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Abstract-In the recent past, many researchers hove developed confml 01- 
gorirhms for visual servo opplicorions. In this pcpec we introduce ~1 new hybrid 
swirchedsysrem oppmoch, in which (I high-level decision maker selects between 
two visual servo controllers. We have evaluated our oppmoch with sirnulotiom 
onde.rpxperimenrs using lhree individual visual ~ e m o  syslems and lhree candidale 
swlrching rules The pmposad msrhod is vetypmmisingfor visual servo lash in 
which there is a srgnijcant disrance betwem the initial and g o d  configurafion. 
or the task is one ihaf can cause an individual visual servo system m f d  

equation 
b = fe(x) : U E {1..n} (1) 

where fg is a collection of n distinct functions. For our pur- 
poses, it is convenient to explicifly note that the switching be. 
havior affects the choice Of the input 

b = f n ( X , U r )  : U  E 11 ..n}. (2) 

I. INTRO A useful interpretation is to consider U to be a discrete sig- 

Visual servoing has proven to be a highly effective means to 
control a robot manipulator through the use of visual data. It 
provides a high degree of accuracy using even simple camera 
systems and robustness in the face of signal error and uncer- 
tainty of system parameters. 

Visual servo methods have classically been divided into two 
camps, Position Based Visual Servoing (PBVS) and Image 
Based Visual Servoing (IBVS). There are extensive resources 
detailing these methods [ 1 4 1 .  In the late nineties, Chaummette 
outlined a number of problems that cannot be solved using the 
traditional local linearized approaches to visual servo control 
[ 5 ] .  This resulted in a variety of partitioned visual servo sys- 
tems which used the image Jacobian linearization of IBVS for 
specific degrees of freedom, and 3D techniques exemplified in 
PBVS for the remainder [6-10]. 

Rather than combining systems, another approach is the use 
of hybrid switched systems, i.e., systems comprised of a set of 
continuous subsystems along with a discrete switching control 
[ I  I ,  121. Hybrid switched systems can offer an increased region 
of stability and increased rate of convergence, and there exists 
the potential to switch between unstable systems in a pattern that 
makes the total svstem stable. 

nal, switching among discrete values in I..n. The value U at 
time t determines which function f(x,u,,) is used. The signal 
U is typically classified as state-dependent or time-dependent, 
depending on whether switches are caused by the state of x or 
the time t ,  although overlap does exist between these classes. 
In our research we explored state-dependent switching contin- 
gent on the state of the image plane or camera pose, a time- 
dependent switch induced by a random variable, and a combined 
method where a random variable influenced by the state deter- 
mined switches. 

The systems we present are each comprised of two visual 
servo controllers; each visual servo controller provides a veloc- 
ity screw, U = [Tz, Tu, Tz,w, ,  wyr  wZlT, and a switching rule 
determines which is used as the actual control input at each con- 
trol cycle. 

The stability of a switched system is not insured by the sta- 
bility of the individual controllers. Indeed, a collection of stable 
systems can become unstable when inappropriately switched. 
As an illustration, Figure 1 (from [13]) shows trajectories for 
two asymptotically stable subsystems in (a) and (b). A set of 
switches resulting in a stable system is shown in (c), while a 
series of switches resulting in an unstable system are shown in 

the systems such that at each switch, the value of the function at imental results. 

the end of th31 lnter\al is leis than the value ot the tuncuon ot 
the i n r m  a1 thar prorccrled it il\ illu\trarud fair 3 on: rltrnen\imd I I .  HYUKIU Swiict i iu  SYS'ILII COCIKOL 

The theory of hybrid switched control systems, i.e., systems 
that comprise a number of continuous subsystems and a discrete 
system that switches between them, has received notable atten- 
tion in the control theory community [I  1-13]. In general, a 
hybrid switched system can be represented by the differential 

family of two functions in Figure 2. 
Stability of a switched system can he extremely difficult to 

prove. However, we have performed extensive empirical eval- 
uations that demonstrate the efficacy of our approach. We will 
tum our attention to establishing stability in the near fuhlre. 
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Fig. 1. aajectoties ofswitched systems 
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Fig. 2. swble family ofLyapunov function 

111. THREE VISUAL SERVO CONTROLLERS 
We present the three visual servo controllers used by our 

switched systems. 

A. Homogruphy Bused Controller 

The homography method exploits the epipolar constraints he- 
tween two images of planar feature points. The homography 
matrix has been used previously for visual servoing in [6,8] to 
control a restricted set of degrees of freedom. We however, use 
it to control all degrees of freedom. 

Define f', f, as the homogeneous coordinates in two images 
of a set of 3D points lying on a plane li, where * denotes features 
in the goal image.. These are related by 

f' = Hf (3) 

where €3 is the calibrated homography matrix. As shown in 
[15,161, H can be decomposed as 

tnT 
d 

H = R(I3 - -) (4) 

where I3 is a 3 x 3 identity matrix and R and t are the rota- 
tion matrix and translation vector, respectively, relating the two 
camera views. The parameter n is the the normal of the plane 
li and describes the orientation of li with respect to the current 

camera view; d is the distance from the current camera originto 
the plane li. We calculate the vector T = [Tz, Tu,TaIT = d t ,  
where d^is an estimate of d. Given knowledge of the geometry of 
the feature point locations it is possible to accurately estimate d 
and so determine t to the proper scale. From the rotation matrix 
R, we extract the roll, pitch and yaw angles, wz,wz,  wyr obtain- 
ing the velocity screw U = k[T,,T,,T,,w,,w,,w,] in which k 
is a scalar gain constant, or a 6 x 6 gain matrix.. 

Of the numerous methods to calculate H, we have used a lin- 
ear solution since visual servoing, in general, requires quicker 
calculations than iterative methods may provide. Decomposing 
the homography as in (4) is not a trivial exercise and generally 
cannot be solved to a unique solution. Additional information 
pertaining to the use of the homography in visual servoing can 
be found in [6] 

Since this method provides rotation and translation vectors 
to completely realize the camera's goal position from its cur- 
rent position, it shares many of the performance characteristics 
of PBVS systems. Namely this system will perform optimally 
in Cartesian space. The end effector will typically follow the 
shortest path to the goal position. This, however, can lead to 
large motions of the features in the image space. This can cause 
the feature points to leave the field of view, resulting in system 
failure. We will define system failure as any time that a system 
cannot zero the error within 250 iterations. 

B. Ajjine-Appmximution Contmller 

For camera motions that do not involve rotation about the 
camera x- or y- axes, the initial and goal images will be re- 
lated by an affine transformation. While this is a constrained set 
of motions, it is common in many situations such as aligning 
camera with a component on a conveyer belt. 

Define p, ?, as the calibrated pixel coordinates of two points 
in the image plane. Again, * indicates the features are in the goal 
image. Then these points are related by the affine transformation 

p = A?+b 

in which CO and So denote respectively cos9 and sing: fs and 
f, are image point coordinates; a, si, and 9 describe the skew, 
scale, and rotation respectively: and b is the translation. Both A 
and b can be obtained by solving a linear system of equations, 
and Q R  decomposition can then he used to determine U ,  si, and 
e. 

= RQf + b = [p,' 0 "'1 722 P l l  "'1 422 [k] + [iz] (6) 

The Q matrix is a permutation of the rotation matrix in (5 ) .  
and rotation 0 about the camera z-axis equals arcsine(qZl). Dur- 
ing an affine transformation, the rotations about the x- and y- 
axes are, by definition, zero. The r11 and rZ2 of (6) respectively 
equal the SI and s2 parameters of (5 )  and provide z-axis trans- 
lation to scale. Translation along the x- and y- axes are de- 
fined to scale in the vector b. Multiplying the scaled translations 
by a depth estimate will provide true values. Again, knowledge 
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of the feature point geometry will allow for the depth estimate 
to he accurately derived. 

Given Q, s i ,  8, t,, t ,  we again have the position and orienta- 
tion relating the initial and camera goal positions. This con- 
troller provides the velocity screw U = k [ t , , t y , s ~ , 0 , 0 , 8 ]  
where k is a gain constant or matrix. Note that if there is no 
rotation ahout the 2- or y-axes, we will have s1 = s2. 

C. IBVS 

There is a vast amount of literature regarding IBVS systems 
[4,5,17,18]. In IBVS systems, the control exists in the image 
space. In the common case of a camera mounted on the robot 
end effector, the motion of a two-dimensional feature point f = 
[U, vIT in the image is related to the velocity screw of the end 
effector f = [T,, Ty, T,, w z ,  wy ,  ..IT by the relation 

f = Ji,(u,v,z)t, (7) 

where Jim is the image Jacobian [ I ,  21. Given at least three 
feature points, it is possible to use (7) to construct the control 
law 

U = k J k ( r ) i  (8) 
where U will he the velocity screw and k is a scalar gain factor 
or a 6 x 6 gain matrix. 

Under this control, feature points tend to move in straight 
lines to their goal positions. This provides desirable perfor- 
mance in the image space, but as first reported by Chaumette 
[SI, it can lead to extraneous motions of the end effector in 3D 
Cartesian space. These motions can lead to singular positions 
for the robot or singularities in the image Jacobian, leading to 
task failure. 

IV. A IBVS~HOMOGRAPHIC H Y B R ~ D  SWITCHED SYSTEM 

Our first switched system presented here uses the IBVS and 
homographic methods as sub-systems. A higher level decision 
maker determines which system to use a each iteration. This 
system was designed in hopes of maximizing the strengths IBVS 
and PBVS systems as discussed in Section 111. 

As noted in Section 11, we explored three switching signals: 
State-Dependent Switching. We attempt to avoid the weak- 
nesses of both systems by switching when the current system is 
approaching a problematic state. We determine a threshold level 
for how far the feature points will be allowed to stray from the 
center of the image, as well as a threshold on the distance we 
will allow the camera to move from the feature points. At each 
iteration, we compare each switching parameter to its threshold. 
If we are using IBVS and move past the threshold distance from 
the feature point plane we switch to PBVS to bring us towards 
the goal position and end camera retreat. If we are using PBVS 
and the feature points move outside the threshold distance to 
the image center we switch to IBVS to bring the image points 
towards their goal configuration, which is commonly centered. 
Random Switching. Random switching has been used in con- 
trol systems for such tasks as task routing [19]. At each itera- 
tion, We use a binary random variable to select between the two 
systems with equal probability. This provides a strong test to 
stability under arbitrary switching, and can tell us whether an 
undesirable switching pattern may result in instability. 

Biased Random Switching. The state-dependent levels dis- 
cussed above are now inputs to a probabilistic function used 
to determine the next system used. The farther the camera is 
from the image plane, the more likely the system is to choose 
the PBVS method. Likewise, the farther the feature points are 
from the image center, the more likely the system is to choose 
to use IBVS. The probability will be unity at either threshold. 

We first present a series of simulations to show performance 
under ideal conditions. Simulations were performed for an ideal 
camera with a 512 x 512 pixel array, with each pixel measuring 
10pmx 10pm and a focal length of 7.8mm. We allowed perfect 
depth estimation. Visual servoing was halted if the pixel error 
was reduced below 1 pixel, or had converged to steady state for 
ten iterations. 

We simulate a goal image where the feature points are close to 
the image border, and an error image where the camera is rotated 
by 160'about the optical axis. This is an extremely difficult task 
for the individual subsystems. In our simulations, using only 
the PBVS method would result in a loss of the feature points, 
and using only the IBVS method induced a camera retreat of 10 
meters. Either of these would likely cause failure in a physical 
system. All three methods of switching were successfully able 
to zero the error. 

The first simulation was the state-dependent switching sys- 
tem. Figure 3 hows the feature point errors, the velocity screw, 
the value of our switching parameters and the feature point po- 
sitions at each iteration. Tick marks at the bottom of the graphs 
show the system currently being used black for IBVS, cyan 
for PBVS. The color of the position lines follow the same color 
scheme regarding which system is determining the motion. 

The feature points begin far from the center of the image, so 
we begin in IBVS mode to bring the points towards the goal. In- 
deed, the maximum error decreases, along with a sharp increase 
in the distance of the camera from the feature points. We en- 
forced a threshold of 1.75 meter for the camera distance, so the 
camera switches to PBVS when camera retreat reaches this dis- 
tance. The camera retreat is corrected along with completion of 
the rotation. 

Figure 4 shows results for the random switching method. The 
feature points are kept within the image, and the camera retreats 
less than under the state based switching method. This is due 
to the large number of switches; since the switching is entirely 
random, it is possible to select the lBVS method the major- 
ity time and experience extreme camera retreat, although this 
never happened during our simulations or experiments. It does 
take slightly longer in this case to zero the error that state based 
switching. 

Our final simulation result is for probabilistic switching, 
shown in Figure 5 .  The feature point trajectories closely resem- 
ble those of the random method. The feature point excursion 
is kept low, and the camera distance is also lower than that ex- 
perienced under either the state-dependent method or random 
method, and it is slightly faster than both other systems as well. 

Our experiments were performed using a camera mounted on 
the end effector of a PUMA 560 robot. The camera is a Sony 
VFW-V500, which has a 640 x 480 color pixel display. The 
lens focal length is 14.4mm. The feature points consisted of 
four color dots on a black sheet. The image was thresholded in 
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Fig. 3. Sac-Dependant Switching 

Fig. 4. Random Switching 

RBG space to locate the center points of each dot. This provided 
4 co-planar feature points. 

The first experiments were very similar to the simulations. 
They involved a goal image with the camera very close to the 
feature points, and an initial offset consisting of a large rotation 
about the optical axis. Two such images can be seen in Figure 6.  

Naturally, the individual systems did not perform ideally in 
our experiments due to the presence of camera calibration and 
depth estimation errors. For instance, the the feature point error 
did not strictly become smaller at every iteration under IBVS. 
The systems do well however, and did perform expected mo- 
tions such as IBVS camera retreat during rotation. We feel that 
the fact that the systems worked well, even when the subsys- 
tems did not perform ideally, is a testament to the strength of the 
switched system. 

During live experiments, both PBVS and IBVS systems failed 

- ! . . . - . _ *  
Fig. 5. Probabilistic Switching 

Fig. 6. Goal and Initial Image 

this task if used individually. PBVS lost the feature points, and 
IBVS, experienced a great deal of camera retreat, losing focus 
of the image, and ultimately losing the feature points when mak- 
ing rotations. The figures show the same data we presented in 
the simulated results, with some minor changes. The graphs of 
both the feature point error and feature point trajectories have 
the color of the dot they correspond to, and trajectories with a 
black shadow indicate that PBVS was used to calculate that mo- 
tion. 

Figure 7 shows the results for the state-dependent switching 
method. Since the feature points are close to the image edge 
we are begin by using IBVS. As expected, the camera retreats 
rotates, bringing the the feature points towards the image center 
along with an increase in camera distance. Finally PBVS takes 
over and is able to reduce both. The system is unable to com- 
pletely zero the feature point error, after 250 iterations when vi- 
sual servoing was halted. Results for random selection x e  seen 
in Figure 8. The maximum feature distance from the image cen- 
ter is higher than seen in the state-dependent method, but the 
camera retreat is kept much lower. Due to the lower camera re- 
treat, the system is able to zero the error faster than either the 
slate-dependent or probabilistic methods. However, the maxi- 
mum feature point distance is 250 pixels; clearly, the error must 
be along the horizontal image axis, or the feature points would 
have left the field of view and the system would have failed. 
This indicates a potential for system failure using the random 
method, though the system never failed during our experiments. 
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Fig. 7. State-Dependant Switching 

Fig. 8. Random Switching 

The probabilistic method is presented in Figure 9. The 
method choices are identical to the state-dependent method for 
the first t h i i y  iterations. After this point the switching does be- 
come fairly random, though the velocity screw shows much evi- 
dence of change due to switching. This system is also unable to 
completely zero the error after 250 iterations, due to remaining 
optical axis translation. 

We repeated the experiments using an oblique view involving 
heavy rotation about the camera y-axis, moderate rotation ahout 
the camera z-axis, and translation along all axes. The goal and 
initial images are shown in figure 10. 

For this task, both subsystems are capable of zeroing the fea- 
ture point error, and camera retreat is not a dangerous factor 
here. Results can he seen in figures 11, 12 and 13. The state- 
dependent and probabilistic methods again perform very sin% 
larly. The random system is able to zero the error more quickly 
than the other two methods, but in general experiences a larger 
feature point error. 

Fig. 9. Probabilistic Switching 

Fig. 10. Goal and Initial h a g e  

v. AN AFTINE~HOMOGRAPHIC HYBRID SWITCHED 
SYSTEM 

The major strength of the homography-based controller in 
this system is that it is the only controller capable of handling 
general motions which include rotation about the 1: and y-axes. 
If the camera motion does not involve such rotations, the two ap- 
proaches have similar performance. However, in the presence of 
noise, the affine method is much more accurate. We conducted 
a series of Monte Carlo tests in which both systems performed 

/-" 
i (rn m m a3 L m 

Fig. 11. StateDependant Switching 
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Fig. 12. Random Switching 

an identical affine motion under the effects of increasing white 
noise. Under large amounts of noise, the homography-based 
method typically had an error in the pose estimation that was 
fifty times greater than the affine approach, and error in the total 
rotation was almost fifteen times greater. 

State-Dependent Switching. After solving the homography, 
we take the RMS value of the rotations ahout 5- and y- and 
compare it to a threshold value, if the amount of rotation is less 
than this value, we select the affine solution. We have found that 
the affine method can successfully zero the error for any motion 
with a rotation about y or x less then 0.5". 
Random Switching. As discussed in Section IV. 
Biased Random Switching. The current RMS of 2'- and y- 
rotation is used to determine the value of a random variable 
which selects the current system. 

We performed simulations and experiments of a similar c m -  
era motion task, an oblique view of the image plane requiring 
motion along each degree of freedom to zero the error. The sim- 
ulation and camera configurations are the same as discussed in 

We again explored three switching rules: 

Fig 14 General Mobon. Slate-Dependant Switching 

SectionlV. 
We first present the simulations using the state-dependent 

switching method. For the results in Figure 14 a rotation of 
thirty degrees of the feature point plane about both the world 
y-axes is followed by a a moderate camera translation along all 
degrees of freedom and rotation about the optical axis. This 
causes a general motion involving all degrees of freedom. 

The top left image shows the feature point trajectory; black 
line segments are motions induced by the &ne method, while 
cyan portions are induced by the homographic method. We see 
the homographic method used for the first portion of the motion, 
with a switch to the affine method when the x and y rotation have 
been reduced. The upper right graph shows the pixel error for 
the four feature points. A black vertical line at the bottom of 
the graph indicates a switch to the affine method, a cyan line 
indicates a switch to the homographic system. Clearly a switch 
to the affine method occurred at about the twelfth iteration, and 
causes a slight incongruity in the velocities, though the error 
remains fairly smooth. 

We repeated the previous test, hut added a Gaussian random 
variable with variance 0.5 pixels to the feature point locations, 
simulating white noise. The results are seen in Figure 15. The 
system remains to the homographic method for almost all of 
the motion, briefly switching to the affine method at several 
points when the noise causes the RMS(w,,w,) term to exceed 
the threshold. The system still zeros the error, though it takes 
longer than previous tests, over 75 iterations. The velocities are 
extremely rough in appearance due to the noise. 

Figure 16 shows test results using the random switching 
method. The trajectory and motion vectors are irregular, though 
the feature point errors are smooth. It is worth noting that 
this system avoids the large feature point motions of the state- 
dependent switching system, which almost loses the feature 
points from the image plane. 

We finally simulated the biased switching rule, shown in Fig- 
ure 17. It has a similar appearance to the state-dependent switch- 
ing system, remaining in the homography-hasedmethod for the 
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Fig. 15. General Motion with Noise, State-Dependant Switching 
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Fig. 16. General Motion, Random Switching 

first portion, while performing x and y rotations. At this point 
the probabilistic effects hegin to surface as the controller oscil- 
lates between methods, with a slight preference for the affine 
method. The error is zeroed in just under 60 iterations, and the 
error plots and trajectories are quite smooth while the velocities 
are irregular. 

Simulations provided a good idea of the performance charac- 
teristics of our switched system controller. We then conducted 
experiments also involving an oblique view, as seen in Figure 
IO. The experimental setup was the same as that described in 
Section 1". 

We first explored the state-dependent switching method. 
Since there is a great deal of rotation ahout that the camera y- 
axis, we expect that it will use the homographic method for the 
majority of iterations, and switch to using the affine method 
when the y axis rotation has become very small. Figure 18 

Fig. 17. General Motion. Biared Random Switching 

rruns"mld-lolIP-, mr - ra* , lnn .m*n  

=[ a- 

Fig. 18. Experiment ResullS Slate-Dependant Switching 

shows the feature point error, the velocity screw of the vector 
and the recorded feature point position for each iteration. In the 
first two graphs, small lines on the bottom of the graph indicate 
a switch has taken place; a black line indicates the homogra- 
phy method is being used for the following iteration, while a 
cyan line indicated the affine method will be used. We do see 
the homographic method used for almost two thirds of the itera- 
tions, at which point it switches between the affine solution and 
the homographic method as the amount of y- axis rotation be- 
comes negligible. The third graph shows the trajectory the point 
followed in the image plane. Portions of the lines with a black 
shadow indicate when the affine method is being used. 

Figure 19 shows the results of random switching. All the mea- 
sured values are much more chaotic. The feature point error 
tends to he greater, as does the magnitude of the velocity screw 
variables. However, the error is still zeroed in approximately 
the same amount of time and we also avoid the extremely large 
initial motion which the homographic method introduced in the 
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Fig. 20. Erperimenl Results Probabilistic Swilcbing 

state-dependent case. 
Finally, Figure 20 shows the probabilistic system. The feature 

point error is similar to the state-dependent method, though it 
tends to be slightly smaller. Likewise the velocity screw tends 
to have similar shape and size to the state-dependent method. 
The system is, however, not able to zero the error as quickly as 
the other switching methods. 

VI. CONCLUSION 
We have presented two switched hybrid control visual servo 

systems. Each switched system is composed of two visual suh- 
systems, and a decision maker that generates a signal to switch 
between them depending on the current state of the system, the 
time, or both. Simulation and experimental results are extremely 
promising. The IBVSEIomographic system showed a great deal 
of potential. It was ostensibly stable in all of our tests and suc- 
cessfully zeroed a task error that caused either individual sub- 
system to fail. The AffineIHomographic system also displayed 
stability in all of our tests, hut the practicality of this system may 
he limited. 

There remain future avenues to explore. There are more sys- 
tems that could be integrated into a hybrid switched system 
framework, as well as the complication of including more than 
two continuous subsystems. There also remains the question of 
stability, which has not been resolutely established. Our exper- 
imental results are certainly compelling, and indicate this is a 
fruitful field for development. 

REF ER EN c E s 
[I] L. E. Weiss. A. C. Sanderson, and C. P. Neumun, "Dynamic sensor-based 

contml of robou with visual feedback:' IEEE Journal ofRobotics 04 
Auromarion. vol. RA-3, pp. 4041117, Oct. 1987. 
J. Feddema and 0. Milchell, "Vision-guided servoing with feature-based 
trajectory generation," IEEE Trans. on Robolics and Aufomiion, vol. 5,  
pp. 691-7W. Oct. 1989. 

131 P. Maninet, J. Gallice, and D. Khadraoui, "Vision b a e d  contml Law uinp 
3d visual features," 1996. 

141 S .  Hutchinson, G .  Hager, and P. Corke, "A tutorial on visual servoconml:' 
IEEE Trans. on Robotics anddutomation, vol. 12, pp. 651470, Oct. 1996. 

151 F. Chaumette, "Potential problems of stability and convergence in Image- 
based and position-based visual servoing," in The confluence of vision and 
conrml (D. Knegman, G .  Hager. and S. Mone, eds.), vol. 237 of Leaure 
Noas in Cont ondlnfo. Sci.. pp. 66-78. Springer-Verlag, 1998. 
E. Malis, F. Chaumette. and S. Boudel, "2-Il2d visual servoing:' IEEE 
Tram. on Robolics onddutomorion. vol. 15. pp. 238-250. Apr. 1999. 
G. Morel, T. Licbezeif J. Snewczyk, S .  Boudel. and I. Pot "Explicit incor- 
poration of 2d conslmints in vision based c0nm01 of robot manipulaton:' 
in Experimental Robotics VI (P. Corke and I. Trcvelyan, eds.), "01. 250 of 
Lecrure Noies in Coni. ondlmfo. Sci., pp. 99-108. Springer-Verlag. 2oM). 
K. Deguchi, "Optimal motion contml for image-based visual servoing by 
decoupling Uan~latim and rotation," in Pmc In,. Con$ lnn~ligml Robon 
andSysiems. pp. 705-711, Oct. 1998. 
P. Corke and S.  Hutchinson. "A new panitioned approach to image-based 
visual servo contml," IEEE Trans. on Robotics ondlluromation, vol. 17, 
no. 4. pp. 507-515, 2001. 

1101 N. R. Gans, P. 1. Corke, and S.  A. Hurhinson, "Pctfomance tesm of par- 
tiuoned approaches to visual SCNO contml:' in Pmc. IEEE Inf ' l  Con$ on 
Robotics ond Auiomlion, 2002. 

[ I  I] M. Branicky, V. B o h r ,  and S. Mitter, '3 unified f m e w & k  for hybrid 
contml," in Pmc. ofrke 33rd IEEE Cmj  on Decision and Conrml, 1994. 

[I21 R. W. Bmckett. Hybrid models for morion conrml rysystemr. 1993. H. L. 
Trentelman and J. C. Willemr. Eds. 

1131 D. Libcmn and A. Morse, "Basic problems in stabiliry and design of 
switched systems:' IEEE Conrml Systems Magazine 19. 1999. 

1141 M. Branicky, "Multiple lyapunov functions and other analysis tmls for 
switched and hybfid systems:' in IEEE Tmns. Automot. Conrr.. 1998. 

[I51 0. Faugem and f. Lusunun. "Motion and srmctum from motion in a 
piecewise planar environment:' hlemafional Journal of P o a m  re cog^ 
nition andAn$ciol Intelligence. vol. 2, no. 3. pp. 485-508, 1988. 

1161 2. Zhang and A. Hanson, "3d reconsmction based on homography map 
ping," in ARPA Image Understanding worlirhap. Palm Springs. CA, 1996. 

1171 B. Espiau, E Chaumette, and P. Rives, "A new approach to visual servoing 
in robotics:' IEEE Trans on Roboricr and Auiomorion, vol. 8. pp. 313- 
326, June 1992. 

1181 R. Kelly. R. Carelli, 0. Nasisi, B. Kuchen, and E Reyes, "Stable visual 
servoine of camera-in-hand robotic svstems:' in IEEE Trons. on Mechnn- 

121 

I61 

[7] 

181 

[91 

tmnicr,ioM). 
1191 R. Boel and 1. van Schuppen, "Disbbuted muting for load balancing," in 

Pmceedings ofthelEEE, ~01.77, Iss.1, 1989, pp. 210-221, jan 1989. 


