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Abstract 
Visual Servoing has been a viable method of robot manip- 
ulator control for more than a decade. Image-Based Visual 
Servoing (IBVS), in particular, has seen considerable devel- 
opment in recent years. Recently, a number of researchers 
have reported tasks for which traditional IBVS methods fail, 
or experience serious difficulties. In response to these diffi- 
culties, several methods have been devised that partition the 
control scheme, allowing troublesome motions to be handled 
by methods that do not rely solely on the image Jacobian. 
To date, there has been little research that explores the rela- 
tive strengths and weaknesses of these methods. In this paper 
we present such an evaluation. We have chosen three recent 
visual servo approaches for evaluation, in addition to the tra- 
ditional IBVS approach. We posit a set of performance met- 
r i c ~  that measure quantitatively the performance of a visual 
servo controller for a specific task. We then simulate each of 
the candidate visual servo methods for four canonical tasks, 
under perfect and non-ideal experimental conditions. 

1 Introduction 
Visual servo control allows for the closed loop control of 
a robot end-effector through the use of image data. In 
general, there are two approaches to visual servo control: 
Image-Based Visual Servo (IBVS), and, Position-Based Vi- 
sual Servo (PBVS) [l]. In IBVS, an error signal is measured 
in the image, and is mapped directly to actuator commands. 
In PBVS systems, features are detected in an image, and used 
to generate a 3D model of the environment. An error is then 
computed in the Cartesian task space, and it is this error that 
is used by the control system. 
IBVS systems enjoy several advantages over PBVS systems. 
They are robust to calibration errors and do not require a 
full 3D reconstruction of the environment. It also becomes 
a simple matter to regulate the trajectory of image features, 
for instance preventing them from leaving the field of view. 
However, IBVS has its own weaknesses. Singularities in 
the image Jacobian lead to control problems. Image based 
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systems also surrender direct control of the Cartesian veloc- 
ities. Thus, while the task error may be quickly reduced 
to zero, complicated and unnecessary motions may be per- 
formed. Finally, the Jacobian is dependent on feature point 
depth, which may be unavailable or difficult to estimate ac- 
curately. 
The problems associated with IBVS systems have led to the 
creation of several methods which partition the image Jaco- 
bian along specific degrees of freedom [ 2 4 .  These parti- 
tioned methods use classic, Jacobian-based IBVS to control 
certain end-effector motions while using other techniques to 
control the remaining degrees of freedom. We briefly de- 
scribe these methods, using a single notational framework, 
in Section 2. 
Martinet explored differences between PBVS and IBVS 
methods [5]. However, there is little information compar- 
ing individual IBVS systems. More importantly, there has 
not been a significant attempt to create a set of metrics to 
compare performance of different systems nor to determine 
a valid set of benchmark tests. 
In this paper we present an evaluation for the three methods 
presented in [2-4] along with the classic IBVS approach. To 
arrive at a meaningful evaluation, we posit a set of perfor- 
mance metrics that measure quantitatively the performance 
of a visual servo controller for a specific task. These metrics 
are described in Section 4. We then evaluate each of the can- 
didate visual servo methods for four canonical tasks, under a 
range of experimental conditions. The set of canonical tasks 
are described in Section 3, and the experimental conditions 
are described in Sections 5 and 6. An unwieldy amount of 
data was collected so only results of particular interest will 
be reported here, in Section 7. The entirety of the data will 
be available at http://www-cvr.ai.uiuc.eduTngans/vs.html. 

2 Candidate Visual Servo Methods 
In this paper, we consider the visual servo problem of posi- 
tioning the camera relative to specified features in the scene. 
Throughout the paper, we will let (2, y, z ) ~  represent coor- 
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dinates of a 3D point that is observed by the camera (ex- 
pressed relative to the camera coordinate frame), and let + = 
(Tz, Tu, Tz,~2,~u,~,)T represent the velocity of the cam- 
era frame, composed of a linear velocity v = (T2, T,, Tz)T 
and angular velocity U = ( w , , w ~ , w ~ ) ~ .  We will use 
f = (U, v ) ~  to represent the image-plane coordinates of the 
image of the scene point and f = (2i,6)T to represent the 
corresponding image point velocities. 
2.1 Ikaditional IBVS 
At the heart of traditional IBVS is the image Jacobian, given 
bY 

(1) f = J(u, U, z)t, 

with 

uv x2 +U2 
x 

z z  x x 
- (2) 

-- x U - 0 -- 
z x 

J = [ '  0 - x -- v - x 2 - v 2  - uv U 

in which A is the focal length of the camera. Derivations of 
this can be found in a number of references including [ 1,6, 
71. The simplest approach to IBVS is to merely use (1) to 
construct the control law 

U = rJ-l(r)f (3) 

in which f is the desired feature motion on the image plane, I' 
is a (typically diagonal) gain matrix, and U = i is the control 
input, an end-effector velocity (this can be converted to joint 
velocities via the manipulator Jacobian). Since images .are 
acquired at discrete time instants, one typically defines f = 
f* - f, in which the superscript * denotes the goal value for 
a quantity. 
This approach assumes that the image Jacobian is square and 
nonsingular, and when this is not the case, a generalized in- 
verse, J+, is used [l]. Since (3) essentially represents a gra- 
dient descent on the feature error, when this control law is 
used, feature points tend to move in straight lines to their 
goal positions. 
Equation (1) can be decomposed, and written as 

f = Jv(u, U, z)v + J, (U, v)w (4) 

in which Jv(u, U, z )  contains the first three columns of the 
image Jacobian, and is a function of both the image coordi- 
nates of the point and its depth, while Jw(u ,  U) contains the 
last three columns of the image Jacobian, and is a function 
of only the image coordinates of the point (i.e., it does not 
depend on depth). 
This decomposition is at the heart of the partitioned methods 
that we discuss below. 
2.2 2.5D Visual Servo Control 
The 2.5D approach, described in [2], exploits the epipolar 
geometry that relates a pair of images to determine the ro- 
tational component of the desired motion. In particular, if 

the 3D scene is planar, then the initial and desired images 
are related by a homography matrix, which can be decom- 
posed into the translational and rotational components of the 
motion between the two camera configurations. 
If f denotes the feature coordinates in the initial image and 
f * denotes the feature coordinates in the dzsired image, then 
the homography matrix satisfies f = Hf*, in which the 
and @', denote the homogeneous coordinates of f and f*, 
respectively. This homography matrix can be computed from 
a set of corresponding points in the initial and desired images 
P I .  
The homography can be expressed in terms of the rigid body 
transformation that relates the two camera configurations as 

tnT 
d) H = R(I3 - 

in which R is the rotation matrix describing the relative ori- 
entation of the current and desired camera coordinate frames, 
t is the displacement between the two frames, d is the dis- 
tance from the camera frame in the goal configuration to 
the plane containing the points, and n is the normal to the 
plane containing the four points, expressed relative to the 
goal camera frame [ 81. 
Using the method described in [9], this homography can 
be decomposed into the rotational component and a trans- 
lational component. The translational component can be re- 
covered only up to scale, and therefore, depth must be esti- 
mated if the translational component is to be used in a visual 
servo scheme. However, it should be noted that for most vi- 
sual servo schemes the depth acts merely as a gain on the 
translational motion, and therefore exact knowledge of the 
depth value is not necessary. 
It should also be noted that the 2.5D approach does not use 
the same features as traditional IBVS. In particular, for 2.5D 
visual servo we have 

(6)  f = [U - U*, v - U*, logp, 6'UT]T 

in which 6' and U are the angle and axis of rotation extracted 
from R, p is the ratio 5 and can be directly calculated from 
the homography. The control is given by 

with J;' and f computed from the information of a sin- 
gle point. Thus, the rotational component of the control is 
computed directly from the computed desired rotation in 3D, 
and the translational component is computed by subtracting 
from the traditional IBVS control a term that accounts for the 
translational motion in the image induced by the rotation. 
Of course, the performance of any approach that relies on de- 
composing the homography H will depend on both the qual- 
ity of the estimate of H and on the quality of the resulting 
solution for the decomposition. 

1617 



There are numerous methods for computing H given a set 
of corresponding points from two images. Visual servoing 
typically requires quicker calculations than iterative methods 
may provide [lo], so we have chosen to use a linear least- 
squares solution for H when evaluating this approach. A 
major drawback to linear methods is that they are susceptible 
to noise. 
After solving the homography, it is necessary to decompose 
H as in (5). Methods to perform this decomposition are de- 
tailed in [9, l l]. Decomposing the homography is not a trivial 
exercise and generally cannot be solved to a unique solution 
without using additional information or Views. In our per- 
formance evaluation experiments, at each iteration we use 
information from the previous iteration to resolve this ambi- 

2.3 The method of Deguchi (KD) 
Deguchi [3] takes a complementary approach to the 2.5-D 
scheme of Malis et al. In particular, he uses the decomposi- 
tion of the homography matrix (5)  to compute the translation 
velocity as 

(8) 
-t 

r, = d;i 

where d  ̂ is the estimated distance to the plane that contains 
the 3D reference points, and the ratio t / d *  is the scaled trans- 
lation that is directly yielded by the decomposition ofithe 
homography matrix (53. This leads to the control law 

guity. 

i; = [W,W,W,]~  = -JS(f) + J,f, (9) 

Thus, the translational component of the control is computed 
directly from the estimated desired translation in 3D, and the 
rotational component 'is computed by subtracting from, the 
traditional IBVS control a term that accounts for the motion 
in the image that is induced by the translation. 
In our evaluation of Deguchi's method, we compute the ho- 
mography and its decomposition as described above in Sec- 
tion 2.2. Deguchi states that a precise depth estimate is not 
needed. We used the average depth of all image points. 
2.4 The method of Corke and Hutchinson 

The method of Corke and Hutchinson (PC&SH) [4] parti- 
tions the classical IBVS of (1) so that 

(PC&SH) 

f = J,,f,, + J,i, (10) 

where f,,, = [T,, Tu, wz, w,], f, = [Tz U,], and J,, and 
J, are respectively columns {l, 2, 4, 5 )  and {3, 6) of J. 
We can write (10) as 

f,, = J&, { f - J,i,} 

where f is the feature point coordinate error as in the tradi- 
tional IBVS scheme. 

In [12], the Z-axis velocity, fz. is based on two image fea- 
tures that are simple and inexpensive to compute (although 
many other choices for features could have been made). The 
first feature, U is defined as the square root of the area en- 
closed by the feature points. Here we make a slight departure 
from the technique described in [12], and define 

where * indicates a feature in the goal image, and -yo is a 
scalar gain coefficient. This delivers a T, which varies lin- 
early with motion along the optical axis. 
The second feature, is the angle between the U-axis of the im- 
age plane and the directed line segment joining feature points 
i and j . For numerical conditioning we select the longest line 
segment that can be constructed from the feature points. The 
rotational rate is simply 

(13) w z  = %(e' - 61, 

in which 70 is a scalar gain coefficient. 

3 Canonical Tasks 
As discussed above, many of the partitioned approaches have 
been developed in response to specific problems that are task 
dependent. Therefore, to evaluate the various methods, we 
have selected a set of four tasks that we believe are represen- 
tative, and that present the most interesting tasks encountered 
by visual servo systems. 
Task 1: The first task that we consider corresponds to a pure 
rotation about the optic axis. The difficulty of this task was 
first noted in [13]. We evaluate performance over rotations 
ranging from 30"to 210". 
f i s k  2: The second task is a pure translation along the optic 
axis, with initial positions ranging from one meter retreated 
from goal to one meter advanced through the goal. We have 
chosen to isolate this direction of motion, since many of the 
methods depend on the depth from camera to object, and 
since translation parallel to the image plane generally does 
not present difficulties to visual servo control. 
Task 3: The third task corresponds to a pure rotation of the 
camera about its y-axis of the camera coordinate frame. The 
initial values range from l0"to S0"of rotation. 
Task 4: The final task is to rotate the 3D feature points about 
the y-axis of the world frame. The Visual servo system will 
then need to perform rotation and translation in order to zero 
the image error. The feature points will be rotated through a 
range of positions from l0"to SO". 

4 Performance Metria 
Before a quantitative evaluation can be performed, it is nec- 
essary to posit a set of performance metrics that can be quan- 
titatively evaluated. We have chosen the following perfor- 
mance metrics for our analysis: 
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Number of iterations to convergence: Visual servoing was 
considered successful and halted if the average feature point 
error was less than 1 pixels. If the average error varied less 
than 0.1 pixels for five iterations the system was consid- 
ered to have converged to a constant value and servoing was 
halted. 
The number of iterations can obviously be increased or de- 
creased by altering the coefficients of the gain matrix. Thus, 
the number of iterations itself is not extremely meaningful 
but proves insightful when comparing the performance of 
multiple systems or a system vs. task errors. 
Error at Termination: At the halt of visual servoing, the re- 
maining pixel error of each point from it’s goal position was 
calculated. These results were averaged to give the average 
error at termination. 
Visual servoing was halted if the the error was successfully 
zeroed or converged to steady state, as discussed above. Ad- 
ditionally, if over 300 iterations had been performed with- 
out convergence visual servoing was halted. Finally, VS 
was halted if the camera had retreated more then ten me- 
ters from goal, advanced through zero meters depth, or the 
feature points moved to more then 3000 pixels from the the 
principle point. 
Maximum Feature Excursion: At each iteration while vi- 
sual servoing, the current norm of each feature point to the 
principle point (center of image) was calculated. The max- 
imum value attained over the entire process was then re- 
ported. 
Maximum Camera Excursion: At each iteration, the cur- 
rent Cartesian distance of the camera from it’s goal position 
was calculated. The norm of the translation vectors was then 
calculated to give a current distance. The maximum value 
attained was reported. 
Maximum Camera Rotation: Maximum camera rotation 
can be difficult to track as singular positions can give rise 
to enormous angle measures (roll/pitch/yaw angles, for in- 
stance) while resulting in little or no actual camera rotation. 
To gain a useful measure we transformed the rotations into 
single axis/rotation form and tracked the magnitude of the 
angle of rotation. The maximum value obtained was re- 
ported. 

5 Test Conditions 
For each of the methods, we evaluated the performance met- 
rics under the following conditions. 
Noise in measured pixel coordinates: We simulated errors 
in feature detection by adding zero-mean Gaussian noise to 
the ideal image feature coordinates. The variance of this 
noise is an input parameter for the simulations and ranges 
from 0 to 0.8 pixels. 
Since noise is a random process, the experiment was per- 
formed for the full range of motions and variance 100 times 
the results averaged in order to smooth the results and reduce 
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the effect of outliers. 
These results are presented as 3D graphs with variance and 
the rotatiodtranslation appropriate for the task as indepen- 
dent parameters. 
Method of depth estimation: As mentioned above, image- 
based approaches require some estimate of depth. Several 
methods have been previously investigated in the literature, 
including using a constant depth value (often the depth value 
for the goal configuration), using an an estimation scheme 
to reconstruct the depth or, in the case of simulations, using 
the exact depth. The method of depth estimation is an input 
parameter for our simulations. The results of these tests are 
2D graphs showing the performance of each system for each 
task using the three different depth estimation methods with 
the appropriate rotationltranslation as independent variable. 

6 Simulation Methodology 
The whole of our experiments were conducted in sim- 
ulation using Matlab and the Machine Vision Tool- 
box and Robotics Toolbox [14] (publicly available at 
http://www.cat.csiro.aulcmst/stafflpicr). For each simula- 
tion, feature points consist of the comer points of a square in 
3D. The square was simulated as . lm by . lm, and the camera 
was positioned 1.4 meters from the plane. 
Images were projected using a simulated camera with 
0.00001m2 pixels and a focal length of 0.0078m. The cam- 
era plane was allowed to be infinite. However, if a feature 
point strayed more then 3000 pixels from the principle point, 
visual servoing was halted to prevent the presence of extreme 
outliers in the data set. Additionally, if a system had not ze- 
roed the error or converged to steady state error within 500 
iterations, visual servoing was halted. The location of feature 
points are floating point numbers and were not rounded. 
The gain for each system was a 6 x 6 diagonal matrix, al- 
lowing for the individual tuning of each degree of Cartesian 
freedom. The gains were selected in order to zero an error 
for the corresponding degree of freedom in approximately 30 
iterations, while motion in the remaining degrees of freedom 
were held at zero. This is significantly faster than VS sys- 
tems are often run, but represents a realistic goal of zeroing 
an error in one second of video signal. 

7 Notable Results 
The four systems in section 2, tested for the four tasks in sec- 
tion 3, under each of the two different test conditions in sec- 
tion 5, produced a vast amount of data. Results of particular 
interest will be presented here, and the entirety of the results 
are available at http://www-cvr.ai.uiuc.eduTngans/vs.html. 
7.1 Rotation About the Optical Axis with Noise 
During pure rotation about the optical axis, the maximum 
camera translation is arguably the most interesting topic. 
Traditional IBVS has a documented tendency to pull the 
camera backwards along the z-axis in an attempt to produce 
straight feature point trajectories. This is seen in Figure 1. 
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iterations vs meters z translation from goal for PCBSH 

Figure 1 : Average max camera translation vs degrees of ro- 
tation vs noise variance 

For IBVS, the max camera translation increases in a roughly 
exponential fashion as the camera rotation increases. KD 
has one extremely sharp point of camera motion at 180' 
of rotation and .8 pixels standard deviation white noise; i.e. 
the most strenuous conditions experienced and is likely the 
result of system instability and unbounded output. Both 
PC&SH and 2.5D suffer negligible camera motion, whikex- 
periencing slight increases as noise increases, and the T.5 D 
showing a slight increase as rotation approaches 180 ' . 
The results in Figure 1 are closely mirrored by the results 
for remaining pixel error. IBVS has extremely large error 
above approximately 160°, and KD can no longer zero the 
error at 180'. All systems show increased remaining error as 
noise increases, and 2.5D and KD also show increased error 
as rotation approaches 180'. 
7.2 Wanslation Along the Optical Axis with Noise 
All systems showed good performance during this test, ze- 
roing the error or converging to just a few pixels even un- 
der heavy noise conditions. IBVS, 2.5D and KD all showed 
symmetric decreases in iterations as the initial distance from 
goal approaches zero from either the positive or negative di- 
rection. PC&SH has a slightly non-symmetric graph, requir- 
ing more iterations when moving from the negative direction 
(initially retreated from goal), as seen in Figure 2. 
7.3 Rotation About a Parallel Axis with Noise 
Each system performs quite differently during this test. Fig- 
ure 3 focuses on the remaining pixel error for each system, 
while Figure 4 displays the number of iterations performed. 
IBVS has extremely little error up to about 35', at which 
point it becomes very unstable, leaving extremely large and 
irregular amount error. The graph of maximum translation 
looks quite similar; large translation occumng after 35', 
which undoubtedly results in the large errors. The number 
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Figure 2: Average iterations vs meters of translation vs noise 
variance 

of iterations drops dramatically at this point as well, indicat- 
ing the instability occurs very quickly. 
2.5D performs well; the maximum remaining error is un- 
der seven pixel and occurs at 80 degrees of rotation. For 
lower amounts of camera rotation it performs even better, 
and seems to be little affected by increasing noise levels. In- 
deed, it actually appears to have less error at larger noise 
levels for Iarge rotations. Inversely, the number of iterations 
for 2.5D becomes extremely large during noisy conditions. 
KD performs extremely well, reducing error to less then two 
pixels for camera rotations up to 70°, at which point the re- 
maining error skyrockets to the thousands. Pixel error shows 
little dependence on noise, although the number of iteration 
does rise as noise increases. 
Finally, PC&SH shows good stability, but performance is 
poorer than the other partitioned systems, generally reduc- 
ing error to seven to ten pixels. The brief spike in the 
gaph is likely an outlier that was not perfectly smoothed 
by the monte car10 simulation. The number of iterations for 
PC&SH rises quickly as both rotation and noise increase. 
7.4 Rotation of feature points with Noise 
Figures 5 and Figure 6 show the average remaining pixel 
error and iterations to convergence respectively. Both the 
IBVS and 2.5D systems show very good performance for this 
test, reducing the remaining error below one pixel. Addition- 
ally, while the error increases with noise levels, it does not 
appear dependent on the amount the feature points were ro- 
tated. The number of iterations for 2.5D looks very similar, 
increasing with noise but very little with rotation, whereas 
for IBVS, the number of iterations climbs dramatically with 
rotation angle. 
KD reduces error well up to 40°0f feature point rotation, at 
which point it becomes unstable and experiences large, irreg- 
ular error levels. The number of iteration drops at this point 
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Figure 3: Average remaining pixel error vs degrees of rota- 
tion vs noise variance 

Figure 4: Average iterations to convergence vs degrees of 
rotation vs noise variance 

as well, indicating that the instability surfaces during the first 
few iterations. PC&SH performs well for smaller rotations, 
but remaining error rises with the angle of rotation, to almost 
four pixels at 7 5 O .  The number of iterations rises with both 
noise and angle of rotation 
7.5 Rotation About the Optical Axis with Differing 

Depth Estimation 
For the most part, using different depth estimation methods 
results in little change during pure rotation about the optical 
axis. This is not surprising as the goal and initial distance are 
the same, and in the absence of translation are the same as 
the true depth at every iteration. The one exception is IBVS 
for severe rotations. As seen in Figure 7, using the initial or 
goal depth results in less camera retreat than true depth as the 
angle of rotation increases. in fact, using the goal or initial 

Figure 5: Average remaining pixel error vs degrees of rota- 
tion vs noise variance 

Figure 6: Average iterations to convergence vs degrees of 
rotation vs noise variance 

depth allows for successful visual servoing for all rotations 
excluding 180°, at the expense of more iterations. 

7.6 ’Ikanslation Along the Optical Axis with Dif- 
fering Depth Estimation 

Different depth estimation methods do not have a dramatic 
effect on system performance during translation along the 
optical axis. For PC&SH, there is absolutely no affect since 
motion along the optical axis is not calculated using the im- 
age Jacobian. For the other systems, it only significantly af- 
fects the number of iterations. As seen in Figure 8, using 
the initial point depths raises the number of iterations uni- 
versally, but has little overall effect on the remaining pixel 
error. The other error metrics show even less variation be- 
tween the methods. 
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Figure 9: Remaining Pixel Error for Y-Axis Rotation with 
Differing Depth Estimation 

i Figure 7: IBVS performance for different depth estimations 
schemes 

rotation angles. KS constantly fails after about65 '. PC&SH 
has a very slowly increasing level of error, remaining close 
to 10 pixels. The constant depth estimation methods result 
in a slight increase in a sharp error increase after about 65 'of 
rotation. 
7.8 Rotation of Feature Points with Differing 

Different depth estimation schemes begin to have effects for 
most systems only for large rotation of the feature points. 
As seen in Figure 10, IBVS shows little variation for each 
estimation method. However, both 2.5D and PC&SH have 
dramatic increases in pixel error after specific angles. This is 
most apparent in the case of 2SD, which is able to zero the 
error even at extremely large angles when using true depth. 
KD experiences a dramatic rise in pixel error at about 35 
degrees of rotation. Using a constant depth estimation delays 
this increase by about 5'. 

8 Conclusion 
Visual servoing, and robotics in general, is a constantly 
evolving field. As innovations continue to be made, it be- 
comes increasingly important to explore the different meth- 
ods in order to gain insight into the characteristics, strengths 
and weaknesses of each. Focusing on the field of Partitioned 
Image-Based Visual Servo systems, we have performed sev- 
eral standardized tests of robustness in the face of imaging 
error and system performance against difficult tasks. This 
data can be used to select appropriate visual servo systems 
for specific tasks and conditions or provide direction for fu- 
ture research. 

References 

Depth Estimation 

[l] S. Hutchinson, G. Hager, and P. Corke, "A tutorial on 
visual servo control," IEEE Transactions on Robotics 

Figure 8: Examples of effects of differing depth estimation 
schemes while translating along the optical axis 

7.7 Rotation About a Perpendicular Axis with Dif- 
fering Depth Estimation 

As seen in Figure 9 the IBVS and 2.5D systems experience 
dramatic changes under different depth estimation methods. 
With IBVS, using a constant depth rather than true depth al- 
lows the system to zero the error for almost ten more degrees, 
but the remaining pixel error is dramatically larger (note this 
is a log scale) after this point. 2.5D shows much worse per- 
formance over almost all angles of rotation when estimating 
depth rather than using true depth. KD shows the same per- 
formance regardless of the depth estimation method and is 
able to reduce the error below one pixel for the majority of 

1622 



scheme of camera displacement,” Internutional Jour- 
nul of Computer vision, vol. 37, no. 1, pp. 79-97,2000. 

[ 1 13 Z. Zhang and A. Hanson, “reconstruction based on ho- 
I mography mapping,” 1996. 

[12] P. I. Corke and S .  A. Hutchinson, “A new partitioned 
d 70 20 P U)  a) a, m m approach to image-based visual servo control,” in Proc. 

on 31 st Int ’1 Symposium on Robotics and Automation, 
l f l “ g p b l m n ~ Q W m f ~ “  

1999. 

~~~~ [13] E Chaumette, “Potential problems of stability and 
I I d  convergence in image-based and position-based visual 
1 Id servoing,” in The confluence of vision and control 

10‘ 
@. Kriegman, G. Hager, and S .  Morse, eds.), vol. 237 
of Lecture Notes in Control and Information Sciences, 

9 0  2o sI a lcacol a) m m m pp. 66-78, Springer-Verlag, 1998. 

KWIm 

[14] P. I. Corke, “Robotics toolbox for MATLAB,” IEEE 
Robotics &Automation Magazine, vol. 3, no. 1, pp. 24- 
32, 1996. 

Figure 10: Remaining Pixel Error for Y-Axis Rotation with 
Differing Depth Estimation 

and Automation, vol. 12, pp. 651-670, Oct. 1996. 

E. Malis, E Chaumette, and S .  Boudet, “2-1/2-d vi- 
sual servoing,” IEEE Transactions on Robotics and Au- 
tomation, vol. 15, pp. 238-250, Apr. 1999. 

K. Deguchi, “Optimal motion control for image-based 
visual servoing by decoupling translation and rota- 
tion,” in Proc. Int. Con3 Intelligent Robots and Sys- 
tems, pp. 705-711, Oct. 1998. 

P. I. Corke and S. A. Hutchinson, “A new partitioned 
approach to image-based visual servo control,” in Proc. 
39th Con$ on Decision and Control, pp. 2521-2526, 
Dec. 2000. 

P. Martinet, “Comparison of visual servoing tech- 
niques: Experimental results,” 

J. Aloimonos and D. P. Tsakiris, “On the mathemat- 
ics of visual tracking,” Image and Vision Computing, 
vol. 9, pp. 235-251, Aug. 1991. 

R. M. Haralick and L. G. Shapiro, Computer and Robot 
Vision. Addison Wesley, 1993. 

0. Faugeras, Three-Dimensional Computer Vision. 
Cambridge, MA: MIT Press, 1993. 

0. Faugeras and E Lustman, “Motion and structure 
from motion in a piecewise planar environment,” Inter- 
national Journal of Pattern Recognition and Art$cial 
Intelligence, vol. 2, no. 3, pp. 485-508, 1988. 

E. Malis and E Chaumette, “2 1/2d visual servoing with 
respect to unknown objects through a new estimation 

1623 


