related to (Mi)xj

and (Mkl)xixj
vanish because they

are independent of x.

IV. SYSTEM FORMULATION FOR OBSERVER DESIGN

Consider a dynamic system represented by an Itô stochastic
differential equation with a measurement equation

dx = f(x, t)dt+ d(x, t)dt+B(x, t)dW1(t) (20)
y =h(x, t) +D(x, t)ν(t) (21)

where x(t) ∈ R
n is the state; y(t) ∈ R

m is the measurement;
f(x, t) : Rn × R → R

n; h(x, t) : Rn × R → R
m; B(x, t) :

R
n × R → R

n×n; D(x, t) : Rn × R → R
m×m; ν(t) is m di-

mensional white noise formally defined as dW2 = ν(t)dt;
W1(t) and W2(t) are standard n and m dimensional inde-
pendent Wiener processes; and d(x, t) : Rn × R → R

n is an
unknown, bounded, deterministic disturbance. The d(x, t) term
is not considered in Theorems 1–2 but is used in Theorem 3 to
show the robustness result using L2 stability.

Problem Statement: Given the stochastic system in (20) and
the measurement (21), the objective is to design a state observer
that estimates the state x(t) using noisy measurements y(t); i.e.,
given all the noisy measurements up to time t > 0, compute
x̂(t) such that

E
[
‖x(t)− x̂(t)‖2

]
≤ ζ1E

[
‖x(0)− x̂(0)‖2

]
e−ζ2t + ε (22)

for positive constants ζ1, ζ2, and ε. The observer is another
stochastic differential equation that uses sensor measurements
and exponentially forgets the initial conditions to follow the
behavior of the original system (20).

The nonlinear system (20) can also be expressed in a state-
dependent coefficient (SDC) form

dx =A(x, t)xdt+ d(x, t)dt+B(x, t)dW1(t) (23)

y =C(x, t)x+D(x, t)ν(t) (24)

where f(x,t)=A(x,t)x andh(x, t)=C(x, t)x are parametrized
using nonlinear matrix functions A(x, t) : Rn × R → R

n×n

and C(x, t) : Rn × R → R
m×n. The choice of such paramet-

rization is not unique for n > 1. If there exists A(x, t) ∈
Co{A1(x, t), A2(x, t), . . . , As1(x, t)} such that

f(x, t) = A1(x, t)x = A2(x, t)x = . . . = As1(x, t)x (25)

then there exist an infinite number of parametrizations

f(x, t)=A(�, x, t)x=�1A1(x, t)x+. . .+�s1As1(x, t)x (26)

where � = {�i|i = 1, . . . , s1}, �i ≥ 0 and
∑s1

i=1 �i = 1.
Similarly, h(x, t) can be parametrized using C(x, t) ∈
Co{C1(x, t), C2(x, t), . . . , Cs2(x, t)} as

h(x, t)=C(η, x, t)x=η1C1(x, t)x+. . .+ηs2Cs2(x, t)x (27)

where η = {ηi|i = 1, . . . , s2}, ηi ≥ 0 and
∑s2

i=1 ηi = 1. In the
subsequent sections, a convex-optimization problem along with
an LMI constraint is presented to optimize a suitable cost metric
over the coefficients � and η.

Assumption 3: The convex combination of the matrices
(A(�, x, t), C(η, x, t)) is selected such that the pair is uniformly
observable.

Remark 2: Even though the individual parametrization
(Ai(x, t), Ci(x, t)) is not observable at some points of the state
space, the parameters � and η can be used to preserve the
uniform observability of (A(�, x, t), C(η, x, t)). This fact is
illustrated using Example 1 below.
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Let

∂

∂x
(A(�, x, t)x) =A(�, x, t) + Δ1(�, x, t) (28)

∂

∂x
(C(η, x, t)x) =C(η, x, t) + Δ2(η, x, t) (29)

The matrices Δ1(�, x, t) and Δ2(η, x, t) can be evaluated by
multiplying the rows of A(�, x, t) and C(η, x, t) by x(t) and
computing the partial derivatives of the entries of A(�, x, t) and
C(η, x, t) matrices with respect to x(t).

Assumption 4: The Euclidean norm of the state vector
‖x(t)‖ is upper bounded by a constant [36], [44], [45]; i.e.,
x(t) ∈ D where D ⊂ R

n is a compact domain. The SDC
parametrization A(�, x, t) and C(η, x, t) is such that the fol-
lowing inequalities hold [44]:

‖Δ1(�, x, t)‖≤δ1, ‖Δ2(η, x, t)‖≤δ2, δ3≤‖C(η, x, t)‖≤ δ̄3
(30)

where δ1, δ2, δ3 and δ̄3 are positive scalars.
Remark 3: Assumption 4 is satisfied by many engineering

applications, e.g., pose estimation of a robot moving on earth’s
surface, state estimation for aircraft guidance and control, etc.
Assumption 4 does not imply any assumption on the stability
of the system (20) or the incremental stability of the observer
design. It is only assumed that the trajectories of the original
system remain bounded within an arbitrarily large compact set.

Example 1: We illustrate how the parameters �i can be
used to minimize the uncertainty in the SDC parametriza-
tion and avoid loss of observability of the pair (A,C). Con-
sider a nonlinear function f(x) = (x1x2,−x2)

T , where x =
(x1, x2)

T ∈ D ⊂ R
2, and an observation matrix C = (1, 0).

Let two parametrizations be selected as A1=

(
0 x1

0 −1

)
, A2=(

x2/2 x1/2
0 −1

)
. Consider a convex combination f(x) =

�1A1x+ �2A2x such that �1 + �2 = 1. The corresponding

matrix �1(�i, x) is Δ1 =

(
(�2x1/2) + �1x2 �2(x1/2)

0 0

)
,

whose Frobenius norm is bounded inside the compact domain
D. The parameters � can be used to preserve the observability
of the pair (�1A1 + �2A2, C). The pair (�1A1 + �2A2, C) is
unobservable if �1x1 + (�2x2/2) = 0. To avoid the loss of
observability, a nonzero �1 is selected for x2 = 0, a nonzero
�2 is selected for x1 = 0, and �1, �2 are selected such that
�1x1 + (�2x2/2) 
= 0 for x1 
= 0, and x2 
= 0. Note that the
pairs (A1, C) and (A2, C) are not observable for x1 = 0, and
x2 = 0, respectively. The problem of loss of observability of
an individual pair can be avoided by suitably choosing the
coefficients �. In Section V-B, a linear matrix inequality (LMI)
is formulated which includes constraints on � and η to avoid
loss of observability of the pair (A,C).

V. OBSERVER DESIGN AND STABILITY ANALYSIS

In this section, an observer is designed for the stochastic
system in (20) and (23) to estimate the state x(t). The estimate

is denoted by x̂(t) ∈ R
n. A stochastic observer for the system

in (23) is designed as

dx̂ = A(�, x̂, t)x̂dt+K(x̂, t) (y − C(η, x̂, t)x̂) dt (31)

which can be written in the following form using (24):

dx̂ = [A(�, x̂, t)x̂+K(x̂, t) (C(η, x, t)x− C(η, x̂, t)x̂)] dt

+ K(x̂, t)D(x, t)dW2 (32)

where dW2 is defined below (21). The observer gain K(x̂, t) is
given by

K(x̂, t) = P (x̂, t)CT (η, x̂, t)R−1(x̂, t) (33)

where R(x̂, t) = D(x̂, t)DT (x̂, t) is a positive definite approx-
imation of the measurement noise covariance matrix and the
positive definite (PD) symmetric matrix P (x̂, t) is a solution to

dP (x̂, t) =
(
A(�, x̂, t)P (x̂, t) + P (x̂, t)AT (�, x̂, t)

+ 2αP (x̂, t)− P (x̂, t)

×
(
−2κI + CT (η, x̂, t)R−1(x̂, t)C(η, x̂, t)

)
×P (x̂, t)) dt (34)

where α > 0 and κ > 0. The matrices A(�, x̂, t) and C(η, x̂, t)
are obtained via SDC parametrizations in (26) and (27). Equa-
tion (34) can be integrated with a positive definite symmetric
initial condition P (0) > 0.

If the matrices A(�, x̂, t) and C(η, x̂, t) are not state-
dependent, then the exact solution of the differential Riccati
equation can be derived, which gives an optimal gain of the
Kalman-Bucy filter with κ = 0.

Assumption 5: There exist two time-varying scalar functions
pu(t) and pl(t) such that the positive definite solution P (x̂, t)
of the differential Riccati (34) satisfies the bound

pl(t)I ≤ P−1(x̂, t) ≤ pu(t)I, ∀t ≥ 0. (35)

The time-varying bounds in (35) can be replaced by constants

using p̄
Δ
= sup

t
pu(t) and p

Δ
= inf

t
pl(t).

Remark 4: If the pair (A(�, x, t), C(η, x, t)) is uniformly
observable by Assumption 3, the solution to (34) satisfies the
bound in (35) (cf. [6], [43], [46, Theorem 7], [47, Lemma 2]).

A. Observer Stability by Contraction Analysis

In this section, stochastic incremental stability of the ob-
server is studied using the results of Lemma 2. The analysis is
performed in two steps. First, global exponential convergence
(contraction) of noise-free trajectories of the observer in (31)
towards noise-free trajectories of the original system (20) is
proved in Theorem 1 using partial contraction theory [48].
Second, the bound on the mean-squared distance between the
trajectories of the original system with process noise and the
trajectories of the observer with measurement noise is com-
puted in Theorem 2.

Notice that noise-free and disturbance-free trajectories of
the systems (23) and (31) can be represented by the following
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virtual system of q ∈ R
n:

q̇=fv(q, t)=A(�, q, t)q +K(x̂, t) (C(η, x, t)x−C(η, q, t)q) .
(36)

For q = x, (36) reduces to a noise-free and disturbance-free
version of (20) and for q = x̂, (36) yields noise-free version
of (31). Hence, q = x and q = x̂ are particular solutions of the
virtual system (36). Consider a stochastic system

dq = fv (q(μ, t), t) dt+Bq (q(μ, t), t) dW (37)

such that q(0, t) = x and q(1, t) = x̂, and Bq(0, t) = B(x, t)
and Bq(1, t) = K(x̂, t)D(x, t). For the development of the
results in Theorems 1–2, the deterministic disturbance term
d(x, t) in (20) is not considered in (37). Theorem 3 shows that
the L2 norm of the estimation error is bounded in the presence
of noise and bounded deterministic disturbance d(x, t).

Theorem 1: (Deterministic Stability) Under Assumptions
3–5, the virtual system (36) is contracting if there exists a
uniformly positive metric P (q, t) that satisfies

Ṗ (q, t) =A(�, q, t)P (q, t) + P (q, t)AT (�, q, t)

+ 2αP (q, t)− P (q, t)

×
(
−2κI + CT (η, q, t)R−1(q, t)C(η, q, t)

)
P (q, t)

+(K(x̂, t)−K(q, t))R(q, t) (K(x̂, t)−K(q, t))T .

(38)

Proof: We show that the virtual auxiliary system (36) is
contracting. Note again that x̂(t) of (31) without noise and x(t)
of (20) without noise and disturbance are particular solutions of
(36). Using (28) and (29), the virtual dynamics of (36) can be
expressed as

δq̇=(A(�, q, t)−K(x̂, t)C(η, q, t)) δq+φ(�, η, q, x̂, t)δq (39)

where φ(�, η, q, x̂, t) = Δ1(�, q, t)−K(x̂, t)Δ2(η, q, t). In the
virtual dynamics (39), the term φ(�, η, q, x̂, t) can be seen as an
uncertainty term, which is bounded due to Assumptions 3–5. To
analyze the contraction of the infinitesimal virtual displacement
vector δq, consider the rate of change of the squared length in
the metric P−1(q, t)

d

dt

(
δqTP−1(q, t)δq

)
= δqTP−1(q, t)

×
[
A(�, q, t)P (q, t) + P (q, t)AT (�, q, t)− Ṗ (q, t)

+ (K(x̂, t)−K(q, t))R(q, t) (K(x̂, t)−K(q, t))T

−K(x̂, t)R(q, t)KT (x̂, t)−K(q, t)R(q, t)KT (q, t)

+ φP (q, t) + P (q, t)φT
]
P−1(q, t)δq (40)

where Ṗ−1 = −P−1ṖP−1, and −K(x̂, t)R(q, t)KT (x̂, t)−
K(q, t)R(q, t)KT (q, t) is added and subtracted. Using the

bounds rI ≥ R ≥ r̄I , and −P−1(q, t)K(x̂, t)R(q, t)KT (x̂,
t)P−1(q, t)≤−(p2δ23r̄/p̄

2r2)I=−2κ2I , and substituting (33),
and (38), (40) can be expressed as

d

dt

(
δqTP−1(q, t)δq

)
≤ δqT

(
−2αP−1(q, t)− 2κI − 2κ2I

+ P−1(q, t)φ+ φTP−1(q, t)
)
δq. (41)

As stated previously, φ(�, η, q, x̂, t) is norm-bounded according
to Assumptions 3–5. The following bound can be established
using Assumptions 4 and 5:

∥∥P−1(q, t)φ+ φTP−1(q, t)
∥∥ ≤ 2κ1 (42)

where κ1
Δ
= p̄δ1 + (p̄/r̄p)δ̄3δ2. Using (42), for sufficiently

large α and κ, (41) satisfies

d

dt

(
δqTP−1(q, t)δq

)
≤ −2α1δq

TP−1(q, t)δq (43)

where α > α1 > 0, and

κ1 − κ2 ≤ κ+ (α− α1)p. (44)

Using (43), the bound on the squared length can be established

δqTP−1(q, t)δq ≤ δqT (0)P−1 (q(0), 0) δq(0)e−2α1t (45)

which reduces to

‖δq(t)‖ ≤
√

p̄

p
‖δq(0)‖ e−α1t. (46)

Using the equivalence of the norm of the distance between x

and x̂, ‖x− x̂‖ = ‖
∫ x̂

x δq‖ ≤
∫ x̂

x ‖δq‖ =
∫ 1

0 ‖∂q(μ, t)/∂μ‖dμ
and (46), it can be seen that the system (36) is globally exponen-
tially contracting in the absence of noise. Thus, x̂(t) converges
to x(t) exponentially and globally. �

Remark 5: Note that (38) is evaluated at an auxiliary variable
q. For the observer implementation, (34) is used. Theorem 1
shows that any trajectory of q converges; i.e., trajectories of
q and x̂(t) converge to each other and hence the noise-free
solution of (34) converges towards the solution of (38).

Remark 6: If the Jacobian of the nonlinear function h(x, t) is
used instead of the SDC parametrization, the bound κ1 becomes
smaller because Δ2(η, q, t) = 0.

Assumption 6: Let p̄x = sup
t≥0,i,j

‖(P−1
ij )

q
‖, p̄x2 =

sup
t≥0,i,j

‖∂2(P−1
ij )/∂qi∂qj‖, ‖B(x, t)‖F ≤ b̄.

Remark 7: The state estimates can be bounded within the
compact domain using tools, such as saturation or projection
algorithms (cf. [13], [49], [50]).

Theorem 2: (Stochastic Stability) If Assumptions 3–6 are
satisfied, the mean-squared estimation error of the observer in
(31) is exponentially bounded with the bound

E
[
‖x−x̂‖2

]
≤ 1

p

(
E[V (q(0), δq(0), 0)]e−2α3t+

δ4
2α3

)
(47)
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where

δ4≥
p̄x
ε1

(̄
b2+

δ̄23r

r̄2
tr
(
P 2(x̂, t)

))
+p̄b̄2+

δ̄23r

r̄2
tr (P (x̂, t)) (48)

where α3
Δ
= α1 − (κP /2p)(ε1p̄x + (p̄x2/2)) such that α1 >

(κP /2p)(ε1p̄x + (p̄x2/2)), ∃ε1 > 0, α1 > 0 is defined in (43)
and κP = b̄2 + (δ̄23r/r̄

2)tr(P 2(x̂, t)).
Proof: We prove this theorem as a special case of Lemma 2.

To prove that the mean-squared estimation error E[‖x−x̂‖2] is
exponentially bounded, consider a Lyapunov-like function de-
fined byV (q, δq, t)=

∫ 1

0 ((∂q/∂μ))
TP−1(q(μ, t), t)((∂q/∂μ))dμ,

where q(μ = 0) = x and q(μ = 1) = x̂. For conciseness of
the presentation, we only compute the differential generator
of V (q, δq, t) by following the development in the proof of
Lemma 2 for the system in (37)

LV (q, δq, t) =

1∫
0

(
∂q

∂μ

)T
d

dt
P−1 (q(μ, t), t)

(
∂q

∂μ

)
dμ

+

1∫
0

(
∂q

∂μ

)T (
P−1 ∂fv

∂q
+
∂fv
∂q

T

P−1

)(
∂q

∂μ

)
dμ+ V2 (49)

where fv is defined in (36), note that q = q(μ, t) with q(0, t) =
x and q(1, t) = x̂, computation of V2 is shown in Appendix B,
and the upper bound of V2 is given by

V̄2 =tr
(
B(x, t)TP−1(x, t)B(x, t)

+ (K(x̂, t)D(x, t))T P−1(x̂, t)K(x̂, t)D(x, t)
)

+ p̄x

(
b̄2 +

δ̄23r

r̄2
tr
(
P 2(x̂, t)

))

×

⎛
⎝ 1∫

0

ε1

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ+
1

ε1

⎞
⎠

+
1

2
p̄x2

(
b̄2 +

δ̄23r

r̄2
tr
(
P 2(x̂, t)

)) 1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ. (50)

The derivative of fv with respect to q is given by

∂fv
∂q

= A(�, q, t)− P (x̂, t)CT (η, x̂, t)R−1(x̂, t)

× C(η, q, t) + φ(�, η, q, t). (51)

Substituting (51) into (49), and using −P−1(q, t)K(x̂, t)
R(q, t)KT (x̂, t)P−1(q, t) ≤ −2κ2I yields

LV ≤
1∫

0

(
∂q

∂μ

)T
d

dt
P−1(q, t)

(
∂q

∂μ

)
dμ+

1∫
0

(
∂q

∂μ

)T

P−1(q, t)

×
[
A(�, q, t)P (q, t) + P (q, t)AT (�, q, t)

− P (q, t)CT (η, q, t)R−1(q, t)C(η, q, t)P (q, t)

+(K(x̂,t)−K(q,t))R(q,t) (K(x̂, t)−K(q, t))T

−2κ2I + φP (q, t) + P (q, t)φT
]

× P−1(q, t)

(
∂q

∂μ

)
dμ+ V̄2. (52)

Using (42), (d/dt)P−1 = −P−1((d/dt)P )P−1, and the
Riccati (38), and the results of Theorem 1, the differential
generator satisfies the following inequality:

LV ≤ − 2α1

1∫
0

(
∂q

∂μ

)T

P−1(q, t)

(
∂q

∂μ

)
dμ+ V̄2

= − 2α1V (q, t) + V̄2 (53)

where α1 is defined below (43). Using Assumption 6, and
derivations in (11)–(16), the following upper bound is obtained:

LV (q, δq, t) ≤ −2α3V (q, δq, t) + δ4 (54)

where δ4 is defined in (48), and α3 is defined below
(48). The properties of trace operator: tr(XY ) ≤ tr(X)tr(Y ),
tr(XY ) ≤ ‖Y ‖tr(X), and

√
tr(Y TY ) = ‖Y ‖F , for positive

semi-definite matrices X and Y , and tr((K(x̂, t)D(x, t))T

P−1(x̂, t)K(x̂, t)D(x, t)) ≤(δ̄23r/r̄
2)tr(P (x̂, t)) are used to

derive the δ4 bound. Using the development in the proof of
Lemma 2, the bound in (47) is obtained. �

Remark 8: In general, the process and measurement noise
terms do not vanish. Hence, the constant δ4, which is
a function of the process and measurement noise intensi-
ties, will not be zero. This implies that LV (q(μ, t), δq(t), t)
may not always be non-positive and V (q(μ, t), δq(t), t)
may sometimes be increasing. Thus, E[V (q(μ, t), δq(t), t)] ≤
V (q(μ, s), δq(s), s) ∀0 ≤ s ≤ t < ∞, may not always be true;
i.e., V (q(μ, t), δq(t), t) may not be a supermartingale. The
supermartingale inequality [3], [41] cannot be used to prove
stability in an almost-sure sense [25].

Remark 9: Theorems 1–2 can be used to analyze stability of
extended Kalman filter (EKF) using κ = 0, α = 0 in (34).

The observer (31)–(34) is shown to be robust against the
disturbances and noise in the sense of finite expected value
of the L2 norm of the estimation error with respect to the
disturbances and noise acting on the system. The L2 norm
bound is derived for the estimation error of a generalized state

g(t)
Δ
= L(t)x(t), where L(t) ∈ R

m×n satisfies LT (t)L(t) ≤
�̄I , where �̄ is a positive constant.

Corollary 1: (L2 robustness) If Assumptions 3–6 are sat-
isfied, the observer in (31)–(34) is robust against the external
disturbances and satisfies the following L2 norm bound on the
estimation error:

Eq0

⎡
⎣ t∫

0

‖g(τ)− ĝ(τ)‖2 dτ

⎤
⎦ ≤ �̄

ξ1
‖x(0)− x̂(0)‖2P−1(0)

+
�̄

ξ1
Eq0

⎡
⎣ t∫

0

(
ξ2 ‖d(x, τ)‖2 + δ4

)
dτ

⎤
⎦ (55)

where δ4 is defined in (48), ‖ · ‖2P−1(0) is the Euclidean vec-

tor norm square with respect to weight P−1(0), ξ1 = (1−
θ)2α3p, ξ2 = p̄/ε2, ∃ε2 > 0, q0 = q(μ = 0, t = 0), and 0 <
θ = (ε2p̄)/(2α3p) < 1.

Proof: See Appendix C. �
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B. Computation of P and LMI Formulation

To compute the estimator gain, a PD solution P (x̂, t) of (34)
is required. In this section, algorithms are presented to compute
the matrix P (x̂, t).

1) Main Algorithm (LMI-SDARE): In this section, the op-
timal observer gain design algorithm, called the linear matrix
inequality state-dependent algebraic Riccati equation (LMI-
SDARE), is presented. In the LMI-SDARE algorithm, Ṗ (x̂, t)
is approximated to its steady state value; i.e., zero [51]. The
differential Riccati (34) can be converted into the following
algebraic Riccati inequality (cf. [23, pp. 114–115])

A(�, x̂, t)P + PAT (�, x̂, t) + 2αP − PCT (η, x̂, t)×
R−1(x̂, t)C(η, x̂, t)P + 2κPP ≤ 0. (56)

Proposition 1: The inequality (56) can be converted to the
following linear matrix inequality (LMI) by Shor’s relaxation
[52] in terms of variables Q = P−1, Q�i

= �iQ, �i, ∀i =
{1, . . . , s1}, ηi, ∀i = {1, . . . , s2}, and ηlij⎡
⎣ s1∑

i=1

Q�i
Ai(x̂, t)+

s1∑
i=1

AT
i (x̂, t)Q�i

+2αQ−Υ I

I − 1
2κI

⎤
⎦ ≤ 0

(57)

where Υ =
∑s2

i,j=1 ηlijC
T
i (x̂, t)R

−1(x̂, t)Cj(x̂, t), and

Q > 0,

s1∑
i=1

Q�i
Ai(x̂, t)x̂ = Qf(x̂), (58)

sym

[
I Q
�iI Q�i

]
≥ 0,

s1∑
i=1

�i = 1, �i ∈ [0, 1], (59)

s2∑
i=1

ηj = 1, ηj ∈ [0, 1], ock(�, η, x̂) < 0, ∀k = 1, . . . , no

(60)

Wi =

[
1 ηi
ηi ηlii

]
≥ 0, ηlij ∈ [0, 1] (61)

s2∑
i=1

ηlii +

s2∑
i,j=1,i 
=j

ηlij = 1 (62)

where sym(·) is a symmetric part of a matrix, ocj(�, η, x̂) <
0, ∀j = 1, . . . , no denotes no number of convex constraints
to maintain the observability of the pair (A,C). Note that
ocj(�, η, x̂) < 0 might impose �j ≥ χj > 0, and ηj ≥ ψj > 0
for some js, where χj and ψj are small constants.

Proof: First multiplying (56) by Q = P−1 from left and
right side yields

QA(�, x̂, t) +AT (�, x̂, t)Q+ 2αQ− CT (η, x̂, t)

×R−1(x̂, t)C(η, x̂, t) + 2κI ≤ 0. (63)

By applying the Schur complement lemma to (56), we obtain
the bilinear matrix inequality (BMI) [52], [53]⎡
⎣ s1∑

i=1

Q�i
Ai(x̂, t)+

s1∑
i=1

AT
i (x̂, t)Q�i

+2αQ−Υ1 I

I − 1
2κI

⎤
⎦≤0

(64)

with the constraints in (58) where Υ1 is given by

Υ1 =

s2∑
i,j=1

ηiηjC
T
i (x̂, t)R

−1(x̂, t)Cj(x̂, t). (65)

The multiplication of components of η in Υ1 makes (64) a
BMI. To convert the BMI to an LMI, new lifting variables
ηlij are defined. Using the lifting variables and the Shor’s
relaxation [52], the BMI in (64) is converted into an LMI in
terms of the variables Q, Q�i

, ηi, and ηlij , by writing Υ1

as Υ =
∑s2

i,j=1 ηlijC
T
i (x̂, t)R

−1(x̂, t)Cj(x̂, t) with the con-
straints (61), (62). The Shor’s relaxation is applied for each
individual constraint ηlii = ηiηi ∀i ∈ {1, . . . , s2}. Note that
due to Shor’s relaxation the rank 1 constraints on Wis are
ignored. For deriving the constraints on the cross terms ηlij ,

the equality (
∑s2

i=1 ηi)
2
= 1 is used, which can be written as

(62) in terms of ηlij by using ηiηj = ηlij . A similar constraint
is recently derived in [54]. To take care of the �iQ = Q�i

constraint, new constraints on Q and Q�i
are given in (59).

Additional constraints in the form ock(�, η, x̂) < 0 can be
formulated so that the pair (A,C) is observable. These con-
straints can be obtained by symbolically computing the observ-
ability matrix and formulating state-dependent constraints for
which the observability matrix is full rank. The observability
constraints make sure that Assumption 3 is satisfied. See Ex-
ample 1 for an example of the observability constraint. If the
observability constraints are not convex, relaxation methods
can be used to approximate the observability constraints to
convex constraints [55]. The formulation in (57), (58) is useful
for implementation purposes when there are multiple Ai(x̂, t).
If the observability constraint ock(·) is an affine function of �
only then those terms can be added as

∑s1
i=1 ocki

(x̂)�iQ < 0,
which is equivalent to

∑s1
i=1 ocki

(x̂)Q�i
< 0. If ock(·) is an

affine function of η only then those terms can be added as∑s2
j=1 ockj

(x̂)ηj < 0. �
The solution to the LMI can be used to minimize the mean-

squared bound δ4/2pα3. Towards this goal, three conditions are
derived and briefly explained. First, based on (48), minimizing
tr(P 2(x̂)) minimizes δ4 and 1/2pα3 = 1/(2α1p− κP (ε1p̄x +
(p̄x2/2))), and minimizing and tr(P (x̂)) minimizes δ4. The
function tr(P 2(x̂)) is not a convex function of P (x̂), but we
can minimize a convex upper bound tr(P (x̂))2. Second, the
constraint (44) should be satisfied for deterministic contraction.
For given α, κ1, and κ2 maximizing κ+ αλmin(Q) max-
imizes α1λmin(Q), which minimizes 1/(2α1p− κP (ε1p̄x +
(p̄x2/2))). Third, minimizing λmax(Q) reduces δ4. A convex
objective function summarizing all three conditions can be
formulated in terms of Q and κ as1

min
(
Λ1tr(Q

−1)
2 − Λ2κ− Λ3αλmin(Q) + Λ4λmax(Q)

)
subject to (57)–(62) (66)

where Λ1, Λ2, Λ3 and Λ4 are the normalized weight parameters
selected by the user. The decision variables for the optimization
are Q, Q�i

, �i, ηlij , ηi and κ. The variable α is usually selected
by the user.

1This cost function is one of many choices a user can select.
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In addition to the constraints in (66), an inequality con-
straint (44) can be included in the LMI formulation as κ1 −
κ2 ≤ κ+ αλmin(Q)− α2 where α and κ1 are selected by
the user. To make (44) a linear constraint, a new vari-
able α2 = α1λmin(Q) > 0 is formed with (α− α1)λmin(Q) =
αλmin(Q)− α2 > 0. The constraint makes sure that the condi-
tion (44) is satisfied by the estimator gain.

The LMI contains state-dependent matrices which can be
solved at each time instant using the polynomial-time interior
point methods [56]. The solution of the LMI optimization
problem (66) returns the optimal feasible values of the decision
variables to improve the convergence rate or to reduce the
mean-squared estimation error with respect to the external dis-
turbances acting on the system. The solution to the LMI prob-
lem provides a suboptimal criterion to select the estimator gain.

2) Variations of LMI-SDARE: In this section, two variations
of the LMI-SDARE algorithm are presented, which may be
computationally less expensive during real-time computation
than the LMI-SDARE algorithm at the cost of reduced perfor-
mance in terms of the mean-squared estimation error.

1) CSDRE Algorithm: The differential Riccati equation
(34), which uses the convex combination of multiple SDC
forms of A and C, can be integrated with some PD
initial condition P (x̂(0), 0) to compute P (x̂, t) matrix at
each filter update step. An alternate approach is to solve
(56) with equality, which forms an ARE. It is shown
in practice that a solution to a state-dependent ARE
can be obtained effectively in real-time by using various
numerical techniques, such as Schur decomposition of the
Hamiltonian matrix [57], the Kleinman algorithm [58],
[59], the Chandrasekhar algorithm [60], the square root
algorithm, spectral factorization, the information filter
algorithm, or the matrix sign function algorithm (see
[61]). The parameters � and η can be set to some values
a priori, which may preserve the observability of the
parametrization. The SDC matrices A and C are state-
dependent and are evaluated at the state estimate for
each filter update step to compute P (x̂, t). Since the
parameters � and η are selected a priori, they may not
be optimal in the sense of the best convergence rate or
minimizing the trace of the covariance.

2) Fixed-SDARE Algorithm: This algorithm pre-computes
a constant solution P by solving (66) offline using
the constant parametrizations of A and C, which be-
long to the convex polytope (convex hull of matrices);
i.e., A(�, x, t) ∈ Co{A1(�), . . . , As1(�)}, C(η, x, t) ∈
Co{C1(η), . . . , Cs2(η)}, where Ai(�) and Ci(η) are ver-
tices of the convex hulls. The convex hull of A and C
are computed using the upper and lower bounds of the
individual entries inside the domain D. The difference
between CSDRE and Fixed-SDARE algorithms is that
the CSDRE algorithm uses fixed � and η whereas the
Fixed-SDARE algorithm uses fixed (A,C), and � and η
are computed using a set of LMIs. A similar approach
for the Lipschitz nonlinear systems is developed in [18]
by assuming that the Jacobian of the nonlinear function
belongs to a convex polytope. The LMI in (66) can be

solved for each vertex of the polytope. The observer gain
can be computed using the common feasible solution Q
to the LMIs (57)–(62). The convergence of the estimator
can be easily shown with the results of Theorem 1 (cf.
Section 4.3 of [53]). Although the Fixed-SDARE algo-
rithm permits offline computation of the gains, a new
vertex of the convex hull adds another LMI constraint to
the feasibility problem (66). Moreover, the convex hull
may use conservative bounds of the parametrization [53].

Remark 10: For a standard differential inclusion (DI)
method (cf. [23, p. 62]) where a common solution Q is com-
puted that satisfies multiple LMI inequalities formed using
Ai and Ci, a common solution Q may not exist if one of
the parameterizations (Ai, Ci) is not observable. Similar to
the Fixed-SDARE algorithm, a standard DI approach is very
conservative since it has to satisfy all the LMIs. In a standard
DI method, observability constraints cannot be exploited as can
be done in the proposed LMI-SDARE method.

VI. NUMERICAL SIMULATIONS

In this section, the performance of the observer (31)–(34)
along with (66) is evaluated using two examples.

A. 2D Robot Pose and Landmark Position Estimation Example

In this example, the filter estimates the robot position and
orientation, and 2D landmark positions in the world frame
W using the landmark positions measured in the robot body
frame B. Let r(t) ∈ R

2 be robot’s position, θ(t) ∈ [0, 2π)
be robot’s orientation in W , v(t) ∈ R denote linear velocity
of the robot in the world frame, and ω(t) ∈ R denote the
body angular velocity of the robot. Let the state vector be
defined by x = (xT

v (t), x
T
l (t))

T , where xv(t) = (rT , θ)T . The
positions for nl landmarks in the world frame are xl(t) =

(lT1 (t), . . . , l
T
2 (t), l

T
nl
(t))

T
, where li ∈ R

2, ∀i = {1, 2, . . . , nl}
is the position of ith landmark in W . The state dynam-
ics are given by ẋv = (v cos(θ), v sin(θ), ω)T , l̇i = 0, ∀i =
{1, 2, . . . , nl} with the measurement model yi = R̄T (θ)(r −
li), ∀i = 1, . . . , nl, where yi(t) ∈ R

2 denotes the measurement
of each landmark in the robot’s coordinate frame, and R̄(θ) is
a rotation matrix. The robot motion parameters are selected as
v = 1 m/s, ω = 0.01 rad/s, and xv = (0 0 0)T . The process
and measurements noise are zero-mean Gaussian with variance
of 0.1 and 1, respectively. The nonlinear state dynamics and
the measurement model are parametrized in the form (24). The
A(x) and C(x) are given by

A =

[
02×2 aTparam 02×2n

0(2n+1)×2 0(2n+1)×1 0(2n+1)×2n

]
,

C =

⎡
⎢⎢⎢⎣
−N1(θ) N2(xv)−N2(θ, l1) N1(θ) 02×2 02×2

−N1(θ) N2(xv)−N2(θ, l2) 02×2 N1(θ) 02×2

−N1(θ) N2(xv)−N2(θ, l3) 02×2 02×2 N1(θ)
−N1(θ) N2(xv)−N2(θ, l4) 02×2 02×2 02×2

−N1(θ) N2(xv)−N2(θ, l5) 02×2 02×2 02×2

⎤
⎥⎥⎥⎦

(67)
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Fig. 2. Comparison of the robot pose estimation errors (top plot) and land-
mark estimation error norms for three landmarks (bottom plot) computed using
the extended Kalman filter (dotted blue line), the SDDRE algorithm (dashed
green line), and the LMI-SDARE algorithm (solid red line).

where aparam = [v((cos(θ)− 1)/θ) vsinc(θ)], sinc(θ)
Δ
=

sin(θ)/θ, n = 3, N1(·) ∈ R
2×2 and N2(·) ∈ R

2×1 are
nonlinear functions.

In the first simulation, the proposed observer using the
LMI-SDARE algorithm (Section V-B1) is compared with the
conventional SDDRE algorithm [21] and the EKF. We use
x̂(0) = (2, 2, 6, 16, 2, 36, 2, 56, 4)T to test the performance of
the observers in the presence of large initial uncertainty. The
pair (A(x), C(η, x)) in (67) satisfies Assumption 3 and Remark
4. Hence, the solutions of the Riccati equations for the EKF and
SDDRE remain positive definite and bounded.

For the SDDRE algorithm, the filter parameters are selected
as, R = I , α = 0.15, and the initial error covariance P (0) =
[x(0)− x̂(0)][x(0)− x̂(0)]T . The matrix P (x̂, t) is computed
by integrating (34) using a single parametrization of (A,C) and
the observer gain is computed using (33). For the EKF noise
covariance and process covariance are REKF = I and QEKF =
0.1I . For the LMI-SDARE algorithm, a convex combination
of two different C matrix parametrizations is used with free
parameters η1 and η2, represented by C(η, x) = η1C1 + η2C2.
Using the parametrization of C, the optimization problem in
(66) is implemented using the cvx toolbox in Matlab [62], [56].2

Filter parameters are selected as R = I , α = 0.15, κ1 = 0.1.

2Since the LMI-SDARE algorithm requires solving the LMI (66) at each
time-instant, the sampling rate needs to be carefully chosen.

Fig. 3. Comparison of the mean estimation error and estimated +/−95%
confidence interval using the extended Kalman filter (subplot 1) and the LMI-
SDARE algorithm (subplot 2).

Since there is only one parametrization of A, Q�i
parameters

are not be formed and constraints (58) and (59) are removed
from the LMI implementation. The optimized parameters η1
and η2 are obtained for α = 1.5. In Fig. 2, a comparison of
the pose estimation errors and a comparison of the estimation
error norm of the landmark state using all three filters are
presented. From Fig. 2, it is observed that the EKF estimates
fail to converge to the true value for a large initial uncertainty
while the SDDRE and LMI-SDARE algorithms converge to the
true value; i.e., the estimation error tends nearly to zero with
the desired convergence property. The LMI-SDARE algorithm
shows better performance than SDDRE and EKF, and provides
a more systematic way to choose optimal parameters of the
convex hull. In Fig. 3, the mean estimation error and ±95% es-
timated confidence interval (±2 standard deviation) for state 1
are plotted. The EKF overestimates its performance in terms of
estimated standard deviation; i.e., the estimation errors may lie
outside the estimated standard deviation. This causes statistical
inconsistency in the EKF predictions and possible divergence
as seen from the simulation. The predicted standard deviation
of the LMI-SDARE is larger than that of the EKF, but the esti-
mation error mean lies within the predicted standard deviation
during the steady state; i.e., the filter is statistically consistent.

In the second simulation, the optimization problem (66) is
solved for the LMI-SDARE algorithm by keeping the simu-
lation parameters (i.e., the robot velocity, initial conditions of
the estimator, and measurement covariance matrix) the same
as the simulation case 1. The following sets of values for
ΛΛΛ = [Λ1,Λ2,Λ3,Λ4] are selected, ΛΛΛa = [0, 0.5, 0.5, 0], ΛΛΛb =
[0, 1, 0, 0], and ΛΛΛc = [0.25, 0.25, 0.25, 0.25] for the objective
function in (66). The multi-objective optimization in (66) is
formulated using scalarization for finding Pareto optimal points
[55]. In Fig. 4, a comparison of pose estimation errors is shown.
From Fig. 4, it is observed that a larger Λ3 corrresponds to a
faster convergence rate, Λ4 tends to reduce the effects of noise,
and a larger κ with a larger Λ2 corresponds to robustness against
noise in the estimation error steady-state response.

Fifty simulations are performed using the EKF, the conven-
tional SDDRE, and the LMI-SDARE. The measurement and
process noise, and initial state are selected as Gaussian random
variables with zero-mean for noises and the mean initial state



DANI et al.: OBSERVER DESIGN FOR STOCHASTIC NONLINEAR SYSTEMS VIA CONTRACTION-BASED INCREMENTAL STABILITY 711

Fig. 4. Comparison of robot pose estimation using the LMI-SDARE estimator
forΛΛΛa = [0, 0.5, 0.5, 0] (solid blue),ΛΛΛb = [0, 1, 0, 0] (dashed red), andΛΛΛc =
[0.25, 0.25, 0.25, 0.25] (dotted green).

TABLE I
COMPARISON OF THE ROOT MEAN SQUARE ERROR (RMSE) AND PEAK

ESTIMATION ERROR (PE) FOR THE EKF, THE CONVENTIONAL

SDDRE AND THE PROPOSED LMI-SDARE ALGORITHMS

AVERAGED OVER 50 MONTE CARLO RUNS

x̂(0) = (0.5, 0.5, 0.5, 4, 0.5, 9, 0.5, 14, 1)T . The results of aver-
age root mean-squared errors (RMSE) and average worst case
peak errors (PE) for state 1 and state 2 are tabulated in Table I.
The LMI-SDARE outperforms the EKF and the conventional
SDDRE filter in terms of RMSE and PE as seen from Table I.

B. Lorentz Oscillator

We consider the problem of state estimation for the Lorentz
oscillator. The dynamics of the state x(t) = (x1, x2, x3)

T are
described by

ẋ1 =σL(x2 − x1), ẋ2 = −ρLx1 − x2 − x1x3,

ẋ3 = − βLx3 + x1x2. (68)

The measurement equation is given by y = Cx+ ν, where
C = [1, 0, 0]. The parameters of the simulation are chosen as:
σL = 10, ρL = 28, βL = 8/3, x(0) = (0, 2, 0)T , and x̂(0) =
(0, 1.8, 0)T . A zero-mean Gaussian white noise with vari-
ance of 0.1 is used as the measurement noise. Two different
parametrizations A1 and A2 are selected and the optimization
objective in (66) is used. A comparison of the state estimation
errors computed using the LMI-SDARE algorithm and the
deterministic observer presented in [14] is shown in Fig. 5.
Although the observer in [14] is computationally simpler, the
LMI-SDARE observer presented in this paper shows improved
performance over the observer in [14] in terms of estimation
error. Note that the algorithms in [10], [12] cannot be used for
this model because the nonlinearity does not satisfy the required
constraints.

Fig. 5. Comparison of the estimation errors computed using the LMI-SDARE
observer and observer proposed in [14].

VII. CONCLUSION

In this paper, a new exponentially converging observer based
on a convex combination of multiple SDC parametrizations
is presented for a class of Itô stochastic nonlinear systems
perturbed by process and measurement noise. Stochastic incre-
mental stability of the observer is studied with respect to a state-
dependent metric M(x, t). It is shown that the mean-squared
estimation error is exponentially bounded with the bound pro-
portional to the measurement and process noise. The flexibility
of non-uniqueness of the SDC form is utilized to obtain the
improved convergence rate and disturbance-attenuation prop-
erty by computing the observer gain via an LMI problem. The
observer gain design problem is straightforward and can also
handle state constraints related to preserving the observability
of the SDC parametrization.

The performance comparison of the observer with the EKF
and the conventional SDDRE filter is shown by robot naviga-
tion and Lorentz oscillator examples. Statistical inconsistency
due to linearization is one of the reasons for filter divergence of
the EKF. It is observed from the simulation examples that the
LMI-SDARE filter is statistically consistent and yields smaller
estimation errors. From a set of multiple numerical simulations,
it is concluded that the LMI-SDARE filter outperforms the EKF
and conventional SDDRE filters in terms of RMSE. For the
LMI-SDARE algorithm, a solution to a SDLMI problem is
required at each time instant to compute the gain, which can
be efficiently computed using the interior-point methods.

APPENDIX A
GRONWALL-TYPE LEMMA

Lemma 3: Let g : [0,∞) → R be a continuous function, and
real numbers C and λ > 0. If

∀u, t 0 ≤ u ≤ t g(t)− g(u) ≤
t∫

u

(−λg(s) + C)ds (69)

then

∀t ≥ 0 g(t) ≤ C

λ
+

[
g(0)− C

λ

]+
e−λt (70)

where [·]+ = max(0, ·).
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Proof: See [63]. �

APPENDIX B
COMPUTATION OF DIFFERENTIAL GENERATOR

The derivative of V2 of the Lyapunov generator of
V (q(μ, t), δq, t), defined in the proof of Theorem 2, can be
computed as follows:

V2=

1∫
0

n∑
i=1

n∑
j=1

P−1
ij

(
∂Bq(x, t)

∂μ

∂Bq(x, t)

∂μ

T
)

ij

dμ

+

1∫
0

⎡
⎣2 n∑

i=1

n∑
j=1

(
P−1
i

)
qj

(
∂q

∂μ

)(
Bq(q,t)

∂Bq(q,t)

∂μ

T
)

ij

⎤
⎦dμ

+
1

2

1∫
0

⎛
⎝ n∑

i=1

n∑
j=1

(
n∑

k=1

n∑
l=1

(
P−1
kl (q(μ, t), t)

)
qiqj

×∂qk
∂μ

∂ql
∂μ

)(
Bq(q, t)Bq(q, t)

T
)
ij

)
dμ

(71)

where q = q(μ, t) such that q(0, t) = x and q(1, t) = x̂. The
integrals of (71) are bounded above as follows:

1∫
0

n∑
i=1

n∑
j=1

P−1
ij

(
∂Bq(q, t)

∂μ

∂Bq(q, t)

∂μ

T
)

ij

dμ

≤ tr
(
P−1(x, t)B(x, t)B(x, t)T

)
+ tr

(
P−1(x̂, t) (K(x̂, t)D(x, t))(K(x̂, t)D(x, t))T

)
(72)

1∫
0

⎡
⎣2 n∑

i=1

n∑
j=1

(
P−1
i

)
qj

(
∂q

∂μ

)(
Bq(q, t)

∂Bq(q, t)

∂μ

T
)

ij

⎤
⎦dμ

≤ 2p̄x

(
b̄2 +

δ̄23r

r̄2
tr
(
P 2(x̂, t)

)) 1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥ dμ

≤ p̄x

(̄
b2 +

δ̄23r

r̄2
tr
(
P 2(x̂, t)

))⎛⎝ 1∫
0

ε1

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ+
1

ε1

⎞
⎠ (73)

where 2a′b′ ≤ ε−1
1 a′2 + ε1b

′2, for an ε1 > 0, for scalars a′ and
b′ is used, p̄x and b̄ are defined in Assumption 6

1

2

1∫
0

⎛
⎝ n∑

i=1

n∑
j=1

(
n∑

k=1

n∑
l=1

(
P−1
kl (q, t)

)
qiqj

∂qk
∂μ

∂ql
∂μ

)(
BqB

T
q

)
ij

⎞
⎠dμ

≤ 1

2
p̄x2

(
b̄2 +

δ̄23r

r̄2
tr
(
P 2(x̂, t)

)) 1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ (74)

where p̄x2 is defined in Assumption 6.

APPENDIX C
PROOF OF COROLLARY 1

Proof: The system (20) along with (31) can be written in the
form (37)

dq = fv (q(μ, t), t) dt+ dq (q(μ, t), t) dt+Bq (q(μ, t), t) dW
(75)

such that q(0, t) = x and q(1, t) = x̂, Bq(0, t) = B(x, t)
and Bq(1, t) = K(x̂, t)D(x, t), and dq(0, t) = d(x, t) and
dq(1, t)=0. Consider the Lyapunov function used in Theorem 2
V (q, δq, t)=

∫ 1

0 (∂q/∂μ)
TP−1(q, t)(∂q/∂μ)dμ. Following the

development in Theorem 2 and using (53), the differential
generator (49) for the system (75) with respect to the Lyapunov
function V (q, δq, t) is given by

LV ≤ − 2α3

1∫
0

(
∂q

∂μ

)T

P−1(q, t)

(
∂q

∂μ

)
dμ

+

1∫
0

(
∂q

∂μ

)T

P−1

(
∂dq
∂μ

)
dμ

+

1∫
0

(
∂dq
∂μ

)T

P−1

(
∂q

∂μ

)
dμ+ V̄2 (76)

where V̄2 is defined in (50). Using the bound

1∫
0

(
∂q

∂μ

)T

P−1

(
∂dq
∂μ

)
+

(
∂dq
∂μ

)T

P−1

(
∂q

∂μ

)
dμ

≤
1∫

0

2

∥∥∥∥P− 1
2

(
∂dq
∂μ

)∥∥∥∥
∥∥∥∥P− 1

2

(
∂q

∂μ

)∥∥∥∥ dμ

≤
1∫

0

1

ε2

∥∥∥∥P− 1
2

(
∂dq
∂μ

)∥∥∥∥
2

dμ+

1∫
0

ε2

∥∥∥∥P− 1
2

(
∂q

∂μ

)∥∥∥∥
2

dμ

the following upper bound can be obtained:

LV ≤ − 2α3p

1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ

+
1

ε2
dTP−1d+ ε2p̄

1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ+ V̄2

≤ − (1− θ)2α3p

1∫
0

∥∥∥∥ ∂q∂μ
∥∥∥∥
2

dμ

+
p̄

ε2
‖d(x, t)‖2 + V̄2 (77)

where 0 < θ = (ε2p̄/2α3p) < 1. By using Dynkin’s formula
[3] and (77)

Eq0 [V (q(t), δq, t)]− V (q(0), δq(0), 0)

≤ Eq0

⎡
⎣
⎛
⎝−

t∫
0

(1− θ)2α3p ‖x(τ)− x̂(τ)‖2

+
p̄

ε2
‖d(x, τ)‖2 + δ4

)
dτ

]
. (78)
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Using V (q(0), δq(0),0)=‖x(0)−x̂(0)‖2P−1(0) and Eq0 [V (q(t),

δq, t)] ≥ 0 yield

Eq0

⎡
⎣ t∫

0

‖x(τ)− x̂(τ)‖2 dτ

⎤
⎦ ≤ 1

(1− θ)2α3p

×

⎛
⎝‖x(0)−x̂(0)‖2P−1(0)+Eq0

⎡
⎣ t∫

0

(
p̄

ε2
‖d(x, τ)‖2+δ4

)
dτ

⎤
⎦
⎞
⎠.

(79)

Using the inequality Eq0 [
∫ t

0 ‖(g(τ)− ĝ(τ))‖2dτ ] ≤�̄Eq0 [
∫ t

0
‖(x(τ)− x̂(τ))‖2dτ ], where �̄ is a constant, the following
inequality can be obtained

Eq0

⎡
⎣ t∫

0

‖(g(τ)− ĝ(τ))‖2 dτ

⎤
⎦ ≤ �̄

ξ1

(
‖x(0)− x̂(0)‖2P−1(0)

+Eq0

⎡
⎣ t∫

0

(
ξ2 ‖d(x, τ)‖2 + δ4

)
dτ

⎤
⎦
⎞
⎠ . (80)
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