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Abstract

This paper discusses the integration of machine learn-
ing and sensor-based control in intelligent robotic sys-
tems. Our research is interdisciplinary and combines
techniques of explanation—based control with robust and
adaptive nonlinear control, computer vision, and motion
planning. Our intent in this research is to go beyond the
strict hierarchical control architectures typically used in
robotic systems by integrating modeling, dynamics, and
- control acrogs traditional levels of planning and con-
trol at all levels of intelligence. Our ultimate goal is
to combine analytical techniques of nonlinear dynamics
and control with artificial intelligence into a single new
paradigm in which symbolic reasoning holds an equal
place with differential equation based modeling and con-
trol.

1 Introduction

The development of robots which are capable of com-
plex, autonomous behavior such as adapting to changes
and uncertainties in their environments, planning and
exscuting strategies to carry out tasks without human
intervention, and learning from past experience to im-
prove future performance is one of the ultimate goals
of robotics research. Achieving this goal would have
tremendous impact in many areas of engineering. It is
clear that many of the research problems that need to
be solved to achieve this goal lie in the area broadly clas-
sified as intelligent control, and consist of modeling and
control of uncertain nonlinear dynamical systems, and
the integration of machine learning with sensor-based,
real-time control.

Despite recent advances in robust and adaptive non-
linear control theory, present day robot manipulators
and mobile robots are incapable of more than the most
rudimentary of intelligent behaviors. Part of the reason
for this is the fact that the intelligent execution and con-
trol of complex tasks by mechanical devices is difficult
to accomplish within the traditional differential equation
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based trajectory tracking paradigms of modern control
theory. Trajectory generation and tracking control tech-
niques are suitable for a limited class of tasks, such as
spray painting, arc welding, or palletizing, but they are
ill-suited to more complex tasks for which mathematical
models are unavailable, poorly known, or too complex
to be practical. Examples of complex tasks for which
simple mathematical models and simple trajectories are
not easily described include building a house, repair-
ing a satellite, navigating through a network of pipes
to inspect for corrosion, repairing downed power lines,
cleaning up hazardous waste, and many others.

An intelligent robotic system would possess a sym-

.bolic reasoning capability and would thus be able to

reason about the qualitative behavior of the system.
While symbolic reasoning of this sort has been a main-
stay of the Artificial Intelligence community for many
years, control theorists have strongly criticized tradi-
tional symbolic AI paradigms of reasoning about ac-
tion and change for their neglect of real-world effects
faced by a robotic system, such as dynamic uncertain-
ties, disturbances, noisy measurements, bandwidth limi-
tations, etc. The classic examples of inserting a peg into
a hole, and stacking blocks are applications where suc-
cess or failure depends not only on reasoning about the
sequence of motions necessary to accomplish the task
but also upon understanding and controlling the inter-
action forces, the dynamics of the robot and its environ-
ment, etc. In spite of the obvious need and advantages
of integrating planning and control, current robotic sys-
tems tend to be hierarchical instead, with high level task
planners at the top which compute trajectories without
utilizing information about the dynamics of the process,
and low level servo systems at the bottom, which are
designed simply to track the trajectories presented to
them.

To date Al and vision research has failed to exploit
the analytical results and techniques from control the-
ory. The new paradigm that we will explore is based
fundamentally on the belief that Intelligent Control of
Robotic Systems is not possible without integrating the
three areas of machine learning, sensing, and control
theory. Some specific elements of this new paradigm



are:

1. Planning must take into account what information the
sensing system can robustly and quickly deliver. In
particular, since general purpose vision currently is
not possible in real-time, an intelligent control sys-
tem must move beyond the traditional role of merely
“observing” sensor data and take an active role in
planning the sensing strategies to be used.

2. The sensing system should exploit techniques from
control theory to aid in the acquisition and processing
of sensor data. For example, an important problem in
current robotics research is using a moveable camera
to obtain vision feedback for end-effector servo con-
trol. This tracking problem could be greatly aided by
the use of control theoretic methods, both for image
plane feature tracking, and for controlling the motions
of the tracking camera. Sensing is thus a key element
to bridge the AI—Control Theory gap.

3. Planning must take into account the performance lim-
its of the control system. For example, one of the
well-known ways that an adaptively controlled sys-
tem can become unstable is if the reference trajectory
excites the unmodeled dynamics. Thus a hierarchical
system in which planning takes place independently
of control can fail dramatically if adaptive control is
used in an attempt to increase it’s performance.

4. Control techniques must be developed to cope with
uncertainties in the system beyond the usual cases
of unknown parameters and unknown high frequency
components. To this end, symbolic techniques can
be used to diagnose model inadequacies and to sug-
gest appropriate refinements in response to observed
responses,

5. Machine learning techniques must be developed to
suggest general descriptions of systematic behavior
underlying world observations. This capability is es-
sential if intelligent robotic systems are to perform ef-
fectively in novel situations, or in environments that
change dynamically in unexpected ways.

The intent of our research is to increase the scope of
control theory to embrace applications which cannot be
solved with classical, modern, fuzzy logic, or neural net
contro] systems. In particular, we believe that the Al
arca of planning (reasoning about perception, action,
and world change) and the discipline of control theory
(modeling, sensing, and actuation) are designed to serve
the same purpose. In both, the task is to construct a
strategy to transform a system from a given (perhaps
unknown) initial state to a desired final state.

2 Task Control

Task Control involves the integration of control theory
and A] planning into a new synthesis. We focus on
hybrid systems for which no full adequate mathemat-
ical model can be given. An illustrative example is a

robot working in a complex environment in which fric-
tion, inelastic collisions, and other uncertainties domi-
nate. Traditionally, robot control is viewed as separate
from trajectory generation, grasping, etc. which are rel-
egated to a separate planner. A more natural viewpoint,
however, is to consider the robot, for which an adequate
model can be constructed, and the robot’s environment,
which cannot be adequately described mathematically,
as a single integrated system. In fact, such a viewpoint
is taken by most of control theory (excluding robotics).
One does not, for example, imagine the position of a
valve in a chemical plant to be the output of the con-
trol system. One typically wishes to control the level
of a chemical, not the position of a valve whose effect
varies with other factors. No control engineer would say
“Ah, well, that’s a planning problem. I only control ac-
tuators.” Yet that is just the response given by robotics
control engineers. :

Why is robotics different? Why not view the robot-
environment as a single plant? One reason might be
that it seems to make a convenient dividing line. This
is traceable to the “general-purposeness” of robots. The
chemical plant actuator will never find itself in a differ-
ent environment. It always controls a particular flow of a
particular fluid. Plant engineers are not allowed to redo
the plumbing on a daily or hourly schedule so that at one
moment the valve controls the flow of a high pressure lig-
uid of a certain density and viscosity and another time a
low pressure gas. In non-robotic control, the changes in
environment are simple and can be circumsecribed and
modeled. This cannot be said of robots, which by their
very nature are general purpose. A robot may be at one
time quickly moving a heavy object grasped far from its
center of mass in which little path accuracy is required,
at another time applying a force to an unmoving tower
to steady it, and still later precisely positioning a small
part. The environment changes so drastically and so
quickly that attempting to analyze “the environment”
as a single plant is ludicrous from a control theory point
of view.

3 Machine Learning

Recently, a new technique called explanation-based con-
trol {3] has been advanced. It appears to be a promising
vehicle to bridge the current gap between the symbolic
reasoning methods that underlie AI planning and the
existence of continuous changes in the world, a corner-
stone of control theory.

Explanation-based control employs machine learning
techniques, primarily explanation-based learning [4,10]
over a symbolic axiom set representing background
knowledge of the world. The ontology of the symbolic
logic is inspired by control theory and permits the rep-
resentation of simultaneously and continuously varying
world quantities. The predicates are based on work in
qualitative reasoning [5,2,8,14]. Basically, the approach
involves 1) observing a human or specialized control sys-
tem expert as it solves a problem currently beyond the



learning system’s capabilities, 2) constructing a sym-
bolic: qualitative explanation for why the expert’s be-
havior results in the desired profile of effects, 3) symbol-
ically generalizing the explanation in standard EGGS
fashion [11], 4) calibrating the concept with the quan-
titative points obeerved from the expert’s behavior, 5)
using numerical interpolation between observed points
to efficiently estimate the world’s behavior, 8) quanti-
tatively refining the planning concept with additional
observed world points derived from the concept’s use,
7) symbolically refining the concept by conjecturing an
alternative explanation when world observations contra-
dict the current explanation.

Through symbolic explanation (which identifies rele-
vant inputs and state variables) coupled with numeric
interpolation (to generalize the expected world behavior
beyond the observed sample points) an explicit empiri-
cally derived numeric approximation of the world’s in-
verse dynamics is formed. These explicit functions can
be employed in control applications. The crucial point is
that no differential equation model of the world’s behav-
ior is used. Rather, the system relies upon a symbolic
axiom set describing the world’s qualitative behavior. In
many applications for which an adequate quantitative
differential equation model of the world is too complex
or unknown, one may still be able to provide an adequate
qualitative description in symbolic terms. Furthermore,
preliminary experience with the approach indicates that
it may be tolerant of some non-linearities in the world,
and may exhibit a certain robustness without the usual
concomitant sluggishness.

Some form of stability analysis is most crucial; an
analog to controllability and observability are also de-
sirable. These are the primary research issues we intend
to pursue for explanation-based control.

4 Adaptive Control

In the past decade important strides have been made
in the design and analysis of robust and adaptive con-
trollers for robotic manipulators using various mathe-
matical tools, such as Lagrangian and Hamiltonian me-
chanics, passive network synthesis, Lyapunov methods,
differential geometric control theory, singular perturba-
tions and integral manifolds. The design and analysis of
Intelligent Controllers requires the broadening of such
tools to encompass real-time vision feedback, machine
learning and Al planning techniques. This is a nontriv-
ial task. To begin with, adaptive control in conjunction
with real-time vision feedback is a completely open area
of research in robotics. Adaptive control is attractive
because it holds out the promise of improved perfor-
mance over a wide range of payloads. However, until
the robustness properties of adaptive robot control are
fully understood, industrial designers will be reluctant,
even unwise, to use them. Given the complicated be-
havior that can arise from adaptive control of even a
simple first order linear system[9], it should not be sur-
prising that a complete understanding of the robustness

fo adaptive control of nonlinear systems as complicated
as multi~link, multi-sensor robotic manipulators is still
lacking. With the inclusion of vision feedback in the
control loop the problem of robustness of adaptive con-
trol becomes even more complicated. With the further
integration of explanation based learning directly into
the feedback loops, perhaps operating in multiple time
scales, we are faced with a class of nonlinear systems
for which few prior results are available to help in the
analysis or design.

It is known that the stability of adaptive systems are
highly sensitive to disturbances and unmodeled dynam-
ics. These arise in the robotics context from several
sources. External disturbances include many types of
interaction with the environment. For example, robotic
assembly has been described as a sequence of controlled
collisions with the environment. These collision forces
can be viewed as disturbances to the controller. A repet-
itive task, for example, subjects the robot to periodic
forcing which, even in non-adaptive control, can excite
complex nonlinear dynamic behavior, such as period
doubling bifurcations and chaos(15}.

Unmodeled dynamics include actuator/sensor dynam-
ics, joint flexibility, link flexibility, and environment
dynamics. Environment dynamics arise in force and
impedance controlled tasks such as assembly and grind-
ing and will become increasingly important in future
applications.

Several so-called “instability mechanisms” in adaptive
control have been identified [7]. Among the mechanisms
leading to instability are:

1) Reference trajectories which are “too fast.” If the
bandwidth of the reference trajectory is in the same
frequency range as the unmodeled dynamics, then
these unmodeled dynamic modes can be excited, lead-
ing to instability. '

2) Parameter drift. In typical parameter adaptive con-
trollers the estimated parameters are not guaranteed
to converge to their true values, but only to remain
bounded, without additional persistency of excitation

~ conditions.

3) High gain instability. This type of instability, when
the controller gains excite unmodeled dynamics, is ac-
tually due to a loss of passivity from the rigid robot
case and can occur even for nonadaptive algorithms

4) Fast adaptation instability. This type of instability
occurs when the gains in the parameter update law
are too large.

5) Neglected time delays. It has been known since the
mid 1960’s that small time delays in data transmission
in systems such as bilateral force reflecting teleopera-
tors can be destabilizing.

In addition to these, there are a number of instability
mechanisms that are directly attributable to the intro-
duction of vision sensing into the control loop.



6) Lens Distortion. The geometric correspondence be-
tween points in the 3D space and points in an image
is typically approximated by either perspective pro-
jection (which reflects an ideal thin lens assumption)
or by orthographic projection (which holds only when
the distance from the camera to the object is much
greater than the lens focal length). Neither of these
approximations account for limited depth of field, vi-
gnetting, and non-linear distortions of the image as
the radial distance from the focal center increases.

7) Image Plane Quantization Effects. The camera image
plane is actually a discrete array of sensors. There-
fore, the coordinates of object features used for visual
tracking are actually quantized versions of the true
coordinates of those features.

8) Motion Induced Blur in Image Formation. If there
is relative motion between the camera and the ob-
ject being imaged, then the resulting image will be
blurred.

9) Low Frequency Vision Sampling. To date, the fastest
sampling rate that has been reported in the literature
on visual servo control is still well below video rate.
Such slow sampling rates have severe implications for
system stability.

5 Experimental Research

We are developing a testbed system that can be used
as an experimental platform to test our theoretical re-
sults. The testbed will be built around a planar, three-
degree—of—freedom robot arm equipped with a wrist
force/torque sensor and a real-time vision system. The
camera may either be mounted away from the arm or
eye-in—hand, depending on the research problem being
investigated.

We will focus initially on Robotic Air Hockey, i.e.,
controlling a puck sliding on a surface, as the application
to test our theoretical results. This application contains
many of the fundamental research issues in intelligent
control that are of interest to us. For example, the mo-
tion trajectory of the arm cannot be planned off-line and
presented to the control system in a hierarchical fash-
ion. Real-time planning in conjunction with real-time
vision are an absolute necessity for this application. In
addition, this is an application where an accurate model
of the dynamics of the environment is difficult to obtain
because of large uncertainty in friction combined with
high sensitivity of the puck motion to initial conditions.
To be more specific, one would expect large amounts
of uncertainty and variation over time in the friction
characteristics of the table and puck. In addition, irreg-
ularities in the table surface and bumpers would make
it difficult to obtain a mathematical model of the envi-
ronment sufficiently precise to enable accurate predic-
tions of puck motion. When this large uncertainty is
combined with the expected high sensitivity of the puck
motion to changes in initial imposed forces and veloc-
ities, it appears that traditional motion planning and

tracking control schemes would be difficult or impossi-
ble to apply successfully. On the other hand, this ap-
plication appears eminently suited to learmng through
repeated trials in combination with real-time adaptive
vision feedback control.

Another area where this experimental set-up will fa-
cilitate cross—disciplinary research is in the nature and
control of the interaction forces between the puck and
the robot. Of course, it is only through the forces im-
parted to the puck during collision with the paddle held
by the robot that the puck is controlled. Issues of force
feedback control are thus of prime importance in this
research. In this application, however, the time of con-
tact between the puck and paddle are of extremely short
duration, and force control, as it is traditionally con-
ceived, has little meaning. Instead, the force informa-
tion collected during impact must be combined with the
information about the resulting puck motion as deter-
mined by the vision system and the information about
the arm motion as determined by the joint encoders to
modify the arm motion during repeated impacts. Stan-
dard learning control methods are not likely to succeed,
however, because it is impossible to recreate the puck
trajectory over two successive trials.

In our previous research we have developed and
exploited the so—called network approach to force
control(1] including the hybrid impedance control frame-
work. In the hybrid impedance control framework we
are able to control both force levels (i.e., track force
trajectories) and simultaneous control the end-effector
impedance. We may be able to apply these same tech-
niques in the present context. For example, by re-
peated trials the robot may be able to learn the opti-
mal impedance to use while imparting a desired force to
the puck. Ultimately, such knowledge will pay tremen-
dous benefits in numerous industrial settings, such as
in robotic assembly applications, or robotic handling of
radioactive waste or fuel rods in a nuclear power plant.

There are many interesting problems in robust and
adaptive nonlinear control that arise in this example.
The dynamics of this process are complex enough that
they cannot simply be ignored in the learning and plan-
ning phase. For example, the intermittent, impulsive,
and repetitive nature of the interaction forces, when
combined with adaptive control may induce interest-
ing and complex behaviors, such as bifurcations, chaotic
motion, and bursting. Thus the control designer must
be aware of the potential for such nonlinear phenomena’
and how the actions of motion planning and learning
may excite them.

The Robotic Air Hockey application contains numer-
ous interesting and fundamental problems in computer
vision. For example, understanding the physics of puck
motion in the image plane is necessary for accurate
tracking and for commanding motion of the arm. Issues
such as camera placement to maximize the visual analog
of manipulability [16] need to be understood. In other
words, it is desirable that “small puck motion” translate



to “large image motion” in order to increase the sensi-
tivity of the vision sensor. However, it is also desirable
that “large puck motion” translate to “small image mo-
tion” in order to reduce the amount of information that
the vision system needs to process in real-time. Under-
standing this and other trade-offs are fundamental for
this application.
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