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Abstract— In this paper, we formalize the problem of bar-
rier coverage, that is, the problem of preventing undetected
intrusion in a particular region using robot sensors. We
solve the problem of finding the minimum-length barrier in
the case of variable bounded-range line-of-sight sensors in a
two-dimensional polygonally-bounded region. We do this by
building a graph of candidate barriers that could potentially
be in the minimum barrier. The dual of this graph shows the
connectivity of the free space. We thus reduce the problem to
the network flows maximum-flow/minimum-cut problem.

I. INTRODUCTION

In this paper, we address the problem of barrier coverage,

the problem of preventing an intruder from entering a specific

area without being seen by a “guard.” Barrier coverage has

applications in military security, private security, and sensor

networks [1], [2]. Specifically, we are looking at the problem

of protecting a region in the plane using variable bounded-

range line-of-sight detectors that can detect an intruder

crossing its line of sight, but only within a certain range. This

range is not a fixed parameter, but is set by the deployer. We

call these sensors segment guards.

Barrier coverage is one of the three types of coverage

defined by Gage [3]. The other two are blanket coverage

and sweep coverage. The goal of blanket coverage [4], [5],

[6] is to maximize the total area the robots can see. The goal

of sweep coverage [7], [8], [9] is to ensure that every point in

a region is seen by some robot as the robots move across it.

This problem can also be a single-robot problem [10], [11],

[12].

In sensor network literature, barriers are usually generated

for rectangular regions, which have been preselected as

moats around the protected area. In [1] the region can also

be annulus-shaped, but the structure is the same. A variety

of methods have been used to generate barriers: [13] uses

potential fields, [14] uses incremental random deployments,

and [1] generates a grid of sensors. These approaches are

related to the problem of minimum exposure path [15], [16],

the problem of finding the path which is least likely to be

seen by a sensor.

Barrier Coverage is related to several separation problems

from computational geometry. There are several problems of

separating polygons into separate regions, either with line

segments [17], circles [18], wedges [19], or strips [19]. All

of these assume polygons in open space. Furthermore, [20]

looks at separating point sets inside polygons using chords.

Consider a mobile entity (a robot, a person, etc.), which

we call an intruder. The intruder is known to be somewhere

inside a start region S1, and will try to enter some stop region

S2. A barrier is a set of robot configurations that prevents the

intruder from entering S2 without being seen by at least one

robot. We call these robots guards, but they can be viewed

as robots with sensors or as fences. Anything that prevents

undetected intrusion can serve as a guard.

This idea of guards and intruders suggests two problems.

The first is to determine whether a given set of guards is a

barrier. The second is to find a minimum-cost barrier for

a particular environment and a particular type of guard.

In this paper we focus on two-dimensional polygonally-

bounded environments, point intruder, and segment guards.

The former problem can be solved just by checking the

connectivity of the set of points the guards cannot see. The

latter problem remains nontrivial even in this example, so

we will focus on it. We give a solution using geometry and

graph theory network flows.

In this paper we begin to generalize the problem of

barrier coverage to a greater variety of environments than

those in the aforementioned sensor networks approaches,

particularly in the use of domains that are polygons with

and without holes. This allows us to look at situations where

the environment as well as intruder locations and goals can

be more complicated. In this way we bring barrier coverage

closer to the computational geometry separation problems.

This paper is laid out as follows: in Section II we formally

define barrier coverage, in Section III we define a Barrier

Candidate Graph, which we use to solve the barrier coverage

problem in Section IV. In Section V we expand the method

to cover less idealized problems. In Section VI we describe

future work, and in Section VII we give concluding remarks.

II. PROBLEM DEFINITION

In this paper we focus on a point intruder (x I , yI ) ∈ R
2

moving in the plane. The intruder can only be in the obstacle-

free workspace W ⊂ R
2, which is compact, connected, and

bounded by polygons. The intruder is known to originate

somewhere in the start set S1 ⊂ W , and is trying to travel

to some point in the stop set S2 ⊂ W . Both S1 and S2

are compact and bounded by polygons. Figure 1 shows an

example problem domain.

Each guard q j can be written as q j =
(

x j , y j , θ j , r j

)

∈

R
2 × S1 × R

+. This guard is located at
(

x j , y j

)

and can see
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Fig. 1. Sample Barrier Problem Domain. The shaded regions are obstacles

in direction θ j up to a distance of its range, ri . Guards are

further restricted in that they must reside in the workspace

(i.e. (xi , yi ) ∈ W , and that they cannot see through walls,

i.e. past points not in W .

For each guard q = (x, y, θ, r) we define a visibility

region V (q) to be the set of points that q can see. Since

q can see a straight line until it goes outside of range or

hits an obstacle, V (q) is the maximal connected component

of {(x + k cos θ, y + k sin θ)| 0 ≤ k ≤ r} ∩ W that contains

(x, y). These guards are called segment guards because the

visibility region of each valid guard is a line segment. For

the remainder of this paper, when we describe a segment

guard, we will describe it in terms of its visibility region,

rather than in terms of its location and orientation.

A set of guards {q1, . . . , qn} is a barrier iff every path

from S1 to S2 in W intersects V
(

q j

)

for at least one j .

This means that the intruder cannot get from its start to its

intended goal without being seen by a guard. Equivalently,

{q1, . . . , qn} is a barrier iff S1 and S2 are in separate

connected components of W −
n
⋃

j=1

V
(

q j

)

.

The goal here is to find the minimum-length barrier, i.e. the

set of guards {q1, . . . , qn} that is a barrier, and has minimum
n
∑

j=1

r j . This reflects situations where, for example, robots

that see farther are more expensive to construct, or where

long segment guards are composed of many smaller segment

guards.

III. BARRIER CANDIDATE GRAPH

Here we define a barrier candidate graph that contains

edges that are relevant towards minimum barrier coverage.

These are the barrier candidates. This graph is related to the

reduced visibility graph [21].

If f1 and f2 are features (where a feature is an edge or a

vertex), the shortest segment from a point in f1 to a point

in f2 is called the minimal segment from f1 to f2. This

segment is unique unless f1 and f2 are parallel edges.If v

is the vertex incident to edges e1 and e2 and the minimal

segment from e1 to e3 has v as an endpoint, the segment is

redundant unless it is also the minimal segment from e2 to

e3. In Figure 2, the edges labeled a, b, c, and d are minimal

segments. The segments b and c are redundant.

A segment s is tangent to a polygon at a vertex v if inside

some neighborhhood of v , the line through s intersects the

Fig. 2. Sample Barrier Candidates. The dashed lines are not included in
the Barrier Candidate Graph

polygon at the boundary, but not the interior. A bitangent

is a segment tangent to two polygons. This bitangent is

separating if the two polygons are on opposite sides of the

line through s, and supporting if they are on the same side.

In Figure 2, e and h are tangents, f is a separating bitangent,

and g is a supporting bitangent.

The Barrier Candidate Graph is composed of minimal

segments, tangents, and bitangents. Additional restrictions

are applied to these segments. A segment is admissible if

(1) it lies entirely inside W , (2) it contains no points in the

interior of S1 or S2, and (3) it is not redundant. The reasons

for these restrictions will be explained in the proof below.

The barrier candidate graph of W , S1, and S2 consists of

all admissible segments that are:

1) minimal segments between obstacle edges,

2) minimal segments from vertices of Si to obstacle

edges, that are tangent to Si , i = 1, 2,

3) separating bitangents between S1 and S2, or

4) supporting bitangents between different vertices of S1,

or between different vertices of S2,

Figure 3 shows the Barrier Candidate Graph for the

example domain in Figure 1.

The barrier candidate graph is useful in finding minimum

barriers, as it contains all possible segments of a minimum

barrier, as we now demonstrate.

Theorem 1: In a workspace where no two obstacle seg-

ments are parallel, the minimum segment barrier separating

S1 from S2 consists only of segments from the barrier

candidate graph.

Proof:

We show that any barrier consists entirely of segments that

are either in the barrier candidate graph, or can be shortened

while maintaining the barrier. A barrier that contains seg-

ments of the latter type clearly cannot be a minimum barrier.

S
1

2

S

Fig. 3. Barrier Candidate Graph. The obstacle edges are dashed, and the
barrier candidates are solid.
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(a) Before (b) After

Fig. 4. Shortening by replacing an internal vertex

Therefore the minimum barrier must contain only segments

of the former type.

The segments that can be used to construct a barrier can

be classified according to their endpoints. A segment can

have

1) at least one endpoint in the interior of W − S1 − S2,

2) both endpoints on obstacle edges,

3) one endpoint at an obstacle edge, and one in S1 or S2,

or

4) both endpoints in S1 ∪ S2.

We show for each of these cases, either the segment is

present in the barrier candidate graph, or can be shortened

while preserving the barrier. Note that in all cases, any

segments containing points in the interior of S1 or S2

(inadmissible segments) can be shortened by removing all

such points, without changing the barrier.

1) If the segment has an endpoint p in the interior of

W−S1 −S2, the barrier can always be shortened. The

method of shortening depends on the degree of p, i.e.

the number of segments incident to it.

If the degree is one, the intruder can simply move

around this segment. Therefore the segment does not

contribute to the barrier, and can be removed com-

pletely. If the degree is 2, select ǫ > 0 such that the

disk radius ǫ centered at p lies entirely on the interior

of W−S1−S2. Replace the portion of the barrier inside

the disk with a line segment connecting the two points

on the disk’s boundary. By the triangle inequality, this

barrier is shorter. Note that this assumes the angle

between these two edges is not π . Otherwise, the two

segments can be combined into a single segment. See

Figure 4.

If the degree is 3 or greater, consider the regions that

the complete barrier separates W into. Each region can

be labeled by whether it contains points from S1, points

from S2, or neither (if it contains points from both, it

is not a barrier). Now, consider the regions that meet at

this interior vertex. If there is a region with a “neither”

label, or two adjacent regions with the same label, a

segment can be removed. See Figure 5. Otherwise, pick

two or more regions with the same label, and combine

them with a method analogous to removing a degree-2

vertex. See Figure 6. The resulting barrier is shorter.

Fig. 5. Shortening by removing an unnecessary segment. In both cases,
the dashed segment can be removed

(a) Before (b) After

Fig. 6. Shortening by combining multiple regions.

2) If a segment connecting two obstacle edges is the

shortest possible segment connecting those two edges,

it is a minimal segment. If it is not minimal, it can

be shortened by moving one endpoint along the edge

towards the minimal segment. See Figure 7. If it is a

redundant minimal segment, then it can be shortened

by moving it along the pair of edges for which it is not

the minimal segment. If it is a non-redundant minimal

segment, it is present in the barrier candidate graph. If

this segment’s interior contains an obstacle boundary

point, the segment can be split into two segments of

this type, each of which can be shortened the same way

as before. If this segment contains a point in S1 or S2,

then it can be split into two separate segments that are

dealt with in the next item. Therefore, if a minimum

barrier contains a segment that connects two obstacle

edges, it must be a minimal segment. This is present in

the barrier candidate graph (admissible segment type

1).

3) A segment with an endpoint, v1, on an obstacle edge

and the other, v2, in S1 or S2 can be shortened unless

it is the shortest possible segment between the obstacle

edge and v2. The method is the same as for the

previous item. If a vertex is in the interior of S1, it can

be shortened by removing the portion of the segment

inside S1. The same is true for S2. Furthermore, if

the segment is not a tangent, it cannot separate on its

own, and requires another segment in the barrier. The

two segments combined can be shortened in a way

analogous to removing an interior vertex (the second

WeB1.3
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Fig. 7. Shortening a non-minimal segment. The solid lines are obstacle
segments, and the dashed line is a candidate barrier. Moving the endpoint
along the obstacle boundary in the direction of the arrow shortens the barrier.

(a) (b)

Fig. 8. Shortening a supporting bitangent: (a) is like Figure 5; in (b) the
dashed segment can be removed without losing the barrier.

case in item 1). Therefore, a segment of this type must

be a minimal segment and tangent to S1 or S2 in order

to be part of a minimum barrier. This is present in the

barrier graph (admissible segment type 2).

4) A segment connecting two points in S1 ∪ S2 can be

shortened unless it is a bitangent, using the method

described in the previous item. If the segment is a

supporting bitangent between S1 and S2, then it cannot

separate on its own, and requires another segment. This

new segment touches either an endpoint or the middle

of the bitangent. If it touches the middle, it produces

a degree-3 interior vertex, which is covered above. If

it touches an endpoint, the bitangent can be removed

altogether. See Figure 8. If the segment is a separat-

ing bitangent between components of S1, or between

components of S2, then it has no effect (Separating

components of S1 does not change the set of locations

that can be reached from S1; it only changes where

one can go from each component). Therefore such a

bitangent can be removed. Therefore only separating

bitangents between S1 and S2, supporting bitangents at

S1, and supporting bitangents at S2 can be in minimum

barriers. These all appear in the barrier candidate graph

(admissible segment types 3 and 4).

If there exists a minimum barrier that contains segments

not in the barrier candidate graph, then this barrier can

be shortened using the methods described above. Therefore

it is not minimum; this is a contradiction. Therefore, the

minimum barrier must consist of segments from the Barrier

Candidate Graph.

v
S
1

v
S
2

Fig. 9. Dual of Barrier Candidate Graph: Connectivity Network. Solid
edges are in the network, dahsed edges are barrier candidates, and dotted
lines are boundaries.

IV. BARRIER CANDIDATE GRAPH NETWORK FLOWS

APPROACH

We construct a new network from the barrier candidate

graph. To prepare this network, first remove any redun-

dancies (e.g. two pairs of edges with the same minimal

segment) from the barrier candidate graph. Add an edge

for each obstacle boundary segment. Place vertices at every

edge intersection, and subdivide the edges accordingly. The

resulting graph is planar, so W can be decomposed into faces

that are bounded by these subdivided edges.

Take the dual of this graph to produce a weighted graph

as follows. Replace each face with a vertex. If two faces

are adjacent, connect the corresponding new vertices with a

new edge. This new edge corresponds to placing a barrier

across the edge between the original faces, and is weighted

according to the length of this edge. We call this graph

the connectivity network, as the connectivity of the graph

reflects the connectivity of the workspace. Traveling from

one point in W to another point in a different region requires

crossing some segments of the barrier candidate graph. This

is equivalent to following a path of corresponding dual

segments in the connectivity network. Similarly, separating

S1 from S2 requires finding an edge cut in the connectivity

network such that in the remaining graph there is no path

from a vertex inside a component of S1 to a vertex inside a

component of S2 in the remaining network.

Connect vs1
to all the vertices corresponding to regions

that intersect S1, and connect vs2
to all the vertices cor-

responding to regions that intersect S2. These connections

should have infinite weight (alternatively, combine all ver-

tices inside S1 into vs1
, and the equivalent for vs2

). An edge

cut that separates vs1
from vs2

corresponds to a barrier that

separates S1 from S2. Figure 9 shows the network derived

from the barrier candidate graph in Figure 3. The shaded

regions are not regions and do not have vertices in the dual

graph, as they are not inside W .

The minimum edge cut separating vs1
from vs2

corre-

sponds via the dual-graph relation to the shortest barrier that

consists only of barrier candidate segments. According to

Theorem 1 there are no shorter barriers. Therefore this barrier

is the minimum barrier of any type, and must be the desired

solution.
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Fig. 10. Minimum Barrier. Dashed lines show corresponding edges in the
dual graph

S

S
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S
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Fig. 11. Example Problem: Barrier Candidate Graph.

Therefore it suffices to solve the network flows min-cut

problem, which is equivalent to the network flows max-

flow problem [22]. This can be solved efficiently using

augmenting paths [23] or preflows [24]. Figure 10 shows

the minimum barrier of the sample domain. The dashed lines

show the minimum cut for the connectivity graph.

This method scales well to more complex domains. Fig-

ures 11 and 12 show the algorithm applied to a domain

with more obstacles and multiple components for S1 and

S2. Figure 11 shows the workspace plus the barrier candidate

graph, and Figure 12 shows the resulting minimum barrier,

along with the network edges that it is contructed from.

Furthermore, Figures 13 and 14 show the effects of removing

one obstacle from this sample problem.

S

S

1

2
S

1

S
2

Fig. 12. Minimum Barrier. Dashed lines show corresponding edges in the
dual graph

S

S
1

2
S

1

S
2

Fig. 13. Example problem less one obstacle: Barrier Candidate Graph.

S

S
1

2
S

1

S
2

Fig. 14. Minimum Barrier of Workspace in Figure 13. Dashed lines show
corresponding edges in the dual graph

V. ACCOMMODATING PARALLEL EDGES

In previous sections, we assumed no two obstacle edges

were parallel. Here we show that our method can be adjusted

to be applied to problem domains with parallel obstacle

edges.

Parallel edges create a problem with the definition of the

minimal segment. There are an infinite number of minimal

segments between two parallel edges, all of with the same

length. These are all the segments perpendicular to both

obstacle edges. In this section we will show that with respect

to barrier coverage, all such minimal segments are either (1)

equivalent to each other, (2) equivalent to another segment

already in the graph, or (3) not minimal (i.e. they can be

shortened). Here we say two segments are equivalent if they

have the same effect on the barrier. In the first case, all these

minimal segments can be replaced by a single arbitrary edge.

In the others, no edge needs to be included.

Let e1 and e2 be two parallel obstacle edges, and define

M = {s |s is a minimal segment between e1 and e2 }. Now

consider the components of M =
⋃

s∈M

s . All components

are rectangles, and any two minimal segments in the same

component are equivalent. Each component is bounded by a

minimal segment that touches either (a) a vertex of e1 or e2,

(b) a vertex of S1 or S2, or (c) an obstacle vertex that is not

in e1 or e2.

If the component is bounded on both sides by segments of

type (a), then M has one component, and all segments are

equivalent. This is case (1) above; only one edge needs to be

included. If the component is bounded on a side by a segment

of type (b), this segment goes through a vertex v ′ of S1 or
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S2. This segment is the union of two segments: the tangent

at v ′ to e1, and the tangent at v ′ to e2. Both of these segments

are already in the barrier candidate graph (case (2) above).

Similarly, if the component is bounded by a segment of type

(c), it can be split into two obstacle-to-obstacle segments,

at least one of which can be shortened further using the

methods in the proof to Theorem 1. Therefore none of the

segments in this component are minimal (case (3) above).

Therefore, a Barrier Candidate Graph can accommodate

workspaces with parallel obstacle edges by including one

arbitrary minimal segment for each pair of parallel obstacle

edges. In these cases, while Theorem 1 still holds inasmuch

as every minimum barrier consists of minimal segments or

tangents, it is no longer true that every minimum barrier

consists of segments from the barrier candidate graph. How-

ever, since we have shown that every minimal segment is

equivalent to one in the barrier candidate graph, every mini-

mum barrier is equivalent to a minimum barrier generated by

searching the barrier candidate graph. This means the given

method is applicable to enivronments with parallel obstacle

edges.

VI. FUTURE WORK

This paper shows barrier coverage in a specific problem

domain. We would like to expand the definition to other

problem domains.

We would like to look at different types of guards. This

would include guards with fixed ranges, omnidirectional

guards, guards in three dimensions, guards with placement

constraints, and barriers composed of different types of

guards. Similarly, we would like to look at different types

of intruders. This would include intruders with volumes,

changing shapes, and with kinematic and dynamic motion

constraints.

We would also like to address barrier coverage when

insufficent guards are available. The new goal is to minimize

the intruder’s probability of intruding. We call such a guard

deployment a partial barrier, and we call its effectivelness

in preventing intrusion partial coverage. The goal becomes

to minimize probability of intrusion (i.e. maximize partial

coverage) with a given set of guards.

VII. CONCLUSION

In this paper we have formally defined barrier coverage,

and shown how to find a minimum segment barrier in a two-

dimensional polygonally-bounded region. We have shown

that in these domains, the problem of finding the minimum-

length segment barrier reduces to the two problems of finding

barrier candidates, and finding the minimum edge cut. Both

of these can be solved efficiently.
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