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Abstract— In this paper, we present a game theoretic analysis
of a visibility based pursuit-evasion game in an environment
containing obstacles. The pursuer and the evader are holonomic
having bounded speeds. Both players have a complete map
of the environment. Both players have omnidirectional vision
and have knowledge about each other’s current position as
long as they are visible to each other. Under this information
structure, the pursuer wants to maintain visibility of the evader
for maximum possible time and the evader wants to escape the
pursuer’s sight as soon as possible. We present strategies for
the players that are in Nash Equilibrium. The strategies are a
function of the value of the game. Using these strategies, we
construct a value function by integrating the retrogressive path
equations backward in time from the termination situations
provided by the corners in the environment. From these value
functions we recompute the control strategies for them to
obtain optimal trajectories for the players near the termination
situation.

I. INTRODUCTION

Pursuit-evasion is an interesting class of problems in the

field of differential games. It involves a group of mobile

agents called pursuers and another group of mobile agents

called evaders involved in conflicting scenarios. Examples of

such problems involve a pursuer with kinematic or dynamic

constraints trying to ’catch’ an evader or a pursuer trying to

’search’ an evader hiding in a cluttered environment. In this

work, we analyze the problem of a mobile pursuer trying to

keep a mobile evader in its field-of-view in an environment

containing polygonal obstacles. Both the pursuer and the

evader are holonomic with bounded speeds and can see

each other at the beginning of the game. The players do

not have knowledge of each other’s future actions. We

formulate the problem of tracking as a game in which the

goal of the pursuer is to keep the evader in its field-of-view

for maximum possible time and the goal of the evader is

to escape the pursuer’s field-of-view in minimum time by

breaking the line of sight around a corner.

This setting has several applications. It may be useful for

a security robot to track a malicious evader that is trying

to escape. The robot must maintain visibility to ensure the

evader will not slip away while another party or the pursuer

itself attempts to eventually trap or intercept the evader. Also,

an “evader” may not be intentionally trying to slip out of

view. A pursuer robot may simply be asked to continuously
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follow and monitor at a distance an evader performing a

task not necessarily related to the target tracking game. The

pursuer may somehow be supporting the evader or relaying

signals to and from the evader. The pursuer may also be mon-

itoring the evader for quality control, verifying the evader

does not perform some undesired behavior, or ensuring that

the evader is not in distress. Finally, the results are useful as

an analysis of when escape is possible. If it is impossible to

slip away, it may be desirable for the evader to immediately

surrender or undertake a strategy not involving escape. In

applications that involve automated processes that need to

be monitored, such as in an assembly work cell, parts or

sub-assemblies might need to be verified for accuracy or are

determined to be in correct configurations. Visual monitoring

tasks are also suitable for mobile robot applications [7].

In home care settings, a tracking robot can follow elderly

people and alert caregivers of emergencies [10]. Target-

tracking techniques in the presence of obstacles have been

proposed for the graphic animation of digital actors, in order

to select the successive viewpoints under which an actor

is to be displayed as it moves in its environment [14]. In

surgery, controllable cameras could keep a patient’s organ or

tissue under continuous observation, despite unpredictable

motions of potentially obstructing people and instruments.

In wildlife monitoring, deep-sea underwater autonomous

vehicles (UAVs) need to navigate in cluttered environments

while tracking marine species.

In this work, we use differential games to analyze a

pursuit-evasion problem. The theory of deterministic pursuit-

evasion was single-handedly created by R. Isaacs that cul-

minated in his book [11]. A general framework based on the

concepts in classical game theory and the notion of tenet

of transition was used to analyze pursuit-evasion problems.

Problems like the Lady in the Lake, Lion and the Man,

Homicidal Chauffer and Maritime Dogfight Problem were

introduced in this book. A modification to the classical

problems involves the consideration of discrete-time versions

of these problems and the application of a proper information

structure to compute the value of the game [9], [8]. An

exhaustive analysis of solved and partly solved zero-sum

differential games is provided in [3] and [13]. Most of the

classical problems in pursuit-evasion deal with players in

obstacle-free space having either constraints on their motion

or constraints on their control due to under-actuation. In the

recent past, researchers have analyzed pursuit-evasion prob-

lems with constraints in the state space. In [16], a pursuit-

evasion game is analyzed with the pursuer and the evader

constrained to move on a two-dimensional conical surface in
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a three-dimensional space. A theoretical framework based on

the method of characteristics is presented in [15] to address

such problems. Apart from these problems, researchers have

also analyzed pursuit-evasion in R
n [12], in non-convex

domains of arbitrary dimension [1], in unbounded domains

[2], and in graphs [17].

In the past, we have addressed tracking problems related

to the one in this paper. In [4], we addressed the problem of a

pursuer trying to track an antagonistic evader around a single

corner. We partitioned the visibility region of the pursuer

into regions based on the strategies used by the players to

achieve their goals. Based on these partitions, we proposed

a sufficient condition of escape for the evader in general

environments. In [5], given the initial position of the evader

in a general environment, we used the sufficient condition

to compute an approximate bound on the initial positions of

the pursuer from which it might track the evader. The bound

depends on the ratio of the maximum speed of the evader

to that of the pursuer. If the initial position of the pursuer

violates this bound, the evader can escape the pursuer’s sight.

Moreover, we provided strategies for the evader to escape

irrespective of pursuer’s actions.

In this paper, we formulate the target-tracking problem

as a game in which the pursuer wants to maximize the

time for which it can track the evader and the evader wants

to minimize it. We compute the strategies for the players

that are in Nash equilibrium [3]. If a player follows its

equilibrium strategy, it is guaranteed of a minimum outcome

without any knowledge of the other player’s future actions.

Moreover when a pair of strategies for the players is in Nash

equilibrium then any unilateral deviation of a player from its

equilibrium strategy might lead to a lower outcome for it.

Consider a situation in which the pursuer can keep the evader

in sight for time tf when the players follow their equilibrium

strategies. If the evader deviates from its equilibrium strategy

then the pursuer has a strategy to track it for a time greater

than tf . On the other hand, if the pursuer deviates from

its equilibrium strategy then the evader can escape in time

less than tf . Hence there is no motivation for either of the

players to deviate from their equilibrium strategies due to

the lack of knowledge of the other player’s future actions.

For a pair of equilibrium strategies for the players either

the evader can escape the pursuer’s sight in finite time or

the pursuer can track the evader forever. Hence computing

them gives us the strategies sufficient for tracking or escape,

whichever holds at a given point in the state space. As far as

we know, this is the first work that provides the necessary and

sufficient conditions for tracking and provides equilibrium

strategies for the players. We use these strategies to integrate

the kinematic equations of the system backward in time from

the termination situations to obtain the optimal trajectories

for the players.

The final results in this paper have also been presented

in [6] which however uses a different modelling framework.

With respect to [6], this paper differs in the following way.

In [6], we model the players and the line-of-sight as a rod

of variable length moving in the plane. The configuration

variables of the system are the global coordinates of one end

of the rod and the length and the orientation of the rod in the

global frame. Then we analyze the pursuit-evasion problem

as a motion planning problem in which the pursuer has to

move one end of the rod in order to avoid any collision

between the rod and the obstacles. In the current paper,

however we use the global coordinates of the pursuer and

the evader as the configuration variables to model the system.

This leads to a much more elegant analysis compared to [6].

Although the fundamental principles governing the evolution

of the game remain the same, the techniques used to evaluate

the optimal control and then the optimal trajectories are

different due to the difference in the modelling of the

problem.

In Section II, we present the formulation of the game. In

Section III, we present the strategies for the players that are

in Nash equilibrium. In Section IV, we present the construc-

tion of the optimal trajectories near the termination situations

around a corner. In Section V, we present conclusions and

identify some future work.

II. FORMULATION OF THE GAME

We consider a mobile pursuer and an evader moving in

a plane with velocities u = (up, θp) and v = (ue, θe)
respectively. up and ue are the speeds of the players that

are bounded by vp and ve respectively. θp and θe are the

direction of the velocity vectors. We use r to denote the

ratio of the maximum speed of the evader to that of the

pursuer r = ve

vp
. They are point robots with no constraints

in their motion except for bounded speeds. The workspace

contains obstacles that restrict pursuer and evader motions

and may occlude the pursuer’s line of sight to the evader.

The initial position of the pursuer and the evader is such

that they are visible to each other. The visibility region of

the pursuer is the set of points from which a line segment

from the pursuer to that point does not intersect the obstacle

region. Visibility extends uniformly in all directions and is

only terminated by workspace obstacles (omnidirectional,

unbounded visibility). The pursuer and the evader know each

other’s current position as long as they can see each other.

Both players have a complete map of the environment. In

this setting, we consider the following game. The pursuer

wants to keep the evader in its visibility region for maximum

possible time and the evader wants to break the line of sight

to the pursuer as soon as possible. If at any instant, the evader

breaks the line of sight to the pursuer, the game terminates.

Given the initial position of the pursuer and the evader, we

want to know the optimal strategies used by the players

to achieve their respective goals. Optimality refers to the

strategies used by the players that are in Nash equilibrium.

Font83 The kinematic equations of the players are given as

follows.

ẋp = up cos θp, ẏp = up sin θp

ẋe = ue cos θe, ẏe = ue sin θe

The above set of equations can also be expressed in the

form ẋ = f(x, u, v). In the next section, we present the
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equilibrium strategies of the players.

III. OPTIMAL STRATEGIES

In order to present optimal strategies, we need to define

the payoff for the players in the game. Consider a play that

terminates at time tf . Since the objective of the pursuer is to

increase the time of termination, its payoff function can be

considered as tf . On the other hand, since the objective of

the evader is to minimize the time of termination, its payoff

can be considered to be −tf . Since the payoff functions of

the players add to zero, this is a zero-sum differential game.

The time of termination is a function of the initial state x0

and the control history during the play, u(·) and v(·).
Since the players involved in a game have conflicting

goals, the concept of optimality involves the idea of Nash

equilibrium. A set of strategies for the players is said to be

in Nash equilibrium if any unilateral deviation in strategy

by a player cannot lead to a better outcome for that player.

Hence there is no motivation for the players to deviate from

their equilibrium strategies. In case of a zero-sum game, the

equilibrium strategies are also referred to as the saddle-point

strategies. In scenarios where the players have no knowledge

about each other’s strategies, equilibrium strategies are im-

portant since they lead to a guaranteed minimum outcome

for the players in spite of the other player’s strategies. In this

work optimal strategies refer to strategies that are in Nash

equilibrium.

For a point x in the state space, J(x) represents the

outcome if the players implement their optimal strategies

starting at the point x. In this game, it is the time of

termination of the game when the players implement their

optimal strategies. It is also called the value of the game at

x. Any unilateral deviation from the optimal strategy by a

player can lead to a better payoff for the other player. For

example, for a game that starts at a point x, if the evader

deviates from the optimal strategy then there is a strategy

for the pursuer in which its payoff is greater than J(x) and

if the pursuer deviates from the optimal strategy then there

is a strategy for the evader in which its payoff is greater than

−J(x). Since this is a zero sum game, any strategy that leads

to a higher payoff for one player will reduce the payoff for

the second player.

∇J = [Jxe
Jye

Jxp
Jyp

]T denotes the gradient of

the value function. The Hamiltonian of our system is given

by the following expression.

H(x,∇J, u, v) = ∇J · f(x, u, v) + 1

= ue[Jxe
cos θe + Jye

sin θe]

+up[Jxp
cos θp + Jyp

sin θp] + 1

Let u∗ = (u∗
p, θ

∗
p) and v∗ = (u∗

e, θ
∗
e) be the optimal controls

used by the pursuer and the evader respectively. Since the

pursuer is the maximizer and the evader is the minimizer, the

Hamiltonian of the system satisfies the following conditions

along the optimal trajectories [11]. These are called the

Isaacs conditions.

1) H(x,∇J, u, v∗) ≤H(x,∇J, u∗, v∗) ≤H(x,∇J, u∗, v)

2) H(x,∇J, u∗, v∗) = 0

Condition 1 implies that when the players implement their

optimal strategies any unilateral deviation by the pursuer

leads to a smaller value for the Hamiltonian and any uni-

lateral deviation by the evader leads to a larger value of the

Hamiltonian. Moreover condition 2 implies that when the

players implement their optimal controls the Hamiltonian of

the system is zero. The Isaacs conditions are an extension

of the Pontryagin’s principle in optimization to a differential

game.

Since the evader wants to minimize the time of escape, and

the pursuer wants to maximize the time of escape, Isaac’s

first condition requires the following to be true along the

optimal trajectories.

(u∗
e, θ

∗
e , u∗

p, θ
∗
p) = arg min

ue,θe

max
up,θp

H(x,∇J, u, v) (1)

We can see that the Hamiltonian is separable in the controls

up and ue i.e., it can be written in the form upf1(x,∇J) +
uef2(x,∇J). Hence the optimal controls for the players are

given by the following expressions in terms of the gradient

of the value function :

(cos θ∗p, sin θ∗p) || (Jxp
, Jyp

) & u∗
p = vp

(cos θ∗e , sin θ∗e) || (−Jxe
,−Jye

) & u∗
e = ve (2)

In the first and the second equation || is used to denote

parallel vectors. In case Jxp
= 0 and Jyp

= 0, then θ∗p
can take any value and the pursuer can follow any control

strategy. Similarly if Jxe
= 0 and Jye

= 0, then θ∗e can take

any value and the evader can follow any control strategy.

These conditions represent singularity in the Hamiltonian.

The entire game set can be partitioned into two regions

depending on the value of the game. For all the initial

positions of the pursuer and the evader for which the value

of the game J(x) is finite, the evader can break the line of

sight in finite time by following the strategies in equation

(2). For all the initial positions of the pursuer and the evader

for which the value of the game is infinite, the pursuer can

track the evader forever if it follows the controls given in

equation (2).

The analysis done in this section implies that if we are

given the value function J(x), then we can compute the

optimal strategies for the players from equation (2). In the

next section we construct such a function locally near the

termination situations and present the trajectories generated

by the players when they follow the optimal strategies near

the termination situations.

IV. CONSTRUCTION OF OPTIMAL TRAJECTORIES

In this section, we present the trajectories generated by the

optimal control laws near termination situations. The game

set is the set of all states in R
4 such that the players are

in the free workspace and can see each other. Hence the

boundary of the game set is the same as the boundary of the

configuration space obstacles. The boundary of the game set

consists of two kinds of configurations of the pursuer and

the evader. Refer to Figure IV. The first kind of boundary
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points consists of states in which either the pursuer or the

evader or both lie on the boundary of the workspace. At no

point in time, the state of the game can cross the boundary

at such a point as this is equivalent to either of the players

penetrating into an obstacle in the workspace. The second

kind of boundary points consists of states in which the line of

sight between the pursuer and the evader grazes the boundary

of an obstacle and this set of points on the boundary of the

game set is called the Target set [11]. At any point in time, if

the current state of the game lies on the target set, then it can

cross the boundary according to the rules of the game since

in the workspace this is equivalent to breaking the mutual

visibility between the players which results in the termination

of the game. Since we are interested in situations where the

mutual visibility between the players can be broken, we are

only interested in the part of the boundary that forms the

target set.

In this game, termination occurs only when the evader

can break the line of sight to the pursuer around a corner.

Every corner in the environment presents an opportunity for

the evader to break the line of sight. Hence every corner

presents a termination situation for the game.

If the state of the system lies on the target set then a

vertex of some obstacle is incident on the mutual visibility

line between the pursuer and the evader. The evader cannot

guarantee termination at every point on the target set. Figure

1 shows a configuration in which the state of the system lies

on the target set. Let lp denote the distance of the vertex from

the pursuer. Let l denote the distance between the pursuer and

the evader. The evader can force termination if and only if the

maximum angular velocity of the evader around the corner

is greater than the maximum angular velocity achievable by

the pursuer around the corner. This can happen if and only

if the following condition holds :

lp

l
>

1

1 + r
(3)

Hence we can further subdivide the target set, depending

on whether the evader can guarantee termination at that

point. The part of the target set where evader can guarantee

termination regardless of the choice of the controls of the

pursuer is called the usable part (UP). Given any initial

position of the pursuer and the evader, the game will always

terminate on the UP.

Now we present the equations characterizing the target

set around a vertex of an obstacle; see Figure 1. The figure

shows a configuration of the bar in which a vertex, v, that

lies on the line of sight between the pursuer and the evader.

Hence the current state of the bar lies on the target set. We

want the equation of the hyperplane that characterizes the

target set generated by v. Let (xp, yp, xe, ye) be the state of

the system on the target set and (xo, yo) be the coordinates

of the vertex of the obstacle. We can write the following

equation of constraint :

yo − ye

xo − xe

=
yo − yp

xo − xp

Hence the target set is characterized by the following equa-

tion :

F (xp, yp, xe, ye) = (yo−yp)(x
o−xe)−(yo−ye)(x

o−xp) = 0
(4)

Since the above equation applies to any point on the target

set, equation (3) also characterizes the UP of the target set.

Since the target set is on the boundary of the game set, it is 3-

dimensional and hence can be represented by 3 independent

variables. Let the independent variables representing the

target set be chosen as the following:

s1 = xe − xo, s2 = ye − yo, s3 = xp − xo

=⇒ yp = yo +
s2s3

s1

The value function at every point on the UP is 0. Hence

the partial derivative of the value function along s1, s2 and

s3 is zero. Let the components of ∇J on the UP be denoted

as [J0
xp

J0
yp

J0
xe

J0
ye

]T .

J0
s1

= 0 = J0
xe

− J0
yp

s2s3

s2
1

, J0
s2

= 0 = J0
ye

+ J0
yp

s3

s1

J0
s3

= 0 = J0
xp

+ J0
yp

s2

s1

(5)

From the Isaacs second condition, the following equation

holds at every point in time :

−ve

√

J2
xe

+ J2
ye

+ vp

√

J2
xp

+ J2
yp

+ 1 = 0 (6)

Substituting Equations (5), (6) and (7) into Equation (8), we

get the following expression for J0
yp

:

| J0
yp

|=
1

(
√

s2

2

s2

1

+ 1)(ve

√

s2

3

s2

1

− vp)
(7)

From equation (3), we can conclude that on the UP, | s3

s1

|>
vp

ve
and hence the R.H.S. of the above equation is always

positive. Hence J0
yp

can have two possible values differing

just by a sign. In the termination condition shown in Figure

1, J0
yp

is positive since the value of the game increases

when we perturb the pursuer position vertically upwards.

Fig. 1. State of the system on the target set.
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Depending on the position of the corner and the orientation

of the pursuer and the evader at the termination situation, we

can eliminate one of the possible values of J0
yp

.

Now we use the following theorem to obtain the value

function along the optimal trajectories backwards in time.

Theorem[11]: Along the optimal trajectory, the following

equation holds.

d

dt
∇J [x(t)] = −

∂

∂x
H(x,∇J,u∗,v∗)

The above equation is called the retrogressive path equation

(RPE). The RPE is a differential equation for the ∇J(x)
along the optimal trajectories in terms of the optimal con-

trols. Substituting the optimal controls of the players as a

function of ∇J(x) from Equation (2) into the RPE leads

to a set of ordinary differential equations for ∇J(x). For

our system, the RPE gives the following set of differential

equations:

J̊xp
= 0 =⇒ Jxp

= J0
xp

, J̊yp
= 0 =⇒ Jyp

= J0
yp

J̊xe
= 0 =⇒ Jxe

= J0
xe

, J̊ye
= 0 =⇒ Jye

= J0
ye

(8)

Substituting ∇J(x) into the optimal controls in equation (2)

yields the control strategies for the players :

(cos θ∗p, sin θ∗p) || (J0
xp

, J0
yp

) & u∗
p = vp

(cos θ∗e , sin θ∗e) || (−J0
xe

,−J0
ye

) & u∗
e = ve (9)

Substituting the control laws for the players into the kine-

matic equation leads to the optimal trajectories in retro

time. Let (xf
p , yf

p , xf
e , yf

e ) be the state of the system at the

termination situation on the UP. From equation (9), the

value of J0
yp

= +

−c1cosθf , where c1 = 1

ve|
xo

−x
f
e

xo
−x

f
p

|−vp

and

tan θf =
yf

e −yo

x
f
e−xo

. The optimal trajectory of the pursuer as a

function of retro-time is given by

xp(τ) = xf
p

+

−
τvp sin θf , yp(τ) = yf

p

−

+
τvp cos θf (10)

The optimal trajectory of the evader as a function of retro-

time is given by

xe(τ) = xf
e

−

+
τve sin θf , ye(τ) = yf

e

+

−
τve cos θf (11)

Since ∇J is constant along an optimal trajectory, from the

expression of the optimal strategies of the players, we see

that they are straight lines. Moreover from equations (14) and

(15), we conclude that the players move parallel to each other

in opposite directions, perpendicular to the line of sight at

the termination situation. Given a termination situation, this

leads to two kinds of trajectories for the players as shown

in Figure 2. Now we show that only one of these two kinds

can lead to termination.

Referring to Figure 3, let p and e be positions of the

pursuer and the evader at a termination situation. Consider

a small amount of perturbation in the pursuer’s position

in the positive y-direction. Let the new position of the

Fig. 2. Optimal trajectories to a termination situation

Fig. 3. A configuration of the bar on the target set.

pursuer be p
′. The value of the game at (xp′ , yp′ , xe, ye) is

greater than zero since the evader cannot terminate the game

instantly. Hence Jyp
is greater than zero at (xp, yp, xe, ye).

The velocity of the pursuer is perpendicular to the line-of-

sight between the pursuer and the evader at the termination

situation. Since Jyp
> 0 =⇒ sin θ∗p > 0 =⇒ 0 < θ∗p < π at

the termination situation. Hence the pursuer approaches the

termination situation in the direction shown in the figure.

Since the velocity of the evader is in the opposite direction,

the evader approaches the termination situation in the direc-

tion shown in the figure. Repeating the above analysis for all

orientation of the termination configuration and the obstacle

leads to the conclusion that at the termination situation the

evader moves towards the obstacle and the pursuer moves

away from the obstacle. This leads to a unique set of optimal

trajectories from every point on the UP.

For a general environment in the plane, the optimal

trajectories lie in R
4. In order to depict them in R

3, we

need to consider a subspace of the optimal paths terminating

at a corner. In the following example, for each corner in

the environment we show the subspace of the optimal paths

that have a fixed distance of the pursuer from the corner at

the termination situation. The value of the speed ratio, r, is

0.66. Figure 4 shows the optimal trajectories for the players

in a simple environment containing a point obstacle at the

origin. The line of sight between the pursuer and the evader

is broken if it passes through the origin. The evader wants to

minimize the time required to break the line of sight and the

pursuer wants to maximize it. Let (xf
p , yf

p , xf
e , yf

e ) represent

the orientation of the bar at the termination situation. Figure

4(a) shows the optimal trajectories of the players for a

constant value of (xf
p , yf

p ). Figure 4(b) shows the optimal

trajectories for every orientation of the line-of-sight between

the pursuer and the evader at the termination situation. The z

axis represents the angle that the line-of-sight makes with the
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Fig. 4. Optimal trajectories for an environment having a single point obstacle
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horizontal axis at the termination situation. A cross-section

parallel to the xy-plane gives the optimal trajectories of the

players in a plane for a given θf . The line in the middle

denotes the point obstacle. The inner spiral is formed by

the optimal trajectories of the evader and the outer spiral is

formed by the optimal trajectory of the pursuer. For any point

on the spiral, the value of the game is directly proportional

to its radial distance from the point obstacle.

Finally, we present below conclusions and identify some

work for the future.

V. CONCLUSION AND FUTURE WORK

In this paper, we have addressed a visibility based pursuit-

evasion game in an environment containing obstacles. The

pursuer and the evader are holonomic having bounded

speeds. The pursuer wants to maintain visibility of the

evader for maximum possible time and the evader wants to

escape the pursuer’s sight as soon as possible. Both players

have knowledge about each other’s current position. Under

this information structure, we have presented necessary and

sufficient conditions for surveillance and escape. We have

presented strategies for the players, which are in Nash

Equilibrium. The strategies are functions of the value of the

game. Using these strategies, we have constructed a value

function by backward integration of the adjoint equations

from the termination situations provided by the corners in

the environment. From the value functions we have recom-

puted the control strategies for the players to obtain optimal

trajectories for the players near the termination situation. We

have shown that the optimal strategies for the players dictate

moves on straight lines parallel to each other in opposite

directions towards a termination situation. We have shown a

subspace of the optimal trajectories for a point obstacle, a

corner and a hexagonal obstacle in space.

Among the future work are developing complete solutions

for a polygonal environment containing multiple obstacles

and the extension of the techniques developed here to address

the problem of multiple pursuers trying to attack an evader.

For the former, construction of various types of singular

surfaces will be needed.
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