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Abstract: We describe a novel Bayesian approach to re- 
gion merging, which directly uses statistical image models 
to determine the probability that the union of two regions 
is homogenww, and does not require pammeter estima- 
tion. This approach is particularly beneficial for cases in 
which the merging decision is most likely to be incorrect: 
when little information is contoind in one or both of the 
regions and pammeter estimates are unreliable. We apply 
the formulation to the implicit polynomial surface model 
for runge data, and texture models for intensity images. 

1 Introduction 
Uncertainty associated with an image segmentation has 

been a topic of recent interest in computer vision literature. 
Szeliski has developed uncertainty measures that apply to 
a given segmentation using Markov Random Field (MRF) 
models [5]. Chon and Brown perform Bayesian image la- 
beling, and represent uncertainty by using general label 
assignments when evidence is weak, and very specific la- 
bels when the evidence is strong [l]. It is widely recognized 
that segmentation in general is an underconstrained prob- 
lem, and that the definition of a “correct” segmentation is 
not possible in general [2]. 

At the heart of any segmentation formulation is the no- 
tion of homogeneity (or uniformity). We argue that one of 

which can be used by higher-level processes. 

0 The formalism applies to a wide class of statistical 
image models. 

0 Since the approach is Bayesian, a straightforward 
extension to multiple, independent image models is 
available. 

2 General Formulation 
With every image element, x, we associate a random 

vector X, representing the image information, which may 
be 3D position, intensity, color, or other information. We 
take some set of regions, R, which represents a fine parti- 
tion of the image into connected subsets of image elements. 
This could be obtained through some region-splitting pro- 
cedure, or simply be an assigned grid as in [a]. 

For each Rk E R we define the following four compc- 
nents, similar to those used previously in MRF contexts: 

0 Parameter space: A random vector, u k ,  which 
could, for instance, represent a space of polynomial 
surfaces. 

0 Observation space: A random vector, Y k ,  ob- 
t h e d  as a function of the data x € &. 

0 Degradation model: A conditional density, the key elements to handling uncertainty in segmentation 
is the ability to make a probabilistic assessment about the 
homogeneity of a pait of regions in an image, using rigor- p(yklUk), which models noise and uncertainty. 

ous, statistically-based image modeIs. To this end, we have 
developed the Bayesian region merging probability, which 
represents the probability that the union of two regions 
in an image is homogeneous, given appropriate statistical 
image models. 

The Bayesian region merging probability is a significant 
contribution since: 

0 In the presence of uncertainty, when parameter esti- 
mates are poor, the Bayesian region merging prob& 
bility gives an appropriate measure of the likelihood 
of merging two regions. 

0 The Bayesian region merging probability directly re- 

o Prior Model: An initial parameter space density, 

We have shown that for two regions, RI and Rz, the 
posterior probability that R1 U Rz is homogeneous, given a 
prior probability, PO, is determined through the following 
proposition: 

d U k ) *  

Proposition 1 Given the observations y1 and y2, the 
posterior membership probability is  

flects the amount of uncertainty about homogeneity, 
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4 Texture Models for Intensity Images andXl(Yl,Y2) = 

[/P(Yl IUl)P(Ul)dU,] [/P(Y21UdP(U2)dU2] 

J P(Y1 lul2)P(Y2lul2)P(ul2)dul2 
(3) 

The condition that RI U Ra is homogeneous is repre- 
sented by El .  The A0 and Xi(y i ,y2 )  ratios represent an 
interesting decomposition into prior and posterior factors. 

3 Implicit Polynomial Surfaces for 
Range Data 

We can apply Proposition 1 to the implicit polynomial 
model, pertaining to 3D surfaces. Consider a set of mono- 
mials in Z I , ~ ,  and 23,  in which the constants a,, a,, and c, 
are integers that represent the exponents of each variable. 
An implicit polynomial equation is represented as 

N 

(b(.,u) 3 c u , z y 2 > 2 j l  = 0 (4) 
J=l 

with aN = bN = CN = 0. The used here indicates that 
we have an implicit function with x as the variables. 

It is profitable to choose some restriction of the parame- 
ter space that facilitates integrations performed in practice 
[3], but maintains full expressive power. We use the con- 
straints, llull = 1 and u1 > 0, to constrain the parameter 
space to a half-hypersphere, termed the parameter mani- 
fold. 

The observation considered here is a function of the 
signed distances of the points x E Rk from the surface 
determined by Uk. Define 6(x, +(-, uk))  to be the signed 
distance of the point x to the surface described by the 
zero set, {x : (b(x,uk) = 0). We can take the observation 
function as 

Yk(Rk,Uk) = [6(x, (b(*,uk))lz. ( 5 )  
X E R k  

A closed-form expression for the distance of a point to a 
polynomial surface does not exist in general, and in prac- 
tice we use a quadratic-ratio distance estimate, presented 
by Taubin and Cooper. 

For the degradation model, we use a standard model for 
range-scanning error, which asserts that density, p(61u), of 
the signed distance of an observed point from the surface 
is a Gaussian random variable with zero mean and some 
known variance, qz. This model is merely a representative 
of possible models that can be used, and other models 
may be more appropriate for different imaging systems. 
Taking the sum of squares of Gaussian densities yields the 
chi-square density, xz(yk), with l & l  degrees of freedom, 
representing the degradation model. 

The prior model is defined as a uniform dessaity on the 
parameter manifold, p(Uk) = A;', in which AN represents 
the area of the N dimensional parameter ramifold. 

In this section we briefly describe how the four compo- 
nents of the Bayesian region merging probability model are 
applied to a standard class of texture modela, as considered 
for instance in [4]. The observation space, Yk is defined as 
the vector of intensities x[i, j] in some region Rk We have 
an N-dimensional parameter space, uk representing the 
texture parameters. The mean, /&, in Rk is represented 
by U1, and U2 represents the variance, 0:. The remaining 
N - 2 components are the interaction parameters, usually 
denoted with 8. In a first-order MRF, for example, there 
are four parameters corresponding to interactions of X [ i , j ]  
with X[i + 1, j], X[i - l,j], X [ i ,  j + 11, X [ i ,  j - 11. The ex- 
pressions pertain to any general order of MRF interactions, 
and the image element of the Z t h  parameter interaction is 
denoted by z(z). 

We define the prior model by assigning a uniform den- 
sity to a bounded parameter space, and the degradation 
density for Rk can be approximated as p(YklUk) = 

5 Conclusions 
We have developed efficient computation schemes for 

the evaluation of high-dimenaional integrals that result 
from (3). We have obtained good results using the re- 
gion merging probability for agglomerative clustering and 
for generating probability distributions of image segments 
and segmentations [3]. 
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