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Fault-Tolerant Rendezvous of Multirobot Systems
Hyongju Park, Member, IEEE, and Seth A. Hutchinson, Fellow, IEEE

Abstract—In this paper, we propose a distributed control policy
to achieve rendezvous by a set of robots even when some robots
in the system do not follow the prescribed policy. These noncon-
forming robots correspond to faults in the multirobot system, and
our control policy is thus a fault-tolerant policy. Each robot has a
limited sensing range and is able to directly estimate the state of
only those robots within that sensing range, which induces a net-
work topology for the multirobot system. We assume that it is not
possible for the fault-free robots to identify the faulty robots, and
thus our approach is robust even to undetected faults in the system.
The main contribution of this paper is a fault-tolerant distributed
control algorithm that is guaranteed to converge to consensus un-
der certain reasonable connectivity conditions. We first present a
general algorithm that exploits the notion of a Tverberg partition
of a point set in Rd , and give a proof of convergence. We then
provide three instantiations of this algorithm, based on three dif-
ferent sensing models. For each case, we analyze performance via
extensive simulations. The effectiveness and performance of our al-
gorithms on real platforms are demonstrated through experiments
on a multirobot testbed.

Index Terms—Decentralized control, distributed control, dis-
tributed rendezvous, fault-tolerant consensus, Tverberg partition.

I. INTRODUCTION

IN THIS paper, we consider a fault-tolerant version of the
multirobot rendezvous problem. In almost all approaches

that have been reported for the rendezvous problem, it is implic-
itly assumed that all of the individual robots will faithfully and
accurately execute an agreed upon, decentralized control policy.
Here, we consider the case in which some of the robots, termed
faulty robots, fail to follow the policy. For multirobot systems,
this could result from physical failure due to component mal-
function (e.g., sensor error), or to depletion of energy (e.g., dead
batteries). More generally, faults might even include adversar-
ial scenarios, such as the presence of malicious robots which

Manuscript received October 10, 2016; accepted January 11, 2017. Date of
publication March 1, 2017; date of current version June 5, 2017. This paper
was recommended for publication by Associate Editor C. Secchi and Editor C.
Torras upon evaluation of the reviewers’ comments. This paper was presented in
part at the IEEE International Conference Robotics and Automation, Stockholm,
Sweden, May 2016 [40] and in part at the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Hamburg, Germany, September–October,
2015 [41].

H. Park is with the Department of Mechanical Engineering, University of
Michigan, Ann Arbor, MI 48109 USA (e-mail: hjcpark@umich.edu).

S. A. Hutchinson is with the Department of Electrical and Computer Engi-
neering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
(e-mail: seth@illinois.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2017.2658604

try to maximally degrade the performance of coordination tasks
[1], [2].

We present what we believe to be the first fault tolerant, dis-
tributed consensus algorithm for the case of robots operating in
a multidimensional workspace. The contributions of this paper
are twofold. First, we present a distributed algorithm for conver-
gence of fault-free robots in the presence of malicious robots.
The algorithm relies on the concept of a Tverbeg partition of
a pointset in Rd . The key property of a Tverberg partition is
that there is a nonempty intersection of the convex hulls of the
elements in partition. This property allows the construction of
fault-tolerant control policies that do not rely on coordinate aver-
aging schemes. Second, we give a rigorous analysis of the algo-
rithm’s performance, combining elements of the methods given
in the decentralized control community [3], [4], in which faulty
robots are not considered, and from the fault-tolerant computing
community [5], [6], in which network topology is independent
of system state. Our analysis also provides a bound on the num-
ber of iterations required to achieve approximate convergence
within a specified error bound. We demonstrate our algorithm
for three different sensing models, evaluating performance via
extensive simulation.

Fault tolerance has been a concern in digital computing since
its earliest days [7], and our fault-tolerant rendezvous prob-
lem has a close relationship to the classical Byzantine Generals
problem in distributed computing [8]. The two problems have
several key differences, e.g., for the Byzantine Generals prob-
lem the communication links are fixed, whereas in the multi-
robot scenario the communication links depend on the distances
between pairs of robots; however, the overall goal for the Byzan-
tine Generals problem (achieving agreement among the fault-
free processors, in spite of the presence of faulty processors in
the network) is analogous to the goal of achieving rendezvous.
The approximate Byzantine consensus problem is an extension
of the original Byzantine generals problem for which the goal is
to allow the fault-free processors to agree on a value asymptoti-
cally [9]–[11]. Recently, there have been studies of approximate
Byzantine consensus problems where the consensus value is a d-
dimensional vector in Euclidean space. This problem is termed
as Byzantine vector consensus [12]. Because of the similarities
between the Byzantine Generals problem and the rendezvous
problem, we are able to exploit a number of results from the
area of fault-tolerant distributed computing, particularly the re-
sults found in [5] and [6].

Independent from those studies on fault-tolerant consensus
in digital computing communities, there is also a body of re-
search on fault-tolerant consensus [13]–[25] and fault-tolerant
rendezvous or gathering [26]–[33] in the control and robotics
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communities, respectively. We will review here a few of those
studies that are closely related to the problem of interest in this
paper.

In the control community, a number of studies have focused
on the consensus problem for the special case of a scalar consen-
sus variable. A median-based consensus algorithm is described
in [15] and [34], in which each node uses only its own value
and the median of its neighbors’ values for the state update. In
a similar manner, Leblanc et al. [10], [35] consider a protocol
in which each node removes neighbors’ values that are extreme
with respect to its own value. Their study is an extension of re-
silient consensus protocol previously investigated in [36]. There
are also several studies that use control theoretic approaches to
provide provably correct distributed consensus algorithms for
cases in which malicious or unreliable links are present, e.g.,
[17]–[20], [22], and [23]. Again, in all of these approaches, the
consensus variables are scalars, taking their values on the real
line.

A number of approaches have focused on robustness to
changes in network topology, caused, for example, by adver-
sarial nodes that can cause loss of edges or even nodes from
the connectivity graph, e.g., [10], [17], and [37]. In [37], Zhang
et al. prove robustness of a special class of random graphs to
such adversarial behaviors, and also show that the problem of
determining robustness is coNP-complete. In [16], Khanafer
et al. proposed a zero-sum game between groups of nodes and
an adversary, in which the group of nodes executes robust dis-
tributed averaging whereas the adversary strategically discon-
nects a set of links to prevent the nodes from converging. They
formulate two versions of the problem, which are competition
between two players whose action is reversed, i.e., min–max
and max–min problems. The maximum principle was used to
obtain optimal strategies for both problems and also to provide
sufficient conditions for existence of saddle points. We note
that these approaches consider only a limited class of possi-
ble faults—those that result in changes to network connectivity.
In contrast, our approach is able to deal a more general class
of faults in which nodes may exhibit malicious behavior while
remaining anonymous, and without altering network topology.

Finally, it is worth mentioning the work of Zhu and Mar-
tinez [13], [14] who consider the special case of adversarial
nodes launching replay attacks.1 They have proposed a novel
distributed resilient algorithm for multivehicle systems based
upon a receding-horizon control method that converges to a de-
sired formation regardless of any replay attacks by adversarial
nodes. Their model requires each node to have a memory. Again,
our approach is able to handle this type of fault, as well as much
more general classes of faults, and our method does not require
memory.

There have been a number of attempts to solve the fault-
tolerant gathering/rendezvous problem in the robotics commu-
nity [26]–[33]. However, all of these rely on the assumption that
each fault-free robot can see all other robots in the workspace,
i.e., each fault-free robot has unlimited visibility, which implies

1Adversarial nodes consecutively repeating the control commands for a
period of time.

a fully connected communication graph. Under this condition,
Agmon and Peleg [26] presented a correct algorithm to gather
all functioning robots when one of the robots crashes perma-
nently. Defago et al. [27] extended Agmon and Peleg’s previous
work and showed feasibility of probabilistic gathering under
various assumptions related to synchrony and crash/Byzantine
faults. Bouzid et al. [28] proposed an algorithm to gather all
fault-free robots in the presence of multiple crash faults. In their
algorithm, Weber points,2 which have the key property of re-
maining unchanged under straight line movements of any of the
points toward or away from it, were used. They also proposed
a Byzantine tolerant gathering algorithm [29]–[31] for multi-
robots moving in a line. Their approach is a combination of
the algorithms of Leblanc [10] and Zhang [15], in that, in their
algorithms, each robot uses a trimming method to remove up to
f largest and f smallest values from their neighbors, and takes
the median of the values that are left.

In the remainder of this paper, we present our approach to
solving the fault-tolerant distributed consensus problem. We
begin by introducing necessary notation and background mate-
rial in Section II. Then, in Section III, we present the concept
of a Tverberg partition, which is the key concept underlying
our approach. In Section IV, we present our fault-tolerant al-
gorithm, which we refer to as ADRC. The main theoretical
result of this paper, a theorem that guarantees convergence un-
der mild connectivity assumptions, is presented in Section V.
Section VI presents three different instantiations of the ADRC
algorithm based on different sensing models and their per-
formance is analyzed via number of simulation results in
Section VII. Experimental results are included in Section VIII
to validate the effectiveness of our algorithms on real multi-
robot platforms. In addition to the conclusions in Section IX,
Appendix A gives brief details on ergodic theory and Appendix
B provides several proofs for auxiliary lemmas that are used in
the main proof of Section V.

II. PRELIMINARIES

A. Notation and Terminology

Throughout this paper, we use the symbol Z≥0 for the set of
nonnegative integers, N for the set of natural numbers, and R for
the set of real numbers. We work throughout in Euclidean space
Rd , using lower case letters for scalars, points, and vectors, and
upper case letters for matrices.

We consider a group of n autonomous mobile robots, each
with a bounded state space X ⊆ Rd . Each robot has an in-
dex i ∈ I = {1, . . . , n}, where I is called the index set. The
state of the multirobot system is represented by an n × d ma-
trix x = [x1 , . . . , xn ]�, where xi ∈ X is a d × 1 column vector
representing the location of the ith robot. We use the nota-
tion x = {x1 , . . . , xn} to denote the set of robot positions and
u = {u1 , . . . , un} to denote the set of inputs.

The interconnection topology of the multirobot system is
represented by a directed graph G = (V, E) in which V = I is

2The geometric median of set of points in a Euclidean space is the point
minimizing the sum of distances to the points [38].
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the set of vertices, each of which corresponds to the identifier
of a robot, and E ⊆ V × V is the set of directed edges. Given
the set of edges, the index set of in-neighbors for robot i ∈ I
is defined by Ni = {j ∈ I | (j, i) ∈ E}. We use the notation
A(G) or A for the n × n adjacency matrix of G. A node i ∈ V
is globally reachable if it can be reached from any other node
j ∈ V \ {i} by traversing a directed path.

A matrix is positive, if every element in the matrix is positive.
Given a square matrixA, we denote by [A]ij the (i, j)th element
of A, and by [A]k the kth column of A. We denote by In the
n × n identity matrix, and by 1n×1 the n × 1 column vector
whose elements are all 1s. For arbitrary n × n square matrices
B, C, we write B ≤ C if [B]ij ≤ [C]ij for all pairs i, j ∈
{1, . . . , n}.

For a given set C ⊆ Rd , we denote by conv(C) the convex
hull of the set C, by ri(C) the relative interior of C, and by
|C| the cardinality of C. For a convex polytope P ⊆ Rd , we
denote by ver(P) the set of vertices of P . A set of at least d + 1
points in Rd is said to be in general position if no hyperplane
of dimension d − 1 or less contains more than d points.

B. Faulty Multirobot Systems (F-MRS)

An F-MRS consists of n robots, of which some are faulty. We
denote by F ⊆ I the index set of faulty robots, and by nf the
number of faulty robots, nf = |F|.

Because we will frequently refer to the set of fault-free robots,
it is convenient to define the following notation. We denote
by I the index set of the fault-free robots and by x the set
of their positions. The number of fault-free robots is denoted
n = n − nf . Without loss of generality, in the sequel, we will
assume that the robots are indexed such that the fault-free robots
have indices I = {1, . . . , n} and the faulty robots have indices
F = {n + 1, . . . , n}.

The state of the fault-free robots is represented by an n × d
matrix x = [x1 , . . . , xn ]�, where xi ∈ X is a d × 1 column
vector representing the location of the ith fault-free robot.

We define the interconnection topology of the fault-free
robots by a directed graph G = (V, E) with V = I and E ⊆
V × V obtained by removing from E all edges incident to faulty
robot vertices. For the ith robot, we denote by N i its index set
of fault-free in-neighbors in the graph G, and by nfi

the number
of its faulty neighbors in the graph G (i.e., nfi

= |Ni ∩ F|).

C. System Properties

As in much previous research on multirobot systems (see, e.g.,
[41]), we also consider a sequential motion cycle: Look, Com-
pute, and Move. In the Look state, each robot takes a snapshot
of the current state of its neighbors. Based upon this informa-
tion, in the Compute state, each robot calculates its next control
input, which is applied to the system in the Move state. Every
robot is memoryless such that it generates its control input based
upon only the information provided at the current time. We also
assume that robots are dimensionless, so that multiple robots
are allowed to be located at a same position; collision is not an
issue (we briefly address this assumption in Section IX). How-
ever, we do assume that each robot can distinguish if a point

Fig. 1. Examples showing Tverberg points obtained with different number of
points and division in R2 (circle: point, star: a Tverberg point). (a) 4 points,
r = 2, (b) 7 points, r = 3, and (c) 10 points, r = 4.

is occupied by multiple robots.3 Finally, the robots are anony-
mous, i.e., each robot is indistinguishable from all other robots.
Thus, a fault-free robot cannot identify which of its neighbors
are faulty, and which are not.

III. TVERBERG PARTITIONS AND SAFE POINTS

Our fault-tolerant algorithms rely on the ability to construct a
partition of n points into nf + 1 disjoint subsets whose convex
hulls have a nonempty intersection. As we describe below, this
implies that the nonempty intersection will consist of points
that lie in the convex hull of the set of fault-free nodes. In this
section, we review results from discrete geometry that establish
when and how such a partition can be constructed.

Definition III.1 (An r-divisible point set [42]): A set of n
points is r-divisible if it can be partitioned into r pairwise dis-
joint subsets such that the intersection of the convex hulls of
these r subsets is nonempty.

Using the definition, we state the classical Tverberg’s theo-
rem, which provides conditions that guarantee a given point set
to be r-divisible.

Theorem III.1 (Tverberg’s Theorem[42]): Any set of n poi-
nts in Rd is r-divisible if n ≥ (d + 1)(r − 1) + 1.

Corollary III.1 (Maximum Tverberg Partition): The maxi-
mum value of r for which a set of n points in Rd is guaranteed
to be r-divisible using Theorem III.1 is r = �n/(d + 1)	.

The result follows from straightforward computations using
the bound in Theorem III.1.

Fig. 1 shows examples of point sets in R2 that are r-divisible,
for n = 4, 7, 10 and r = 2, 3, 4, respectively. Note in Fig. 1(a),
the four points are partitioned into a set containing the three
vertices of the triangle and a set containing only the point ly-
ing inside the triangle, the latter also being the only point in
the intersection of the convex hulls of the two elements of the
partition.

A partition Π = {P1 . . . Pr} such that ∩conv(Pi) 
= ∅ is
called a Tverberg partition, and the size of the partition |Π| = r
is called the Tverberg depth or merely depth when the context is
clear. Note that for a given point set of size n, the Tverberg parti-
tion of depth r is not necessarily unique. A point p ∈ ∩iconv(Pi)
is called a Tverberg point of depth r. A Tverberg point for a point
set in Rd is analogous to the concept of the median for a point
set in R.

3This is sometimes called multiplicity detection capability.
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Suppose x = {x1 . . . xn} specifies the set of states of n
robots, of which nf are faulty. If x is (nf + 1) divisible,
i.e., if n ≥ (d + 1)nf + 1, then we can partition x into sub-
sets P1 , . . . Pnf +1 , and at least one of these sets will contain
only fault-free robots (since there are nf + 1 sets but only nf

faulty robots). Furthermore, since ∩iconv(Pi) ⊆ conv(Pj ) for
all j ∈ {1, . . . , nf + 1}, any Tverberg point of depth nf + 1 is
contained in the convex hull of a set of fault-free nodes. This
motivates the following definition of safe point.

Definition III.2 (Safe point): For a set of n points in Rd , of
which at most nf correspond to the positions of faulty nodes,
a point p is nf -safe (referred to as an nf -safe point) if it has a
neighborhood that is guaranteed to lie in the convex hull of the
n − nf fault-free nodes.

There are at least two ways to ensure that a point p is nf -safe:
1) It is a Tverberg point of depth nf + 1 that lies in the rela-
tive interior of the nonempty intersection of the convex hulls of
(nf + 1)-disjoint subsets. These subsets constitute the associ-
ated Tverberg partition. 2) For every subset of size n, p has a
neighborhood that lies in the convex hull of the subset.

Our algorithm for fault-tolerant rendezvous explicitly con-
structs d-dimensional neighborhoods of safe points at each iter-
ation. The following proposition provides a method to construct
such a neighborhood.

Proposition III.1: For a set of n points in Rd , that is, (nf +
1)-divisible, if z1 , . . . , zd+1 are Tverberg points of depth nf + 1
in general position, each q ∈ ri(conv({z1 , . . . , zd+1})) is nf -
safe.

Proof: By Lemma B.1, for each choice of the subset Q with
size n

zi ∈ conv(Q), i = 1, . . . , d + 1. (1)

Under the condition that z1 , . . . , zd+1 is in general position
ri(conv(z1 , . . . , zd+1)) 
= ∅. By the definition of convex sets,
(1) implies conv(z1 , . . . , zd+1) ⊂ conv(Q). Hence, for each
choice of q ∈ ri(conv(z1 , . . . , zd+1)), and Q with size n q ∈
ri(conv(Q)). By Definition III.2, q is nf -safe, and the proof is
complete. �

Unfortunately, even if a point set is (nf + 1)-divisible, it
is not always the case that there exist d + 1 Tverberg points
of depth nf + 1 in general position. This can be seen in the
example shown in Fig. 1(a), in which the set of Tverberg points
is a 0-dimensional (0-D) subset of R2 (i.e., a single point). In
such cases, the relative interior of the Tverberg points is empty,
and a d-dimensional neighborhood of safe points does not exist.
In such cases, Tverberg points may lie on the boundary, rather
than in the interior, of the convex hull of fault-free nodes. For
example, in Fig. 1(a), if any vertex of the triangle corresponds
to a faulty node, then the Tverberg point will be a vertex of the
convex hull of the fault-free nodes, and not an interior point.
This motivates the following definition.

Definition III.3 ((r, k)-divisible point set [43]): A set of n
points in Rd is (r, k)-divisible if it can be partitioned into r
pairwise disjoint subsets such that the intersection of the convex
hulls of these r subsets is at least k-dimensional (0 ≤ k ≤ d).

If a point set is (nf + 1, d)-divisible, then there exists a set
of d + 1 Tverberg points of depth nf + 1 in general position,

Fig. 2. Examples of (r, 2)-divisible points set in R2 (circle: position of nodes,
shaded area: 2-D intersection). (a) 6 points, r = 2, (b) 9 points, r = 3, and
(c) 12 points, r = 4.

which allows the application of Proposition III.1. Reay [43] and
Roudneff [44], [45] have given conditions under which a point
set is (r, k)-divisible.

Conjecture III.1 (Reay’s conjecture [43]): A set of n points
in general position in Rd (with 0 ≤ k ≤ d) is (r, k)-divisible if
n ≥ (d + 1)(r − 1) + k + 1.

For the case of k = d, Reay’s conjecture has been shown to
be true for 2 ≤ d ≤ 8 [43]–[46].

Proposition III.2 (Birch [46] and Roudneff [44], [45]): For
d = 2, 3, . . . , 8, any set of n points in general position in Rd is
(r, d)-divisible if n ≥ r(d + 1).

This result allows us to apply our algorithm to robots with
state spaces X ⊆ Rd for d ≤ 8, and provides the following
sufficient condition for constructing a neighborhood of nf -safe
points.

Corollary III.2 (Sufficient condition for nf -safe neighbor-
hood): For d = 2, 3 . . . , 8, any set of n ≥ (nf + 1)(d + 1)
points in general position will have a Tverberg partition of depth
nf + 1, along with a set of d + 1 Tverberg points z1 , . . . zd+1
such that every q ∈ ri(conv({z1 , . . . , zd+1})) is nf -safe.

Three examples are shown in Fig. 2.

A. Computational Complexity and Approximations

In general, the problem of computing Tverberg partitions
is NP-Hard. Given n points in d dimensional space, the best
known algorithm to obtain a Tverberg partition of depth r =
�n/(d + 1)	 requires up to O(nd) computation time.

A recent study [47] reports a Lifting Algorithm that computes
an approximate4 Tverberg partition of size

⌈
n/2d

⌉
and a sample

Tverberg point in linear time in n and quasi-polynomial time in
d, i.e., dO (1)n, under the condition that the n points are in general
position.5 The algorithm is a recursive projection-lifting algo-
rithm. First, the point set in Rd is projected onto hyperplanes,
Hm , of successively lower dimension, m, eventually onto the
real line, H1 = R1 , and a partition (not a Tverberg partition) is
constructed for this projection onto H1 . Then, for m = 2, . . . , d,

4Approximate in the sense that, given the same number of points, the algorithm
obtains a Tverberg partition with decreased depth.

5The set of nongeneral configurations is measure zero, and thus any randomly
drawn set of n points will be in general position with probability 1. Nevertheless,
since our algorithms run on computers with finite precision arithmetic, the
general position assumption must be verified in practice. When the general
position assumption does not hold, small random perturbations may be applied
to produce a point set in general configuration.
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Fig. 3. Procedure to obtain a Tverberg point by the lifting method (the figure is inspired by that contained in [47]).

a partition for Hm is computed using a lifting method applied
to the partition of Hm−1 . The algorithm terminates when m =
d, and the resulting partition is a Tverberg partition of depth
�n/2d	.

While a general description of the algorithm is beyond the
scope of this paper, it can easily be illustrated for the case of
a point set in R2 . Fig. 3 illustrates the procedure. In this case,
there is only one step of projection (onto hyperplane H1 =
R1) and one lifting step. First, the n points are projected onto
R1 , and a partition is formed by creating 2-tuples of points
that have successively increasing distance to the left and the
right of the median. For the example shown in Fig. 3(a), the
partition consists of five 2-tuples of points. Next, the line l
through the median and perpendicular to R1 is constructed. For
each 2-tuple in the partition of R1 , the points are lifted back into
R2 , and the intersection of l with the convex hull of the lifted
points is computed, as shown in Fig. 3(b). The median of these
intersection points is computed, and 2-tuples of convex hulls are
constructed by establishing symmetric correspondences about
this median (analogous to the process for H1). In this example,
since there were an odd number (five) of elements in the partition
of H1 , we construct two 2-tuples, and one 1-tuple. These points
that are included in corresponding 1- or 2-tuples define the
Tverberg partition of the original point set, which is shown
in Fig. 3(c). The depth of the resulting Tverberg partition is⌈
n/2d

⌉
= 3. Complete details of the lifting method can be found

in [47].

IV. FAULT-TOLERANT ALGORITHM FOR

DISTRIBUTED CONSENSUS

In this section, we introduce our Approximate Distributed
Robust Convergence algorithm, which we call ADRC. The basic
idea behind our algorithm is that each fault-free robot constructs
d + 1 maximal depth Tverberg points, uses these to define a safe
point, and then executes a motion toward the safe point. The
basic procedure is shown in Algorithm 1. We now present the
details of the algorithm.

For each i ∈ I, define ñfi
(t) as the maximal value of nfi

for which we can ensure the existence of an nfi
-safepoint with

respect to the neighborhood Ni(t). From Corollary III.2, we
have

ñfi
(t) ≤ |Ni(t)|

d + 1
− 1 (2)

We use the Lifting Algorithm mentioned in Section III-A to con-
struct a Tverberg partition of Ni(t) of depth r = �|Ni(t)|/2d	.
This imposes the constraint that

ñfi
(t) ≤

⌈ |Ni(t)|
2d

⌉
− 1 (3)

Combining (2) and (3), we obtain

ñfi
(t) ≤ min

{⌈ |Ni(t)|
2d

⌉
,
|Ni(t)|
d + 1

}
− 1 (4)

Proposition IV.1 (Existence of a safe point): For a node with
neighborsNi(t), the Lifting Algorithm will construct a Tverberg
partition of depth ñfi

(t) + 1 and an ñfi
(t)-safe point for

ñfi
(t) = min

{⌈ |Ni(t)|
2d

⌉
,

⌊ |Ni(t)|
d + 1

⌋}
− 1. (5)

For the ith robot, our algorithm generates d + 1 Tverberg
points of depth ñfi

(t) + 1. This is done by invoking the lifting
algorithm d + 1 times, each time using a randomly chosen di-
rection for the hyperplane projection steps. The center of mass
of these d + 1 points, si(t), is an ñfi

(t)-safe point. The basic
procedure is shown in Algorithm 2. Fig. 4 illustrates the process
for d = 2 and |Ni(t)| = 20. Fig. 4(a)–(c) shows the results of
three applications of the lifting algorithm, each of which pro-
duces a Tverberg point of depth 5. Fig. 4(d) shows the resulting
safe point si .
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The action taken by the ith robot at time t is simply to move
toward the safe point si(t). This leads to the following state
update equation:

xi(t + 1) = xi(t) + ui(t) (6)

where

ui(t) = αi(t)(si(t) − xi(t)) (7)

and αi(t) is dynamically chosen parameter in the range, 0 <
αmin ≤ αi(t) ≤ αmax < 1, such that ui(t) does not violate con-
straints, e.g., maximum allowable displacement per stage. It is
possible to consider systems with more complex dynamics than
those of (6), but we do not do so in this paper.

Remark IV.1: Every safe point can be represented as a convex
combination of the positions of a node’s fault-free neighbors.
In this sense, a safe point is independent of the locations of
the nonconforming robots. Thus, for each fault-free robot, the
motion toward a safe point depends only on the positions of
fault-free neighbors and the position of the robot itself.

Our algorithm is aggressive, in that it computes the maximal
number of partitions possible, thus providing maximal fault-
tolerance relative to the neighborhood size of each robot. This
aggressiveness comes at a computational cost. We address this,
and other computational issues, in Section VI.

Without loss of generality, in the remainder of this paper, we
assume that robots evolving under ADRC are always in general
position. The assumption is often found in the computational
geometry literature [48], [49], and is used to avoid computational
issues due to the occurrence of degenerate points.

V. ANALYSIS OF ADRC

In this section, we analyze the convergence of ADRC. The
main result is given in Theorem V.1, which establishes condi-
tions under which ADRC will converge. Our analysis builds on
previous work in distributed control of fault-free systems [3],
[50] and in fault-tolerant computing [5], [6]. The former is not
concerned with cases in which individual nodes may fail, while
the latter does not consider the case of time-varying network
topology.

We begin by showing that under ADRC the evolution of the
fault-free nodes can be described as a time-varying linear system
that depends only on the fault-free nodes, and deriving certain
properties of the corresponding time-varying system matrix. We
then establish an appropriate concept of joint connectivity [3],
[50], which we call repeated reachability. The concept will be
used to provide a minimally restrictive condition on the con-
nectivity graph of the fault-free nodes for convergence under
ADRC. Finally, we employ properties of stochastic matrices
[51]–[54] to demonstrate convergence of ADRC.

A. Evolution of the Fault-Free Nodes as an Linear
Time-Varying System

The behavior of the fault-free robots executing ADRC can be
described as a discrete-time linear time-varying (LTV) system.
In particular, the system evolution can be simply expressed as
a backward product of nonhomogeneous system matrices. Our
approach closely follows that given in [5].

Proposition V.1: For an F-MRS in which the fault-free nodes
execute ADRC, if nfi

(t) ≤ ñfi
(t) for each i ∈ I, then the evo-

lution of the fault-free nodes, x(t), can be represented by an
LTV system of the form

x(t + 1) = M(t)x(t), t = 0, 1, 2, . . . , (8)

in which x(t) is an n × d matrix, and M(t) is an n × n row-
stochastic matrix with [M]ij (t) > 0 for i = j, or j ∈ N i(t).

Proof: Let Y i := {xj}j∈N i
denote the set of positions of

the fault-free neighbors of node i. By Proposition IV.1, ADRC
constructs an nfi

(t)-safe point si(t) for each i ∈ I. Thus, there
exists some set of fault-free neighbors with positions P ⊆ Y i

such that

si(t) ∈ ri(conv(P )) ⊆ ri(conv(Y i(t)).

Thus (see Proposition B.1), for each i ∈ I, there is a set of
nonzero weights {λij}j∈N i (t) such that si(t) can be represented
by

si(t) =
∑

j∈N i (t)

λij (t)xj (t) (9)

with
∑

j∈N i (t) λij (t) = 1, and λij (t) > 0 for all j ∈ N i(t).
Plugging equation (9) into (6) and (7), for each i ∈ I, we

obtain

xi(t + 1) = (1 − αi(t))xi(t) + αi(t)

⎛

⎝
∑

j∈N i (t)

λij (t)xj (t)}
⎞

⎠ .
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Fig. 4. Safe point calculated by lifting method with 20 points. In (a)–(c), stars are Tverberg points and circles are positions of the nodes, and in (d) square symbol
is the safe point, stars are Tverberg points obtained from (a)–(c).

There is such an equation for each i ∈ I, and these may be
combined to obtain (8) by defining the n × n matrix M(t) as
follows. For i, j ∈ I

M(t) =

⎧
⎪⎨

⎪⎩

1 − αi(t) if j = i

αi(t)λij (t) if j 
= i and j ∈ N i(t)

0 otherwise.

Note that M(t) is row stochastic, with diagonal elements
[M]ii(t) = 1 − αi(t) ≥ 1 − αmax , and [M]ij (t) = αi(t)λij (t)
for i 
= j if j ∈ N i(t). �

Using (8), we may define the state transition matrix Φ(tF , tI ),
for tI , tF ∈ Z≥0 , where tI ≤ tF using a backward product of
system matrices

Φ(tF , tI ) = M(tF )M(tF − 1) . . .M(tI )

=
tF∏

t=tI

M(t). (10)

B. Jointly Reachable Graphs

In this section, we define the concept of joint reachability,
which is analogous to the concept of joint connectivity intro-
duced in [3] and [50]. For a jointly reachable sequence of graphs,
we give a relationship between the adjacency matrix for the
union of the graphs and the adjacency matrices for the indi-
vidual graphs in the sequence. We then extend the concept of
joint reachability to infinite sequences of graphs by defining the
concept of repeated reachability, which will play a key role to
establish a minimally restrictive condition in Theorem V.1.

We denote by G(t) the connectivity graph of the fault-free
nodes at time t, and byA(t) the corresponding adjacency matrix.

Definition V.1 (Jointly reachable sequence of graphs): For
j ∈ N, consider a sequence of graphs

G(Tj ), . . . ,G(Tj+1 − 1)

of length Lj = Tj+1 − Tj , and with common vertex set V , such
that G(t) = (V, E(t)) for t = Tj , . . . , Tj+1 − 1. The union of
these graphs is defined by

G̃Tj ,Tj + 1 −1 =
Tj + 1 −1⋃

t=Tj

G(t) =

⎛

⎝V,

Tj + 1 −1⋃

t=Tj

E(t)

⎞

⎠ .

We say that the sequence is jointly reachable if there exists some
v ∈ V such that for each v′ 
= v in V there exists a path from v′

to v in G̃Tj ,Tj + 1 −1 .
For a sequence of graphs G(Tj ), . . . ,

G(Tj+1 − 1), we denote by Ãj the adjacency matrix for
G̃Tj ,Tj + 1 −1 . The following lemma provides a useful relation-

ship between Ãj and the individual adjacency matrices A(t),
Tj ≤ t ≤ Tj+1 − 1.

Lemma V.1: For A(Tj ), . . . ,A(Tj+1 − 1), adjacency matri-
ces for a sequence of graphs G(Tj ), . . . ,G(Tj+1 − 1), with the
adjacency matrix Ãj for G̃Tj ,Tj + 1 −1 , the following inequality
holds:

In + Ãj ≤
Tj + 1 −1∏

t=Tj

(In + A(t)). (11)

Proof: Since G̃Tj ,Tj + 1 −1 is the union graph of the finite graph

sequence {G(t)}Tj + 1 −1
Tj

ẼTj ,Tj + 1 −1 =
⋃

t∈[Tj , Tj + 1 −1]

E(t)

which implies

Ãj = ÃTj ,Tj + 1 −1 ≤
Tj + 1 −1∑

t=Tj

A(t). (12)

Simple calculation yields

In +
Tj + 1 −1∑

t=Tj

A(t) ≤
Tj + 1 −1∏

t=Tj

(In + A(t)). (13)

Now, we can combine the two inequalities (12) and (13) to
obtain

In + Ãj ≤
Tj + 1 −1∏

t=Tj

(In + A(t)).

�
The following related result holds for any sequence of adja-

cency matrices. This includes A(t), Ãj , or a general adjacency
matrix Aj .
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Lemma V.2: Let A0 ,A1 , . . . be a sequence of n × n ad-
jacency matrices and let η = (n − 1)2n(n−1) . Then, for any
l = 0, 1, . . . , we have

(In + Al∗)
n−1 ≤

l+η−1∏

j= l

(In + Aj )

for l∗ ∈ Z≥0 such that the term (In + Al∗) appears at least n − 1
times in the right-hand side.

Proof: Since there are at most 2n(n−1) possible adjacency
matrices in any set of η = (n − 1)2n(n−1) adjacency matrices,
at least one matrix, Al∗ must appear at least n − 1 times. The
inequality then follows from the fact that Aj consists of non-
negative entries. �

Joint reachability is a property of finite-length sequences of
graphs. To establish conditions for convergence of ADRC, we
extend this notion to infinite graph sequences with the following
definition, which is similar to the concept of repeatedly jointly
rooted graph sequence previously defined in [50].

Definition V.2 (Repeatedly reachable graph sequence): An
infinite sequence of graphs G(0),G(1),G(2) . . . is said to
be repeatedly reachable if there exists a sequence of times
0 = T1 < T2 . . . such that Tj+1 − Tj = Lj < ∞ and the
subsequence G(Tj ), G(Tj + 1), . . . , G(Tj+1 − 1) is jointly
reachable for all j.

We denote by Lmax the least uniform upper bound for all Lj ,
i.e., Lj ≤ Lmax , for all j ∈ N.

In other words, the sequence G(0),G(1),G(2) . . . is repeat-
edly reachable if it can be partitioned into contiguous finite-
length subsequences of lengths Lj ≤ Lmax that are them-
selves jointly reachable. Note that the condition “the sequence
G(0),G(1),G(2) . . . is repeatedly reachable” is significantly
less restrictive than the condition “G(t) strongly connected for
all t ∈ Z≥0 .”

C. Convergence of ADRC

In this section, we provide the main theoretical result of
this paper. We begin by using properties of jointly reach-
able graphs to infer a lower bound on the backward prod-
uct of system matrices (Proposition V.2 whose proof relies on
Lemma V.3). Then, using Proposition V.2, we derive a bound on
the coefficient of ergodicity for a finite backward product of sys-
tem matrices (Lemma V.4). Finally, we present the main result in
Theorem V.1.

Lemma V.3: For an F-MRS in which the fault-free nodes ex-
ecute ADRC, and for a jointly reachable sequence of graphs
G(Tj ), . . . ,G(Tj+1 − 1) with Ãj the adjacency graph for
G̃Tj ,Tj + 1 −1 , if nfi

(t) ≤ ñfi
(t) for all i ∈ I, for each j ∈ N

there exists γj ∈ (0, 1) such that

γ
Lj

j (In + Ãj ) ≤
Tj + 1 −1∏

t=Tj

M(t) (14)

where Lj = Tj+1 − Tj .
Proof: By Proposition V.1, [M(t)]ij > 0, for i = j or

[A(t)]ij 
= 0, and thus, for each t there exists γ(t) ∈ (0, 1)

such that

γ(t)(In + A(t)) ≤ M(t).

Taking the product for each side over the sequence, we obtain

Tj + 1 −1∏

t=Tj

γ(t)(In + A(t)) ≤
Tj + 1 −1∏

t=Tj

M(t). (15)

Let γj be a lower bound on γ(t) for the interval Tj to Tj+1 − 1.
Then

γ
Lj

j

Tj + 1 −1∏

t=Tj

(In + A(t)) ≤
Tj + 1 −1∏

t=Tj

γ(t)(In + A(t)). (16)

Finally, Combining (15) and (16) and applying Lemma V.1, we
obtain

γ
Lj

j (In + Ãj ) ≤
Tj + 1 −1∏

t=Tj

M(t).

�
Proposition V.2: For an F-MRS in which the fault-free nodes

execute ADRC, if
1) nfi

(t) ≤ ñfi
(t) for each i ∈ I and t ∈ Z≥0 , and

2) the sequence of connectivity graphs for the fault-free
nodes, G(0),G(1),G(2), . . . , is repeatedly reachable,

then for each l ∈ Z≥1 , there exists γ ∈ (0, 1), and i ∈ I such
that

γTl + η −Tl 1n×1 ≤
⎡

⎣
Tl + η −1∏

t=Tl

M(t)

⎤

⎦

i

(17)

in which 0 = T0 < T1 < T2 . . . is a sequence of times such that
Tj+1 − Tj = Lj < ∞ and G(Tj ), . . . ,G(Tj+1 − 1) is jointly
reachable for all j; and η = (n − 1)2n(n−1) .

Proof: By Lemma V.3, there exists γj ∈ (0, 1) such that

γ
Lj

j (In + Ãj ) ≤
Tj + 1 −1∏

t=Tj

M(t) (18)

for Lj = Tj+1 − Tj .
We may compute the product of each side over the interval

from j = l to j = l + η − 1

l+η−1∏

j= l

γ
Lj

j (In + Ãj ) ≤
l+η−1∏

j= l

Tj + 1 −1∏

t=Tj

M(t). (19)

Now, let γ be a uniform lower bound for the γj , then

l+η−1∏

j= l

γLj (In + Ãj ) ≤
l+η−1∏

j= l

γ
Lj

j (In + Ãj ). (20)

Since Lj = Tj+1 − Tj , simple calculations yield

l+η−1∑

j= l

Lj =
l+η−1∑

j= l

Tj+1 − Tj = Tl+η − Tl.
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Combining this result with (19) and (20), we obtain

γTl + η −Tl

l+η−1∏

j= l

(In + Ãj ) ≤
Tl + η −1∏

t=Tl

M(t). (21)

We now apply Lemma V.2. Let l∗ be such that the term
(In + Ãl∗) appears at least n − 1 times in the product on the
left-hand side of (21). Then (by Lemma V.2)

(
In + Ãl∗

)n−1
≤

l+η−1∏

j= l

(
In + Ãj

)

and thus

γTl + η −Tl

(
In + Ãl∗

)n−1
≤ γTl + η −Tl

l+η−1∏

j= l

(In + Ãj ). (22)

But the matrix Ãl∗ is an adjacency matrix for a graph with a
globally reachable node, and thus, using Lemma B.2, there is
some i such that

γTl + η −Tl 1n×1 ≤ γTl + η −Tl

[(
In + Ãl∗

)n−1
]

i

. (23)

Finally, combining (21), (22), and (23), we obtain

γTl + η −Tl 1n×1 ≤
⎡

⎣
Tl + η −1∏

t=Tl

M(t)

⎤

⎦

i

.

�
The following lemma provides a bound on the coefficient of

ergodicity, τ1 , for a finite backward product of system matrices
evolving under ADRC. A brief review of stochastic matrices and
ergodicity is provided in Appendix A. A more comprehensive
review can be found in [51] and [52].

Lemma V.4: Let τ1(S) denote the coefficient of ergodicity
for a stochastic matrix S. For an F-MRS in which the fault-free
nodes execute ADRC, if

1) nfi
(t) ≤ ñfi

(t) for each i ∈ I and t ∈ Z≥0 , and
2) the sequence of connectivity graphs for the fault-free

nodes, G(0),G(1),G(2), . . . , is repeatedly reachable,
then the following inequality holds:

v∏

h=0

τ1

⎛

⎝
T (h + 1 ) η −1∏

t=Th η

M(t)

⎞

⎠ ≤ (1 − γLm a x η )v (24)

in which 0 = T0 < T1 < T2 . . . is a sequence of times such that
Tj+1 − Tj = Lj < ∞ and G(Tj ), . . . ,G(Tj+1 − 1) is jointly
reachable for all j; and η = (n − 1)2n(n−1) .

Proof: Proposition A.1 together with Proposition V.2 implies

τ1

⎛

⎝
T (h + 1 ) η −1∏

t=Th η

M(t)

⎞

⎠ ≤ 1 − γT (h + 1 ) η −Th η (25)

which holds for all h ∈ Z≥0 . Let Lmax ∈ N be a uniform upper
bound for the Lj . Thus, for all h ∈ Z≥0

1 − γT (h + 1 ) η −Th η ≤ 1 − γLm a x η . (26)

Combining (25) and (26), and computing the product of each
side for h = 0 to h = v for some v, we obtain

v∏

h=0

τ1

⎛

⎝
T (h + 1 ) η −1∏

t=Th η

M(t)

⎞

⎠ ≤ (1 − γLm a x η )v .

Note that the values taken by t in the left-hand side range from
t = 0 when h = 0 to t = T(v+1)η − 1 for h = v. �

We now state the main theorem of this paper, which guar-
antees that under certain connectivity conditions, the fault-free
robots executing ADRC will converge to within any desired ε
bound, regardless of the behavior of the faulty robots. The proof
of the theorem provides a bound on the time required to achieve
ε-convergence.

Theorem V.1 (Convergence of ADRC): For an F-MRS in
which the fault-free nodes execute ADRC, if

1) nfi
(t) ≤ ñfi

(t) for each i ∈ I and t ∈ Z≥0 , and
2) the sequence of connectivity graphs for the fault-free

nodes, G(0),G(1),G(2), . . . , is repeatedly reachable,
then for every t ≥ 0, fault-free pair i, j ∈ I, and ε > 0, there

is some tε > 0 such that ‖xi(t) − xj (t)‖ < ε for all t > tε .
Proof: Our proof, which uses the ergodicity of a backward

product of stochastic matrices, is directly inspired by the re-
sults given in [5] and [4], and relies on classical results given
in [55]. Let 0 = T0 < T1 < T2 . . . denote a sequence of times
such that Tj+1 − Tj = Lj < ∞, and G(Tj ), . . . ,G(Tj+1 − 1)
is jointly reachable for all j. Such a sequence exists, since
G(0),G(1),G(2), . . . is repeatedly reachable. For an arbi-
trary time t ≥ 0, let v� be the largest nonnegative integer
that satisfies T(v� +1)η − 1 ≤ t, and t� = T(v� +1)η − 1, with
η = (n − 1)2n(n−1) .

We can express the system evolution of fault-free robots using
state transition matrix Φ given in (10) as

x(t) = Φ(t, 0)x(0) (27)

= Φ(t, T(v� +1)η )Φ(T(v� +1)η − 1, 0)x(0) (28)

= Φ(t, t�)Φ(t� , 0)x(0)
︸ ︷︷ ︸

x(t� )

. (29)

Now, for each time t ≥ 0, there are the following two
possibilities:

1) t = t� = T(v� +1)η − 1 for some v� , or
2) T(v� +1)η < t < T(v� +1)η − 1, for some v� .
We will first consider the case when t = t� , and evaluate

the maximum difference of the rows of Φ(t� , 0) to provide a
uniform upper bound for the Euclidean distance between the
positions of any fault-free pair at t� . Then, using the contract-
ing property of the map Φ, we will show that the maximum
Euclidean distance between fault-free pairs is nonincreasing for
T(v� +1)η < t < T(v� +1)η − 1, for any v� .

1) Case 1 t = t� : For notational convenience, we denote by
xl

i the lth coordinate of xi , and we define qij (t) := [Φ(t, 0)]ij
as the (i, j)th entry of the matrix product Φ(t, 0). We denote by
αl the absolute value of the largest lth component of the initial
position of all robots

αl = max
m∈I

|xl
m (0)|.
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Consider the difference in lth coordinate of the positions of any
two fault-free robots i, j ∈ I at time t� > 0

|xl
i(t

�) − xl
j (t

�)| =

∣
∣
∣
∣
∣

n∑

g=1

(qig (t�) − qjg (t�))xl
g (0)

∣
∣
∣
∣
∣

≤
n∑

g=1

∣
∣(qig (t�) − qjg (t�))xl

g (0)
∣
∣ (30)

≤
n∑

g=1

|(qig (t�) − qjg (t�))|
∣
∣xl

g (0)
∣
∣ (31)

≤ αl

n∑

g=1

|qig (t�) − qjg (t�)| (32)

≤ αln δ

(
t�∏

t=0

M(t)

)

(33)

= αln δ

⎛

⎝
T ( v � + 1 ) η −1∏

t=0

M(t)

⎞

⎠ (34)

= αln δ

⎛

⎝
v�∏

h=0

T (h + 1 ) η −1∏

t=Th η

M(t)

⎞

⎠ (35)

≤ αln

v�∏

h=0

τ1

⎛

⎝
T (h + 1 ) η −1∏

t=Th η

M(t)

⎞

⎠ (36)

≤ αln(1 − γLm a x η )v�

. (37)

In the steps above, (30) follows from the triangle inequality,
(31) follows from the Cauchy–Schwartz inequality, (32) uses
the definition of αl , (33) uses the definition of maximum range
given by (43), (34) is obtained using t� = T(v� +1)η − 1, (36)
follows from Lemma A.1, (37) follows from (24) of lemma V.4.

Using (37), we can compute a bound on the distance between
the positions of any two robots at time t�

‖xi(t�) − xj (t�)‖2 =
d∑

l=1

∣
∣xl

i(t
�) − xl

j (t
�)
∣
∣2 (38)

≤
d∑

l=1

α2
l n

2(1 − γLm a x η )2v�

. (39)

Setting the upper bound to ε, i.e., setting

d∑

l=1

α2
l n

2(1 − γLm a x η )2v� ≤ ε2

and solving for v� yields

v∗ ≤
log ε − log n − 1

2
log

∑
α2

l

log
(
1 − γLm a x η

) . (40)

And we can obtain the actual time t� at the switching step v�

using

t� = T(v� +1)η − 1.

We note in (39) that as the switching time v� → ∞, the left-
hand side will tend to 0. We now consider the case when t is not
a switching time.

2) Case 2: T(v� +1)η < t < T(v� +1)η − 1: For a given con-
figuration x(t) of the fault-free nodes, we define the diameter
of x(t) as

diam(x(t)) := max
i,j∈I

‖xi(t) − xj (t)‖ . (41)

For a switching time t = t� , (39) provides a uniform upper
bound on the diameter of the positions of the fault-free nodes

diam(x(t�)) ≤ n(1 − γLm a x η )v�

(
d∑

l=1

α2
l

) 1
2

.

For t� = T(v� +1)η < t < T(v� +1)η − 1, if the fault-free
robots execute ADRC, we can apply (29) to obtain

conv(x(t)) = conv(Φ(t, t�)x(t�)) ⊂ conv(x(t�))

and this implies

diam(x(t)) ≤ diam(x(t�)).

Thus, the uniform upper bound obtained for Euclidean distance
between all fault-free pairs at switching time t� is also a valid for
all t ≥ t� . However, it is not known whether for some arbitrary
pair i, j ∈ I, ‖xi(t) − xj (t)‖ ≤ ‖xi(t�) − xj (t�)‖ will hold
for t > t� . Combining the results for Case 1 and Case 2 above,
we have shown that for every ε > 0, and for all pairs i, j ∈ I,
there is t� > 0 such that t > t� implies ‖xi(t) − xj (t)‖ < ε. �

Remark V.1: To this point, our proof only demonstrates er-
godicity in the weak sense, which, on its own, does not imply
that the positions of the fault-free robots will converge to a
point that is stationary. However, it has been described in [53]
that backward products of row-stochastic matrices have a nice
property that is summarized in the following theorem.

Theorem V.2 (Chatterjee and Seneta [54]): For backward
product of stochastic matrices, weak and strong ergodicity are
equivalent.

Using Theorem V.2, we can deduce the following corollary,
which implies convergence to a fixed point.

Corollary V.1 (Convergence of ADRC to a fixed point): Con-
sider the assumptions and settings given by Theorem V.1. Then,
there is p ∈ X ⊆ Rd such that for all i ∈ I, xi(t) → p as
t → ∞.

In other words, the strong ergodicity of the infinite product
of row-stochastic system matrices for fault-free robots implies
convergence to a fixed point.

D. Comments on the Weak Ergodicity of ADRC

In [51], Hajnal discusses various classes of matrices that
show ergodic properties. Stochastic, Indecomposable, Aperi-
odic (SIA) matrices comprise the largest of these classes.
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Roughly speaking, SIA matrices are regular matrices,6 and an
infinite product of SIA matrices tends to a matrix with identical
rows. The set of scrambling matrices7 is a subset of the SIA ma-
trices, with the nice feature that multiplying any two scrambling
matrices produces a matrix that is also scrambling. This is in
contrast to SIA matrices: multiplying two SIA matrices does not
necessarily produce an SIA matrix. The following relationships
hold between matrix classes that are used in this paper:

{Positive matrices} ⊂ {Matrices with a positive column}
⊂ {Scrambling matrices} ⊂ {SIA}.

Recall that Proposition V.2 states that the infinite backward prod-
uct of system matrices generated by ADRC can be expressed as
an infinite backward product of matrices with positive columns.
By the inclusion above, these are in fact scrambling matrices.
Thus, the weak ergodicity of ADRC follows by the classical
results contained in, e.g., [51] and [52] which asserts that the
infinite product of scrambling matrices is weakly ergodic.

VI. FAMILY OF ADRC ALGORITHMS

Like all distributed control algorithms, convergence of ADRC
relies on maintaining appropriate connectivity conditions; in the
case of ADRC, repeated reachability of the connectivity graphs
of the fault-free nodes is a condition of Theorem V.1. In this
section, we propose three versions of ADRC, each with its own
strategy for maintaining adequate connectivity.

In the case of fault-free networks in which connectivity is
determined by the sensing capabilities of each robot, it is often
possible to enforce connectivity constraints by limiting the range
of motion of each robot, based on the locations of its neighbors
(e.g., [33] and [56]). The circumcenter algorithm [56], [57] is
one such approach. Unfortunately, these approaches cannot be
applied in cases when some of the robots are faulty; if a fault-free
robot constrains its motion in order to enforce connectivity with
a faulty neighbor, then the faulty neighbor has the possibility to
impede, or even prevent, convergence of the fault-free nodes by
its actions. For example, if connectivity is enforced, and if there
is a faulty robot that moves far away, fault-free robots that are
initially connected to the faulty robot may have no choice but to
follow the faulty robot (in order to maintain connectivity), which
may result in a partitioned connectivity graph or divergence of
robot positions.

Rather than constraining the motions of the robots, we have
opted to design a class of algorithms that employ variable-range
sensing to maintain connectivity. This approach is motivated by
work in wireless sensor networks [58], [59], where sensor nodes
are capable of adjusting their sensing ranges to conserve energy.
In particular, we assume that each fault-free robot can dynam-
ically adjust its sensing range, resulting in a tradeoff between
cost of energy for sensing and connectivity maintenance.

6A row-stochastic matrix is regular if it has a unit eigenvalue, i.e., the eigen-
value λ = 1 is simple. The powers of every regular matrix converge to a rank
one row-stochastic matrix.

7A row-stochastic matrix is scrambling if and only if any two rows have at
least one positive element in a coincident position.

Fig. 5. Illustration of the procedure used by ADRC-II to adjust the sensing
radius of ith robot at time t, where Ni (t) = {i1 , i2 , i3}. The areas enclosed
by solid circles represent each robot’s reachable set and the area enclosed by
the dashed circle represents the sensing range of the robot.

Our three algorithms, ADRC-I, ADRC-II, and ADRC-III, are
defined as follows.

1) [ADRC-I]—Each robot has a fixed sensing range, ri . This
is the typical case that is considered in distributed control
algorithms for fault-free networks.

2) [ADRC-II]—At time t + 1, the ith robot chooses its sens-
ing range ri(t + 1) so that Ni(t) ⊆ Ni(t + 1), i.e., the
sensing range is chosen so that its set of neighbors is
monotonically nondecreasing.

3) [ADRC-III]—At time t + 1, the ith robot chooses its sens-
ing range ri(t + 1) so that it has nN neighbors, where

nN � max{(nf local, m a x + 1)(d + 1), nf local, m a x2
d + 1}

and nf local, m a x is the maximum number of faults every robot
is desired to tolerate.

Fig. 5 illustrates the variable sensing range in ADRC-II. For
each time step t, the ith robot adjusts its sensing range based on
the vmax , the maximum displacement per stage which is uniform
for all neighbors, and the current location of its neighbors. By
following this procedure, the ith robot will never lose connec-
tivity with its neighbors at the next time step t + 1, even if some
of its neighbors are malicious. Note that ADRC-III imposes
a fixed value for the neighborhood size as a function of the
maximum number of faulty neighbors, whereas the ADRC-II
allows the number of neighbors to grow to n as the robots con-
verge. As a result, the computational cost for ADRC-III may
be significantly less than that for ADRC-II, particularly during
the final stages of convergence (when the presence of faulty
neighbors will have less impact on performance). Furthermore,
since ADRC-II enforces continued connectivity with all of its
initial neighbors, sensing cost can be made arbitrarily high by a
malicious neighbor. For these reasons, if a reasonable estimate
is available for the number of faulty neighbors, ADRC-III is a
more attractive algorithm.

VII. NUMERICAL SIMULATIONS

This section presents a suite of numerical simulation results
to demonstrate the performance of our proposed algorithms.
We will work with an F-MRS where the intercommunication
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Fig. 6. Initial configuration and the configuration after 30 stages with stationary faults.

Fig. 7. Positions change of fault-free robots during 30 stages. (a) Local aver-
aging, (b) circumcenter, and (c) ADRC-II.

topology is characterized by the proximity of the robot po-
sitions. In order to provide a more fair comparison to other
consensus methods (where the interconnection topologies are
captured by disk graphs with radius rmax ), we have also im-
posed an upper bound, rmax , on the maximum sensing range in
our numerical simulations of ADRC-II and ADRC-III. Thus,
the actual behavior of our algorithms (allowing for larger
sensing radii) will be at least as good as the behavior reported
below. Under this constraint, the interconnection topology of the

Fig. 8. Connectivity changes over the evolution. (a) ñf i
− nfi

and (b) alge-
braic connectivity.

robots at time t is defined by a disk graph Gdisk(t) = (V, E(t)),
where E(t) ∈ V × V and (j, i) ∈ E(t) if and only if i, j ∈ V ,
i 
= j, and ‖xj (t) − xi(t)‖ ≤ min{ri(t), rmax}.

The workspace for our simulations is X = [0, 1] × [0, 1] ∈
R2 , in which 300 robots are initially deployed in general po-
sition. Comparisons of rendezvous performance in the pres-
ence of faulty robots are made between three algorithms: a
local coordinate averaging algorithm [60], the circumcenter
algorithm [57], and ADRC (in its three versions with upper
bounded sensing range). For local coordinate averaging and the
circumcenter algorithm, the sensing radius is fixed and uni-
form with ri(t) = 0.55. For fair comparison, we apply con-
trollable sensing radius for our algorithm where the upper
bound is rmax = 0.55. The maximum displacement per stage
is vmax = 0.05, the convergence error bound is ε = 1 × 10−7 ,
and the number of faults is nf = 30. For ADRC-III, we uni-
formly set the number of tolerable faulty neighbors for every
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Fig. 9. Radii change during the evolution with ADRC-II, III with 0 and
30 stationary faults. (a) nf = 0 (ADRC-II), (b) nf = 30 (ADRC-II), and
(c) nf = 30 (ADRC-III).

Fig. 10. Initial configuration and faulty robots’ motion pattern.

fault-free robot as nf l o c a l , m a x = 40 such that nN = 161, and
ñfi

= nf l o c a l , m a x = 40 for all i ∈ I.
The first simulation considers the case of stationary faults.

Fig. 6 shows the initial configuration, and configuration at stage
30 for the three algorithms. Fig. 7 shows position change over

Fig. 11. Positions change of fault-free robots during 30 stages. (a) local aver-
aging. (b) circumcenter. (c) ADRC-II.

the evolutions of each of the three algorithms. As can be seen
from the figures, the circumcenter law does not converge in the
presence of stationary faults, while both local-averaging and
ADRC-II do converge. The value ñfi

− nfi
for ADRC-II is

shown in Fig. 8(a), and algebraic connectivity8 over 30 stages
is shown in Fig. 8(b). The two plots in Fig. 8 show that the
current example satisfies two connectivity conditions found in
Theorem V.1. Fig. 9 shows ri(t) for the fault-free robots (a)
for ADRC-II when there are no faults, (b) for ADRC-II when
there are 30 faults, (c) for ADRC-III when there are 30 faults.
Compared to Fig. 9(a) where there are no faults, Fig. 9(b) shows
that overall ri(t) for fault-free robots do not decrease as fault-
free robots positions converge to a point. On the other hand,
Fig. 9(c) shows that if ADRC-III is used under the identical
settings, the sensing radii converge. The example shows one
advantage of ADRC-III over ADRC-II.

The second simulation results correspond to the case of dy-
namic faults. For this simulation, each faulty robot merely traces
out a square pattern (each side of length 2 × vmax ). The initial
configuration, and the faulty robots motion pattern is shown in

8It was described in [61] that if the algebraic connectivity of a digraph G is
positive, i.e., λ2 (L(G)) > 0, then G has a globally reachable node.
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Fig. 12. Connectivity changes over the evolution. (a) ñf i
− nfi

and
(b) algebraic connectivity.

Fig. 13. Convergences to multiple points due to the neighborhood size limit.
(a) nf l o c a l , m a x = 30 and (b) nf l o c a l , m a x = 20.

TABLE I
DETAILS OF THE POC IN FIG. 13(B)

POC Number of Nodes at
the POC

For Each Node at the POC,
the Number of Neighbors From

A B C D F

A 81 80 1 0 0 0
B 70 12 69 0 0 0
C 29 0 0 28 25 28
D 90 0 0 0 81 0

Figs. 10 and 11 shows positions change over the evolutions of
the three algorithms. As can be seen, ADRC-II converges to
a consensus, while both local averaging and the circumcenter
algorithm fail to converge. We note that the point of the con-
vergence will always lie in the convex hull of initial positions
of fault-free robots; however, the exact location of the conver-

Fig. 14. Multirobot testbed. (a) Robotarium test-bed (b) GRITSBot. Photo
courtesy of [62].

Fig. 15. Positions change of fault-free robots during 1000 iterations: (a) ex-
periment #5, and (b) experiment #10 (dashed lines: positions of faulty robots,
solid lines: positions of fault-free robots).

gence point cannot be identified a priori. The value ñfi
− nfi

for ADRC-II is shown in Fig. 12(a), and algebraic connectivity
over 30 stages is shown in Fig. 12(b).

In our third and final simulation, we provide a few exam-
ples that depict shortcomings of ADRC-III due to limiting
the neighborhood size by the value nf l o c a l , m a x . Fig. 13 shows
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Fig. 16. Initial configurations (left column), final configurations (middle column), trajectories of robots (right column) for experiment #5 (top row) and experiment
#10 (bottom row). The circled robots shown in (a), (b), (d), and (e) are faulty.

the configuration after 30 stages when applying the value for
nf l o c a l , m a x = 30 and 20, respectively (refer to the supplemen-
tary video attachment to see a complete set of simulations). The
symbols A, B in Fig. 13(a) and A–D in Fig. 13(b) are the points
of convergence (POC), and disks indicate the common sensing
ranges of the points. In Fig. 13(a), the neighborhood size for
every fault-free robot is set to 121. The number of robots at A9

is 160. Since each robot at A is connected to 121 robots from
A, it will not move because its safe point should be found near
A. The number of robots at B is 110, and every robot at B is
connected to 9 robots from A, 106 robots from B, and 6 faulty
robots. Since each safe point for a robot at B is necessarily con-
tained in the convex hull of fault-free neighbors’ positions and
the value nf l o c a l , m a x = 30 is greater than the number of robots
connected to A plus the number of faulty robots (9 + 6 = 15),
the safe point must be at B. Thus, all the robots at B will not
move. Fig. 13(b) shows convergence to 4 groups of points after
30 stages, and the result can be analyzed in a similar manner.
Refer to Table I for the details.

VIII. ROBOTARIUM EXPERIMENTS

This section presents a series of Robotarium experiments to
verify our fault-tolerant rendezvous algorithm. The Robotarium
[62], [63] is a multirobot testbed developed at the Georgia In-
stitute of Technology. The testbed consists of custom-designed
robots that are called the GRITSBots [63]. An image of the Rob-
otarium testbed is shown in Fig. 14(a), and that of the GRITSBot
is shown in Fig. 14(b).

After our algorithm (provided as a script) is uploaded to each
GRITSBot, robots are initially deployed at a randomly chosen

9In this context, a robot is at A, if it is sufficiently close to A.

configuration. Then, each robot is commanded to execute the
script for a specified number of discrete time steps, which in
our case is set to 1000. Total ten experiments are carried out to
test our theoretical results on the real multirobot platform. The
experiments from #1 to #5 are performed with eight robots from
which one of them are faulty and the experiments from #6 to #10
are performed with 11 robots from which two of them are faulty.
Those faulty robots are randomly sampled and simply wander
around the workspace periodically based on some random non-
linear sinusoidal function. Due to the small workspace size and
the limited availability of the number of robots, we assumed
complete graph for the interconnection topology throughout the
experiments.

For the sake of space, only a part of the experimental re-
sults are presented. Fig. 15 shows positions change of all robots
during the 1000 iterations from experiments #5 and #10. The
solid lines show the change in the positions of fault-free robots,
and the dashed lines show the change in the positions of faulty
robots. As can be seen from the figures, after 1000 iterations,
all the fault-free robots successfully gathered together at a fixed
location, regardless of the actions of faulty robots. In particular,
Fig. 16 shows a few webcam snapshot images of both initial and
final configurations and the motions of all robots obtained from
the two experiments: #5 and #10. Refer to the video attachment
to see the recordings of actual experiments.

IX. CONCLUSION

This paper proposed a computationally efficient, decentral-
ized, fault-tolerant algorithm for rendezvous of a group of robots
with limited sensing. We provided the convergence analysis of
the proposed algorithm by borrowing several tools form ergodic
theory, matrix theory, and graph theory. A suite of simulation
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and experimental results is provided to illustrate the theoretical
results.

Our study in this paper is a first step toward the design of
practical yet fully capable fault-tolerant rendezvous algorithms.
Throughout this paper, we have only focused on higher level
path planning of fault-free robots. It will be the topic of future
research to extend our results to include issues such as dealing
with uncertainties and partial observability, long-term planning
and exploration, navigating and mapping in complex environ-
ments, etc. Other future work will involve relaxing the dimen-
sionless robots assumption, e.g., considering fat robot models
[64] with collision avoidance, and proposing tighter connectivity
constraints for each robot by taking into account the cooperative
actions between fault-free robots.

APPENDIX A
FEW RESULTS FROM MATRIX THEORY

The coefficient of ergodicity [51], [52] provides a measure
of the degree of ergodicity of row-stochastic matrices. Given a
row-stochastic matrix P ∈ Rn×n , the coefficient of ergodicity
τ1(P) is defined by

τ1(P) = 1 − min
i,j

∑

h

min ([P]ih , [P]jh ) . (42)

The following proposition is immediate from this definition.
Proposition A.1: Consider a row-stochastic matrix P. If P

has at least one column, all of whose elements are nonzero and
lower bounded by α > 0, then τ1(P) ≤ 1 − α.

Given any square matrix P ∈ Rn×n , the maximum range of
P, denoted δ(P), [52] is defined as

δ(P) = max
j

max
i1 ,i2

|[P]i1 j − [P]i2 j | . (43)

The value δ(P) is the maximum difference between any pair of
elements in the same column, and it provides an upper bound for
the difference in the rows among all columns.10 The relationship
between the coefficient of ergodicity τ1(P) and the maximum
range δ(P) of a matrix P is given in the following lemma.

Lemma A.1 (Hajnal [51] and Wolfowitz [52]): For row-
stochastic matrices S(0), . . . ,S(t), with S(l) ∈ Rn×n

δ

(
t∏

l=0

S(l)

)

≤
t∏

l=0

τ1 (S(l))

holds for t = 0, 1, 2, . . . .

APPENDIX B
LEMMA B.1, PROPOSITION B.1, AND LEMMA B.2

Lemma B.1: Consider X , a set of n points in Rd that is r + 1
divisible with r ≥ 0. For each choice of subset Q ⊂ X with size
n − r, every Tverberg point of depth r + 1 lies in the convex
hull of Q.

Proof: Consider q ∈ Rd to be a Tverberg point of depth
r + 1 of X . By the definition of the Tverberg point, there

10Because of its close relationship τ1 (P), the value δ(P) is also sometimes
called a coefficient of ergoditicy, e.g., [52].

is a partition Π such that q lies in the intersection of convex
hulls of r + 1 disjoint subsets of X that partitions X . Consider
Π := {P1 , . . . , Pr+1 .} to be an r + 1 disjoint subsets of X that
partitions X whose intersection of the convex hulls is nonempty.
Then, Pi ⊂ X , |Pi | ≥ 1 for i = 1, . . . , r + 1,

⋃r+1
i=1 Pi = X ,

and Pi ∩ Pj = ∅ for all pairs i, j ∈ {1, . . . , r + 1} with i 
= j.
If q is a Tverberg point of depth r + 1 of X

q ∈
r+1⋂

i=1

conv(Pi). (44)

Consider choosing a subset S of X with size r. We denote the
complement set of S to be Q such that Q is given by Q = X \ S,
and the size of Q is exactly n − r. Regardless of the choice of
the set S, there is at least one set among P1 , . . . , Pr+1 which
does not contain any elements from S. For every choice of
S ⊂ X , there is a Pj ∈ Π such that Pj ⊂ Q and q ∈ conv(Pj )
[by (44)]. Thus, for each choice of Q ⊂ X , q ∈ conv(Q). In
other words, for each choice of subset Q ⊂ X with size n − r,
every Tverberg point of depth r + 1 of X lies in the convex hull
of Q. This completes the proof. �

Proposition B.1: Given a point set x in Rd , any point p ∈
ri(conv(x)) can be written as nonzero convex combination of
all points in ver(conv(x)) whenever ri(conv(x)) 
= ∅.

Proof: Let m ∈ conv(x) denote the coordinate average of the
vertices of conv(x). For each p ∈ ri(conv(x)) there exists some
ε > 0 such that q = (1 + ε)p − εm ∈ ri(conv(x)). Writing p in
terms of q and m

p =
1

1 + ε
q +

ε

1 + ε
m.

Since q ∈ ri(conv(x)), it can also be written as a convex com-
bination of some subset of the vertices of ver(conv(x)), and
since m is a nonzero convex combination of all vertices of
ri(conv(x)), p can be represented by nonzero convex combina-
tion of all vertices, i.e., ver(conv(x)), as claimed. �

The proof of Lemma B.2 depends on the following
proposition.

Proposition B.2: Let Ai , Bi ∈ Rn×n be nonnegative matri-
ces for i = 1, . . . , m. If for each i, there is τi > 0 such that
Ai ≥ Bi ≥ τiIn for i = 1, . . . ,m

AmAm−1 · · ·A1 ≥ BmBm−1 · · ·B1 ≥
m∏

i=1

τiIn .

Proof: For the sake of brevity, we give only a brief sketch of
the proof. The proof is by induction on m. The key observation
required for the proof is the following: Ai ≥ Bi implies Ai =
Bi + B′

i whereB′
i ≥ 0, and since eachBi has positive diagonal,

there is B′′
i ≥ 0 such that

Bi = B′′
i + τiIn

with τi > 0. The remainder of the proof proceeds by merely
applying this observation and carrying out matrix algebra to
arrive to the desired result. �

Lemma B.2: Consider a directed graph G = (V, E) with n
vertices where A is the adjacency matrix for G. If the ith node
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is globally reachable, then

1n×1 ≤ [(In + A)l ]i (45)

whenever l ≥ n − 1.
Proof: We will prove (45) by showing that

1 ≤ [(In + A)l ]j i

holds for all j ∈ V whenever l ≥ n − 1.
Case 1: Consider j = i. By Proposition B.2

In = Im
n ≤ (In + A)m , m = 1, 2, . . . ,

and this implies that 1 ≤ [(In + A)m ]ii for all i ∈ V , and
m ∈ N.

Case 2: Consider j ∈ V \ {i}. Since the graph G has glob-
ally reachable node i, for every j ∈ V \ {i} there is a di-
rected acyclic path from node j to i which consists of ver-
tices j, l1 , l2 , . . . , lk−1 , i, where l0 = j and k < n − 1. Thus,
(j, l1), (l1 , l2), . . . (lk−2 , lk−1), (lk−1 , i) ∈ E , and this implies
that [A]j l1 = 1, [A]lk −1 i = 1, and [A]lm ,lm + 1 = 1 for all m =
1, . . . , k − 2. Hence, for each j there exists k ≤ n − 1 such
that the product [A]j l1 [A]l1 l2 · · · [A]lk −2 lk −1 [A]lk −1 i = 1, and
this implies

1 ≤ [Ak ]j i . (46)

By Proposition B.2

Am ≤ (In + A)m

for all m ∈ N such that for any pair i, j ∈ V
[Am ]j i ≤ [(In + A)m ]j i . (47)

Combining (46) and (47) leads to

1 ≤ [(In + A)k ]j i

and again by Proposition B.2

(In + A)k ≤ (In + A)m

holds for all m ≥ k. Thus

1 ≤ [(In + A)k ]j i ≤ [(In + A)m ]j i

for all m ≥ k. Note that the uniform upper bound for k is n − 1.
Hence, as long as m ≥ n − 1

1 ≤ [(In + A)m ]j i

holds for all j ∈ V \ {i}.
Combining two results for the cases j = i and j ∈ V \ {i},

whenever l ≥ n − 1,

1n×1 ≤ [
(In + A)l

]
i

and the proof is complete. �
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