
FProlog: A language to Integrate Logic and Functional Programming
for Automated Assembly

S. A. Hutchinson and A. C. Kak

Robot Vision Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

ABSTRACT

In this paper, we present FProlog7 a programming
language designed t o act as the top level in a robot assem-
bly system. FProlog i s a logic programming language, with
the ability t o interface with LISP. This allows 1Ae use of D
logic programming environment to construct assembly
plans, while using LISP programs to interface with vision.
systems, world modeling systems, robot manipulators, etc.
FProlog differs from hybrid logic programming languages,
such as LOGLISP, in that FProlog may invoke functional
programs as goals, and functional programs may invoke
FProlog’s inference engine. Also, FProlog differs from
traditional robot assembly languages, such as AUTOPASS,
in its generality, and therefore its ability to interface with
many diflerent subsystems. A s a demonstration of the
applicability of FProlog, we also present an FProlog pro-
gram which is used as the top level in a robot assembly
system which performs a version of the blocks world exper-
iment.

1. INTRODUCTION

In this paper we describe FProlog, a language that
we have developed to serve as the top level in a robot
assembly system. FProlog combines the reasoning power
of Prolog with the functional and procedural capabilities
of LISP. This combination allows FProlog programs to
deal with the high level aspects of robot assembly which
are declarative in nature (e.g. task planning) as well as
the aspects which are procedural in nature (e.g. invoka-
tion of robot control software). Specifically, FProlog is a
logic programming language which allows functions and
procedures to be called from within logic programs by
treating these functions and procedures as goals.

Previous work of concern to this research consists of
general purpose attempts to combine logic and functional
programming and the development of new languages used
drive robot assembly systems. Work concerning the
former can be found in [1,2,4,11,14,15]. These efforts
focus on the issues concerned with merging logic and

*This research is supported in part by the National Science Founda-
tion and the Computer Integrated Design, Manufacturing, and Autc-
mation Center (CIDMAC) at Purdue University.

functional programming. As such, they are not of as
much interest to us as the work that has been done to
develop new languages specific to robot assembly. Two
well known examples of this are AUTQBASS and
STRIPS.

AUTOPASS [8] takes a set of assembly instructions
(in semi-natural language) along with an initial world
model, and compiles this into a series of manipulator
commands. Included in AUTOPASS is a world modeling
scheme which represents objects as polyhedra, the ability
to provide parallelism (given two or more robots
separated by a suitable distance) and the ability to do
conditional branching (provided all branches to a
specified point result io the same world model).

STRIPS [5,6] uses a world modeling scheme consist-
ing of predicate calculus well formed formulas (wff’s). If
a specified precondition is met, operators may change the
world model’s state by deleting or adding wffs. STRIPS
performs a tree search to find the set of operators which
will transform an initial world model to a goal world
model. The action routines which correspond to this set
of operators constitute the task plan.

Lacking in both AUTOPASS and STRIPS is any
provision for the possibility that something may go awry
in the actual assembly process. Both assume that all
information concerning the state of the world is correct,
and further, that it is complete. A robust robot assembly
system requires the ability to dynamically assess the state
of the world and plan accordingly. It must also posses
the ability to recognize and compensate for its mistakes.

In order to meet these requirements, a robot assem-
bly system must have the ability to reason, as well as the
ability to interface with sensory feedback systems, model-
ing systems, etc. Alone, neither Prolog or LISP is well
suited to this task. However, by combining the two, we
have produced a language which has Prolog’s reasoning
ability and LISP’s functional and procedural abilities.
This mixture lends itself particularly well to being used
as a generalized top level shell for planning and executing
robot assembly operations.

In an attempt to maintain generality, we have not
built any type of world modeling system into the
language. We have also avoided tying our language to
specific robot manipulator assembly languages. Instead,
we have chosen to provide a simple interface to LISP.
Thus, FProlog can invoke routines which maintain world
models, compile task plans into manipulator assembly
language, consult vision systems, send commands to robot
manipulators, etc.

As a result of this, the user may write assembly prc-

904
CH2282-2/86/0000/0904$01.00 0 1986 IEEE

grams which plan subtasks based on vision input, compile
these subtasks into manipulator commands, invoke robot
control programs to execute these commands, use a vision
system to inspect the result, and proceed to the next sub-
task (if the assembly was successful) or retry the current
assembly task (if the assembly failed). Thus, with FPro-
log, we are able to plan as we go, and avoid the total
failure which would occur if we had created an entire
assembly plan from an input world state, and one of the
subtasks had failed.

FProlog includes the following features:

It allows functional programs to be called from logic
programs.
The interface between functional and logic pro-
grams is simply specified. Information is passed
from logic programs to functional programs via con-
stants. Information is passed from functional pro-
grams to logic programs via substitutions.
The simple interface to LISP allows the use of pro-
cedures to accomplish subtasks (e.g. maintaining
world models).
No world modeling scheme or robot manipulator
language is incorporated into the language. Thus,
these can be modified as required by simply modify-
ing supporting software supplied by the user.
FProlog includes an interface to the LISP flavor
package. This interface allows the easy use of
object oriented programming techniques. (e.g. a
robot arm can be treated as an object)

FProlog's inference engine can be easily accessed by
LISP programs.

This paper is divided into four sections. Section two
will describe the implementation of FProlog, how it
proves goals and interfaces to LISP. Section three
presents a simple FProlog program which we have used
as the top level in a robot assembly system which solves a
real blocks world problem. This system uses a simple
modeling scheme (based on the LISP flavor package) and
a Cincinnati Milacron T3-726 electric robot, Finally, in
section four, we present our conclusions, as well as outline
the directions that our work will take in the future.

2. INFERENCE SYSTEM
In this section of the paper we describe the inference

system of FProlog. The purpose of the inference system
is to determine the success or failure of an input goal.
Our convention will be that an input goal consists of a
conjunction of subgoals. Therefore, an input goal
succeeds if and only if all of its subgoals succeed. The
LISP function REFUTE is used to determine whether
this is the case. REFUTE takes as its input a single
argument, GOAL-LIST, which is the list of subgoals.
REFUTE returns the value t if all of the subgoals in
GOAL,-LIST succeed, otherwise it returns the value nil.
To accomplish this task, REFUTE employs a modified
resolution process. This process is the subject of the next
few paragraphs. An understanding of the resolution
theorem as well as Prolog's inference engine is assumed in
'he following discussion.

Given an input goal, G, and a database, D, our first

attempt to perform a resolution-refutation proof of G
might be as follows [7,12,13]. Form

S = { lG} U D

0 E RN(S),
in which case the goal is proved, or

and find the Nth resolution of S, such that either

RN-'(S) = RN(S) and 0 4 R"(S),
in which case, the goal is disproved. (note that 0
represents the null clause). Unfortunately, this approach
will generate a large number of resolvents which are not
relevant to the proof or disproof of G, thereby wasting a
great deal of computation time.

In order to avoid this, we have opted to employ a
combination of two search strategies: set of support and
depth first search [9]. Our approach is similar to the
approach used by Prolog [3,10]. Given as input a goal,
which is a list of subgoals, REFUTE attempts to resolve
the first subgoal in the list. If the first subgoal can be
resolved, REFUTE recursively calls itself with the result-
ing resolvent as its argument. If REFUTE ever receives
nil as its input, the resolution process terminates, and the
goal is proved. This corresponds to deriving the empty
clause in a resolution-refutation proof. If the first subgoal
cannot be resolved, REFUTE returns the value nil, and
backtracking takes place. If, after all pmsible resolutions
have been performed, REFUTE cannot rasolve a subgoal,
it returns nil. This corresponds to the case when

RN-l(S) = RN(S) and 0 6 RN(S)
FProlog provides three distinct methods which can

be used to resolve a subgoal. We will now describe these,
and the resolvent which results from the application of
each method. First, however, we establish a notational
convention.

In order to prove a goal using a resolution-refutation
technique, we negate that goal and apply our resolution
process. Since the goal is a conjunctiolo of literals, the
negation of the goal will be a disjunction of negated
literals (DeMorgan's law). Similarly, each resolvent
formed in our resolution process will be a disjunction of
negated literals (as will be evident shortly). Thus, the
input to REFUTE is always a disjunction of negated
literals, Because of this, we can omit the negation sym-
bols and the disjunction symbols with no loss of informa-
tion. Thus, we establish the convention of representing
both resolvents and negated input goals as a list of
literals, with the negation and disjunction symbols omit-
ted. This convention will be used in the following discus-
sion.

In a standard resolution process, a li.tera1 in an input
clause can be resolved against a database if and only if
some clause can be found in that database which contains
a complement of the input literal. If such a clause can be
found, the resolvent of that clause and the input clause is
formed by taking the disjunction of the two, minus the
complementary pair [12,13]. This method of resolving
subgoals is necessary for our purposes, but it is not
sufficient, since we wish to resolve literals not only
against facts and rules in a database, but also as built-in
predicates, procedures and functional programs. We
therefore present the following three methods of resolving

905

a subgoal. We will also specify how the resolvent is
formed for each method.

The first way that a subgoal can be resolved finds its
roots in standard resolution. This method can be sum-
marized as follows. Given the list of subgoals
(G, . . * G,), we search the database for a fact, or the
consequent of a rule, which is the complement of l G l (as
per the convention established above). This is done by
examining each element of the database sequentially. If
an element is a fact, we attempt to find a substitution, 8,
that will unify G, with that fact. If an element is a rule,
we attempt to find a substitution, 8, that will unify G,
with the consequent of that rule.

4f G, can be unified with a f a c t in the database,
through some substitution 8, the resolvent is merely
(G28 G38 . . . Gn8).

If, for some rule in the database of form
A + B l A B 2 . . . AB,

G, can be unified with A via the substitution 8, the resol-
vent is

(BIB BZO . * * B,B G28 G3 . . . G,)
The second method of resolving a subgoal provides

the mechanism for incorporating built-in functions. A
subgoal

GI = P(A1, A2, * . A,)
may be resolved as a built-in predicate if P is the name of
a built-in predicate and if that predicate succeeds under
some substitution 8 (which may be the empty substitu-
tion). The failure or success of P (as well as the substitu-
tion required for success) is determined by FProlog
according to the definition of P. If P fails, GI may not
be resolved using this method. If P succeeds, the result-
ing resolvent is (G28 . . . @ , 8) .

In order to incorporate functionality and the ability
to invoke procedures into FProlog, we provide our final
method of resolving a subgoal. A subgoal

GI = F(A1, Az, * . * A,)
may be resolved if F is a known functional program or
procedure, and F returns a non-nil value when called
with A, 4 A, as its arguments. Specifically, if F
returns a valid substitution, F succeeds. This substitu-
tion may be the list ’(nil), in which case F succeeds, but
no instantiations are made (corresponding to the null sub-
stitution), or it may be a list of substitutions of terms for
variables. If F returns the value nil, it fails as a goal.
Resolvents for this method are formed in the same way
that they are formed for of built-in predicates.

At this point, a brief justification of our third
method of resolving goals is in order. Obviously, our
third method cannot be justified using the resolution
theorem. Rather, we justify this technique by asserting
that any goal which can be shown to be true should
succeed. Traditionally, we show that a goal is true by
using a resolution process. We have merely added an
additional method for establishing the truth of a goal,
specifically that a goal should succeed if some LISP func-
tion determines that it should succeed. This approach is
similar to the “query the user” technique which is
currently popular in expert system design. In a query the

user scheme, if a goal does not succeed as a result of a
resolution proof, the user is asked if that goal should
succeed, and if so, under what instantiation. This allows
the expert system to use an extended knowledge which
includes the user’s knowledge. Similarly, our third tech-
nique merely extends the “knowledge” which FProlog
may use to prove a goal to include user defined LISP
functions.

Having presented this method of resolving subgoals
as procedures and functions, a brief discussion of how the
arguments to these procedures and functions are treated
is in order. Although these arguments may be any valid
FProlog terms, they typically consist of either single con-
stants, or variables. Constants passed to user defined
functions may be either evaluated or unevaluated. This
is because all symbols used by FProlog are unbound in
the LISP world, with the exception of LISP symbols
which are inherently bound to themselves (e.g. integers or
the values t and nil). Thus, the programmer must take
care not to use LISP functions which evaluate their argu-
ments, unless those functions expect only symbols which
are bound to themselves as input.

As an example of this, consider a LISP function
move-gripper, which causes the robot’s gripper to be
moved to a specified location. The FProlog clause

move_gripper(3,5,10)
would cause the LISP function movezripper to be called
with 3, 5 and 10 as its arguments In this case, it is desir-
able, and in fact necessary, for LISP to evaluate the sym-
bols 3, 5 and 10. Thus, movesripper is just an expr.

There are cases when user defined functions may
take unevaluated constants as input. For example, a
LISP function may determine whether a certain object is
available in the workspace. If this function is named
is-available, we might use the following FProlog clause to
determine if shaftl is currently available in the
workspace.

is-available(shsft1)
This causes FProlog to invoke the LISP function
is-available with shaftl as its argument. It is an error for
LISP to try to evaluate the symbol shaftl, because the
LISP symbol shaftl is unbound. For this reason,
is-available should be a fexpr (Le. it should not evaluate
its arguments).

User defined functions may also take logical vari-
ables as arguments. In this case, the user defined func-
tion must return a substitution for those variables. This
is the method used to return data to FProlog. For exam-
ple, we may wish to query the robot’s gripper to ascertain
its current position. For this purpose, we might use the
FProlog clause

grippergosition(?X,?Y,?Z).
This clause will cause the LISP function gripperqosition
to be called with ?X, ?Y and ?Z as its arguments. Of
course we do not want this function to evaluate ?X, ?Y
and ?Z. Rather, we want gripper-position to return a
substitution for these variables in a form acceptable to
FProlog. In this case, that form would be

(((?X lO.OOO)(?Y 2.000)(?Z 20.000)))
assuming the gripper was at location (10,2,20).

906

In general, FProlog expects user defined functions
to return a valid substitution. The substitution (nil) indi-
cates that the LISP function succeeded, but that no sub-
stitutions were required (as in the movexripper exam-
ple). The return value nil indicates that the LISP func-
tion failed (for example, if shaft1 was not available in the
workspace).

As a final example, consider the following FProlog
subgoal.

find(object1, 2, ?X, ?Y)
Suppose that find is a LISP function which locates some
item specified by its first argument, objectl in this case,
in a quadrant of the work space specified by its second
argument, the second quadrant in this case. Find returns
the x and y coordinates of that item via a substitution
for the third and fourth arguments provided it is success-
ful in finding the item. In this case, find must be a fexpr.
It will use the value object1 (it is not evaluated) to deter-
mine what to search for, the value 2 (it is evaluated) to
determine which quadrant of the work space to search,
and it will return a substitution for ?X and ?Y which will
indicate the position of object1 in the image. If find is
able to locate objectl in the image at x location 12 and y
location 32, it will return the substitution

((?X 12) (?Y 32))
If find fails to locate objectl, it will return the value nil,
indicating to FProlog that this subgoal failed. Note that
?X and ?Y are never used by the LISP function find,
except in construction of the substitution that find
returns.

By allowing subgoals to be resolved as user defined
functions, we allow the programmer to interface func-
tional programs with FProlog. We allow FProlog to pass
information to functional programs in the form of con-
stants. We also provide the mechanism for passing infor-
mation from user defined programs to FProlog by requir-
ing that all functional programs called by FProlog return
values that are valid substitutions (or nil).

3. APPLICATIONS
In this section of the paper we will demonstrate the

applicability of FProlog by showing how we have used it
to perform a version of the block’s world experiment.

Figure 1 shows an FProlog program which acts as
the top level of a simple robot assembly system. The pri-
mary clause is the move clause. It simply states that we
may move ?Block1 to the top of ?Block2 if both ?Block1
and ?Block2 are clear and the robot-move function can
perform the move. Note that clear is a logical predicate
defined in the following three clauses, while robot-move
is a user-defined LISP function.

The definition of clear is as follows. The table is
always clear. Furthermore, if backtracking should occur
we should not try to resatisfy the goal clear(tab1e) by
treating the table as a block and attempting to move it.
For this reason, we have included the cut in this clause.
Secondly, a block is clear if the world model shows that
no other block is atop that block. Finally, a block is
clear if we move the block atop it to the table.

Note the use of the fsend subgoals here. Fsend is
the built-in predicate which allows FProlog to interface
with the LISP flavor system. Specifically, a message is

sent to ?Block asking which block it is under. Fsend then
instantiates ?Block-above to the value returned as a
result of this message. Similarly, the last two fsend
subgoals cause messages to be sent to appropriate blocks
which update certain information about, those blocks,
specifically, which blocks are above or under the particu-
lar block. Since no uninstantiated variables are passed to
fsend in this case, the fsend subgoal succeeds without
instantiation. Figure 2 shows the form of the mixin
flavor object as well as the flavor block.

Note that the robot-move function could also be a
logic predicate. This logic predicate might contain
clauses to invoke the model system to determine the 3-
dimensional coordinates of the current]position of the

init() :-
add-func(mode1-clear),
add-func(robot-move).

move(?Blockl,?Block2) :-
clear(?Blockl),
clear(?Block2),
robot~move(?Blockl,?Block2).

clear(tab1e) :-
cut().

clear(?Block) :-
model-clear(?Block).

clear(?Block) :-
fsend(?Block,under,?Block-above),
move(?Block-above,table),
fsend(?Block-above,set-on-top-of, [I),
fsend(?Block,set-under,[]).

Fig. 1: FProlog solution to real block% world problem

(defflavor object-mixin

angle1 angle2 angle3
name

(xpos ypos zpos

:gettable-instancevariables
:settable-instancevariables
:initableinstancevariables

1
(defflavor block

(height width length
(under nil)
(on-top-of nil)

1
(object-mixin)

:gettable-instance-variables
:settable-instancevariables
:initableinstancevariables

)

Fig. 2: Flavor definitions for object and block

907

block and the &dimensional coordinates of the position
that the block is to be moved to (i.e. the position of the
top of the second block). The next clause would invoke a
LISP function which caused the robot to grip the object
at the first set of coordinates and move that object to the
location specified by the second set of coordinates.

4. CONCLUSIONS
In this paper we have presented FProlog, a language

which we have developed to act as a top level planner in
an automat,ed assembly system. FProlog’s ability to
readily interface with LISP and therefore the LISP flavor
system allows these top level programs great flexibility.
En particular, they can make use of the declarative tech-
niques native to logic programming, as well as the func-
tional programming techniques native to LISP.

Unfortunately, the choice of a logic system based on
Prolog’s inference system carries with it several Simita-
tions. Reasoning with uncertainty is awkward since no
specific mechanism for this is built into FProlog. Also,
the stack frame used in FProlog’s backtracking process
contains only information concerning the instantiations of
logical variables. Thus any changes made to LISP world
objects are not undone when backtracking occurs (analo-
gous to using assert and retract in Prolog programs).
Furthermore, changes to the real world (e.g. the position
of the robot manipulator) are not undone when back-
tracking occurs. Also, since backtracking is the control
strategy used, it is very difficult to move laterally in the
search tree. As the system develops, we anticipate
significant changes to the actual inference engine used by
FProlog to cope with these problems.

In addition to changes in the inference system of
FProlog, future versions will include several additional
enhancements. Among these will be clause indexing to
increase speed; better debugging tools; a more efficient
compiler, which incorporates a higher degree of error
checking; and the ability to summon daemon program
immediately before or after invoking a functional pro-
grams. There are also plans to include a set of built-in
predicates which will ease even further the task of inter-
facing functional programs to FProlog.

T o demonstrate the applicability of FProlog to
automated assembly, we have shown a sample FProlog
program which is currently in use in a robot assembly
system which performs a version of the blocks world
experiment. This program illustrates both the technique
of interfacing LISP programs with an FProlog program,
and the use of the built-in predicate fsend, which allows
FProlog to interface directly with the LISP flavor pack-
age.

Planned future work with FProlog includes the
application of the language to more complex robot assem-
bly tasks. In pursuit of this goal, we plan to interface
FProlog programs with a vision system, a compiler which
will translate high level assembly plans into robot control
language, and a robot control package that currently
exists on our system (written in LISP).

REFERENCES

R. Barbuti, M. Bellia, G. Levi, and M. Martelli.
On the Integration of Logic Programming and
Functional Programming. Mernational Sympo-
sium on Logic Programming 1984 International
Symposium on Logic Programming : IIEEE Com-
puter Society Press. 1984.

M. Carlsson. On Implementing Prolog in Func-
tional Programming. International Symposium on
Logic Programming 1984 International Sympo-
sium on Logic Programming : IEEE Computer
Society Press. 4884.

W. F. Clocksin and C. S. Mellish. Programming
in Probog. Springer-Verlag, 1981.

H. J. Comorowski. QLOG - The Programming
Environment for Prolog in Lisp. Logic Program-
ming, K. L. Clark and %-A. Tarnlund, Eds.,
Academic Press, New York, 1882, pp. 267-280.1

R. E. Fikes, P. E. Hart, N. J. Nilsson. Learning
and Executing Generalized Robot Pians.
Artificial Intelligence, Vol. 3, 1972. pp. 251-288.

R. E. Fikes, N. J. Nilsson. STRIPS: A new
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence, Vol. 2.
1971, pp. 189-208.

R. Kowalski. Logic for Problem Solving. Elsevier
Science Publishers CO., Inc. 1979.

L. I. Lieberman, M. A. Wesley. AUTOPASS: An
Automatic Programming System for Controlled
Mechanical Assembly. 9RM Journal of Research
and Development, Vol 21, Number 4, 1977. pp.
321-333.

N. 9. Nilsson. Principles of Artificial Intelligence.
Tioga Publishing Co. Palo Alto CA. 1Q80.

F. Pereira. C-Prolog User’s Manual, Version 1.3.
University of Edinburgh, Dept. of Architecture.
August 1983.

U. S. Reddy. Transformation of Logic Program
into Functional Programs. International Sympo-
sium on Logic Programming 1984 International
Symposium on Logic Programming : IEEE Com-
puter Society Press. 1984.

J. A. Robinson. A Machine-Oriented Logic Based
on the Resolution Principle Journal of the Associ-
ation for Computing Machinery, Vol. 12, No. 1
(January, 1965), pp. 23-41.

J. A. Robinson. Logic: Form and Function.
Elsevier North Holland Inc. 1979.

908

1141 J. A. Robinson, E. E. Sibert. LOGLISP: Motiva-
tion, Design and Implementation. In Logic Pro-
gramming, K. L. Clark and S.-A. Tarnlund, Eds.,
Academic Press, New York, 1982, pp. 267-280.1

I151 P. A. Subrahmanyam and J-H. You. Conceptual
Basis and Evaluation Strategies for Integrating
Functional and Logic Programming. Interna-
tional Symposium on Logic Programming 1984
International Symposium on Logic Programming
: IEEE Computer Society Press. 1984.

909

