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Abstract— In this paper we demonstrate path planning for
our formation space that represents permutation-invariant multi-
robot formations. Earlier methods generally pre-assign roles for
each individual robot, rely on local planning and behaviors to
build emergent behaviors, or give robots implicit constraints to
meet. Our method first directly plans the formation as a set, and
only afterwards determines which robot takes which role.

To build our representation of this formation space, we make
use of a property of complex polynomials: they are unchanged
by permutations of their roots. Thus we build a characteristic
polynomial whose roots are the robot locations, and use its
coefficients as a representation of the formation. Mappings
between work spaces and formation spaces amount to building
and solving polynomials.

In this paper, we construct an efficient obstacle collision detec-
tor, and use it in a local planner. From this we construct a basic
roadmap planner. We thus demonstrate that our polynomial-
based representation can be used for effective permutation-
invariant formation planning.

I. INTRODUCTION

Multi-robot planning is a useful and developing subfield of
robot planning. Multiple coordinated robots have been used
successfully in a variety of applications including surveillance
and monitoring [1], localization and exploration [2], satellite
arrangement [3], search and rescue [4], and object manipula-
tion and transportation [5], [6], [7].

Multi-robot motion planning approaches are distinguished
by their levels of centralization. In fully centralized methods
(e.g. [8], [9], [10]), a single planner plans all robots’ motions
simultaneously. This often makes use of a joint configuration
space that represents the configurations of all robots [11].
Slightly less centralized is the decoupled approach [12], [13],
[14], where each robot plans its own path, but a single
centralized planner coordinates the robots by dictating how
each robot follows its path. Significantly less centralized
are emergent behaviors methods [15], [7], where each robot
follows local behaviors that depend on relative locations of
nearby robots. In emergent behavior methods, a centralized
planner determines the general motion of the robots, and the
structure that they maintain. Fully decentralized methods are
usually coverage methods [16], [17], [18], [19], with goals
of maximizing the total region visible by robots’ sensors, or
of minimizing the probability of passing undetected through
a region. In coverage methods, all robots plan independently,
but consider each others’ locations when moving.

In more centralized methods, robot roles and relationships
are usually predefined. The methods that do not predefine
roles and relationships are found on the decentralized end
of the spectrum, e.g. blanket coverage methods, and a few
emergent behavior methods like [20]. However, these methods
do not control their formations directly, but set constraints and
move until they are met. This usually limits feasible goals to
symmetric formations. Our new method plans formations in
a direct fashion like the more centralized methods, while still
being flexible enough to allow changing roles and relationships
like less centralized methods.

We introduced our representation for permutation-invariant
formations and a simple planner in [21] for planar robots. Our
method uses complex polynomials to represent multi-robot
formations. We demonstrated basic planning in obstacle-free
environments, and showed some of its properties. In this paper
we demonstrate collision detection, and show how it can be
used to implement roadmap planning in the formation space.

This paper is laid out as follows: Section II describes
the representation and basic planning, Section III describes
collision detection, Section IV describes roadmap results, and
Section V describes proposed future work.

II. REPRESENTATION AND BASIC PLANNING

A. A Permutation-invariant representation of formations

The configuration space of a labeled multirobot formation is
generally an ordered list of configurations, one for each robot.
However, we are building a configuration space for unlabeled
formations, where exchanging two robots does not change
the configuration. We call this a formation space, and write
FS [X ]n = Xn/Sn, where n is the number of robots, X is
the configuration space of one robot, and Sn is the symmetric
group of permutations of n elements. In this quotient space,
(x1, x2, . . . , xn) and (x′

1, x
′
2, . . . , x

′
n) are identified iff they

are permutations of each other. We shall sometimes refer to
FS [X ]n as FSn for short if X is known.

In this paper we focus on translating planar robots, whose
configurations can be represented as (x, y) ∈ R

2. We represent
the configuration of each robot as z = x + yi ∈ C, so we can
construct FS [C]n with complex polynomials. Therefore the
robots’ workspace W , the space in which the individual robots
move, is represented by the complex plane C. For n robots at
locations z1, . . . , zn, we define the polynomial
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P (λ) = (λ − z1) (λ − z2) . . . (λ − zn)
= λn + a1λ

n−1 + · · · + an−1λ + an (1)

The complex coefficients a1, . . . , an can be used to define
a permutation invariant formation, or simply a formation. For
any configuration Z = {z1, . . . , zn} of the multirobot system,
(1) defines a unique formation a = (a1, . . . , an). Throughout
this paper, we will refer to sets of robot configurations, like
Z , as multirobot configurations, while the n-entry vectors like
a that specify these multirobot configurations will be referred
to as formations.

Equation (1) defines the mapping f : C
n/Sn → C

n to be
Z �−→ a. Since the roots of a polynomial vary continuously
as a function of the coefficients, f−1, which is a �−→ Z ,
is a continuous mapping from a formation to a multirobot
configuration. Since f is a bijection (Fundamental Theorem
of Algebra), and both f and f−1 are continuous (see [22]),
f is a homeomorphism, so FS [C]n ∼= Cn. We thus define
our formation space as FS [C]n = Cn, the set of all possible
n-tuples of complex polynomial coefficients.

In this paper, we will use a and b to represent formations;
each formation is a vector of complex coefficients of a
complex polynomial P (λ), as in (1).

B. Straight-Line Planning

For local planning, we use a “straight-line” planner in the
formation space. To plan from a = (a1, . . . , an) to b =
(b1, . . . , bn), follow the path � (t) in the formation space,
where

� (t) = (1 − t) (a1, . . . , an) + t (b1, . . . , bn) (2)

in which t ∈ [0, 1] parameterizes the path. Therefore, at time
t, the robots will be at the roots of the polynomial

λn +
n∑

k=1

[(1 − t) ak + tbk] λn−k = 0. (3)

In [21], we showed that if both the initial and goal configu-
rations translate, scale, rotate, and reflect by the same amount,
the resulting path will be transformed accordingly. This means
that the path, relative to its endpoints, is independent of scale,
orientation, origin location, or handedness.

For example, Figure 1 illustrates two straight-line paths in
the formation space The figures show the workspace paths of
the robots. The paths on the right were generated by taking the
start and goal points from the figure on the left; translating,
scaling, rotating, and reflecting the endpoints; and moving
from the new start to the new goal using straight-line planning.
The resulting paths are the same paths as if the original paths
were also translated, scaled, rotated, and reflected the same
way as the endpoints.

III. OBSTACLES

For permutation-invariant motion planning to be useful, it
must be able to test for collisions with obstacles. To do this,
we will define the swept volume of a path V (a,b) to be the
locus of points in the workspace traversed by the robots while
following the formation space path � (t) from equation (2).
Formally:

V (a,b) =
{
z ∈ C

∣∣z ∈ f−1 ((1 − t)a + tb) , t ∈ [0, 1]
}

,

i.e. V (a,b) is the set of all roots of � (t) for all values of
t ∈ [0, 1]. Given polynomial configurations a and b, and an
obstacle region O ⊂ W , the straight-line path in the formation
space from formation a to formation b generates a collision
iff V (a,b) ∩ O �= ∅. In this section, we will first show how to
check collisions for point obstacles. We will then extend this to
line segment obstacles. Once we can check for collisions with
line segments, we can check for collisions with any polygonal
obstacle.

A. Point Obstacles

Consider a point obstacle with coordinates zc. For a given
formation a, a collision occurs if zc is a root of (1), i.e. if
some robot is coincident with the point obstacle. This can be
determined simply by evaluating P (zc). There is a collision
iff P (zc) = 0. If we define the ˆ operator such that:

ẑ =
(
zn−1, zn−2, . . . , z, 1

)
, (4)

we can write P (zc) = 0 concisely as

a · ẑc = −zn
c , (5)

Since (5) is linear in the formation coefficients, the obstacle
point (or more particularly, the locus of formations that cor-
respond to at least one robot at zc) corresponds to a 2n − 2
dimension hyperplane in the formation space.

Testing a single formation for collision is straightforward;
testing for a path in the formation space requires a little
more work. To check V (a,b) for collision with zc, we must
essentially evaluate (5) at all formations along the path.

Theorem 1: For any a,b ∈ Cn, define function

τ (zc) =
zn

c + a · ẑc

(a − b) · ẑc
. (6)

V (a,b) collides with a point obstacle at zc ∈ C iff τ (zc) ∈ R

and τ (zc) ∈ [0, 1].
Proof: Using (2) to give formations as a function of t,

we write (5) as

� (t) · ẑc = −zn
c (7)

(1 − t)a · ẑc + tb · ẑc = −zn
c . (8)

If (8) is satisfied for any t ∈ [0, 1], then at least one robot
collides with the obstacle at zc. Solving for t we obtain

t =
zn

c + a · ẑc

(a − b) · ẑc
= τ (zc) . (9)

In order for there to be a collision with zc, the t given by
(9) must be real with 0 ≤ t ≤ 1.
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Fig. 1. Before and after: translation, scaling, rotation, and reflection

B. Horizontal Segment Obstacles

We showed in [21] that if the start and goal are translated
and rotated, the paths transform accordingly. Since any edge
can be rotated and translated onto the real axis, we can rotate
and translate a and b the same way. If V (a,b) collides with
an edge, then the transformed path will collide with a subset
of the real axis. This means we can test collision with any line
segment if we can test for collision with the real axis.

Theorem 2: For any p,q, r, s ∈ R
n, V (p + qi, r + si)

collides with the real axis iff there exists an x ∈ R such that

x is a root of the polynomial Ω (x) =
2n∑

m=1
ωmx2n−m, where

ωm is given in Figure 2, and τ (x) ∈ [0, 1].
Proof: Set a = p + qi and b = r + si. We use the

results from the previous section to test for collision with the
real axis. With point obstacles, zc was fixed, so we tested zc

in (9) and determined whether t was real and in [0, 1]. Here,
however, zc can be any point on the edge, so we search for a
zc that makes t real and in [0, 1]. Substituting x ∈ R for zc in
(9), we obtain

t = τ (x) =
xn + a · x̂
(a − b) · x̂ . (10)

If there is some x such that τ (x) is real and between 0 and
1, then V (a,b) intersects the real axis at x.

To make this determination, first find the set of values for
x such that τ (x) is real. Since (10) is a ratio of two complex
numbers, we make the denominator real, and focus on the
numerator. With z defined as the complex conjugate of z, we
transform (10) as

τ (x) =
(

xn + a · x̂
(a − b) · x̂

)((
a − b

) · x̂(
a − b

) · x̂
)

(11)

=
(xn + a · x̂)

[(
a − b

) · x̂]
|(a − b) · x̂|2 (12)

=

(
xn +

n∑
k=1

akxn−k

)
n∑

j=1

(
aj − bj

)
xn−j

|(a − b) · x̂|2 (13)

=

n∑
j=1

(
aj − bj

)
x2n−j

|(a − b) · x̂|2

+

n∑
j=1

n∑
k=1

ak

(
aj − bj

)
x2n−j−k

|(a − b) · x̂|2 . (14)

Since the denominator is real, τ (x) is real iff the imaginary
component of the numerator is 0. We rearrange terms on the
right half of (14) by substituting m = j + k and removing k:

n∑
j=1

n∑
k=1

ak

(
aj − bj

)
x2n−j−k

=
2n∑

m=2
x2n−m

n∑
j=1

am−j

(
aj − bj

)
.

(15)

However, the terms on the RHS are only valid if
1 ≤ m − j ≤ n, i.e. m − n ≤ j ≤ m − 1, while still satisfy-
ing 1 ≤ j ≤ n. Therefore, we write (15) as

n∑
j=1

n∑
k=1

ak

(
aj − bj

)
x2n−j−k

=
2n∑

m=2
x2n−m

min(n,m−1)∑
j=max(1,m−n)

am−j

(
aj − bj

)
.

Using this, we can rewrite the numerator of (14) as a polyno-

mial
2n∑

m=1
wmx2n−m, where

wm =



am − bm m = 1

am − bm +
m−1∑
j=1

am−j

(
aj − bj

)
2 ≤ m ≤ n

n∑
j=m−n

am−j

(
aj − bj

)
n + 1 ≤ m,

m ≤ 2n
(16)

To determine 
 (wm), the imaginary component of wm, we
use the fact that a = p + qi, b = r + si, and p,q, r, s ∈ R

n.
Therefore

aj − bj = (pj − rj) − i (sj − qj) (17)

aj

(
ak − bk

)
= (pj + iqj) ((pk − rk) − i (sk − qk))
= (pj (pk − rk) + qj (qk − sk))

+i (pj (sk − qk) + qj (pk − rk)) (18)
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ωm =


sm − qm m = 1

sm − qm +
m−1∑
j=1

pm−j (sj − qj) + qm−j (pj − rj) 2 ≤ m ≤ n

n∑
j=m−n

pm−j (sj − qj) + qm−j (pj − rj) n + 1 ≤ m ≤ 2n

Fig. 2. Formulae for coefficients of Ω (x)

Fig. 3. Collision with real axis

We substitute (17) and (18) into (16) to construct
ωm = 
 (wm), producing the coefficients in Figure 2.
The real zeroes of the degree 2n − 1 real polynomial

Ω (x) =
2n∑

m=1
ωmx2n−m are the values for x such that

τ (x) ∈ R. If 0 < τ (xj) < 1, then V (a,b) intersects the
real axis at xj .

This method was applied to collisions with the real axis.
But it can also be used to test for collisions with a segment
of the real axis, e.g. a line segment on the real axis from
xmin to xmax (where xmin < xmax). This segment can be
checked for collision by rejecting any xj /∈ [xmin, xmax]
without calculating τ (xj).

Fig. 3 shows an example of collisions with the real axis.
The robots are moving from the X’s towards the O’s, and the
diamonds mark the points of collision with the real axis, as
returned by the method described here. The robot paths are
given up to the earliest collision, i.e. the xj among the roots
of Ω (x) with minimum τ (xj).

C. Arbitrary Segment Obstacles

Now that we can test for collision with segments on the real
axis, we can test for collisions with any segment from u ∈ C

to v ∈ C. To do so we make use of the transformations in
[21].

Translation: In the complex plane, translation is the same
as addition. Apply this addition to all items uniformly.

Tc ({z1, . . . , zn}) = {z1 + c, z2 + c, . . . , zn + c} (19)

Scale & Rotation: In the complex plane, scaling and rotation
are actually the same operation: multiplication. Every c ∈ C

can be written as c = m · d, where m is an integer and d has
magnitude 1 (set m = |c|, and d = c/m). Multiplying by m is
a scale operation, and multiplying by d is a rotation. Therefore
multiplying by c does both.

SRc ({z1, . . . , zn}) = {z1c, z2c, . . . , znc} (20)

Any line segment can be rotated, scaled, and translated to
the real axis via T−u and SRv−u:

u′ = SRv−u (T−u (u)) = 0 (21)

v′ = SRv−u (T−u (v)) = |v − u|2 (22)

In [21], we also defined lifted operators T̃c and S̃Rc,
which show how the transformational operators affect the
polynomials. T̃c = fTcf

−1, which means that for any Z ⊂ C

and any c ∈ C, if a = f (Z), Z ′ = Tc (Z), and a′ = f (Z ′),
then a′ = T̃c (a). Similarly, S̃Rc = fSRcf

−1.
T̃c and S̃Rc can be calculated explicitly, without f or f−1:

T̃c (a1, . . . , an) = (a′
1, . . . , a

′
n) , (23)

where

a′
k =

(
n

k

)
(−c)k +

k∑
j=1

aj

(
n − j

k − j

)
(−c)k−j

, (24)

and

S̃Rc (a1, a2, . . . , an) =
(
a1c, a2c

2, . . . , ancn
)
. (25)

See [21] for derivations of these expressions.
Now, we can take the transformational operators we applied

to u and v, and apply the corresponding lifted transformation
to the polynomials:

a′ = S̃Rv−u

(
T̃−u (a)

)
(26)

b′ = S̃Rv−u

(
T̃−u (b)

)
. (27)

If V (a,b) collide with uv, then V (a′,b′) will also collide
with the real axis between u′ and v′. We can therefore apply
the method in III-B to a′, b′, u′, and v′ to determine if the
original path collides with uv.

Fig. 4 shows an example of collisions with arbitrary seg-
ments. The robots and edge in this example can be rotated
and scaled to match Fig. 3 exactly, and the resulting collision
information transforms accordingly. Therefore we can use the
collision information from Fig. 3 to find the collisions in Fig.
4.

D. General Obstacle Collisions

We can use the edge collision checker to check collision
with any obstacle region. A polygonal region can be checked
by checking for collision with each edge, as a robot cannot en-
ter the polygon without crossing an edge. Any non-polygonal
region can be approximated by polygons. Therefore we can
check for collision with any obstacle region.
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Fig. 4. Collision with segment

IV. ROADMAP PLANNING

The straight-line planner, combined with the obstacle col-
lision checker, form an effective local planner. We use it
to apply simple Probabilistic Roadmap (PRM) [23] methods
to permutation-invariant formations. To generate each node
in the roadmap, we generated n random samples z1, . . . , zn

from the collision-free workspace, and constructed a node at
a = f ({z1, . . . , zn}). Configuration nodes a and b were
connected iff V (a,b) did not collide with any edges. To
determine routes, we used A* with a metric of

d (a,b) =
n∑

j=1

|aj − bj |
n
j . (28)

The exponents applied to the distances are to offset the
tendencies of the later exponents to grow much faster than
the earlier ones. Compare to (25) above.

Figures 6 and 9 show typical results. In both cases, the
border is treated as an obstacle; robots are forbidden from
leaving the visible region. Figure 6 uses 50 nodes for 4
robots, while figure 9 uses 200 nodes for 8 robots. Both show
PRM planning is feasible for FSn with obstacles. We can
smooth the paths by iteratively averaging the points along the
path, while avoiding robot-robot and robot-obstacle collisions.
Applying this path smoothing to Figures 6 and 9 produces
paths in Figures 7 and 10 respectively. By contrast, figures 5
and 8 show the same start and goal configurations as 6 and
9 respectively, but planned without any obstacle checking or
PRM.

V. CONCLUSION

In this paper we demonstrated obstacle collision detection
for permutation-invariant formations, and used it to implement
effective roadmap planning that avoids obstacles. The collision
checking is efficient – as it can be executed in polynomial time
– and is not dependent on resolution or path deconstruction.

There remains much more to explore on this subject. Robot-
to-robot collisions, while rare in experiments, are still possible,
and remain unchecked. The sampling method is based on
selecting individual robot configurations; we would like to find
a good formation sampling scheme. The roadmap method used
is not optimal; we do not know which metrics, connecting
methods, and enhancing mechanisms are most appropriate for
this representation. We would also like to look at other types
of robots, other levels of centralization and uncertainty, and
other types of paths.

Fig. 5. Four robots, without obstacle checking

Fig. 6. Four robots, with obstacle checking

Fig. 7. Four robots, with path smoothing
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