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ABSTRACT 

In this paper, we present FProlog7 a programming 
language  designed t o  act as the top  level in a robot assem- 
bly system. FProlog i s  a logic programming language,  with 
the ability t o  interface with LISP. This allows 1Ae use of D 
logic programming environment to construct assembly 
plans, while using LISP programs to interface with  vision. 
systems, world modeling systems, robot manipulators, etc. 
FProlog  differs from hybrid  logic programming languages, 
such as LOGLISP, in that FProlog may invoke functional 
programs as goals, and functional programs may invoke 
FProlog’s inference engine. Also, FProlog  differs from 
traditional robot  assembly  languages,  such  as AUTOPASS, 
in its generality, and therefore its ability to interface with 
many diflerent subsystems. A s  a demonstration of the 
applicability of FProlog, we  also present an  FProlog pro- 
gram  which is used  as  the top  level in a robot assembly 
system which performs a version of the blocks  world exper- 
iment. 

1. INTRODUCTION 

In this  paper we describe FProlog, a language that 
we have  developed to serve as the  top level  in a robot 
assembly system.  FProlog combines the reasoning power 
of Prolog with  the  functional  and  procedural  capabilities 
of LISP. This  combination allows FProlog  programs to  
deal  with  the high level aspects of robot assembly  which 
are  declarative in nature (e.g. task  planning) as well as 
the aspects  which  are  procedural in nature (e.g.  invoka- 
tion of robot  control  software). Specifically, FProlog is a 
logic programming  language  which allows functions  and 
procedures to be called  from  within logic programs  by 
treating  these  functions  and  procedures as goals. 

Previous work of concern to  this research  consists of 
general  purpose attempts  to combine logic and  functional 
programming  and  the  development of new languages used 
drive  robot  assembly  systems.  Work  concerning the 
former  can  be  found in [1,2,4,11,14,15]. These efforts 
focus on the issues concerned  with  merging logic and 
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functional  programming. As such,  they  are  not  of as 
much  interest to  us as the work that  has been  done to  
develop new languages specific to robot  assembly. Two 
well known  examples of this  are  AUTQBASS  and 
STRIPS. 

AUTOPASS [8] takes a set of assembly instructions 
(in  semi-natural  language) along  with an initial  world 
model, and compiles this  into a series of manipulator 
commands.  Included in AUTOPASS is  a  world  modeling 
scheme  which  represents  objects as polyhedra,  the ability 
to  provide parallelism  (given two or more  robots 
separated  by a suitable  distance)  and  the  ability  to do 
conditional  branching  (provided  all  branches  to a 
specified point  result  io  the  same world model). 

STRIPS [5,6] uses a world  modeling  scheme consist- 
ing of predicate  calculus well formed  formulas (wff’s). If 
a specified precondition is met,  operators  may  change  the 
world model’s state by deleting or adding  wffs. STRIPS 
performs a tree  search  to find the  set of operators which 
will transform  an  initial world  model to a goal  world 
model. The action  routines which correspond to  this  set 
of operators  constitute  the  task  plan. 

Lacking in both  AUTOPASS  and  STRIPS is any 
provision for the possibility that something  may go awry 
in  the  actual assembly process. Both  assume that all 
information  concerning  the  state of the world is correct, 
and  further,  that  it is complete.  A  robust robot assembly 
system requires the  ability  to dynamically assess the  state 
of the world and  plan accordingly. It must  also posses 
the  ability  to recognize and  compensate  for  its  mistakes. 

In order  to  meet these  requirements,  a  robot assem- 
bly system  must  have  the  ability to reason,  as well as the 
ability  to  interface  with sensory  feedback  systems, model- 
ing  systems,  etc. Alone,  neither  Prolog or LISP is well 
suited to this  task.  However, by combining the  two, we 
have  produced a language  which  has Prolog’s reasoning 
ability  and LISP’s functional  and  procedural  abilities. 
This  mixture lends itself particularly well to being used 
as a generalized top level shell for planning  and  executing 
robot assembly  operations. 

In an  attempt  to  maintain  generality, we have  not 
built  any  type of world  modeling system  into  the 
language. We have also avoided tying  our  language  to 
specific robot  manipulator assembly  languages. Instead, 
we have chosen to provide a simple  interface  to LISP. 
Thus,  FProlog  can invoke  routines  which  maintain world 
models,  compile task plans into  manipulator assembly 
language,  consult vision systems,  send  commands to robot 
manipulators,  etc. 

As a  result of this,  the user may  write assembly  prc- 
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grams which plan  subtasks based on vision input, compile 
these subtasks  into  manipulator  commands, invoke robot 
control  programs  to  execute  these commands, use a vision 
system  to inspect the  result,  and proceed to the  next sub- 
task (if the assembly was  successful) or retry  the  current 
assembly task (if the assembly failed). Thus, with FPro- 
log, we are  able  to  plan as we go, and avoid the  total 
failure which would occur if we had  created  an  entire 
assembly plan  from  an  input world state,  and  one of the 
subtasks  had failed. 

FProlog includes the following features: 

It allows functional  programs  to be called from logic 
programs. 
The  interface between functional  and logic pro- 
grams is simply specified. Information is passed 
from logic programs  to  functional programs via con- 
stants.  Information is passed  from functional pro- 
grams  to logic programs  via  substitutions. 
The simple interface  to  LISP allows the use of pro- 
cedures to accomplish subtasks (e.g. maintaining 
world models). 
No world  modeling  scheme or  robot  manipulator 
language is incorporated  into  the language. Thus, 
these can  be modified as required by simply modify- 
ing supporting  software supplied by the user. 
FProlog includes an  interface  to  the  LISP flavor 
package. This  interface allows the easy use of 
object  oriented  programming techniques. (e.g. a 
robot  arm  can be treated as an  object) 

FProlog's inference  engine  can be easily accessed by 
LISP  programs. 

This  paper is divided into  four sections.  Section two 
will describe the  implementation of FProlog, how it 
proves goals and interfaces to LISP. Section three 
presents a simple  FProlog  program which we have used 
as  the  top level in a robot assembly system which solves a 
real blocks world  problem. This  system uses a simple 
modeling  scheme  (based on the  LISP flavor package) and 
a Cincinnati Milacron T3-726 electric robot,  Finally, in 
section four, we present  our conclusions, as well as outline 
the directions that  our work will take in the  future. 

2. INFERENCE  SYSTEM 
In this section of the  paper we describe the inference 

system of FProlog.  The purpose of the inference system 
is to determine  the success or  failure of an  input goal. 
Our convention will be that  an  input goal consists of a 
conjunction of subgoals.  Therefore, an  input goal 
succeeds if and only if all of its subgoals  succeed. The 
LISP function REFUTE is used to  determine  whether 
this is the case. REFUTE  takes as its  input a single 
argument,  GOAL-LIST, which is the list of subgoals. 
REFUTE  returns  the  value t if all of the subgoals  in 
GOAL,-LIST succeed,  otherwise it  returns  the  value nil. 
To  accomplish this  task,  REFUTE employs a modified 
resolution process. This process is the  subject of the  next 
few paragraphs. An understanding of the resolution 
theorem as well as Prolog's inference  engine is assumed in 
'he following discussion. 

Given an  input goal, G, and a database, D, our first 

attempt  to perform a resolution-refutation proof of G 
might be as follows [7,12,13]. Form 

S = { lG}  U D 

0 E RN(S), 
in which case the goal is proved,  or 

and find the Nth resolution of S, such  that  either 

RN-'(S) = RN(S)  and 0 4 R"(S), 
in which case, the goal is disproved. (note  that 0 
represents  the null clause). Unfortunately,  this  approach 
will generate a large number of resolvents which are  not 
relevant  to  the proof or disproof of G, thereby  wasting a 
great deal of computation time. 

In  order  to avoid this, we have  opted  to employ a 
combination of two  search  strategies: set of support  and 
depth  first  search [9]. Our  approach is similar  to  the 
approach used by Prolog [3,10]. Given as  input a goal, 
which is a list of subgoals, REFUTE  attempts  to resolve 
the first  subgoal  in the list. If the first  subgoal  can be 
resolved, REFUTE recursively calls itself with  the result- 
ing  resolvent as its argument. If REFUTE ever  receives 
nil as its  input,  the resolution process terminates,  and  the 
goal is proved. This corresponds to deriving the  empty 
clause in a resolution-refutation proof. If the first subgoal 
cannot be resolved, REFUTE  returns  the  value nil, and 
backtracking  takes place.  If, after all pmsible resolutions 
have been performed,  REFUTE  cannot rasolve a subgoal, 
it returns nil. This corresponds to  the case when 

RN-l(S) = RN(S) and 0 6 RN(S) 
FProlog provides three  distinct  methods which can 

be used to resolve a  subgoal. We will now describe these, 
and  the resolvent which results  from  the application of 
each method.  First, however, we establish a notational 
convention. 

In order  to  prove a goal using  a resolution-refutation 
technique, we negate  that goal and  apply  our resolution 
process. Since the goal is a conjunctiolo of literals, the 
negation of the goal will be a disjunction of negated 
literals (DeMorgan's  law).  Similarly,  each  resolvent 
formed in our resolution process will be  a disjunction of 
negated  literals (as will be evident  shortly).  Thus,  the 
input  to  REFUTE is always a disjunction of negated 
literals, Because of this, we can omit  the negation  sym- 
bols and  the  disjunction symbols with no loss of informa- 
tion. Thus, we establish  the convention of representing 
both resolvents and negated input goals as a  list of 
literals,  with  the  negation  and  disjunction symbols  omit- 
ted.  This convention will be used in the following discus- 
sion. 

In a standard resolution process, a li.tera1 in an  input 
clause can be resolved against a database if and only if 
some clause can  be  found in that  database which contains 
a  complement of the  input literal. If such  a clause can be 
found,  the resolvent of that clause and  the  input clause is 
formed by taking  the  disjunction of the  two, minus the 
complementary  pair [12,13]. This  method of resolving 
subgoals is necessary  for our purposes, but  it is not 
sufficient, since we wish to resolve literals not only 
against  facts  and rules  in a database,  but also as built-in 
predicates,  procedures  and  functional programs. We 
therefore  present  the following three  methods of resolving 
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a subgoal.  We will also specify how the resolvent is 
formed  for each method. 

The first way that a subgoal  can be resolved finds its 
roots in standard resolution. This  method can  be sum- 
marized  as follows. Given the list of  subgoals 
(G, . . * G,),  we search  the  database for a fact, or the 
consequent of a rule, which is the complement of l G l  (as  
per  the convention  established  above). This is done by 
examining each  element of the  database sequentially. If 
an element is a fact, we attempt  to find a substitution, 8, 
that will unify G, with  that  fact. If an element is a rule, 
we attempt  to find a substitution, 8, that will unify G, 
with  the consequent of that rule. 

4f G, can  be unified with  a f a c t  in the  database, 
through some substitution 8, the resolvent is merely 
(G28 G38 . . . Gn8). 

If, for some rule in the  database of form 
A + B l A B 2  . . .  AB, 

G, can be unified with A via  the  substitution 8, the resol- 
vent is 

(BIB BZO . * * B,B G28  G3 . . . G,) 
The second method of resolving a subgoal  provides 

the mechanism for incorporating built-in  functions.  A 
subgoal 

GI = P(A1, A2, * . A,) 
may  be resolved as a built-in predicate if P is the  name of 
a built-in predicate  and if that  predicate succeeds under 
some substitution 8 (which  may be the  empty  substitu- 
tion). The failure or success of P (as well as the  substitu- 
tion required for success) is determined  by  FProlog 
according to the definition of P. If P fails, GI may not 
be resolved using this method. If P succeeds, the result- 
ing  resolvent is ( G28 . . . @ , 8 ) .  

In order  to  incorporate  functionality  and  the  ability 
to invoke  procedures into  FProlog, we provide our final 
method of resolving a subgoal. A subgoal 

GI = F(A1, Az, * . * A,) 
may  be resolved if F is a known functional  program or 
procedure,  and F returns a non-nil value when called 
with A, 4 A, as its  arguments. Specifically, if F 
returns a valid substitution, F succeeds. This  substitu- 
tion may be the list ’(nil), in which  case F succeeds, but 
no instantiations  are  made (corresponding to  the null sub- 
stitution),  or  it may  be a list of substitutions of terms for 
variables. If F returns  the value nil, it fails as a goal. 
Resolvents for  this  method  are formed  in the  same way 
that  they  are formed  for of built-in predicates. 

At  this  point, a brief justification of our  third 
method of resolving goals is in order. Obviously, our 
third  method  cannot be  justified using the resolution 
theorem.  Rather, we justify this  technique by asserting 
that  any goal  which can  be shown to be true should 
succeed. Traditionally, we show that a goal is true by 
using a resolution process. We  have merely added an 
additional  method for establishing  the  truth of a goal, 
specifically that a goal should succeed if some LISP func- 
tion determines  that  it should succeed. This approach is 
similar to  the “query the user”  technique which is 
currently  popular in expert  system design. In a query the 

user scheme, if a goal does not succeed as a result  of a 
resolution  proof, the user is asked if that goal should 
succeed, and if so, under  what  instantiation.  This allows 
the  expert  system  to use an  extended knowledge which 
includes the user’s knowledge. Similarly,  our third tech- 
nique merely extends  the “knowledge” which FProlog 
may use to prove  a goal to include user defined LISP 
functions. 

Having  presented this  method of resolving subgoals 
as  procedures and  functions, a brief discussion of how the 
arguments  to these  procedures and functions are  treated 
is in order. Although  these arguments may be any  valid 
FProlog  terms,  they typically consist of either single con- 
stants,  or variables. Constants passed to user defined 
functions  may be either  evaluated or unevaluated.  This 
is because  all  symbols used by FProlog  are unbound in 
the LISP world,  with the exception of LISP symbols 
which are  inherently bound to themselves (e.g. integers or 
the values t and nil). Thus,  the  programmer must take 
care  not  to use LISP functions which evaluate  their argu- 
ments, unless those functions  expect  only symbols which 
are bound to themselves as input. 

As an  example of this, consider a LISP function 
move-gripper, which causes the robot’s gripper to be 
moved to a specified location. The  FProlog clause 

move_gripper(3,5,10) 
would cause the  LISP function movezripper  to be called 
with 3, 5 and 10 as its  arguments In this case, it is desir- 
able,  and in fact necessary, for LISP to evaluate  the sym- 
bols 3, 5 and 10. Thus,  movesripper is just  an  expr. 

There  are cases when user defined functions may 
take  unevaluated  constants as input.  For example, a 
LISP function  may determine  whether a certain  object is 
available in the workspace. If this  function is named 
is-available, we might use the following FProlog clause to 
determine if shaftl is currently available in the 
workspace. 

is-available(shsft1) 
This causes FProlog  to invoke the LISP function 
is-available with shaftl as its  argument.  It is an  error for 
LISP  to  try  to  evaluate  the symbol shaftl, because the 
LISP  symbol  shaftl is unbound.  For  this reason, 
is-available should be a fexpr (Le. it should not  evaluate 
its  arguments). 

User defined functions may also take logical vari- 
ables as arguments. In this  case, the user defined func- 
tion must  return a substitution  for those variables. This 
is the  method used to  return  data  to  FProlog. For exam- 
ple, we may wish to query the robot’s  gripper to ascertain 
its  current position. For  this purpose, we might use the 
FProlog clause 

grippergosition(?X,?Y,?Z). 
This clause will cause the  LISP  function  gripperqosition 
to be called with ?X, ?Y and ?Z as its  arguments. Of 
course we do  not  want this  function to  evaluate ?X, ?Y 
and ?Z. Rather, we want gripper-position to  return a 
substitution for these  variables in a form acceptable to 
FProlog. In this  case, that form would be 

(((?X lO.OOO)(?Y 2.000)(?Z 20.000))) 
assuming the gripper was at location  (10,2,20). 

906 



In general, FProlog  expects user defined functions 
to  return a valid substitution.  The  substitution (nil) indi- 
cates  that  the  LISP  function succeeded, but  that no sub- 
stitutions were  required (as in the  movexripper exam- 
ple). The  return  value nil indicates  that  the  LISP func- 
tion failed (for example, if shaft1 was not available in the 
workspace). 

As a final example, consider the following FProlog 
subgoal. 

find(object1, 2, ?X, ?Y) 
Suppose that find is a LISP function  which  locates  some 
item specified by its first argument,  objectl in this case, 
in a quadrant of the work  space specified by its second 
argument,  the second quadrant in this case. Find  returns 
the x and y coordinates of that  item  via a substitution 
for the  third  and  fourth  arguments provided it is success- 
ful in  finding the  item. In this case, find must be a fexpr. 
It will use the  value  object1  (it is not  evaluated)  to  deter- 
mine what  to  search  for,  the  value 2 (it is evaluated) to 
determine which quadrant of the work space to  search, 
and  it will return a substitution for ?X and ?Y which will 
indicate  the position of object1  in  the image. If find is 
able to locate  objectl in the image at  x location 12  and y 
location 32, it will return  the  substitution 

((?X 12) (?Y 32)) 
If find fails to locate  objectl,  it will return  the  value nil, 
indicating to  FProlog  that  this subgoal failed. Note  that 
?X and ?Y are never used by the  LISP function  find, 
except in construction of the  substitution  that find 
returns. 

By allowing subgoals to be resolved as user defined 
functions, we allow the  programmer to interface func- 
tional  programs  with  FProlog.  We allow FProlog  to pass 
information to  functional  programs in the form of con- 
stants.  We also provide the mechanism for passing infor- 
mation  from user defined programs to  FProlog by requir- 
ing that all functional  programs called by FProlog  return 
values that  are valid substitutions  (or nil). 

3. APPLICATIONS 
In this section of the  paper we will demonstrate  the 

applicability of FProlog by showing how we have used it 
to perform  a version of the block’s world experiment. 

Figure 1 shows an FProlog  program which acts as 
the  top level of a simple robot assembly  system. The pri- 
mary clause is the move clause. It simply states  that we 
may  move  ?Block1 to  the  top of ?Block2 if both ?Block1 
and ?Block2 are clear and  the robot-move function can 
perform the move. Note  that clear is a logical predicate 
defined in the following three clauses, while robot-move 
is a user-defined LISP function. 

The definition of clear is as follows. The  table is 
always  clear. Furthermore, if backtracking should  occur 
we should not  try to resatisfy the goal clear(tab1e) by 
treating  the  table as a block and  attempting  to move it. 
For  this  reason, we have included the  cut in this clause. 
Secondly,  a block is clear if the world model shows that 
no other block is atop  that block. Finally, a block is 
clear if we move the block atop it to  the  table. 

Note  the use of the fsend subgoals here. Fsend is 
the  built-in  predicate which allows FProlog to interface 
with  the  LISP flavor system. Specifically, a message is 

sent  to ?Block asking which block it is under. Fsend  then 
instantiates ?Block-above to the  value  returned as a 
result of this message. Similarly, the last two fsend 
subgoals  cause messages to be sent  to  appropriate blocks 
which update  certain  information about,  those blocks, 
specifically, which blocks are above or  under  the  particu- 
lar block. Since no uninstantiated  variables  are passed to 
fsend  in this case, the fsend  subgoal  succeeds without 
instantiation.  Figure 2 shows the  form of the  mixin 
flavor object as well as the flavor block. 

Note  that  the robot-move function could also be a 
logic predicate.  This logic predicate  might  contain 
clauses to  invoke  the model system to determine  the 3- 
dimensional coordinates of the  current ]position of the 

init() :- 
add-func(mode1-clear), 
add-func(robot-move). 

move(?Blockl,?Block2) :- 
clear(?Blockl), 
clear(?Block2), 
robot~move(?Blockl,?Block2). 

clear(tab1e) :- 
cut(). 

clear(?Block) :- 
model-clear(?Block). 

clear(?Block) :- 
fsend(?Block,under,?Block-above), 
move(?Block-above,table), 
fsend(?Block-above,set-on-top-of, [I), 
fsend(?Block,set-under,[]). 

Fig. 1: FProlog  solution  to  real block%  world problem 

(defflavor object-mixin 

angle1 angle2  angle3 
name 

(xpos ypos zpos 

:gettable-instancevariables 
:settable-instancevariables 
:initableinstancevariables 

1 
(defflavor block 

(height  width  length 
(under nil) 
(on-top-of nil) 

1 
(object-mixin) 

:gettable-instance-variables 
:settable-instancevariables 
:initableinstancevariables 

) 

Fig. 2: Flavor definitions  for object  and block 
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block and  the  &dimensional  coordinates of the position 
that  the block is to be  moved to (i.e. the position of the 
top of the second block). The  next clause would invoke a 
LISP function which caused the  robot  to grip the  object 
at the first set of coordinates and move that  object  to  the 
location specified by the second set of coordinates. 

4. CONCLUSIONS 
In this  paper we have presented FProlog,  a  language 

which we have developed to act as a top level planner  in 
an  automat,ed assembly system. FProlog’s  ability to 
readily interface  with  LISP  and  therefore  the  LISP flavor 
system allows these top level programs  great flexibility. 
En particular, they  can make use of the  declarative tech- 
niques native  to logic programming, as well as the func- 
tional  programming techniques native to LISP. 

Unfortunately,  the choice of a logic system based on 
Prolog’s inference  system  carries  with  it several Simita- 
tions. Reasoning with uncertainty is awkward since no 
specific mechanism for this is built into FProlog. Also, 
the  stack  frame used in FProlog’s backtracking process 
contains only information concerning the  instantiations of 
logical variables.  Thus  any changes made to LISP world 
objects  are  not  undone when backtracking occurs  (analo- 
gous to using  assert and  retract in Prolog programs). 
Furthermore, changes to  the  real world (e.g. the position 
of the  robot  manipulator)  are  not  undone when back- 
tracking occurs. Also, since backtracking is the  control 
strategy used, it is very difficult to move laterally in the 
search tree. As the  system develops, we anticipate 
significant  changes to  the  actual inference engine used by 
FProlog  to cope with these  problems. 

In addition to changes  in the inference system of 
FProlog,  future versions will include  several additional 
enhancements.  Among these will be clause indexing to 
increase speed;  better debugging tools; a more efficient 
compiler, which incorporates a higher  degree of error 
checking; and  the  ability  to  summon daemon program 
immediately  before or  after invoking a functional pro- 
grams. There  are also plans to include a  set of built-in 
predicates which will ease even further  the  task of inter- 
facing functional  programs to FProlog. 

T o  demonstrate  the  applicability of FProlog  to 
automated assembly, we have shown a sample  FProlog 
program which is currently in use in a robot assembly 
system which performs a version of the blocks world 
experiment.  This  program  illustrates  both  the technique 
of interfacing LISP  programs  with  an  FProlog  program, 
and  the use of the built-in predicate fsend, which allows 
FProlog to interface directly with  the LISP flavor pack- 
age. 

Planned  future work with  FProlog includes the 
application  of  the  language  to more complex robot assem- 
bly tasks. In pursuit of this goal, we plan to interface 
FProlog  programs with a vision system,  a compiler which 
will translate high level assembly plans into  robot  control 
language,  and a robot  control  package  that  currently 
exists on our system (written in LISP). 
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